freebsd-dev/sys/netinet/tcp_hpts.h
2023-04-25 15:18:26 -07:00

225 lines
7.7 KiB
C

/*-
* Copyright (c) 2016-2018 Netflix, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef __tcp_hpts_h__
#define __tcp_hpts_h__
/* Number of useconds in a hpts tick */
#define HPTS_TICKS_PER_SLOT 10
#define HPTS_MS_TO_SLOTS(x) ((x * 100) + 1)
#define HPTS_USEC_TO_SLOTS(x) ((x+9) /10)
#define HPTS_USEC_IN_SEC 1000000
#define HPTS_MSEC_IN_SEC 1000
#define HPTS_USEC_IN_MSEC 1000
struct hpts_diag {
uint32_t p_hpts_active; /* bbr->flex7 x */
uint32_t p_nxt_slot; /* bbr->flex1 x */
uint32_t p_cur_slot; /* bbr->flex2 x */
uint32_t p_prev_slot; /* bbr->delivered */
uint32_t p_runningslot; /* bbr->inflight */
uint32_t slot_req; /* bbr->flex3 x */
uint32_t inp_hptsslot; /* bbr->flex4 x */
uint32_t slot_remaining; /* bbr->flex5 x */
uint32_t have_slept; /* bbr->epoch x */
uint32_t hpts_sleep_time; /* bbr->applimited x */
uint32_t yet_to_sleep; /* bbr->lt_epoch x */
uint32_t need_new_to; /* bbr->flex6 x */
uint32_t wheel_slot; /* bbr->bw_inuse x */
uint32_t maxslots; /* bbr->delRate x */
uint32_t wheel_cts; /* bbr->rttProp x */
int32_t co_ret; /* bbr->pkts_out x */
uint32_t p_curtick; /* upper bbr->cur_del_rate */
uint32_t p_lasttick; /* lower bbr->cur_del_rate */
uint8_t p_on_min_sleep; /* bbr->flex8 x */
};
/* Magic flags to tell whats cooking on the pacing wheel */
#define PACE_TMR_DELACK 0x01 /* Delayed ack timer running */
#define PACE_TMR_RACK 0x02 /* RACK timer running */
#define PACE_TMR_TLP 0x04 /* TLP timer running */
#define PACE_TMR_RXT 0x08 /* Retransmit timer running */
#define PACE_TMR_PERSIT 0x10 /* Persists timer running */
#define PACE_TMR_KEEP 0x20 /* Keep alive timer running */
#define PACE_PKT_OUTPUT 0x40 /* Output Packets being paced */
#define PACE_TMR_MASK (PACE_TMR_KEEP|PACE_TMR_PERSIT|PACE_TMR_RXT|PACE_TMR_TLP|PACE_TMR_RACK|PACE_TMR_DELACK)
#define DEFAULT_CONNECTION_THESHOLD 100
/*
* When using the hpts, a TCP stack must make sure
* that once a INP_DROPPED flag is applied to a INP
* that it does not expect tcp_output() to ever be
* called by the hpts. The hpts will *not* call
* any output (or input) functions on a TCB that
* is in the DROPPED state.
*
* This implies final ACK's and RST's that might
* be sent when a TCB is still around must be
* sent from a routine like tcp_respond().
*/
#define LOWEST_SLEEP_ALLOWED 50
#define DEFAULT_MIN_SLEEP 250 /* How many usec's is default for hpts sleep
* this determines min granularity of the
* hpts. If 1, granularity is 10useconds at
* the cost of more CPU (context switching).
* Note do not set this to 0.
*/
#define DYNAMIC_MIN_SLEEP DEFAULT_MIN_SLEEP
#define DYNAMIC_MAX_SLEEP 5000 /* 5ms */
/* Thresholds for raising/lowering sleep */
#define TICKS_INDICATE_MORE_SLEEP 100 /* This would be 1ms */
#define TICKS_INDICATE_LESS_SLEEP 1000 /* This would indicate 10ms */
/**
*
* Dynamic adjustment of sleeping times is done in "new" mode
* where we are depending on syscall returns and lro returns
* to push hpts forward mainly and the timer is only a backstop.
*
* When we are in the "new" mode i.e. conn_cnt > conn_cnt_thresh
* then we do a dynamic adjustment on the time we sleep.
* Our threshold is if the lateness of the first client served (in ticks) is
* greater than or equal too ticks_indicate_more_sleep (10ms
* or 10000 ticks). If we were that late, the actual sleep time
* is adjusted down by 50%. If the ticks_ran is less than
* ticks_indicate_more_sleep (100 ticks or 1000usecs).
*
*/
#ifdef _KERNEL
void tcp_hpts_init(struct tcpcb *);
void tcp_hpts_remove(struct tcpcb *);
static inline bool
tcp_in_hpts(struct tcpcb *tp)
{
return (tp->t_in_hpts == IHPTS_ONQUEUE);
}
/*
* To insert a TCB on the hpts you *must* be holding the
* INP_WLOCK(). The hpts insert code will then acqurire
* the hpts's lock and insert the TCB on the requested
* slot possibly waking up the hpts if you are requesting
* a time earlier than what the hpts is sleeping to (if
* the hpts is sleeping). You may check the inp->inp_in_hpts
* flag without the hpts lock. The hpts is the only one
* that will clear this flag holding only the hpts lock. This
* means that in your tcp_output() routine when you test for
* it to be 1 (so you wont call output) it may be transitioning
* to 0 (by the hpts). That will be fine since that will just
* mean an extra call to tcp_output that most likely will find
* the call you executed (when the mis-match occurred) will have
* put the TCB back on the hpts and it will return. If your
* call did not add it back to the hpts then you will either
* over-send or the cwnd will block you from sending more.
*
* Note you should also be holding the INP_WLOCK() when you
* call the remove from the hpts as well. Thoug usually
* you are either doing this from a timer, where you need
* that INP_WLOCK() or from destroying your TCB where again
* you should already have the INP_WLOCK().
*/
uint32_t tcp_hpts_insert_diag(struct tcpcb *tp, uint32_t slot, int32_t line,
struct hpts_diag *diag);
#define tcp_hpts_insert(inp, slot) \
tcp_hpts_insert_diag((inp), (slot), __LINE__, NULL)
void __tcp_set_hpts(struct tcpcb *tp, int32_t line);
#define tcp_set_hpts(a) __tcp_set_hpts(a, __LINE__)
void tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason);
void tcp_run_hpts(void);
extern int32_t tcp_min_hptsi_time;
#endif /* _KERNEL */
/*
* The following functions should also be available
* to userspace as well.
*/
static __inline uint32_t
tcp_tv_to_hptstick(const struct timeval *sv)
{
return ((sv->tv_sec * 100000) + (sv->tv_usec / HPTS_TICKS_PER_SLOT));
}
static __inline uint32_t
tcp_tv_to_usectick(const struct timeval *sv)
{
return ((uint32_t) ((sv->tv_sec * HPTS_USEC_IN_SEC) + sv->tv_usec));
}
static __inline uint32_t
tcp_tv_to_mssectick(const struct timeval *sv)
{
return ((uint32_t) ((sv->tv_sec * HPTS_MSEC_IN_SEC) + (sv->tv_usec/HPTS_USEC_IN_MSEC)));
}
static __inline uint64_t
tcp_tv_to_lusectick(const struct timeval *sv)
{
return ((uint64_t)((sv->tv_sec * HPTS_USEC_IN_SEC) + sv->tv_usec));
}
#ifdef _KERNEL
extern int32_t tcp_min_hptsi_time;
__inline int32_t
get_hpts_min_sleep_time(void)
{
return (tcp_min_hptsi_time + HPTS_TICKS_PER_SLOT);
}
static __inline uint32_t
tcp_gethptstick(struct timeval *sv)
{
struct timeval tv;
if (sv == NULL)
sv = &tv;
microuptime(sv);
return (tcp_tv_to_hptstick(sv));
}
static __inline uint32_t
tcp_get_usecs(struct timeval *tv)
{
struct timeval tvd;
if (tv == NULL)
tv = &tvd;
microuptime(tv);
return (tcp_tv_to_usectick(tv));
}
#endif /* _KERNEL */
#endif /* __tcp_hpts_h__ */