freebsd-dev/contrib/llvm/lib/Support/Host.cpp
Dimitry Andric f37b6182a5 Merge llvm, clang, lld, lldb, compiler-rt and libc++ r302069, and update
build glue (preliminary, not all option combinations work yet).
2017-05-03 21:54:55 +00:00

1497 lines
47 KiB
C++

//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the operating system Host concept.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Host.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/config.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <assert.h>
#include <string.h>
// Include the platform-specific parts of this class.
#ifdef LLVM_ON_UNIX
#include "Unix/Host.inc"
#endif
#ifdef LLVM_ON_WIN32
#include "Windows/Host.inc"
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
#include <mach/host_info.h>
#include <mach/mach.h>
#include <mach/mach_host.h>
#include <mach/machine.h>
#endif
#define DEBUG_TYPE "host-detection"
//===----------------------------------------------------------------------===//
//
// Implementations of the CPU detection routines
//
//===----------------------------------------------------------------------===//
using namespace llvm;
static std::unique_ptr<llvm::MemoryBuffer>
LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
if (std::error_code EC = Text.getError()) {
llvm::errs() << "Can't read "
<< "/proc/cpuinfo: " << EC.message() << "\n";
return nullptr;
}
return std::move(*Text);
}
StringRef sys::detail::getHostCPUNameForPowerPC(
const StringRef &ProcCpuinfoContent) {
// Access to the Processor Version Register (PVR) on PowerPC is privileged,
// and so we must use an operating-system interface to determine the current
// processor type. On Linux, this is exposed through the /proc/cpuinfo file.
const char *generic = "generic";
// The cpu line is second (after the 'processor: 0' line), so if this
// buffer is too small then something has changed (or is wrong).
StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
StringRef::const_iterator CIP = CPUInfoStart;
StringRef::const_iterator CPUStart = 0;
size_t CPULen = 0;
// We need to find the first line which starts with cpu, spaces, and a colon.
// After the colon, there may be some additional spaces and then the cpu type.
while (CIP < CPUInfoEnd && CPUStart == 0) {
if (CIP < CPUInfoEnd && *CIP == '\n')
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'c') {
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'p') {
++CIP;
if (CIP < CPUInfoEnd && *CIP == 'u') {
++CIP;
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
++CIP;
if (CIP < CPUInfoEnd && *CIP == ':') {
++CIP;
while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
++CIP;
if (CIP < CPUInfoEnd) {
CPUStart = CIP;
while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
*CIP != ',' && *CIP != '\n'))
++CIP;
CPULen = CIP - CPUStart;
}
}
}
}
}
if (CPUStart == 0)
while (CIP < CPUInfoEnd && *CIP != '\n')
++CIP;
}
if (CPUStart == 0)
return generic;
return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
.Case("604e", "604e")
.Case("604", "604")
.Case("7400", "7400")
.Case("7410", "7400")
.Case("7447", "7400")
.Case("7455", "7450")
.Case("G4", "g4")
.Case("POWER4", "970")
.Case("PPC970FX", "970")
.Case("PPC970MP", "970")
.Case("G5", "g5")
.Case("POWER5", "g5")
.Case("A2", "a2")
.Case("POWER6", "pwr6")
.Case("POWER7", "pwr7")
.Case("POWER8", "pwr8")
.Case("POWER8E", "pwr8")
.Case("POWER8NVL", "pwr8")
.Case("POWER9", "pwr9")
.Default(generic);
}
StringRef sys::detail::getHostCPUNameForARM(
const StringRef &ProcCpuinfoContent) {
// The cpuid register on arm is not accessible from user space. On Linux,
// it is exposed through the /proc/cpuinfo file.
// Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
// in all cases.
SmallVector<StringRef, 32> Lines;
ProcCpuinfoContent.split(Lines, "\n");
// Look for the CPU implementer line.
StringRef Implementer;
StringRef Hardware;
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
if (Lines[I].startswith("CPU implementer"))
Implementer = Lines[I].substr(15).ltrim("\t :");
if (Lines[I].startswith("Hardware"))
Hardware = Lines[I].substr(8).ltrim("\t :");
}
if (Implementer == "0x41") { // ARM Ltd.
// MSM8992/8994 may give cpu part for the core that the kernel is running on,
// which is undeterministic and wrong. Always return cortex-a53 for these SoC.
if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
return "cortex-a53";
// Look for the CPU part line.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("CPU part"))
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
// values correspond to the "Part number" in the CP15/c0 register. The
// contents are specified in the various processor manuals.
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0x926", "arm926ej-s")
.Case("0xb02", "mpcore")
.Case("0xb36", "arm1136j-s")
.Case("0xb56", "arm1156t2-s")
.Case("0xb76", "arm1176jz-s")
.Case("0xc08", "cortex-a8")
.Case("0xc09", "cortex-a9")
.Case("0xc0f", "cortex-a15")
.Case("0xc20", "cortex-m0")
.Case("0xc23", "cortex-m3")
.Case("0xc24", "cortex-m4")
.Case("0xd04", "cortex-a35")
.Case("0xd03", "cortex-a53")
.Case("0xd07", "cortex-a57")
.Case("0xd08", "cortex-a72")
.Case("0xd09", "cortex-a73")
.Default("generic");
}
if (Implementer == "0x51") // Qualcomm Technologies, Inc.
// Look for the CPU part line.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("CPU part"))
// The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
// values correspond to the "Part number" in the CP15/c0 register. The
// contents are specified in the various processor manuals.
return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
.Case("0x06f", "krait") // APQ8064
.Case("0x201", "kryo")
.Case("0x205", "kryo")
.Default("generic");
return "generic";
}
StringRef sys::detail::getHostCPUNameForS390x(
const StringRef &ProcCpuinfoContent) {
// STIDP is a privileged operation, so use /proc/cpuinfo instead.
// The "processor 0:" line comes after a fair amount of other information,
// including a cache breakdown, but this should be plenty.
SmallVector<StringRef, 32> Lines;
ProcCpuinfoContent.split(Lines, "\n");
// Look for the CPU features.
SmallVector<StringRef, 32> CPUFeatures;
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("features")) {
size_t Pos = Lines[I].find(":");
if (Pos != StringRef::npos) {
Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
break;
}
}
// We need to check for the presence of vector support independently of
// the machine type, since we may only use the vector register set when
// supported by the kernel (and hypervisor).
bool HaveVectorSupport = false;
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
if (CPUFeatures[I] == "vx")
HaveVectorSupport = true;
}
// Now check the processor machine type.
for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
if (Lines[I].startswith("processor ")) {
size_t Pos = Lines[I].find("machine = ");
if (Pos != StringRef::npos) {
Pos += sizeof("machine = ") - 1;
unsigned int Id;
if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
if (Id >= 2964 && HaveVectorSupport)
return "z13";
if (Id >= 2827)
return "zEC12";
if (Id >= 2817)
return "z196";
}
}
break;
}
}
return "generic";
}
#if defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64__) || defined(_M_X64)
enum VendorSignatures {
SIG_INTEL = 0x756e6547 /* Genu */,
SIG_AMD = 0x68747541 /* Auth */
};
enum ProcessorVendors {
VENDOR_INTEL = 1,
VENDOR_AMD,
VENDOR_OTHER,
VENDOR_MAX
};
enum ProcessorTypes {
INTEL_ATOM = 1,
INTEL_CORE2,
INTEL_COREI7,
AMDFAM10H,
AMDFAM15H,
INTEL_i386,
INTEL_i486,
INTEL_PENTIUM,
INTEL_PENTIUM_PRO,
INTEL_PENTIUM_II,
INTEL_PENTIUM_III,
INTEL_PENTIUM_IV,
INTEL_PENTIUM_M,
INTEL_CORE_DUO,
INTEL_XEONPHI,
INTEL_X86_64,
INTEL_NOCONA,
INTEL_PRESCOTT,
AMD_i486,
AMDPENTIUM,
AMDATHLON,
AMDFAM14H,
AMDFAM16H,
AMDFAM17H,
CPU_TYPE_MAX
};
enum ProcessorSubtypes {
INTEL_COREI7_NEHALEM = 1,
INTEL_COREI7_WESTMERE,
INTEL_COREI7_SANDYBRIDGE,
AMDFAM10H_BARCELONA,
AMDFAM10H_SHANGHAI,
AMDFAM10H_ISTANBUL,
AMDFAM15H_BDVER1,
AMDFAM15H_BDVER2,
INTEL_PENTIUM_MMX,
INTEL_CORE2_65,
INTEL_CORE2_45,
INTEL_COREI7_IVYBRIDGE,
INTEL_COREI7_HASWELL,
INTEL_COREI7_BROADWELL,
INTEL_COREI7_SKYLAKE,
INTEL_COREI7_SKYLAKE_AVX512,
INTEL_ATOM_BONNELL,
INTEL_ATOM_SILVERMONT,
INTEL_KNIGHTS_LANDING,
AMDPENTIUM_K6,
AMDPENTIUM_K62,
AMDPENTIUM_K63,
AMDPENTIUM_GEODE,
AMDATHLON_TBIRD,
AMDATHLON_MP,
AMDATHLON_XP,
AMDATHLON_K8SSE3,
AMDATHLON_OPTERON,
AMDATHLON_FX,
AMDATHLON_64,
AMD_BTVER1,
AMD_BTVER2,
AMDFAM15H_BDVER3,
AMDFAM15H_BDVER4,
AMDFAM17H_ZNVER1,
CPU_SUBTYPE_MAX
};
enum ProcessorFeatures {
FEATURE_CMOV = 0,
FEATURE_MMX,
FEATURE_POPCNT,
FEATURE_SSE,
FEATURE_SSE2,
FEATURE_SSE3,
FEATURE_SSSE3,
FEATURE_SSE4_1,
FEATURE_SSE4_2,
FEATURE_AVX,
FEATURE_AVX2,
FEATURE_AVX512,
FEATURE_AVX512SAVE,
FEATURE_MOVBE,
FEATURE_ADX,
FEATURE_EM64T
};
// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
// support. Consequently, for i386, the presence of CPUID is checked first
// via the corresponding eflags bit.
// Removal of cpuid.h header motivated by PR30384
// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
// or test-suite, but are used in external projects e.g. libstdcxx
static bool isCpuIdSupported() {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__i386__)
int __cpuid_supported;
__asm__(" pushfl\n"
" popl %%eax\n"
" movl %%eax,%%ecx\n"
" xorl $0x00200000,%%eax\n"
" pushl %%eax\n"
" popfl\n"
" pushfl\n"
" popl %%eax\n"
" movl $0,%0\n"
" cmpl %%eax,%%ecx\n"
" je 1f\n"
" movl $1,%0\n"
"1:"
: "=r"(__cpuid_supported)
:
: "eax", "ecx");
if (!__cpuid_supported)
return false;
#endif
return true;
#endif
return true;
}
/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
/// the specified arguments. If we can't run cpuid on the host, return true.
static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
unsigned *rECX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
#elif defined(__i386__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value));
#else
assert(0 && "This method is defined only for x86.");
#endif
#elif defined(_MSC_VER)
// The MSVC intrinsic is portable across x86 and x64.
int registers[4];
__cpuid(registers, value);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
#endif
return false;
#else
return true;
#endif
}
/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
/// the 4 values in the specified arguments. If we can't run cpuid on the host,
/// return true.
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__) || defined(_MSC_VER)
#if defined(__x86_64__) || defined(_M_X64)
#if defined(__GNUC__) || defined(__clang__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
// FIXME: should we save this for Clang?
__asm__("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
#elif defined(_MSC_VER)
int registers[4];
__cpuidex(registers, value, subleaf);
*rEAX = registers[0];
*rEBX = registers[1];
*rECX = registers[2];
*rEDX = registers[3];
#endif
#elif defined(__i386__) || defined(_M_IX86)
#if defined(__GNUC__) || defined(__clang__)
__asm__("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
: "a"(value), "c"(subleaf));
#elif defined(_MSC_VER)
__asm {
mov eax,value
mov ecx,subleaf
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
#endif
#else
assert(0 && "This method is defined only for x86.");
#endif
return false;
#else
return true;
#endif
}
static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
// Check xgetbv; this uses a .byte sequence instead of the instruction
// directly because older assemblers do not include support for xgetbv and
// there is no easy way to conditionally compile based on the assembler used.
__asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
return false;
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
*rEAX = Result;
*rEDX = Result >> 32;
return false;
#else
return true;
#endif
}
static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
unsigned *Model) {
*Family = (EAX >> 8) & 0xf; // Bits 8 - 11
*Model = (EAX >> 4) & 0xf; // Bits 4 - 7
if (*Family == 6 || *Family == 0xf) {
if (*Family == 0xf)
// Examine extended family ID if family ID is F.
*Family += (EAX >> 20) & 0xff; // Bits 20 - 27
// Examine extended model ID if family ID is 6 or F.
*Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
}
}
static void
getIntelProcessorTypeAndSubtype(unsigned int Family, unsigned int Model,
unsigned int Brand_id, unsigned int Features,
unsigned *Type, unsigned *Subtype) {
if (Brand_id != 0)
return;
switch (Family) {
case 3:
*Type = INTEL_i386;
break;
case 4:
switch (Model) {
case 0: // Intel486 DX processors
case 1: // Intel486 DX processors
case 2: // Intel486 SX processors
case 3: // Intel487 processors, IntelDX2 OverDrive processors,
// IntelDX2 processors
case 4: // Intel486 SL processor
case 5: // IntelSX2 processors
case 7: // Write-Back Enhanced IntelDX2 processors
case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
default:
*Type = INTEL_i486;
break;
}
break;
case 5:
switch (Model) {
case 1: // Pentium OverDrive processor for Pentium processor (60, 66),
// Pentium processors (60, 66)
case 2: // Pentium OverDrive processor for Pentium processor (75, 90,
// 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
// 150, 166, 200)
case 3: // Pentium OverDrive processors for Intel486 processor-based
// systems
*Type = INTEL_PENTIUM;
break;
case 4: // Pentium OverDrive processor with MMX technology for Pentium
// processor (75, 90, 100, 120, 133), Pentium processor with
// MMX technology (166, 200)
*Type = INTEL_PENTIUM;
*Subtype = INTEL_PENTIUM_MMX;
break;
default:
*Type = INTEL_PENTIUM;
break;
}
break;
case 6:
switch (Model) {
case 0x01: // Pentium Pro processor
*Type = INTEL_PENTIUM_PRO;
break;
case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
// model 03
case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
// model 05, and Intel Celeron processor, model 05
case 0x06: // Celeron processor, model 06
*Type = INTEL_PENTIUM_II;
break;
case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
// processor, model 07
case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
// model 08, and Celeron processor, model 08
case 0x0a: // Pentium III Xeon processor, model 0Ah
case 0x0b: // Pentium III processor, model 0Bh
*Type = INTEL_PENTIUM_III;
break;
case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
// 0Dh. All processors are manufactured using the 90 nm process.
case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
// Integrated Processor with Intel QuickAssist Technology
*Type = INTEL_PENTIUM_M;
break;
case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
// 0Eh. All processors are manufactured using the 65 nm process.
*Type = INTEL_CORE_DUO;
break; // yonah
case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
// processor, Intel Core 2 Quad processor, Intel Core 2 Quad
// mobile processor, Intel Core 2 Extreme processor, Intel
// Pentium Dual-Core processor, Intel Xeon processor, model
// 0Fh. All processors are manufactured using the 65 nm process.
case 0x16: // Intel Celeron processor model 16h. All processors are
// manufactured using the 65 nm process
*Type = INTEL_CORE2; // "core2"
*Subtype = INTEL_CORE2_65;
break;
case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
// 17h. All processors are manufactured using the 45 nm process.
//
// 45nm: Penryn , Wolfdale, Yorkfield (XE)
case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
// the 45 nm process.
*Type = INTEL_CORE2; // "penryn"
*Subtype = INTEL_CORE2_45;
break;
case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 45 nm process.
case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
// As found in a Summer 2010 model iMac.
case 0x1f:
case 0x2e: // Nehalem EX
*Type = INTEL_COREI7; // "nehalem"
*Subtype = INTEL_COREI7_NEHALEM;
break;
case 0x25: // Intel Core i7, laptop version.
case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
// processors are manufactured using the 32 nm process.
case 0x2f: // Westmere EX
*Type = INTEL_COREI7; // "westmere"
*Subtype = INTEL_COREI7_WESTMERE;
break;
case 0x2a: // Intel Core i7 processor. All processors are manufactured
// using the 32 nm process.
case 0x2d:
*Type = INTEL_COREI7; //"sandybridge"
*Subtype = INTEL_COREI7_SANDYBRIDGE;
break;
case 0x3a:
case 0x3e: // Ivy Bridge EP
*Type = INTEL_COREI7; // "ivybridge"
*Subtype = INTEL_COREI7_IVYBRIDGE;
break;
// Haswell:
case 0x3c:
case 0x3f:
case 0x45:
case 0x46:
*Type = INTEL_COREI7; // "haswell"
*Subtype = INTEL_COREI7_HASWELL;
break;
// Broadwell:
case 0x3d:
case 0x47:
case 0x4f:
case 0x56:
*Type = INTEL_COREI7; // "broadwell"
*Subtype = INTEL_COREI7_BROADWELL;
break;
// Skylake:
case 0x4e: // Skylake mobile
case 0x5e: // Skylake desktop
case 0x8e: // Kaby Lake mobile
case 0x9e: // Kaby Lake desktop
*Type = INTEL_COREI7; // "skylake"
*Subtype = INTEL_COREI7_SKYLAKE;
break;
// Skylake Xeon:
case 0x55:
*Type = INTEL_COREI7;
// Check that we really have AVX512
if (Features & (1 << FEATURE_AVX512)) {
*Subtype = INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
} else {
*Subtype = INTEL_COREI7_SKYLAKE; // "skylake"
}
break;
case 0x1c: // Most 45 nm Intel Atom processors
case 0x26: // 45 nm Atom Lincroft
case 0x27: // 32 nm Atom Medfield
case 0x35: // 32 nm Atom Midview
case 0x36: // 32 nm Atom Midview
*Type = INTEL_ATOM;
*Subtype = INTEL_ATOM_BONNELL;
break; // "bonnell"
// Atom Silvermont codes from the Intel software optimization guide.
case 0x37:
case 0x4a:
case 0x4d:
case 0x5a:
case 0x5d:
case 0x4c: // really airmont
*Type = INTEL_ATOM;
*Subtype = INTEL_ATOM_SILVERMONT;
break; // "silvermont"
case 0x57:
*Type = INTEL_XEONPHI; // knl
*Subtype = INTEL_KNIGHTS_LANDING;
break;
default: // Unknown family 6 CPU, try to guess.
if (Features & (1 << FEATURE_AVX512)) {
*Type = INTEL_XEONPHI; // knl
*Subtype = INTEL_KNIGHTS_LANDING;
break;
}
if (Features & (1 << FEATURE_ADX)) {
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_BROADWELL;
break;
}
if (Features & (1 << FEATURE_AVX2)) {
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_HASWELL;
break;
}
if (Features & (1 << FEATURE_AVX)) {
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_SANDYBRIDGE;
break;
}
if (Features & (1 << FEATURE_SSE4_2)) {
if (Features & (1 << FEATURE_MOVBE)) {
*Type = INTEL_ATOM;
*Subtype = INTEL_ATOM_SILVERMONT;
} else {
*Type = INTEL_COREI7;
*Subtype = INTEL_COREI7_NEHALEM;
}
break;
}
if (Features & (1 << FEATURE_SSE4_1)) {
*Type = INTEL_CORE2; // "penryn"
*Subtype = INTEL_CORE2_45;
break;
}
if (Features & (1 << FEATURE_SSSE3)) {
if (Features & (1 << FEATURE_MOVBE)) {
*Type = INTEL_ATOM;
*Subtype = INTEL_ATOM_BONNELL; // "bonnell"
} else {
*Type = INTEL_CORE2; // "core2"
*Subtype = INTEL_CORE2_65;
}
break;
}
if (Features & (1 << FEATURE_EM64T)) {
*Type = INTEL_X86_64;
break; // x86-64
}
if (Features & (1 << FEATURE_SSE2)) {
*Type = INTEL_PENTIUM_M;
break;
}
if (Features & (1 << FEATURE_SSE)) {
*Type = INTEL_PENTIUM_III;
break;
}
if (Features & (1 << FEATURE_MMX)) {
*Type = INTEL_PENTIUM_II;
break;
}
*Type = INTEL_PENTIUM_PRO;
break;
}
break;
case 15: {
switch (Model) {
case 0: // Pentium 4 processor, Intel Xeon processor. All processors are
// model 00h and manufactured using the 0.18 micron process.
case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
// processor MP, and Intel Celeron processor. All processors are
// model 01h and manufactured using the 0.18 micron process.
case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
// Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
// processor, and Mobile Intel Celeron processor. All processors
// are model 02h and manufactured using the 0.13 micron process.
*Type =
((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
break;
case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
// processor. All processors are model 03h and manufactured using
// the 90 nm process.
case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
// Pentium D processor, Intel Xeon processor, Intel Xeon
// processor MP, Intel Celeron D processor. All processors are
// model 04h and manufactured using the 90 nm process.
case 6: // Pentium 4 processor, Pentium D processor, Pentium processor
// Extreme Edition, Intel Xeon processor, Intel Xeon processor
// MP, Intel Celeron D processor. All processors are model 06h
// and manufactured using the 65 nm process.
*Type =
((Features & (1 << FEATURE_EM64T)) ? INTEL_NOCONA : INTEL_PRESCOTT);
break;
default:
*Type =
((Features & (1 << FEATURE_EM64T)) ? INTEL_X86_64 : INTEL_PENTIUM_IV);
break;
}
break;
}
default:
break; /*"generic"*/
}
}
static void getAMDProcessorTypeAndSubtype(unsigned int Family,
unsigned int Model,
unsigned int Features,
unsigned *Type,
unsigned *Subtype) {
// FIXME: this poorly matches the generated SubtargetFeatureKV table. There
// appears to be no way to generate the wide variety of AMD-specific targets
// from the information returned from CPUID.
switch (Family) {
case 4:
*Type = AMD_i486;
break;
case 5:
*Type = AMDPENTIUM;
switch (Model) {
case 6:
case 7:
*Subtype = AMDPENTIUM_K6;
break; // "k6"
case 8:
*Subtype = AMDPENTIUM_K62;
break; // "k6-2"
case 9:
case 13:
*Subtype = AMDPENTIUM_K63;
break; // "k6-3"
case 10:
*Subtype = AMDPENTIUM_GEODE;
break; // "geode"
}
break;
case 6:
*Type = AMDATHLON;
switch (Model) {
case 4:
*Subtype = AMDATHLON_TBIRD;
break; // "athlon-tbird"
case 6:
case 7:
case 8:
*Subtype = AMDATHLON_MP;
break; // "athlon-mp"
case 10:
*Subtype = AMDATHLON_XP;
break; // "athlon-xp"
}
break;
case 15:
*Type = AMDATHLON;
if (Features & (1 << FEATURE_SSE3)) {
*Subtype = AMDATHLON_K8SSE3;
break; // "k8-sse3"
}
switch (Model) {
case 1:
*Subtype = AMDATHLON_OPTERON;
break; // "opteron"
case 5:
*Subtype = AMDATHLON_FX;
break; // "athlon-fx"; also opteron
default:
*Subtype = AMDATHLON_64;
break; // "athlon64"
}
break;
case 16:
*Type = AMDFAM10H; // "amdfam10"
switch (Model) {
case 2:
*Subtype = AMDFAM10H_BARCELONA;
break;
case 4:
*Subtype = AMDFAM10H_SHANGHAI;
break;
case 8:
*Subtype = AMDFAM10H_ISTANBUL;
break;
}
break;
case 20:
*Type = AMDFAM14H;
*Subtype = AMD_BTVER1;
break; // "btver1";
case 21:
*Type = AMDFAM15H;
if (!(Features &
(1 << FEATURE_AVX))) { // If no AVX support, provide a sane fallback.
*Subtype = AMD_BTVER1;
break; // "btver1"
}
if (Model >= 0x50 && Model <= 0x6f) {
*Subtype = AMDFAM15H_BDVER4;
break; // "bdver4"; 50h-6Fh: Excavator
}
if (Model >= 0x30 && Model <= 0x3f) {
*Subtype = AMDFAM15H_BDVER3;
break; // "bdver3"; 30h-3Fh: Steamroller
}
if (Model >= 0x10 && Model <= 0x1f) {
*Subtype = AMDFAM15H_BDVER2;
break; // "bdver2"; 10h-1Fh: Piledriver
}
if (Model <= 0x0f) {
*Subtype = AMDFAM15H_BDVER1;
break; // "bdver1"; 00h-0Fh: Bulldozer
}
break;
case 22:
*Type = AMDFAM16H;
if (!(Features &
(1 << FEATURE_AVX))) { // If no AVX support provide a sane fallback.
*Subtype = AMD_BTVER1;
break; // "btver1";
}
*Subtype = AMD_BTVER2;
break; // "btver2"
case 23:
*Type = AMDFAM17H;
if (Features & (1 << FEATURE_ADX)) {
*Subtype = AMDFAM17H_ZNVER1;
break; // "znver1"
}
*Subtype = AMD_BTVER1;
break;
default:
break; // "generic"
}
}
static unsigned getAvailableFeatures(unsigned int ECX, unsigned int EDX,
unsigned MaxLeaf) {
unsigned Features = 0;
unsigned int EAX, EBX;
Features |= (((EDX >> 23) & 1) << FEATURE_MMX);
Features |= (((EDX >> 25) & 1) << FEATURE_SSE);
Features |= (((EDX >> 26) & 1) << FEATURE_SSE2);
Features |= (((ECX >> 0) & 1) << FEATURE_SSE3);
Features |= (((ECX >> 9) & 1) << FEATURE_SSSE3);
Features |= (((ECX >> 19) & 1) << FEATURE_SSE4_1);
Features |= (((ECX >> 20) & 1) << FEATURE_SSE4_2);
Features |= (((ECX >> 22) & 1) << FEATURE_MOVBE);
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
// indicates that the AVX registers will be saved and restored on context
// switch, then we have full AVX support.
const unsigned AVXBits = (1 << 27) | (1 << 28);
bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
((EAX & 0x6) == 0x6);
bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
bool HasLeaf7 =
MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
Features |= (HasAVX << FEATURE_AVX);
Features |= (HasAVX2 << FEATURE_AVX2);
Features |= (HasAVX512 << FEATURE_AVX512);
Features |= (HasAVX512Save << FEATURE_AVX512SAVE);
Features |= (HasADX << FEATURE_ADX);
getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
Features |= (((EDX >> 29) & 0x1) << FEATURE_EM64T);
return Features;
}
StringRef sys::getHostCPUName() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
unsigned MaxLeaf, Vendor;
#if defined(__GNUC__) || defined(__clang__)
//FIXME: include cpuid.h from clang or copy __get_cpuid_max here
// and simplify it to not invoke __cpuid (like cpu_model.c in
// compiler-rt/lib/builtins/cpu_model.c?
// Opting for the second option.
if(!isCpuIdSupported())
return "generic";
#endif
if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX))
return "generic";
if (getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
return "generic";
unsigned Brand_id = EBX & 0xff;
unsigned Family = 0, Model = 0;
unsigned Features = 0;
detectX86FamilyModel(EAX, &Family, &Model);
Features = getAvailableFeatures(ECX, EDX, MaxLeaf);
unsigned Type;
unsigned Subtype;
if (Vendor == SIG_INTEL) {
getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, &Type,
&Subtype);
switch (Type) {
case INTEL_i386:
return "i386";
case INTEL_i486:
return "i486";
case INTEL_PENTIUM:
if (Subtype == INTEL_PENTIUM_MMX)
return "pentium-mmx";
return "pentium";
case INTEL_PENTIUM_PRO:
return "pentiumpro";
case INTEL_PENTIUM_II:
return "pentium2";
case INTEL_PENTIUM_III:
return "pentium3";
case INTEL_PENTIUM_IV:
return "pentium4";
case INTEL_PENTIUM_M:
return "pentium-m";
case INTEL_CORE_DUO:
return "yonah";
case INTEL_CORE2:
switch (Subtype) {
case INTEL_CORE2_65:
return "core2";
case INTEL_CORE2_45:
return "penryn";
default:
return "core2";
}
case INTEL_COREI7:
switch (Subtype) {
case INTEL_COREI7_NEHALEM:
return "nehalem";
case INTEL_COREI7_WESTMERE:
return "westmere";
case INTEL_COREI7_SANDYBRIDGE:
return "sandybridge";
case INTEL_COREI7_IVYBRIDGE:
return "ivybridge";
case INTEL_COREI7_HASWELL:
return "haswell";
case INTEL_COREI7_BROADWELL:
return "broadwell";
case INTEL_COREI7_SKYLAKE:
return "skylake";
case INTEL_COREI7_SKYLAKE_AVX512:
return "skylake-avx512";
default:
return "corei7";
}
case INTEL_ATOM:
switch (Subtype) {
case INTEL_ATOM_BONNELL:
return "bonnell";
case INTEL_ATOM_SILVERMONT:
return "silvermont";
default:
return "atom";
}
case INTEL_XEONPHI:
return "knl"; /*update for more variants added*/
case INTEL_X86_64:
return "x86-64";
case INTEL_NOCONA:
return "nocona";
case INTEL_PRESCOTT:
return "prescott";
default:
return "generic";
}
} else if (Vendor == SIG_AMD) {
getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
switch (Type) {
case AMD_i486:
return "i486";
case AMDPENTIUM:
switch (Subtype) {
case AMDPENTIUM_K6:
return "k6";
case AMDPENTIUM_K62:
return "k6-2";
case AMDPENTIUM_K63:
return "k6-3";
case AMDPENTIUM_GEODE:
return "geode";
default:
return "pentium";
}
case AMDATHLON:
switch (Subtype) {
case AMDATHLON_TBIRD:
return "athlon-tbird";
case AMDATHLON_MP:
return "athlon-mp";
case AMDATHLON_XP:
return "athlon-xp";
case AMDATHLON_K8SSE3:
return "k8-sse3";
case AMDATHLON_OPTERON:
return "opteron";
case AMDATHLON_FX:
return "athlon-fx";
case AMDATHLON_64:
return "athlon64";
default:
return "athlon";
}
case AMDFAM10H:
if(Subtype == AMDFAM10H_BARCELONA)
return "barcelona";
return "amdfam10";
case AMDFAM14H:
return "btver1";
case AMDFAM15H:
switch (Subtype) {
case AMDFAM15H_BDVER1:
return "bdver1";
case AMDFAM15H_BDVER2:
return "bdver2";
case AMDFAM15H_BDVER3:
return "bdver3";
case AMDFAM15H_BDVER4:
return "bdver4";
case AMD_BTVER1:
return "btver1";
default:
return "amdfam15";
}
case AMDFAM16H:
switch (Subtype) {
case AMD_BTVER1:
return "btver1";
case AMD_BTVER2:
return "btver2";
default:
return "amdfam16";
}
case AMDFAM17H:
switch (Subtype) {
case AMD_BTVER1:
return "btver1";
case AMDFAM17H_ZNVER1:
return "znver1";
default:
return "amdfam17";
}
default:
return "generic";
}
}
return "generic";
}
#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
StringRef sys::getHostCPUName() {
host_basic_info_data_t hostInfo;
mach_msg_type_number_t infoCount;
infoCount = HOST_BASIC_INFO_COUNT;
host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
&infoCount);
if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
return "generic";
switch (hostInfo.cpu_subtype) {
case CPU_SUBTYPE_POWERPC_601:
return "601";
case CPU_SUBTYPE_POWERPC_602:
return "602";
case CPU_SUBTYPE_POWERPC_603:
return "603";
case CPU_SUBTYPE_POWERPC_603e:
return "603e";
case CPU_SUBTYPE_POWERPC_603ev:
return "603ev";
case CPU_SUBTYPE_POWERPC_604:
return "604";
case CPU_SUBTYPE_POWERPC_604e:
return "604e";
case CPU_SUBTYPE_POWERPC_620:
return "620";
case CPU_SUBTYPE_POWERPC_750:
return "750";
case CPU_SUBTYPE_POWERPC_7400:
return "7400";
case CPU_SUBTYPE_POWERPC_7450:
return "7450";
case CPU_SUBTYPE_POWERPC_970:
return "970";
default:;
}
return "generic";
}
#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
StringRef sys::getHostCPUName() {
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
const StringRef& Content = P ? P->getBuffer() : "";
return detail::getHostCPUNameForPowerPC(Content);
}
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
StringRef sys::getHostCPUName() {
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
const StringRef& Content = P ? P->getBuffer() : "";
return detail::getHostCPUNameForARM(Content);
}
#elif defined(__linux__) && defined(__s390x__)
StringRef sys::getHostCPUName() {
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
const StringRef& Content = P ? P->getBuffer() : "";
return detail::getHostCPUNameForS390x(Content);
}
#else
StringRef sys::getHostCPUName() { return "generic"; }
#endif
#if defined(__linux__) && defined(__x86_64__)
// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
// using the number of unique physical/core id pairs. The following
// implementation reads the /proc/cpuinfo format on an x86_64 system.
static int computeHostNumPhysicalCores() {
// Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
// mmapped because it appears to have 0 size.
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
if (std::error_code EC = Text.getError()) {
llvm::errs() << "Can't read "
<< "/proc/cpuinfo: " << EC.message() << "\n";
return -1;
}
SmallVector<StringRef, 8> strs;
(*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
/*KeepEmpty=*/false);
int CurPhysicalId = -1;
int CurCoreId = -1;
SmallSet<std::pair<int, int>, 32> UniqueItems;
for (auto &Line : strs) {
Line = Line.trim();
if (!Line.startswith("physical id") && !Line.startswith("core id"))
continue;
std::pair<StringRef, StringRef> Data = Line.split(':');
auto Name = Data.first.trim();
auto Val = Data.second.trim();
if (Name == "physical id") {
assert(CurPhysicalId == -1 &&
"Expected a core id before seeing another physical id");
Val.getAsInteger(10, CurPhysicalId);
}
if (Name == "core id") {
assert(CurCoreId == -1 &&
"Expected a physical id before seeing another core id");
Val.getAsInteger(10, CurCoreId);
}
if (CurPhysicalId != -1 && CurCoreId != -1) {
UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
CurPhysicalId = -1;
CurCoreId = -1;
}
}
return UniqueItems.size();
}
#elif defined(__APPLE__) && defined(__x86_64__)
#include <sys/param.h>
#include <sys/sysctl.h>
// Gets the number of *physical cores* on the machine.
static int computeHostNumPhysicalCores() {
uint32_t count;
size_t len = sizeof(count);
sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
if (count < 1) {
int nm[2];
nm[0] = CTL_HW;
nm[1] = HW_AVAILCPU;
sysctl(nm, 2, &count, &len, NULL, 0);
if (count < 1)
return -1;
}
return count;
}
#else
// On other systems, return -1 to indicate unknown.
static int computeHostNumPhysicalCores() { return -1; }
#endif
int sys::getHostNumPhysicalCores() {
static int NumCores = computeHostNumPhysicalCores();
return NumCores;
}
#if defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64__) || defined(_M_X64)
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
unsigned MaxLevel;
union {
unsigned u[3];
char c[12];
} text;
if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
MaxLevel < 1)
return false;
getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
Features["cmov"] = (EDX >> 15) & 1;
Features["mmx"] = (EDX >> 23) & 1;
Features["sse"] = (EDX >> 25) & 1;
Features["sse2"] = (EDX >> 26) & 1;
Features["sse3"] = (ECX >> 0) & 1;
Features["ssse3"] = (ECX >> 9) & 1;
Features["sse4.1"] = (ECX >> 19) & 1;
Features["sse4.2"] = (ECX >> 20) & 1;
Features["pclmul"] = (ECX >> 1) & 1;
Features["cx16"] = (ECX >> 13) & 1;
Features["movbe"] = (ECX >> 22) & 1;
Features["popcnt"] = (ECX >> 23) & 1;
Features["aes"] = (ECX >> 25) & 1;
Features["rdrnd"] = (ECX >> 30) & 1;
// If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
// indicates that the AVX registers will be saved and restored on context
// switch, then we have full AVX support.
bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
!getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
Features["avx"] = HasAVXSave;
Features["fma"] = HasAVXSave && (ECX >> 12) & 1;
Features["f16c"] = HasAVXSave && (ECX >> 29) & 1;
// Only enable XSAVE if OS has enabled support for saving YMM state.
Features["xsave"] = HasAVXSave && (ECX >> 26) & 1;
// AVX512 requires additional context to be saved by the OS.
bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
unsigned MaxExtLevel;
getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
!getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);
Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
!getX86CpuIDAndInfoEx(0x80000008,0x0, &EAX, &EBX, &ECX, &EDX);
Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
bool HasLeaf7 =
MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
// AVX2 is only supported if we have the OS save support from AVX.
Features["avx2"] = HasAVXSave && HasLeaf7 && ((EBX >> 5) & 1);
Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
// AVX512 is only supported if the OS supports the context save for it.
Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);
Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
// Enable protection keys
Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
bool HasLeafD = MaxLevel >= 0xd &&
!getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
// Only enable XSAVE if OS has enabled support for saving YMM state.
Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);
Features["xsavec"] = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);
Features["xsaves"] = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);
return true;
}
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
if (!P)
return false;
SmallVector<StringRef, 32> Lines;
P->getBuffer().split(Lines, "\n");
SmallVector<StringRef, 32> CPUFeatures;
// Look for the CPU features.
for (unsigned I = 0, E = Lines.size(); I != E; ++I)
if (Lines[I].startswith("Features")) {
Lines[I].split(CPUFeatures, ' ');
break;
}
#if defined(__aarch64__)
// Keep track of which crypto features we have seen
enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
uint32_t crypto = 0;
#endif
for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
#if defined(__aarch64__)
.Case("asimd", "neon")
.Case("fp", "fp-armv8")
.Case("crc32", "crc")
#else
.Case("half", "fp16")
.Case("neon", "neon")
.Case("vfpv3", "vfp3")
.Case("vfpv3d16", "d16")
.Case("vfpv4", "vfp4")
.Case("idiva", "hwdiv-arm")
.Case("idivt", "hwdiv")
#endif
.Default("");
#if defined(__aarch64__)
// We need to check crypto separately since we need all of the crypto
// extensions to enable the subtarget feature
if (CPUFeatures[I] == "aes")
crypto |= CAP_AES;
else if (CPUFeatures[I] == "pmull")
crypto |= CAP_PMULL;
else if (CPUFeatures[I] == "sha1")
crypto |= CAP_SHA1;
else if (CPUFeatures[I] == "sha2")
crypto |= CAP_SHA2;
#endif
if (LLVMFeatureStr != "")
Features[LLVMFeatureStr] = true;
}
#if defined(__aarch64__)
// If we have all crypto bits we can add the feature
if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
Features["crypto"] = true;
#endif
return true;
}
#else
bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
#endif
std::string sys::getProcessTriple() {
Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
if (sizeof(void *) == 8 && PT.isArch32Bit())
PT = PT.get64BitArchVariant();
if (sizeof(void *) == 4 && PT.isArch64Bit())
PT = PT.get32BitArchVariant();
return PT.str();
}