freebsd-dev/contrib/llvm/lib/Support/Path.cpp
2017-04-16 16:25:46 +00:00

1241 lines
36 KiB
C++

//===-- Path.cpp - Implement OS Path Concept ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the operating system Path API.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Path.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MachO.h"
#include "llvm/Support/Process.h"
#include <cctype>
#include <cstring>
#if !defined(_MSC_VER) && !defined(__MINGW32__)
#include <unistd.h>
#else
#include <io.h>
#endif
using namespace llvm;
using namespace llvm::support::endian;
namespace {
using llvm::StringRef;
using llvm::sys::path::is_separator;
using llvm::sys::path::Style;
inline Style real_style(Style style) {
#ifdef LLVM_ON_WIN32
return (style == Style::posix) ? Style::posix : Style::windows;
#else
return (style == Style::windows) ? Style::windows : Style::posix;
#endif
}
inline const char *separators(Style style) {
if (real_style(style) == Style::windows)
return "\\/";
return "/";
}
inline char preferred_separator(Style style) {
if (real_style(style) == Style::windows)
return '\\';
return '/';
}
StringRef find_first_component(StringRef path, Style style) {
// Look for this first component in the following order.
// * empty (in this case we return an empty string)
// * either C: or {//,\\}net.
// * {/,\}
// * {file,directory}name
if (path.empty())
return path;
if (real_style(style) == Style::windows) {
// C:
if (path.size() >= 2 &&
std::isalpha(static_cast<unsigned char>(path[0])) && path[1] == ':')
return path.substr(0, 2);
}
// //net
if ((path.size() > 2) && is_separator(path[0], style) &&
path[0] == path[1] && !is_separator(path[2], style)) {
// Find the next directory separator.
size_t end = path.find_first_of(separators(style), 2);
return path.substr(0, end);
}
// {/,\}
if (is_separator(path[0], style))
return path.substr(0, 1);
// * {file,directory}name
size_t end = path.find_first_of(separators(style));
return path.substr(0, end);
}
size_t filename_pos(StringRef str, Style style) {
if (str.size() == 2 && is_separator(str[0], style) && str[0] == str[1])
return 0;
if (str.size() > 0 && is_separator(str[str.size() - 1], style))
return str.size() - 1;
size_t pos = str.find_last_of(separators(style), str.size() - 1);
if (real_style(style) == Style::windows) {
if (pos == StringRef::npos)
pos = str.find_last_of(':', str.size() - 2);
}
if (pos == StringRef::npos || (pos == 1 && is_separator(str[0], style)))
return 0;
return pos + 1;
}
size_t root_dir_start(StringRef str, Style style) {
// case "c:/"
if (real_style(style) == Style::windows) {
if (str.size() > 2 && str[1] == ':' && is_separator(str[2], style))
return 2;
}
// case "//"
if (str.size() == 2 && is_separator(str[0], style) && str[0] == str[1])
return StringRef::npos;
// case "//net"
if (str.size() > 3 && is_separator(str[0], style) && str[0] == str[1] &&
!is_separator(str[2], style)) {
return str.find_first_of(separators(style), 2);
}
// case "/"
if (str.size() > 0 && is_separator(str[0], style))
return 0;
return StringRef::npos;
}
size_t parent_path_end(StringRef path, Style style) {
size_t end_pos = filename_pos(path, style);
bool filename_was_sep =
path.size() > 0 && is_separator(path[end_pos], style);
// Skip separators except for root dir.
size_t root_dir_pos = root_dir_start(path.substr(0, end_pos), style);
while (end_pos > 0 && (end_pos - 1) != root_dir_pos &&
is_separator(path[end_pos - 1], style))
--end_pos;
if (end_pos == 1 && root_dir_pos == 0 && filename_was_sep)
return StringRef::npos;
return end_pos;
}
} // end unnamed namespace
enum FSEntity {
FS_Dir,
FS_File,
FS_Name
};
static std::error_code createUniqueEntity(const Twine &Model, int &ResultFD,
SmallVectorImpl<char> &ResultPath,
bool MakeAbsolute, unsigned Mode,
FSEntity Type) {
SmallString<128> ModelStorage;
Model.toVector(ModelStorage);
if (MakeAbsolute) {
// Make model absolute by prepending a temp directory if it's not already.
if (!sys::path::is_absolute(Twine(ModelStorage))) {
SmallString<128> TDir;
sys::path::system_temp_directory(true, TDir);
sys::path::append(TDir, Twine(ModelStorage));
ModelStorage.swap(TDir);
}
}
// From here on, DO NOT modify model. It may be needed if the randomly chosen
// path already exists.
ResultPath = ModelStorage;
// Null terminate.
ResultPath.push_back(0);
ResultPath.pop_back();
retry_random_path:
// Replace '%' with random chars.
for (unsigned i = 0, e = ModelStorage.size(); i != e; ++i) {
if (ModelStorage[i] == '%')
ResultPath[i] = "0123456789abcdef"[sys::Process::GetRandomNumber() & 15];
}
// Try to open + create the file.
switch (Type) {
case FS_File: {
if (std::error_code EC =
sys::fs::openFileForWrite(Twine(ResultPath.begin()), ResultFD,
sys::fs::F_RW | sys::fs::F_Excl, Mode)) {
if (EC == errc::file_exists)
goto retry_random_path;
return EC;
}
return std::error_code();
}
case FS_Name: {
std::error_code EC =
sys::fs::access(ResultPath.begin(), sys::fs::AccessMode::Exist);
if (EC == errc::no_such_file_or_directory)
return std::error_code();
if (EC)
return EC;
goto retry_random_path;
}
case FS_Dir: {
if (std::error_code EC =
sys::fs::create_directory(ResultPath.begin(), false)) {
if (EC == errc::file_exists)
goto retry_random_path;
return EC;
}
return std::error_code();
}
}
llvm_unreachable("Invalid Type");
}
namespace llvm {
namespace sys {
namespace path {
const_iterator begin(StringRef path, Style style) {
const_iterator i;
i.Path = path;
i.Component = find_first_component(path, style);
i.Position = 0;
i.S = style;
return i;
}
const_iterator end(StringRef path) {
const_iterator i;
i.Path = path;
i.Position = path.size();
return i;
}
const_iterator &const_iterator::operator++() {
assert(Position < Path.size() && "Tried to increment past end!");
// Increment Position to past the current component
Position += Component.size();
// Check for end.
if (Position == Path.size()) {
Component = StringRef();
return *this;
}
// Both POSIX and Windows treat paths that begin with exactly two separators
// specially.
bool was_net = Component.size() > 2 && is_separator(Component[0], S) &&
Component[1] == Component[0] && !is_separator(Component[2], S);
// Handle separators.
if (is_separator(Path[Position], S)) {
// Root dir.
if (was_net ||
// c:/
(real_style(S) == Style::windows && Component.endswith(":"))) {
Component = Path.substr(Position, 1);
return *this;
}
// Skip extra separators.
while (Position != Path.size() && is_separator(Path[Position], S)) {
++Position;
}
// Treat trailing '/' as a '.'.
if (Position == Path.size()) {
--Position;
Component = ".";
return *this;
}
}
// Find next component.
size_t end_pos = Path.find_first_of(separators(S), Position);
Component = Path.slice(Position, end_pos);
return *this;
}
bool const_iterator::operator==(const const_iterator &RHS) const {
return Path.begin() == RHS.Path.begin() && Position == RHS.Position;
}
ptrdiff_t const_iterator::operator-(const const_iterator &RHS) const {
return Position - RHS.Position;
}
reverse_iterator rbegin(StringRef Path, Style style) {
reverse_iterator I;
I.Path = Path;
I.Position = Path.size();
I.S = style;
return ++I;
}
reverse_iterator rend(StringRef Path) {
reverse_iterator I;
I.Path = Path;
I.Component = Path.substr(0, 0);
I.Position = 0;
return I;
}
reverse_iterator &reverse_iterator::operator++() {
// If we're at the end and the previous char was a '/', return '.' unless
// we are the root path.
size_t root_dir_pos = root_dir_start(Path, S);
if (Position == Path.size() && Path.size() > root_dir_pos + 1 &&
is_separator(Path[Position - 1], S)) {
--Position;
Component = ".";
return *this;
}
// Skip separators unless it's the root directory.
size_t end_pos = Position;
while (end_pos > 0 && (end_pos - 1) != root_dir_pos &&
is_separator(Path[end_pos - 1], S))
--end_pos;
// Find next separator.
size_t start_pos = filename_pos(Path.substr(0, end_pos), S);
Component = Path.slice(start_pos, end_pos);
Position = start_pos;
return *this;
}
bool reverse_iterator::operator==(const reverse_iterator &RHS) const {
return Path.begin() == RHS.Path.begin() && Component == RHS.Component &&
Position == RHS.Position;
}
ptrdiff_t reverse_iterator::operator-(const reverse_iterator &RHS) const {
return Position - RHS.Position;
}
StringRef root_path(StringRef path, Style style) {
const_iterator b = begin(path, style), pos = b, e = end(path);
if (b != e) {
bool has_net =
b->size() > 2 && is_separator((*b)[0], style) && (*b)[1] == (*b)[0];
bool has_drive = (real_style(style) == Style::windows) && b->endswith(":");
if (has_net || has_drive) {
if ((++pos != e) && is_separator((*pos)[0], style)) {
// {C:/,//net/}, so get the first two components.
return path.substr(0, b->size() + pos->size());
} else {
// just {C:,//net}, return the first component.
return *b;
}
}
// POSIX style root directory.
if (is_separator((*b)[0], style)) {
return *b;
}
}
return StringRef();
}
StringRef root_name(StringRef path, Style style) {
const_iterator b = begin(path, style), e = end(path);
if (b != e) {
bool has_net =
b->size() > 2 && is_separator((*b)[0], style) && (*b)[1] == (*b)[0];
bool has_drive = (real_style(style) == Style::windows) && b->endswith(":");
if (has_net || has_drive) {
// just {C:,//net}, return the first component.
return *b;
}
}
// No path or no name.
return StringRef();
}
StringRef root_directory(StringRef path, Style style) {
const_iterator b = begin(path, style), pos = b, e = end(path);
if (b != e) {
bool has_net =
b->size() > 2 && is_separator((*b)[0], style) && (*b)[1] == (*b)[0];
bool has_drive = (real_style(style) == Style::windows) && b->endswith(":");
if ((has_net || has_drive) &&
// {C:,//net}, skip to the next component.
(++pos != e) && is_separator((*pos)[0], style)) {
return *pos;
}
// POSIX style root directory.
if (!has_net && is_separator((*b)[0], style)) {
return *b;
}
}
// No path or no root.
return StringRef();
}
StringRef relative_path(StringRef path, Style style) {
StringRef root = root_path(path, style);
return path.substr(root.size());
}
void append(SmallVectorImpl<char> &path, Style style, const Twine &a,
const Twine &b, const Twine &c, const Twine &d) {
SmallString<32> a_storage;
SmallString<32> b_storage;
SmallString<32> c_storage;
SmallString<32> d_storage;
SmallVector<StringRef, 4> components;
if (!a.isTriviallyEmpty()) components.push_back(a.toStringRef(a_storage));
if (!b.isTriviallyEmpty()) components.push_back(b.toStringRef(b_storage));
if (!c.isTriviallyEmpty()) components.push_back(c.toStringRef(c_storage));
if (!d.isTriviallyEmpty()) components.push_back(d.toStringRef(d_storage));
for (auto &component : components) {
bool path_has_sep =
!path.empty() && is_separator(path[path.size() - 1], style);
bool component_has_sep =
!component.empty() && is_separator(component[0], style);
bool is_root_name = has_root_name(component, style);
if (path_has_sep) {
// Strip separators from beginning of component.
size_t loc = component.find_first_not_of(separators(style));
StringRef c = component.substr(loc);
// Append it.
path.append(c.begin(), c.end());
continue;
}
if (!component_has_sep && !(path.empty() || is_root_name)) {
// Add a separator.
path.push_back(preferred_separator(style));
}
path.append(component.begin(), component.end());
}
}
void append(SmallVectorImpl<char> &path, const Twine &a, const Twine &b,
const Twine &c, const Twine &d) {
append(path, Style::native, a, b, c, d);
}
void append(SmallVectorImpl<char> &path, const_iterator begin,
const_iterator end, Style style) {
for (; begin != end; ++begin)
path::append(path, style, *begin);
}
StringRef parent_path(StringRef path, Style style) {
size_t end_pos = parent_path_end(path, style);
if (end_pos == StringRef::npos)
return StringRef();
else
return path.substr(0, end_pos);
}
void remove_filename(SmallVectorImpl<char> &path, Style style) {
size_t end_pos = parent_path_end(StringRef(path.begin(), path.size()), style);
if (end_pos != StringRef::npos)
path.set_size(end_pos);
}
void replace_extension(SmallVectorImpl<char> &path, const Twine &extension,
Style style) {
StringRef p(path.begin(), path.size());
SmallString<32> ext_storage;
StringRef ext = extension.toStringRef(ext_storage);
// Erase existing extension.
size_t pos = p.find_last_of('.');
if (pos != StringRef::npos && pos >= filename_pos(p, style))
path.set_size(pos);
// Append '.' if needed.
if (ext.size() > 0 && ext[0] != '.')
path.push_back('.');
// Append extension.
path.append(ext.begin(), ext.end());
}
void replace_path_prefix(SmallVectorImpl<char> &Path,
const StringRef &OldPrefix, const StringRef &NewPrefix,
Style style) {
if (OldPrefix.empty() && NewPrefix.empty())
return;
StringRef OrigPath(Path.begin(), Path.size());
if (!OrigPath.startswith(OldPrefix))
return;
// If prefixes have the same size we can simply copy the new one over.
if (OldPrefix.size() == NewPrefix.size()) {
std::copy(NewPrefix.begin(), NewPrefix.end(), Path.begin());
return;
}
StringRef RelPath = OrigPath.substr(OldPrefix.size());
SmallString<256> NewPath;
path::append(NewPath, style, NewPrefix);
path::append(NewPath, style, RelPath);
Path.swap(NewPath);
}
void native(const Twine &path, SmallVectorImpl<char> &result, Style style) {
assert((!path.isSingleStringRef() ||
path.getSingleStringRef().data() != result.data()) &&
"path and result are not allowed to overlap!");
// Clear result.
result.clear();
path.toVector(result);
native(result, style);
}
void native(SmallVectorImpl<char> &Path, Style style) {
if (Path.empty())
return;
if (real_style(style) == Style::windows) {
std::replace(Path.begin(), Path.end(), '/', '\\');
if (Path[0] == '~' && (Path.size() == 1 || is_separator(Path[1], style))) {
SmallString<128> PathHome;
home_directory(PathHome);
PathHome.append(Path.begin() + 1, Path.end());
Path = PathHome;
}
} else {
for (auto PI = Path.begin(), PE = Path.end(); PI < PE; ++PI) {
if (*PI == '\\') {
auto PN = PI + 1;
if (PN < PE && *PN == '\\')
++PI; // increment once, the for loop will move over the escaped slash
else
*PI = '/';
}
}
}
}
std::string convert_to_slash(StringRef path, Style style) {
if (real_style(style) != Style::windows)
return path;
std::string s = path.str();
std::replace(s.begin(), s.end(), '\\', '/');
return s;
}
StringRef filename(StringRef path, Style style) { return *rbegin(path, style); }
StringRef stem(StringRef path, Style style) {
StringRef fname = filename(path, style);
size_t pos = fname.find_last_of('.');
if (pos == StringRef::npos)
return fname;
else
if ((fname.size() == 1 && fname == ".") ||
(fname.size() == 2 && fname == ".."))
return fname;
else
return fname.substr(0, pos);
}
StringRef extension(StringRef path, Style style) {
StringRef fname = filename(path, style);
size_t pos = fname.find_last_of('.');
if (pos == StringRef::npos)
return StringRef();
else
if ((fname.size() == 1 && fname == ".") ||
(fname.size() == 2 && fname == ".."))
return StringRef();
else
return fname.substr(pos);
}
bool is_separator(char value, Style style) {
if (value == '/')
return true;
if (real_style(style) == Style::windows)
return value == '\\';
return false;
}
StringRef get_separator(Style style) {
if (real_style(style) == Style::windows)
return "\\";
return "/";
}
bool has_root_name(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !root_name(p, style).empty();
}
bool has_root_directory(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !root_directory(p, style).empty();
}
bool has_root_path(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !root_path(p, style).empty();
}
bool has_relative_path(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !relative_path(p, style).empty();
}
bool has_filename(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !filename(p, style).empty();
}
bool has_parent_path(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !parent_path(p, style).empty();
}
bool has_stem(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !stem(p, style).empty();
}
bool has_extension(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
return !extension(p, style).empty();
}
bool is_absolute(const Twine &path, Style style) {
SmallString<128> path_storage;
StringRef p = path.toStringRef(path_storage);
bool rootDir = has_root_directory(p, style);
bool rootName =
(real_style(style) != Style::windows) || has_root_name(p, style);
return rootDir && rootName;
}
bool is_relative(const Twine &path, Style style) {
return !is_absolute(path, style);
}
StringRef remove_leading_dotslash(StringRef Path, Style style) {
// Remove leading "./" (or ".//" or "././" etc.)
while (Path.size() > 2 && Path[0] == '.' && is_separator(Path[1], style)) {
Path = Path.substr(2);
while (Path.size() > 0 && is_separator(Path[0], style))
Path = Path.substr(1);
}
return Path;
}
static SmallString<256> remove_dots(StringRef path, bool remove_dot_dot,
Style style) {
SmallVector<StringRef, 16> components;
// Skip the root path, then look for traversal in the components.
StringRef rel = path::relative_path(path, style);
for (StringRef C :
llvm::make_range(path::begin(rel, style), path::end(rel))) {
if (C == ".")
continue;
// Leading ".." will remain in the path unless it's at the root.
if (remove_dot_dot && C == "..") {
if (!components.empty() && components.back() != "..") {
components.pop_back();
continue;
}
if (path::is_absolute(path, style))
continue;
}
components.push_back(C);
}
SmallString<256> buffer = path::root_path(path, style);
for (StringRef C : components)
path::append(buffer, style, C);
return buffer;
}
bool remove_dots(SmallVectorImpl<char> &path, bool remove_dot_dot,
Style style) {
StringRef p(path.data(), path.size());
SmallString<256> result = remove_dots(p, remove_dot_dot, style);
if (result == path)
return false;
path.swap(result);
return true;
}
} // end namespace path
namespace fs {
std::error_code getUniqueID(const Twine Path, UniqueID &Result) {
file_status Status;
std::error_code EC = status(Path, Status);
if (EC)
return EC;
Result = Status.getUniqueID();
return std::error_code();
}
std::error_code createUniqueFile(const Twine &Model, int &ResultFd,
SmallVectorImpl<char> &ResultPath,
unsigned Mode) {
return createUniqueEntity(Model, ResultFd, ResultPath, false, Mode, FS_File);
}
std::error_code createUniqueFile(const Twine &Model,
SmallVectorImpl<char> &ResultPath) {
int Dummy;
return createUniqueEntity(Model, Dummy, ResultPath, false, 0, FS_Name);
}
static std::error_code
createTemporaryFile(const Twine &Model, int &ResultFD,
llvm::SmallVectorImpl<char> &ResultPath, FSEntity Type) {
SmallString<128> Storage;
StringRef P = Model.toNullTerminatedStringRef(Storage);
assert(P.find_first_of(separators(Style::native)) == StringRef::npos &&
"Model must be a simple filename.");
// Use P.begin() so that createUniqueEntity doesn't need to recreate Storage.
return createUniqueEntity(P.begin(), ResultFD, ResultPath,
true, owner_read | owner_write, Type);
}
static std::error_code
createTemporaryFile(const Twine &Prefix, StringRef Suffix, int &ResultFD,
llvm::SmallVectorImpl<char> &ResultPath, FSEntity Type) {
const char *Middle = Suffix.empty() ? "-%%%%%%" : "-%%%%%%.";
return createTemporaryFile(Prefix + Middle + Suffix, ResultFD, ResultPath,
Type);
}
std::error_code createTemporaryFile(const Twine &Prefix, StringRef Suffix,
int &ResultFD,
SmallVectorImpl<char> &ResultPath) {
return createTemporaryFile(Prefix, Suffix, ResultFD, ResultPath, FS_File);
}
std::error_code createTemporaryFile(const Twine &Prefix, StringRef Suffix,
SmallVectorImpl<char> &ResultPath) {
int Dummy;
return createTemporaryFile(Prefix, Suffix, Dummy, ResultPath, FS_Name);
}
// This is a mkdtemp with a different pattern. We use createUniqueEntity mostly
// for consistency. We should try using mkdtemp.
std::error_code createUniqueDirectory(const Twine &Prefix,
SmallVectorImpl<char> &ResultPath) {
int Dummy;
return createUniqueEntity(Prefix + "-%%%%%%", Dummy, ResultPath,
true, 0, FS_Dir);
}
static std::error_code make_absolute(const Twine &current_directory,
SmallVectorImpl<char> &path,
bool use_current_directory) {
StringRef p(path.data(), path.size());
bool rootDirectory = path::has_root_directory(p);
bool rootName =
(real_style(Style::native) != Style::windows) || path::has_root_name(p);
// Already absolute.
if (rootName && rootDirectory)
return std::error_code();
// All of the following conditions will need the current directory.
SmallString<128> current_dir;
if (use_current_directory)
current_directory.toVector(current_dir);
else if (std::error_code ec = current_path(current_dir))
return ec;
// Relative path. Prepend the current directory.
if (!rootName && !rootDirectory) {
// Append path to the current directory.
path::append(current_dir, p);
// Set path to the result.
path.swap(current_dir);
return std::error_code();
}
if (!rootName && rootDirectory) {
StringRef cdrn = path::root_name(current_dir);
SmallString<128> curDirRootName(cdrn.begin(), cdrn.end());
path::append(curDirRootName, p);
// Set path to the result.
path.swap(curDirRootName);
return std::error_code();
}
if (rootName && !rootDirectory) {
StringRef pRootName = path::root_name(p);
StringRef bRootDirectory = path::root_directory(current_dir);
StringRef bRelativePath = path::relative_path(current_dir);
StringRef pRelativePath = path::relative_path(p);
SmallString<128> res;
path::append(res, pRootName, bRootDirectory, bRelativePath, pRelativePath);
path.swap(res);
return std::error_code();
}
llvm_unreachable("All rootName and rootDirectory combinations should have "
"occurred above!");
}
std::error_code make_absolute(const Twine &current_directory,
SmallVectorImpl<char> &path) {
return make_absolute(current_directory, path, true);
}
std::error_code make_absolute(SmallVectorImpl<char> &path) {
return make_absolute(Twine(), path, false);
}
std::error_code create_directories(const Twine &Path, bool IgnoreExisting,
perms Perms) {
SmallString<128> PathStorage;
StringRef P = Path.toStringRef(PathStorage);
// Be optimistic and try to create the directory
std::error_code EC = create_directory(P, IgnoreExisting, Perms);
// If we succeeded, or had any error other than the parent not existing, just
// return it.
if (EC != errc::no_such_file_or_directory)
return EC;
// We failed because of a no_such_file_or_directory, try to create the
// parent.
StringRef Parent = path::parent_path(P);
if (Parent.empty())
return EC;
if ((EC = create_directories(Parent, IgnoreExisting, Perms)))
return EC;
return create_directory(P, IgnoreExisting, Perms);
}
std::error_code copy_file(const Twine &From, const Twine &To) {
int ReadFD, WriteFD;
if (std::error_code EC = openFileForRead(From, ReadFD))
return EC;
if (std::error_code EC = openFileForWrite(To, WriteFD, F_None)) {
close(ReadFD);
return EC;
}
const size_t BufSize = 4096;
char *Buf = new char[BufSize];
int BytesRead = 0, BytesWritten = 0;
for (;;) {
BytesRead = read(ReadFD, Buf, BufSize);
if (BytesRead <= 0)
break;
while (BytesRead) {
BytesWritten = write(WriteFD, Buf, BytesRead);
if (BytesWritten < 0)
break;
BytesRead -= BytesWritten;
}
if (BytesWritten < 0)
break;
}
close(ReadFD);
close(WriteFD);
delete[] Buf;
if (BytesRead < 0 || BytesWritten < 0)
return std::error_code(errno, std::generic_category());
return std::error_code();
}
ErrorOr<MD5::MD5Result> md5_contents(int FD) {
MD5 Hash;
constexpr size_t BufSize = 4096;
std::vector<uint8_t> Buf(BufSize);
int BytesRead = 0;
for (;;) {
BytesRead = read(FD, Buf.data(), BufSize);
if (BytesRead <= 0)
break;
Hash.update(makeArrayRef(Buf.data(), BytesRead));
}
if (BytesRead < 0)
return std::error_code(errno, std::generic_category());
MD5::MD5Result Result;
Hash.final(Result);
return Result;
}
ErrorOr<MD5::MD5Result> md5_contents(const Twine &Path) {
int FD;
if (auto EC = openFileForRead(Path, FD))
return EC;
auto Result = md5_contents(FD);
close(FD);
return Result;
}
bool exists(file_status status) {
return status_known(status) && status.type() != file_type::file_not_found;
}
bool status_known(file_status s) {
return s.type() != file_type::status_error;
}
file_type get_file_type(const Twine &Path, bool Follow) {
file_status st;
if (status(Path, st, Follow))
return file_type::status_error;
return st.type();
}
bool is_directory(file_status status) {
return status.type() == file_type::directory_file;
}
std::error_code is_directory(const Twine &path, bool &result) {
file_status st;
if (std::error_code ec = status(path, st))
return ec;
result = is_directory(st);
return std::error_code();
}
bool is_regular_file(file_status status) {
return status.type() == file_type::regular_file;
}
std::error_code is_regular_file(const Twine &path, bool &result) {
file_status st;
if (std::error_code ec = status(path, st))
return ec;
result = is_regular_file(st);
return std::error_code();
}
bool is_symlink_file(file_status status) {
return status.type() == file_type::symlink_file;
}
std::error_code is_symlink_file(const Twine &path, bool &result) {
file_status st;
if (std::error_code ec = status(path, st, false))
return ec;
result = is_symlink_file(st);
return std::error_code();
}
bool is_other(file_status status) {
return exists(status) &&
!is_regular_file(status) &&
!is_directory(status);
}
std::error_code is_other(const Twine &Path, bool &Result) {
file_status FileStatus;
if (std::error_code EC = status(Path, FileStatus))
return EC;
Result = is_other(FileStatus);
return std::error_code();
}
void directory_entry::replace_filename(const Twine &filename, file_status st) {
SmallString<128> path = path::parent_path(Path);
path::append(path, filename);
Path = path.str();
Status = st;
}
template <size_t N>
static bool startswith(StringRef Magic, const char (&S)[N]) {
return Magic.startswith(StringRef(S, N - 1));
}
/// @brief Identify the magic in magic.
file_magic identify_magic(StringRef Magic) {
if (Magic.size() < 4)
return file_magic::unknown;
switch ((unsigned char)Magic[0]) {
case 0x00: {
// COFF bigobj, CL.exe's LTO object file, or short import library file
if (startswith(Magic, "\0\0\xFF\xFF")) {
size_t MinSize = offsetof(COFF::BigObjHeader, UUID) + sizeof(COFF::BigObjMagic);
if (Magic.size() < MinSize)
return file_magic::coff_import_library;
const char *Start = Magic.data() + offsetof(COFF::BigObjHeader, UUID);
if (memcmp(Start, COFF::BigObjMagic, sizeof(COFF::BigObjMagic)) == 0)
return file_magic::coff_object;
if (memcmp(Start, COFF::ClGlObjMagic, sizeof(COFF::BigObjMagic)) == 0)
return file_magic::coff_cl_gl_object;
return file_magic::coff_import_library;
}
// Windows resource file
if (startswith(Magic, "\0\0\0\0\x20\0\0\0\xFF"))
return file_magic::windows_resource;
// 0x0000 = COFF unknown machine type
if (Magic[1] == 0)
return file_magic::coff_object;
if (startswith(Magic, "\0asm"))
return file_magic::wasm_object;
break;
}
case 0xDE: // 0x0B17C0DE = BC wraper
if (startswith(Magic, "\xDE\xC0\x17\x0B"))
return file_magic::bitcode;
break;
case 'B':
if (startswith(Magic, "BC\xC0\xDE"))
return file_magic::bitcode;
break;
case '!':
if (startswith(Magic, "!<arch>\n") || startswith(Magic, "!<thin>\n"))
return file_magic::archive;
break;
case '\177':
if (startswith(Magic, "\177ELF") && Magic.size() >= 18) {
bool Data2MSB = Magic[5] == 2;
unsigned high = Data2MSB ? 16 : 17;
unsigned low = Data2MSB ? 17 : 16;
if (Magic[high] == 0) {
switch (Magic[low]) {
default: return file_magic::elf;
case 1: return file_magic::elf_relocatable;
case 2: return file_magic::elf_executable;
case 3: return file_magic::elf_shared_object;
case 4: return file_magic::elf_core;
}
}
// It's still some type of ELF file.
return file_magic::elf;
}
break;
case 0xCA:
if (startswith(Magic, "\xCA\xFE\xBA\xBE") ||
startswith(Magic, "\xCA\xFE\xBA\xBF")) {
// This is complicated by an overlap with Java class files.
// See the Mach-O section in /usr/share/file/magic for details.
if (Magic.size() >= 8 && Magic[7] < 43)
return file_magic::macho_universal_binary;
}
break;
// The two magic numbers for mach-o are:
// 0xfeedface - 32-bit mach-o
// 0xfeedfacf - 64-bit mach-o
case 0xFE:
case 0xCE:
case 0xCF: {
uint16_t type = 0;
if (startswith(Magic, "\xFE\xED\xFA\xCE") ||
startswith(Magic, "\xFE\xED\xFA\xCF")) {
/* Native endian */
size_t MinSize;
if (Magic[3] == char(0xCE))
MinSize = sizeof(MachO::mach_header);
else
MinSize = sizeof(MachO::mach_header_64);
if (Magic.size() >= MinSize)
type = Magic[12] << 24 | Magic[13] << 12 | Magic[14] << 8 | Magic[15];
} else if (startswith(Magic, "\xCE\xFA\xED\xFE") ||
startswith(Magic, "\xCF\xFA\xED\xFE")) {
/* Reverse endian */
size_t MinSize;
if (Magic[0] == char(0xCE))
MinSize = sizeof(MachO::mach_header);
else
MinSize = sizeof(MachO::mach_header_64);
if (Magic.size() >= MinSize)
type = Magic[15] << 24 | Magic[14] << 12 |Magic[13] << 8 | Magic[12];
}
switch (type) {
default: break;
case 1: return file_magic::macho_object;
case 2: return file_magic::macho_executable;
case 3: return file_magic::macho_fixed_virtual_memory_shared_lib;
case 4: return file_magic::macho_core;
case 5: return file_magic::macho_preload_executable;
case 6: return file_magic::macho_dynamically_linked_shared_lib;
case 7: return file_magic::macho_dynamic_linker;
case 8: return file_magic::macho_bundle;
case 9: return file_magic::macho_dynamically_linked_shared_lib_stub;
case 10: return file_magic::macho_dsym_companion;
case 11: return file_magic::macho_kext_bundle;
}
break;
}
case 0xF0: // PowerPC Windows
case 0x83: // Alpha 32-bit
case 0x84: // Alpha 64-bit
case 0x66: // MPS R4000 Windows
case 0x50: // mc68K
case 0x4c: // 80386 Windows
case 0xc4: // ARMNT Windows
if (Magic[1] == 0x01)
return file_magic::coff_object;
case 0x90: // PA-RISC Windows
case 0x68: // mc68K Windows
if (Magic[1] == 0x02)
return file_magic::coff_object;
break;
case 'M': // Possible MS-DOS stub on Windows PE file
if (startswith(Magic, "MZ")) {
uint32_t off = read32le(Magic.data() + 0x3c);
// PE/COFF file, either EXE or DLL.
if (off < Magic.size() &&
memcmp(Magic.data()+off, COFF::PEMagic, sizeof(COFF::PEMagic)) == 0)
return file_magic::pecoff_executable;
}
break;
case 0x64: // x86-64 Windows.
if (Magic[1] == char(0x86))
return file_magic::coff_object;
break;
default:
break;
}
return file_magic::unknown;
}
std::error_code identify_magic(const Twine &Path, file_magic &Result) {
int FD;
if (std::error_code EC = openFileForRead(Path, FD))
return EC;
char Buffer[32];
int Length = read(FD, Buffer, sizeof(Buffer));
if (close(FD) != 0 || Length < 0)
return std::error_code(errno, std::generic_category());
Result = identify_magic(StringRef(Buffer, Length));
return std::error_code();
}
std::error_code directory_entry::status(file_status &result) const {
return fs::status(Path, result, FollowSymlinks);
}
ErrorOr<perms> getPermissions(const Twine &Path) {
file_status Status;
if (std::error_code EC = status(Path, Status))
return EC;
return Status.permissions();
}
} // end namespace fs
} // end namespace sys
} // end namespace llvm
// Include the truly platform-specific parts.
#if defined(LLVM_ON_UNIX)
#include "Unix/Path.inc"
#endif
#if defined(LLVM_ON_WIN32)
#include "Windows/Path.inc"
#endif
namespace llvm {
namespace sys {
namespace path {
bool user_cache_directory(SmallVectorImpl<char> &Result, const Twine &Path1,
const Twine &Path2, const Twine &Path3) {
if (getUserCacheDir(Result)) {
append(Result, Path1, Path2, Path3);
return true;
}
return false;
}
} // end namespace path
} // end namsspace sys
} // end namespace llvm