freebsd-dev/sys/arm/mv/mv_pci.c
Ruslan Bukin 30b72b6871 Move arm's devmap to some generic place, so it can be used
by other architectures.

Reviewed by:	imp
Differential Revision:	https://reviews.freebsd.org/D6091
Sponsored by:	DARPA, AFRL
Sponsored by:	HEIF5
2016-04-26 11:53:37 +00:00

1213 lines
30 KiB
C

/*-
* Copyright (c) 2008 MARVELL INTERNATIONAL LTD.
* Copyright (c) 2010 The FreeBSD Foundation
* Copyright (c) 2010-2015 Semihalf
* All rights reserved.
*
* Developed by Semihalf.
*
* Portions of this software were developed by Semihalf
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of MARVELL nor the names of contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Marvell integrated PCI/PCI-Express controller driver.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/endian.h>
#include <sys/devmap.h>
#include <machine/fdt.h>
#include <machine/intr.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/ofw/ofw_pci.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcib_private.h>
#include "ofw_bus_if.h"
#include "pcib_if.h"
#include <machine/resource.h>
#include <machine/bus.h>
#include <arm/mv/mvreg.h>
#include <arm/mv/mvvar.h>
#include <arm/mv/mvwin.h>
#ifdef DEBUG
#define debugf(fmt, args...) do { printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
/*
* Code and data related to fdt-based PCI configuration.
*
* This stuff used to be in dev/fdt/fdt_pci.c and fdt_common.h, but it was
* always Marvell-specific so that was deleted and the code now lives here.
*/
struct mv_pci_range {
u_long base_pci;
u_long base_parent;
u_long len;
};
#define FDT_RANGES_CELLS ((3 + 3 + 2) * 2)
static void
mv_pci_range_dump(struct mv_pci_range *range)
{
#ifdef DEBUG
printf("\n");
printf(" base_pci = 0x%08lx\n", range->base_pci);
printf(" base_par = 0x%08lx\n", range->base_parent);
printf(" len = 0x%08lx\n", range->len);
#endif
}
static int
mv_pci_ranges_decode(phandle_t node, struct mv_pci_range *io_space,
struct mv_pci_range *mem_space)
{
pcell_t ranges[FDT_RANGES_CELLS];
struct mv_pci_range *pci_space;
pcell_t addr_cells, size_cells, par_addr_cells;
pcell_t *rangesptr;
pcell_t cell0, cell1, cell2;
int tuple_size, tuples, i, rv, offset_cells, len;
/*
* Retrieve 'ranges' property.
*/
if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
return (EINVAL);
if (addr_cells != 3 || size_cells != 2)
return (ERANGE);
par_addr_cells = fdt_parent_addr_cells(node);
if (par_addr_cells > 3)
return (ERANGE);
len = OF_getproplen(node, "ranges");
if (len > sizeof(ranges))
return (ENOMEM);
if (OF_getprop(node, "ranges", ranges, sizeof(ranges)) <= 0)
return (EINVAL);
tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
size_cells);
tuples = len / tuple_size;
/*
* Initialize the ranges so that we don't have to worry about
* having them all defined in the FDT. In particular, it is
* perfectly fine not to want I/O space on PCI busses.
*/
bzero(io_space, sizeof(*io_space));
bzero(mem_space, sizeof(*mem_space));
rangesptr = &ranges[0];
offset_cells = 0;
for (i = 0; i < tuples; i++) {
cell0 = fdt_data_get((void *)rangesptr, 1);
rangesptr++;
cell1 = fdt_data_get((void *)rangesptr, 1);
rangesptr++;
cell2 = fdt_data_get((void *)rangesptr, 1);
rangesptr++;
if (cell0 & 0x02000000) {
pci_space = mem_space;
} else if (cell0 & 0x01000000) {
pci_space = io_space;
} else {
rv = ERANGE;
goto out;
}
if (par_addr_cells == 3) {
/*
* This is a PCI subnode 'ranges'. Skip cell0 and
* cell1 of this entry and only use cell2.
*/
offset_cells = 2;
rangesptr += offset_cells;
}
if ((par_addr_cells - offset_cells) > 2) {
rv = ERANGE;
goto out;
}
pci_space->base_parent = fdt_data_get((void *)rangesptr,
par_addr_cells - offset_cells);
rangesptr += par_addr_cells - offset_cells;
if (size_cells > 2) {
rv = ERANGE;
goto out;
}
pci_space->len = fdt_data_get((void *)rangesptr, size_cells);
rangesptr += size_cells;
pci_space->base_pci = cell2;
}
rv = 0;
out:
return (rv);
}
static int
mv_pci_ranges(phandle_t node, struct mv_pci_range *io_space,
struct mv_pci_range *mem_space)
{
int err;
debugf("Processing PCI node: %x\n", node);
if ((err = mv_pci_ranges_decode(node, io_space, mem_space)) != 0) {
debugf("could not decode parent PCI node 'ranges'\n");
return (err);
}
debugf("Post fixup dump:\n");
mv_pci_range_dump(io_space);
mv_pci_range_dump(mem_space);
return (0);
}
int
mv_pci_devmap(phandle_t node, struct devmap_entry *devmap, vm_offset_t io_va,
vm_offset_t mem_va)
{
struct mv_pci_range io_space, mem_space;
int error;
if ((error = mv_pci_ranges_decode(node, &io_space, &mem_space)) != 0)
return (error);
devmap->pd_va = (io_va ? io_va : io_space.base_parent);
devmap->pd_pa = io_space.base_parent;
devmap->pd_size = io_space.len;
devmap++;
devmap->pd_va = (mem_va ? mem_va : mem_space.base_parent);
devmap->pd_pa = mem_space.base_parent;
devmap->pd_size = mem_space.len;
return (0);
}
/*
* Code and data related to the Marvell pcib driver.
*/
#define PCI_CFG_ENA (1U << 31)
#define PCI_CFG_BUS(bus) (((bus) & 0xff) << 16)
#define PCI_CFG_DEV(dev) (((dev) & 0x1f) << 11)
#define PCI_CFG_FUN(fun) (((fun) & 0x7) << 8)
#define PCI_CFG_PCIE_REG(reg) ((reg) & 0xfc)
#define PCI_REG_CFG_ADDR 0x0C78
#define PCI_REG_CFG_DATA 0x0C7C
#define PCIE_REG_CFG_ADDR 0x18F8
#define PCIE_REG_CFG_DATA 0x18FC
#define PCIE_REG_CONTROL 0x1A00
#define PCIE_CTRL_LINK1X 0x00000001
#define PCIE_REG_STATUS 0x1A04
#define PCIE_REG_IRQ_MASK 0x1910
#define PCIE_CONTROL_ROOT_CMPLX (1 << 1)
#define PCIE_CONTROL_HOT_RESET (1 << 24)
#define PCIE_LINK_TIMEOUT 1000000
#define PCIE_STATUS_LINK_DOWN 1
#define PCIE_STATUS_DEV_OFFS 16
/* Minimum PCI Memory and I/O allocations taken from PCI spec (in bytes) */
#define PCI_MIN_IO_ALLOC 4
#define PCI_MIN_MEM_ALLOC 16
#define BITS_PER_UINT32 (NBBY * sizeof(uint32_t))
struct mv_pcib_softc {
device_t sc_dev;
struct rman sc_mem_rman;
bus_addr_t sc_mem_base;
bus_addr_t sc_mem_size;
uint32_t sc_mem_map[MV_PCI_MEM_SLICE_SIZE /
(PCI_MIN_MEM_ALLOC * BITS_PER_UINT32)];
int sc_win_target;
int sc_mem_win_attr;
struct rman sc_io_rman;
bus_addr_t sc_io_base;
bus_addr_t sc_io_size;
uint32_t sc_io_map[MV_PCI_IO_SLICE_SIZE /
(PCI_MIN_IO_ALLOC * BITS_PER_UINT32)];
int sc_io_win_attr;
struct resource *sc_res;
bus_space_handle_t sc_bsh;
bus_space_tag_t sc_bst;
int sc_rid;
struct mtx sc_msi_mtx;
uint32_t sc_msi_bitmap;
int sc_busnr; /* Host bridge bus number */
int sc_devnr; /* Host bridge device number */
int sc_type;
int sc_mode; /* Endpoint / Root Complex */
struct ofw_bus_iinfo sc_pci_iinfo;
};
/* Local forward prototypes */
static int mv_pcib_decode_win(phandle_t, struct mv_pcib_softc *);
static void mv_pcib_hw_cfginit(void);
static uint32_t mv_pcib_hw_cfgread(struct mv_pcib_softc *, u_int, u_int,
u_int, u_int, int);
static void mv_pcib_hw_cfgwrite(struct mv_pcib_softc *, u_int, u_int,
u_int, u_int, uint32_t, int);
static int mv_pcib_init(struct mv_pcib_softc *, int, int);
static int mv_pcib_init_all_bars(struct mv_pcib_softc *, int, int, int, int);
static void mv_pcib_init_bridge(struct mv_pcib_softc *, int, int, int);
static inline void pcib_write_irq_mask(struct mv_pcib_softc *, uint32_t);
static void mv_pcib_enable(struct mv_pcib_softc *, uint32_t);
static int mv_pcib_mem_init(struct mv_pcib_softc *);
/* Forward prototypes */
static int mv_pcib_probe(device_t);
static int mv_pcib_attach(device_t);
static struct resource *mv_pcib_alloc_resource(device_t, device_t, int, int *,
rman_res_t, rman_res_t, rman_res_t, u_int);
static int mv_pcib_release_resource(device_t, device_t, int, int,
struct resource *);
static int mv_pcib_read_ivar(device_t, device_t, int, uintptr_t *);
static int mv_pcib_write_ivar(device_t, device_t, int, uintptr_t);
static int mv_pcib_maxslots(device_t);
static uint32_t mv_pcib_read_config(device_t, u_int, u_int, u_int, u_int, int);
static void mv_pcib_write_config(device_t, u_int, u_int, u_int, u_int,
uint32_t, int);
static int mv_pcib_route_interrupt(device_t, device_t, int);
#if defined(SOC_MV_ARMADAXP)
static int mv_pcib_alloc_msi(device_t, device_t, int, int, int *);
static int mv_pcib_map_msi(device_t, device_t, int, uint64_t *, uint32_t *);
static int mv_pcib_release_msi(device_t, device_t, int, int *);
#endif
/*
* Bus interface definitions.
*/
static device_method_t mv_pcib_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mv_pcib_probe),
DEVMETHOD(device_attach, mv_pcib_attach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, mv_pcib_read_ivar),
DEVMETHOD(bus_write_ivar, mv_pcib_write_ivar),
DEVMETHOD(bus_alloc_resource, mv_pcib_alloc_resource),
DEVMETHOD(bus_release_resource, mv_pcib_release_resource),
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
/* pcib interface */
DEVMETHOD(pcib_maxslots, mv_pcib_maxslots),
DEVMETHOD(pcib_read_config, mv_pcib_read_config),
DEVMETHOD(pcib_write_config, mv_pcib_write_config),
DEVMETHOD(pcib_route_interrupt, mv_pcib_route_interrupt),
#if defined(SOC_MV_ARMADAXP)
DEVMETHOD(pcib_alloc_msi, mv_pcib_alloc_msi),
DEVMETHOD(pcib_release_msi, mv_pcib_release_msi),
DEVMETHOD(pcib_map_msi, mv_pcib_map_msi),
#endif
/* OFW bus interface */
DEVMETHOD(ofw_bus_get_compat, ofw_bus_gen_get_compat),
DEVMETHOD(ofw_bus_get_model, ofw_bus_gen_get_model),
DEVMETHOD(ofw_bus_get_name, ofw_bus_gen_get_name),
DEVMETHOD(ofw_bus_get_node, ofw_bus_gen_get_node),
DEVMETHOD(ofw_bus_get_type, ofw_bus_gen_get_type),
DEVMETHOD_END
};
static driver_t mv_pcib_driver = {
"pcib",
mv_pcib_methods,
sizeof(struct mv_pcib_softc),
};
devclass_t pcib_devclass;
DRIVER_MODULE(pcib, ofwbus, mv_pcib_driver, pcib_devclass, 0, 0);
static struct mtx pcicfg_mtx;
static int
mv_pcib_probe(device_t self)
{
phandle_t node;
node = ofw_bus_get_node(self);
if (!fdt_is_type(node, "pci"))
return (ENXIO);
if (!(ofw_bus_is_compatible(self, "mrvl,pcie") ||
ofw_bus_is_compatible(self, "mrvl,pci")))
return (ENXIO);
device_set_desc(self, "Marvell Integrated PCI/PCI-E Controller");
return (BUS_PROBE_DEFAULT);
}
static int
mv_pcib_attach(device_t self)
{
struct mv_pcib_softc *sc;
phandle_t node, parnode;
uint32_t val, unit;
int err;
sc = device_get_softc(self);
sc->sc_dev = self;
unit = fdt_get_unit(self);
node = ofw_bus_get_node(self);
parnode = OF_parent(node);
if (fdt_is_compatible(node, "mrvl,pcie")) {
sc->sc_type = MV_TYPE_PCIE;
sc->sc_win_target = MV_WIN_PCIE_TARGET(unit);
sc->sc_mem_win_attr = MV_WIN_PCIE_MEM_ATTR(unit);
sc->sc_io_win_attr = MV_WIN_PCIE_IO_ATTR(unit);
} else if (fdt_is_compatible(node, "mrvl,pci")) {
sc->sc_type = MV_TYPE_PCI;
sc->sc_win_target = MV_WIN_PCI_TARGET;
sc->sc_mem_win_attr = MV_WIN_PCI_MEM_ATTR;
sc->sc_io_win_attr = MV_WIN_PCI_IO_ATTR;
} else
return (ENXIO);
/*
* Retrieve our mem-mapped registers range.
*/
sc->sc_rid = 0;
sc->sc_res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &sc->sc_rid,
RF_ACTIVE);
if (sc->sc_res == NULL) {
device_printf(self, "could not map memory\n");
return (ENXIO);
}
sc->sc_bst = rman_get_bustag(sc->sc_res);
sc->sc_bsh = rman_get_bushandle(sc->sc_res);
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_CONTROL);
sc->sc_mode = (val & PCIE_CONTROL_ROOT_CMPLX ? MV_MODE_ROOT :
MV_MODE_ENDPOINT);
/*
* Get PCI interrupt info.
*/
if (sc->sc_mode == MV_MODE_ROOT)
ofw_bus_setup_iinfo(node, &sc->sc_pci_iinfo, sizeof(pcell_t));
/*
* Configure decode windows for PCI(E) access.
*/
if (mv_pcib_decode_win(node, sc) != 0)
return (ENXIO);
mv_pcib_hw_cfginit();
/*
* Enable PCIE device.
*/
mv_pcib_enable(sc, unit);
/*
* Memory management.
*/
err = mv_pcib_mem_init(sc);
if (err)
return (err);
if (sc->sc_mode == MV_MODE_ROOT) {
err = mv_pcib_init(sc, sc->sc_busnr,
mv_pcib_maxslots(sc->sc_dev));
if (err)
goto error;
device_add_child(self, "pci", -1);
} else {
sc->sc_devnr = 1;
bus_space_write_4(sc->sc_bst, sc->sc_bsh,
PCIE_REG_STATUS, 1 << PCIE_STATUS_DEV_OFFS);
device_add_child(self, "pci_ep", -1);
}
mtx_init(&sc->sc_msi_mtx, "msi_mtx", NULL, MTX_DEF);
return (bus_generic_attach(self));
error:
/* XXX SYS_RES_ should be released here */
rman_fini(&sc->sc_mem_rman);
rman_fini(&sc->sc_io_rman);
return (err);
}
static void
mv_pcib_enable(struct mv_pcib_softc *sc, uint32_t unit)
{
uint32_t val;
#if !defined(SOC_MV_ARMADAXP)
int timeout;
/*
* Check if PCIE device is enabled.
*/
if (read_cpu_ctrl(CPU_CONTROL) & CPU_CONTROL_PCIE_DISABLE(unit)) {
write_cpu_ctrl(CPU_CONTROL, read_cpu_ctrl(CPU_CONTROL) &
~(CPU_CONTROL_PCIE_DISABLE(unit)));
timeout = PCIE_LINK_TIMEOUT;
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh,
PCIE_REG_STATUS);
while (((val & PCIE_STATUS_LINK_DOWN) == 1) && (timeout > 0)) {
DELAY(1000);
timeout -= 1000;
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh,
PCIE_REG_STATUS);
}
}
#endif
if (sc->sc_mode == MV_MODE_ROOT) {
/*
* Enable PCI bridge.
*/
val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIR_COMMAND);
val |= PCIM_CMD_SERRESPEN | PCIM_CMD_BUSMASTEREN |
PCIM_CMD_MEMEN | PCIM_CMD_PORTEN;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, PCIR_COMMAND, val);
}
}
static int
mv_pcib_mem_init(struct mv_pcib_softc *sc)
{
int err;
/*
* Memory management.
*/
sc->sc_mem_rman.rm_type = RMAN_ARRAY;
err = rman_init(&sc->sc_mem_rman);
if (err)
return (err);
sc->sc_io_rman.rm_type = RMAN_ARRAY;
err = rman_init(&sc->sc_io_rman);
if (err) {
rman_fini(&sc->sc_mem_rman);
return (err);
}
err = rman_manage_region(&sc->sc_mem_rman, sc->sc_mem_base,
sc->sc_mem_base + sc->sc_mem_size - 1);
if (err)
goto error;
err = rman_manage_region(&sc->sc_io_rman, sc->sc_io_base,
sc->sc_io_base + sc->sc_io_size - 1);
if (err)
goto error;
return (0);
error:
rman_fini(&sc->sc_mem_rman);
rman_fini(&sc->sc_io_rman);
return (err);
}
static inline uint32_t
pcib_bit_get(uint32_t *map, uint32_t bit)
{
uint32_t n = bit / BITS_PER_UINT32;
bit = bit % BITS_PER_UINT32;
return (map[n] & (1 << bit));
}
static inline void
pcib_bit_set(uint32_t *map, uint32_t bit)
{
uint32_t n = bit / BITS_PER_UINT32;
bit = bit % BITS_PER_UINT32;
map[n] |= (1 << bit);
}
static inline uint32_t
pcib_map_check(uint32_t *map, uint32_t start, uint32_t bits)
{
uint32_t i;
for (i = start; i < start + bits; i++)
if (pcib_bit_get(map, i))
return (0);
return (1);
}
static inline void
pcib_map_set(uint32_t *map, uint32_t start, uint32_t bits)
{
uint32_t i;
for (i = start; i < start + bits; i++)
pcib_bit_set(map, i);
}
/*
* The idea of this allocator is taken from ARM No-Cache memory
* management code (sys/arm/arm/vm_machdep.c).
*/
static bus_addr_t
pcib_alloc(struct mv_pcib_softc *sc, uint32_t smask)
{
uint32_t bits, bits_limit, i, *map, min_alloc, size;
bus_addr_t addr = 0;
bus_addr_t base;
if (smask & 1) {
base = sc->sc_io_base;
min_alloc = PCI_MIN_IO_ALLOC;
bits_limit = sc->sc_io_size / min_alloc;
map = sc->sc_io_map;
smask &= ~0x3;
} else {
base = sc->sc_mem_base;
min_alloc = PCI_MIN_MEM_ALLOC;
bits_limit = sc->sc_mem_size / min_alloc;
map = sc->sc_mem_map;
smask &= ~0xF;
}
size = ~smask + 1;
bits = size / min_alloc;
for (i = 0; i + bits <= bits_limit; i += bits)
if (pcib_map_check(map, i, bits)) {
pcib_map_set(map, i, bits);
addr = base + (i * min_alloc);
return (addr);
}
return (addr);
}
static int
mv_pcib_init_bar(struct mv_pcib_softc *sc, int bus, int slot, int func,
int barno)
{
uint32_t addr, bar;
int reg, width;
reg = PCIR_BAR(barno);
/*
* Need to init the BAR register with 0xffffffff before correct
* value can be read.
*/
mv_pcib_write_config(sc->sc_dev, bus, slot, func, reg, ~0, 4);
bar = mv_pcib_read_config(sc->sc_dev, bus, slot, func, reg, 4);
if (bar == 0)
return (1);
/* Calculate BAR size: 64 or 32 bit (in 32-bit units) */
width = ((bar & 7) == 4) ? 2 : 1;
addr = pcib_alloc(sc, bar);
if (!addr)
return (-1);
if (bootverbose)
printf("PCI %u:%u:%u: reg %x: smask=%08x: addr=%08x\n",
bus, slot, func, reg, bar, addr);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, reg, addr, 4);
if (width == 2)
mv_pcib_write_config(sc->sc_dev, bus, slot, func, reg + 4,
0, 4);
return (width);
}
static void
mv_pcib_init_bridge(struct mv_pcib_softc *sc, int bus, int slot, int func)
{
bus_addr_t io_base, mem_base;
uint32_t io_limit, mem_limit;
int secbus;
io_base = sc->sc_io_base;
io_limit = io_base + sc->sc_io_size - 1;
mem_base = sc->sc_mem_base;
mem_limit = mem_base + sc->sc_mem_size - 1;
/* Configure I/O decode registers */
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOBASEL_1,
io_base >> 8, 1);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOBASEH_1,
io_base >> 16, 2);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOLIMITL_1,
io_limit >> 8, 1);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_IOLIMITH_1,
io_limit >> 16, 2);
/* Configure memory decode registers */
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_MEMBASE_1,
mem_base >> 16, 2);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_MEMLIMIT_1,
mem_limit >> 16, 2);
/* Disable memory prefetch decode */
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMBASEL_1,
0x10, 2);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMBASEH_1,
0x0, 4);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMLIMITL_1,
0xF, 2);
mv_pcib_write_config(sc->sc_dev, bus, slot, func, PCIR_PMLIMITH_1,
0x0, 4);
secbus = mv_pcib_read_config(sc->sc_dev, bus, slot, func,
PCIR_SECBUS_1, 1);
/* Configure buses behind the bridge */
mv_pcib_init(sc, secbus, PCI_SLOTMAX);
}
static int
mv_pcib_init(struct mv_pcib_softc *sc, int bus, int maxslot)
{
int slot, func, maxfunc, error;
uint8_t hdrtype, command, class, subclass;
for (slot = 0; slot <= maxslot; slot++) {
maxfunc = 0;
for (func = 0; func <= maxfunc; func++) {
hdrtype = mv_pcib_read_config(sc->sc_dev, bus, slot,
func, PCIR_HDRTYPE, 1);
if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE)
continue;
if (func == 0 && (hdrtype & PCIM_MFDEV))
maxfunc = PCI_FUNCMAX;
command = mv_pcib_read_config(sc->sc_dev, bus, slot,
func, PCIR_COMMAND, 1);
command &= ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN);
mv_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_COMMAND, command, 1);
error = mv_pcib_init_all_bars(sc, bus, slot, func,
hdrtype);
if (error)
return (error);
command |= PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN |
PCIM_CMD_PORTEN;
mv_pcib_write_config(sc->sc_dev, bus, slot, func,
PCIR_COMMAND, command, 1);
/* Handle PCI-PCI bridges */
class = mv_pcib_read_config(sc->sc_dev, bus, slot,
func, PCIR_CLASS, 1);
subclass = mv_pcib_read_config(sc->sc_dev, bus, slot,
func, PCIR_SUBCLASS, 1);
if (class != PCIC_BRIDGE ||
subclass != PCIS_BRIDGE_PCI)
continue;
mv_pcib_init_bridge(sc, bus, slot, func);
}
}
/* Enable all ABCD interrupts */
pcib_write_irq_mask(sc, (0xF << 24));
return (0);
}
static int
mv_pcib_init_all_bars(struct mv_pcib_softc *sc, int bus, int slot,
int func, int hdrtype)
{
int maxbar, bar, i;
maxbar = (hdrtype & PCIM_HDRTYPE) ? 0 : 6;
bar = 0;
/* Program the base address registers */
while (bar < maxbar) {
i = mv_pcib_init_bar(sc, bus, slot, func, bar);
bar += i;
if (i < 0) {
device_printf(sc->sc_dev,
"PCI IO/Memory space exhausted\n");
return (ENOMEM);
}
}
return (0);
}
static struct resource *
mv_pcib_alloc_resource(device_t dev, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
struct rman *rm = NULL;
struct resource *res;
switch (type) {
case SYS_RES_IOPORT:
rm = &sc->sc_io_rman;
break;
case SYS_RES_MEMORY:
rm = &sc->sc_mem_rman;
break;
default:
return (BUS_ALLOC_RESOURCE(device_get_parent(dev), dev,
type, rid, start, end, count, flags));
}
if (RMAN_IS_DEFAULT_RANGE(start, end)) {
start = sc->sc_mem_base;
end = sc->sc_mem_base + sc->sc_mem_size - 1;
count = sc->sc_mem_size;
}
if ((start < sc->sc_mem_base) || (start + count - 1 != end) ||
(end > sc->sc_mem_base + sc->sc_mem_size - 1))
return (NULL);
res = rman_reserve_resource(rm, start, end, count, flags, child);
if (res == NULL)
return (NULL);
rman_set_rid(res, *rid);
rman_set_bustag(res, fdtbus_bs_tag);
rman_set_bushandle(res, start);
if (flags & RF_ACTIVE)
if (bus_activate_resource(child, type, *rid, res)) {
rman_release_resource(res);
return (NULL);
}
return (res);
}
static int
mv_pcib_release_resource(device_t dev, device_t child, int type, int rid,
struct resource *res)
{
if (type != SYS_RES_IOPORT && type != SYS_RES_MEMORY)
return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
type, rid, res));
return (rman_release_resource(res));
}
static int
mv_pcib_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
switch (which) {
case PCIB_IVAR_BUS:
*result = sc->sc_busnr;
return (0);
case PCIB_IVAR_DOMAIN:
*result = device_get_unit(dev);
return (0);
}
return (ENOENT);
}
static int
mv_pcib_write_ivar(device_t dev, device_t child, int which, uintptr_t value)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
switch (which) {
case PCIB_IVAR_BUS:
sc->sc_busnr = value;
return (0);
}
return (ENOENT);
}
static inline void
pcib_write_irq_mask(struct mv_pcib_softc *sc, uint32_t mask)
{
if (sc->sc_type != MV_TYPE_PCI)
return;
bus_space_write_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_IRQ_MASK, mask);
}
static void
mv_pcib_hw_cfginit(void)
{
static int opened = 0;
if (opened)
return;
mtx_init(&pcicfg_mtx, "pcicfg", NULL, MTX_SPIN);
opened = 1;
}
static uint32_t
mv_pcib_hw_cfgread(struct mv_pcib_softc *sc, u_int bus, u_int slot,
u_int func, u_int reg, int bytes)
{
uint32_t addr, data, ca, cd;
ca = (sc->sc_type != MV_TYPE_PCI) ?
PCIE_REG_CFG_ADDR : PCI_REG_CFG_ADDR;
cd = (sc->sc_type != MV_TYPE_PCI) ?
PCIE_REG_CFG_DATA : PCI_REG_CFG_DATA;
addr = PCI_CFG_ENA | PCI_CFG_BUS(bus) | PCI_CFG_DEV(slot) |
PCI_CFG_FUN(func) | PCI_CFG_PCIE_REG(reg);
mtx_lock_spin(&pcicfg_mtx);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ca, addr);
data = ~0;
switch (bytes) {
case 1:
data = bus_space_read_1(sc->sc_bst, sc->sc_bsh,
cd + (reg & 3));
break;
case 2:
data = le16toh(bus_space_read_2(sc->sc_bst, sc->sc_bsh,
cd + (reg & 2)));
break;
case 4:
data = le32toh(bus_space_read_4(sc->sc_bst, sc->sc_bsh,
cd));
break;
}
mtx_unlock_spin(&pcicfg_mtx);
return (data);
}
static void
mv_pcib_hw_cfgwrite(struct mv_pcib_softc *sc, u_int bus, u_int slot,
u_int func, u_int reg, uint32_t data, int bytes)
{
uint32_t addr, ca, cd;
ca = (sc->sc_type != MV_TYPE_PCI) ?
PCIE_REG_CFG_ADDR : PCI_REG_CFG_ADDR;
cd = (sc->sc_type != MV_TYPE_PCI) ?
PCIE_REG_CFG_DATA : PCI_REG_CFG_DATA;
addr = PCI_CFG_ENA | PCI_CFG_BUS(bus) | PCI_CFG_DEV(slot) |
PCI_CFG_FUN(func) | PCI_CFG_PCIE_REG(reg);
mtx_lock_spin(&pcicfg_mtx);
bus_space_write_4(sc->sc_bst, sc->sc_bsh, ca, addr);
switch (bytes) {
case 1:
bus_space_write_1(sc->sc_bst, sc->sc_bsh,
cd + (reg & 3), data);
break;
case 2:
bus_space_write_2(sc->sc_bst, sc->sc_bsh,
cd + (reg & 2), htole16(data));
break;
case 4:
bus_space_write_4(sc->sc_bst, sc->sc_bsh,
cd, htole32(data));
break;
}
mtx_unlock_spin(&pcicfg_mtx);
}
static int
mv_pcib_maxslots(device_t dev)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
return ((sc->sc_type != MV_TYPE_PCI) ? 1 : PCI_SLOTMAX);
}
static int
mv_pcib_root_slot(device_t dev, u_int bus, u_int slot, u_int func)
{
#if defined(SOC_MV_ARMADA38X)
struct mv_pcib_softc *sc = device_get_softc(dev);
uint32_t vendor, device;
vendor = mv_pcib_hw_cfgread(sc, bus, slot, func, PCIR_VENDOR,
PCIR_VENDOR_LENGTH);
device = mv_pcib_hw_cfgread(sc, bus, slot, func, PCIR_DEVICE,
PCIR_DEVICE_LENGTH) & MV_DEV_FAMILY_MASK;
return (vendor == PCI_VENDORID_MRVL && device == MV_DEV_ARMADA38X);
#else
/* On platforms other than Armada38x, root link is always at slot 0 */
return (slot == 0);
#endif
}
static uint32_t
mv_pcib_read_config(device_t dev, u_int bus, u_int slot, u_int func,
u_int reg, int bytes)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
/* Return ~0 if link is inactive or trying to read from Root */
if ((bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_STATUS) &
PCIE_STATUS_LINK_DOWN) || mv_pcib_root_slot(dev, bus, slot, func))
return (~0U);
return (mv_pcib_hw_cfgread(sc, bus, slot, func, reg, bytes));
}
static void
mv_pcib_write_config(device_t dev, u_int bus, u_int slot, u_int func,
u_int reg, uint32_t val, int bytes)
{
struct mv_pcib_softc *sc = device_get_softc(dev);
/* Return if link is inactive or trying to write to Root */
if ((bus_space_read_4(sc->sc_bst, sc->sc_bsh, PCIE_REG_STATUS) &
PCIE_STATUS_LINK_DOWN) || mv_pcib_root_slot(dev, bus, slot, func))
return;
mv_pcib_hw_cfgwrite(sc, bus, slot, func, reg, val, bytes);
}
static int
mv_pcib_route_interrupt(device_t bus, device_t dev, int pin)
{
struct mv_pcib_softc *sc;
struct ofw_pci_register reg;
uint32_t pintr, mintr[4];
int icells;
phandle_t iparent;
sc = device_get_softc(bus);
pintr = pin;
/* Fabricate imap information in case this isn't an OFW device */
bzero(&reg, sizeof(reg));
reg.phys_hi = (pci_get_bus(dev) << OFW_PCI_PHYS_HI_BUSSHIFT) |
(pci_get_slot(dev) << OFW_PCI_PHYS_HI_DEVICESHIFT) |
(pci_get_function(dev) << OFW_PCI_PHYS_HI_FUNCTIONSHIFT);
icells = ofw_bus_lookup_imap(ofw_bus_get_node(dev), &sc->sc_pci_iinfo,
&reg, sizeof(reg), &pintr, sizeof(pintr), mintr, sizeof(mintr),
&iparent);
if (icells > 0)
return (ofw_bus_map_intr(dev, iparent, icells, mintr));
/* Maybe it's a real interrupt, not an intpin */
if (pin > 4)
return (pin);
device_printf(bus, "could not route pin %d for device %d.%d\n",
pin, pci_get_slot(dev), pci_get_function(dev));
return (PCI_INVALID_IRQ);
}
static int
mv_pcib_decode_win(phandle_t node, struct mv_pcib_softc *sc)
{
struct mv_pci_range io_space, mem_space;
device_t dev;
int error;
dev = sc->sc_dev;
if ((error = mv_pci_ranges(node, &io_space, &mem_space)) != 0) {
device_printf(dev, "could not retrieve 'ranges' data\n");
return (error);
}
/* Configure CPU decoding windows */
error = decode_win_cpu_set(sc->sc_win_target,
sc->sc_io_win_attr, io_space.base_parent, io_space.len, ~0);
if (error < 0) {
device_printf(dev, "could not set up CPU decode "
"window for PCI IO\n");
return (ENXIO);
}
error = decode_win_cpu_set(sc->sc_win_target,
sc->sc_mem_win_attr, mem_space.base_parent, mem_space.len,
mem_space.base_parent);
if (error < 0) {
device_printf(dev, "could not set up CPU decode "
"windows for PCI MEM\n");
return (ENXIO);
}
sc->sc_io_base = io_space.base_parent;
sc->sc_io_size = io_space.len;
sc->sc_mem_base = mem_space.base_parent;
sc->sc_mem_size = mem_space.len;
return (0);
}
#if defined(SOC_MV_ARMADAXP)
static int
mv_pcib_map_msi(device_t dev, device_t child, int irq, uint64_t *addr,
uint32_t *data)
{
struct mv_pcib_softc *sc;
sc = device_get_softc(dev);
irq = irq - MSI_IRQ;
/* validate parameters */
if (isclr(&sc->sc_msi_bitmap, irq)) {
device_printf(dev, "invalid MSI 0x%x\n", irq);
return (EINVAL);
}
mv_msi_data(irq, addr, data);
debugf("%s: irq: %d addr: %jx data: %x\n",
__func__, irq, *addr, *data);
return (0);
}
static int
mv_pcib_alloc_msi(device_t dev, device_t child, int count,
int maxcount __unused, int *irqs)
{
struct mv_pcib_softc *sc;
u_int start = 0, i;
if (powerof2(count) == 0 || count > MSI_IRQ_NUM)
return (EINVAL);
sc = device_get_softc(dev);
mtx_lock(&sc->sc_msi_mtx);
for (start = 0; (start + count) < MSI_IRQ_NUM; start++) {
for (i = start; i < start + count; i++) {
if (isset(&sc->sc_msi_bitmap, i))
break;
}
if (i == start + count)
break;
}
if ((start + count) == MSI_IRQ_NUM) {
mtx_unlock(&sc->sc_msi_mtx);
return (ENXIO);
}
for (i = start; i < start + count; i++) {
setbit(&sc->sc_msi_bitmap, i);
*irqs++ = MSI_IRQ + i;
}
debugf("%s: start: %x count: %x\n", __func__, start, count);
mtx_unlock(&sc->sc_msi_mtx);
return (0);
}
static int
mv_pcib_release_msi(device_t dev, device_t child, int count, int *irqs)
{
struct mv_pcib_softc *sc;
u_int i;
sc = device_get_softc(dev);
mtx_lock(&sc->sc_msi_mtx);
for (i = 0; i < count; i++)
clrbit(&sc->sc_msi_bitmap, irqs[i] - MSI_IRQ);
mtx_unlock(&sc->sc_msi_mtx);
return (0);
}
#endif