freebsd-dev/sys/dev/aic7xxx/ahc_pci.c
Bill Paul 624539bb38 The check_extport() function appears to have some new code in it that checks
the scratch RAM for data normally found in the SEEPROM (presumably in the
event that the SEEPROM is unavailable or can't be read). This code causes
a spontaneous reboot on monster.osd.bsdi.com, which has an embedded aic7880
controller. The problem appears to happen either when it writes to the
SCBPTR port and then reads from the SCB_CONTROL port. Somewhere during
the inb/outb operations, the system has a heart attack and restarts.

This code looks very suspicious, particularly since it has unconditionalized
debug mesages such as "Got here!" and "And it even worked!". With this
block #ifdef'ed out, the machine boots and runs properly. I stronly suggest
that it stay #ifdef'ed out until it's properly tested.
2000-08-04 18:09:56 +00:00

2011 lines
50 KiB
C

/*
* Product specific probe and attach routines for:
* 3940, 2940, aic7895, aic7890, aic7880,
* aic7870, aic7860 and aic7850 SCSI controllers
*
* Copyright (c) 1995, 1996, 1997, 1998, 1999, 2000 Justin T. Gibbs
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/clock.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <dev/aic7xxx/aic7xxx.h>
#include <dev/aic7xxx/93cx6.h>
#include <aic7xxx_reg.h>
#define AHC_PCI_IOADDR PCIR_MAPS /* I/O Address */
#define AHC_PCI_MEMADDR (PCIR_MAPS + 4) /* Mem I/O Address */
static __inline uint64_t
ahc_compose_id(u_int device, u_int vendor, u_int subdevice, u_int subvendor)
{
uint64_t id;
id = subvendor
| (subdevice << 16)
| ((uint64_t)vendor << 32)
| ((uint64_t)device << 48);
return (id);
}
#define ID_ALL_MASK 0xFFFFFFFFFFFFFFFFull
#define ID_DEV_VENDOR_MASK 0xFFFFFFFF00000000ull
#define ID_AIC7850 0x5078900400000000ull
#define ID_AHA_2910_15_20_30C 0x5078900478509004ull
#define ID_AIC7855 0x5578900400000000ull
#define ID_AIC7859 0x3860900400000000ull
#define ID_AHA_2930CU 0x3860900438699004ull
#define ID_AIC7860 0x6078900400000000ull
#define ID_AIC7860C 0x6078900478609004ull
#define ID_AHA_2940AU_0 0x6178900400000000ull
#define ID_AHA_2940AU_1 0x6178900478619004ull
#define ID_AHA_2940AU_CN 0x2178900478219004ull
#define ID_AHA_2930C_VAR 0x6038900438689004ull
#define ID_AIC7870 0x7078900400000000ull
#define ID_AHA_2940 0x7178900400000000ull
#define ID_AHA_3940 0x7278900400000000ull
#define ID_AHA_398X 0x7378900400000000ull
#define ID_AHA_2944 0x7478900400000000ull
#define ID_AHA_3944 0x7578900400000000ull
#define ID_AHA_4944 0x7678900400000000ull
#define ID_AIC7880 0x8078900400000000ull
#define ID_AIC7880_B 0x8078900478809004ull
#define ID_AHA_2940U 0x8178900400000000ull
#define ID_AHA_3940U 0x8278900400000000ull
#define ID_AHA_2944U 0x8478900400000000ull
#define ID_AHA_3944U 0x8578900400000000ull
#define ID_AHA_398XU 0x8378900400000000ull
#define ID_AHA_4944U 0x8678900400000000ull
#define ID_AHA_2940UB 0x8178900478819004ull
#define ID_AHA_2930U 0x8878900478889004ull
#define ID_AHA_2940U_PRO 0x8778900478879004ull
#define ID_AHA_2940U_CN 0x0078900478009004ull
#define ID_AIC7895 0x7895900478959004ull
#define ID_AIC7895_RAID_PORT 0x7893900478939004ull
#define ID_AHA_2940U_DUAL 0x7895900478919004ull
#define ID_AHA_3940AU 0x7895900478929004ull
#define ID_AHA_3944AU 0x7895900478949004ull
#define ID_AIC7890 0x001F9005000F9005ull
#define ID_AAA_131U2 0x0013900500039005ull
#define ID_AHA_2930U2 0x0011900501819005ull
#define ID_AHA_2940U2B 0x00109005A1009005ull
#define ID_AHA_2940U2_OEM 0x0010900521809005ull
#define ID_AHA_2940U2 0x00109005A1809005ull
#define ID_AHA_2950U2B 0x00109005E1009005ull
#define ID_AIC7892 0x008F9005FFFF9005ull
#define ID_AHA_29160 0x00809005E2A09005ull
#define ID_AHA_29160_CPQ 0x00809005E2A00E11ull
#define ID_AHA_29160N 0x0080900562A09005ull
#define ID_AHA_29160B 0x00809005E2209005ull
#define ID_AHA_19160B 0x0081900562A19005ull
#define ID_AIC7896 0x005F9005FFFF9005ull
#define ID_AHA_3950U2B_0 0x00509005FFFF9005ull
#define ID_AHA_3950U2B_1 0x00509005F5009005ull
#define ID_AHA_3950U2D_0 0x00519005FFFF9005ull
#define ID_AHA_3950U2D_1 0x00519005B5009005ull
#define ID_AIC7899 0x00CF9005FFFF9005ull
#define ID_AHA_3960D 0x00C09005F6209005ull /* AKA AHA-39160 */
#define ID_AHA_3960D_CPQ 0x00C09005F6200E11ull
#define ID_AIC7810 0x1078900400000000ull
#define ID_AIC7815 0x7815900400000000ull
typedef int (ahc_device_setup_t)(device_t, struct ahc_probe_config *);
static ahc_device_setup_t ahc_aic7850_setup;
static ahc_device_setup_t ahc_aic7855_setup;
static ahc_device_setup_t ahc_aic7859_setup;
static ahc_device_setup_t ahc_aic7860_setup;
static ahc_device_setup_t ahc_aic7870_setup;
static ahc_device_setup_t ahc_aha394X_setup;
static ahc_device_setup_t ahc_aha494X_setup;
static ahc_device_setup_t ahc_aha398X_setup;
static ahc_device_setup_t ahc_aic7880_setup;
static ahc_device_setup_t ahc_2940Pro_setup;
static ahc_device_setup_t ahc_aha394XU_setup;
static ahc_device_setup_t ahc_aha398XU_setup;
static ahc_device_setup_t ahc_aic7890_setup;
static ahc_device_setup_t ahc_aic7892_setup;
static ahc_device_setup_t ahc_aic7895_setup;
static ahc_device_setup_t ahc_aic7896_setup;
static ahc_device_setup_t ahc_aic7899_setup;
static ahc_device_setup_t ahc_raid_setup;
static ahc_device_setup_t ahc_aha394XX_setup;
static ahc_device_setup_t ahc_aha494XX_setup;
static ahc_device_setup_t ahc_aha398XX_setup;
struct ahc_pci_identity {
uint64_t full_id;
uint64_t id_mask;
char *name;
ahc_device_setup_t *setup;
};
struct ahc_pci_identity ahc_pci_ident_table [] =
{
/* aic7850 based controllers */
{
ID_AHA_2910_15_20_30C,
ID_ALL_MASK,
"Adaptec 2910/15/20/30C SCSI adapter",
ahc_aic7850_setup
},
/* aic7859 based controllers */
{
ID_AHA_2930CU,
ID_ALL_MASK,
"Adaptec 2930CU SCSI adapter",
ahc_aic7859_setup
},
/* aic7860 based controllers */
{
ID_AHA_2940AU_0 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2940A Ultra SCSI adapter",
ahc_aic7860_setup
},
{
ID_AHA_2940AU_CN & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2940A/CN Ultra SCSI adapter",
ahc_aic7860_setup
},
{
ID_AHA_2930C_VAR & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2930C SCSI adapter (VAR)",
ahc_aic7860_setup
},
/* aic7870 based controllers */
{
ID_AHA_2940,
ID_ALL_MASK,
"Adaptec 2940 SCSI adapter",
ahc_aic7870_setup
},
{
ID_AHA_3940,
ID_ALL_MASK,
"Adaptec 3940 SCSI adapter",
ahc_aha394X_setup
},
{
ID_AHA_398X,
ID_ALL_MASK,
"Adaptec 398X SCSI RAID adapter",
ahc_aha398X_setup
},
{
ID_AHA_2944,
ID_ALL_MASK,
"Adaptec 2944 SCSI adapter",
ahc_aic7870_setup
},
{
ID_AHA_3944,
ID_ALL_MASK,
"Adaptec 3944 SCSI adapter",
ahc_aha394X_setup
},
{
ID_AHA_4944,
ID_ALL_MASK,
"Adaptec 4944 SCSI adapter",
ahc_aha494X_setup
},
/* aic7880 based controllers */
{
ID_AHA_2940U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2940 Ultra SCSI adapter",
ahc_aic7880_setup
},
{
ID_AHA_3940U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 3940 Ultra SCSI adapter",
ahc_aha394XU_setup
},
{
ID_AHA_2944U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2944 Ultra SCSI adapter",
ahc_aic7880_setup
},
{
ID_AHA_3944U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 3944 Ultra SCSI adapter",
ahc_aha394XU_setup
},
{
ID_AHA_398XU & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 398X Ultra SCSI RAID adapter",
ahc_aha398XU_setup
},
{
/*
* XXX Don't know the slot numbers
* so we can't identify channels
*/
ID_AHA_4944U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 4944 Ultra SCSI adapter",
ahc_aic7880_setup
},
{
ID_AHA_2930U & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2930 Ultra SCSI adapter",
ahc_aic7880_setup
},
{
ID_AHA_2940U_PRO & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2940 Pro Ultra SCSI adapter",
ahc_2940Pro_setup
},
{
ID_AHA_2940U_CN & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec 2940/CN Ultra SCSI adapter",
ahc_aic7880_setup
},
/* aic7890 based controllers */
{
ID_AHA_2930U2,
ID_ALL_MASK,
"Adaptec 2930 Ultra2 SCSI adapter",
ahc_aic7890_setup
},
{
ID_AHA_2940U2B,
ID_ALL_MASK,
"Adaptec 2940B Ultra2 SCSI adapter",
ahc_aic7890_setup
},
{
ID_AHA_2940U2_OEM,
ID_ALL_MASK,
"Adaptec 2940 Ultra2 SCSI adapter (OEM)",
ahc_aic7890_setup
},
{
ID_AHA_2940U2,
ID_ALL_MASK,
"Adaptec 2940 Ultra2 SCSI adapter",
ahc_aic7890_setup
},
{
ID_AHA_2950U2B,
ID_ALL_MASK,
"Adaptec 2950 Ultra2 SCSI adapter",
ahc_aic7890_setup
},
{
ID_AAA_131U2,
ID_ALL_MASK,
"Adaptec AAA-131 Ultra2 RAID adapter",
ahc_aic7890_setup
},
/* aic7892 based controllers */
{
ID_AHA_29160,
ID_ALL_MASK,
"Adaptec 29160 Ultra160 SCSI adapter",
ahc_aic7892_setup
},
{
ID_AHA_29160_CPQ,
ID_ALL_MASK,
"Adaptec (Compaq OEM) 29160 Ultra160 SCSI adapter",
ahc_aic7892_setup
},
{
ID_AHA_29160N,
ID_ALL_MASK,
"Adaptec 29160N Ultra160 SCSI adapter",
ahc_aic7892_setup
},
{
ID_AHA_29160B,
ID_ALL_MASK,
"Adaptec 29160B Ultra160 SCSI adapter",
ahc_aic7892_setup
},
{
ID_AHA_19160B,
ID_ALL_MASK,
"Adaptec 19160B Ultra160 SCSI adapter",
ahc_aic7892_setup
},
/* aic7895 based controllers */
{
ID_AHA_2940U_DUAL,
ID_ALL_MASK,
"Adaptec 2940/DUAL Ultra SCSI adapter",
ahc_aic7895_setup
},
{
ID_AHA_3940AU,
ID_ALL_MASK,
"Adaptec 3940A Ultra SCSI adapter",
ahc_aic7895_setup
},
{
ID_AHA_3944AU,
ID_ALL_MASK,
"Adaptec 3944A Ultra SCSI adapter",
ahc_aic7895_setup
},
/* aic7896/97 based controllers */
{
ID_AHA_3950U2B_0,
ID_ALL_MASK,
"Adaptec 3950B Ultra2 SCSI adapter",
ahc_aic7896_setup
},
{
ID_AHA_3950U2B_1,
ID_ALL_MASK,
"Adaptec 3950B Ultra2 SCSI adapter",
ahc_aic7896_setup
},
{
ID_AHA_3950U2D_0,
ID_ALL_MASK,
"Adaptec 3950D Ultra2 SCSI adapter",
ahc_aic7896_setup
},
{
ID_AHA_3950U2D_1,
ID_ALL_MASK,
"Adaptec 3950D Ultra2 SCSI adapter",
ahc_aic7896_setup
},
/* aic7899 based controllers */
{
ID_AHA_3960D,
ID_ALL_MASK,
"Adaptec 3960D Ultra160 SCSI adapter",
ahc_aic7899_setup
},
{
ID_AHA_3960D_CPQ,
ID_ALL_MASK,
"Adaptec (Compaq OEM) 3960D Ultra160 SCSI adapter",
ahc_aic7899_setup
},
/* Generic chip probes for devices we don't know 'exactly' */
{
ID_AIC7850 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7850 SCSI adapter",
ahc_aic7850_setup
},
{
ID_AIC7855 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7855 SCSI adapter",
ahc_aic7855_setup
},
{
ID_AIC7859 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7859 SCSI adapter",
ahc_aic7859_setup
},
{
ID_AIC7860 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7860 SCSI adapter",
ahc_aic7860_setup
},
{
ID_AIC7870 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7870 SCSI adapter",
ahc_aic7870_setup
},
{
ID_AIC7880 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7880 Ultra SCSI adapter",
ahc_aic7880_setup
},
{
ID_AIC7890 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7890/91 Ultra2 SCSI adapter",
ahc_aic7890_setup
},
{
ID_AIC7892 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7892 Ultra160 SCSI adapter",
ahc_aic7892_setup
},
{
ID_AIC7895 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7895 Ultra SCSI adapter",
ahc_aic7895_setup
},
{
ID_AIC7895_RAID_PORT & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7895 Ultra SCSI adapter (RAID PORT)",
ahc_aic7895_setup
},
{
ID_AIC7896 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7896/97 Ultra2 SCSI adapter",
ahc_aic7896_setup
},
{
ID_AIC7899 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7899 Ultra160 SCSI adapter",
ahc_aic7899_setup
},
{
ID_AIC7810 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7810 RAID memory controller",
ahc_raid_setup
},
{
ID_AIC7815 & ID_DEV_VENDOR_MASK,
ID_DEV_VENDOR_MASK,
"Adaptec aic7815 RAID memory controller",
ahc_raid_setup
}
};
static const int ahc_num_pci_devs =
sizeof(ahc_pci_ident_table) / sizeof(*ahc_pci_ident_table);
#define AHC_394X_SLOT_CHANNEL_A 4
#define AHC_394X_SLOT_CHANNEL_B 5
#define AHC_398X_SLOT_CHANNEL_A 4
#define AHC_398X_SLOT_CHANNEL_B 8
#define AHC_398X_SLOT_CHANNEL_C 12
#define AHC_494X_SLOT_CHANNEL_A 4
#define AHC_494X_SLOT_CHANNEL_B 5
#define AHC_494X_SLOT_CHANNEL_C 6
#define AHC_494X_SLOT_CHANNEL_D 7
#define DEVCONFIG 0x40
#define SCBSIZE32 0x00010000ul /* aic789X only */
#define MPORTMODE 0x00000400ul /* aic7870 only */
#define RAMPSM 0x00000200ul /* aic7870 only */
#define VOLSENSE 0x00000100ul
#define SCBRAMSEL 0x00000080ul
#define MRDCEN 0x00000040ul
#define EXTSCBTIME 0x00000020ul /* aic7870 only */
#define EXTSCBPEN 0x00000010ul /* aic7870 only */
#define BERREN 0x00000008ul
#define DACEN 0x00000004ul
#define STPWLEVEL 0x00000002ul
#define DIFACTNEGEN 0x00000001ul /* aic7870 only */
#define CSIZE_LATTIME 0x0c
#define CACHESIZE 0x0000003ful /* only 5 bits */
#define LATTIME 0x0000ff00ul
static struct ahc_pci_identity *ahc_find_pci_device(device_t dev);
static int ahc_ext_scbram_present(struct ahc_softc *ahc);
static void ahc_scbram_config(struct ahc_softc *ahc, int enable,
int pcheck, int fast, int large);
static void ahc_probe_ext_scbram(struct ahc_softc *ahc);
static int verify_cksum(struct seeprom_config *sc);
static void check_extport(struct ahc_softc *ahc, u_int *sxfrctl1);
static void configure_termination(struct ahc_softc *ahc,
struct seeprom_descriptor *sd,
u_int adapter_control,
u_int *sxfrctl1);
static void ahc_new_term_detect(struct ahc_softc *ahc,
int *enableSEC_low,
int *enableSEC_high,
int *enablePRI_low,
int *enablePRI_high,
int *eeprom_present);
static void aic787X_cable_detect(struct ahc_softc *ahc, int *internal50_present,
int *internal68_present,
int *externalcable_present,
int *eeprom_present);
static void aic785X_cable_detect(struct ahc_softc *ahc, int *internal50_present,
int *externalcable_present,
int *eeprom_present);
static int acquire_seeprom(struct ahc_softc *ahc,
struct seeprom_descriptor *sd);
static void release_seeprom(struct seeprom_descriptor *sd);
static void write_brdctl(struct ahc_softc *ahc, uint8_t value);
static uint8_t read_brdctl(struct ahc_softc *ahc);
static struct ahc_softc *first_398X;
static int ahc_pci_probe(device_t dev);
static int ahc_pci_attach(device_t dev);
/* Exported for use in the ahc_intr routine */
void ahc_pci_intr(struct ahc_softc *ahc);
static device_method_t ahc_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ahc_pci_probe),
DEVMETHOD(device_attach, ahc_pci_attach),
{ 0, 0 }
};
static driver_t ahc_pci_driver = {
"ahc",
ahc_pci_methods,
sizeof(struct ahc_softc)
};
static devclass_t ahc_devclass;
DRIVER_MODULE(ahc, pci, ahc_pci_driver, ahc_devclass, 0, 0);
static struct ahc_pci_identity *
ahc_find_pci_device(device_t dev)
{
uint64_t full_id;
struct ahc_pci_identity *entry;
u_int i;
full_id = ahc_compose_id(pci_get_device(dev),
pci_get_vendor(dev),
pci_get_subdevice(dev),
pci_get_subvendor(dev));
for (i = 0; i < ahc_num_pci_devs; i++) {
entry = &ahc_pci_ident_table[i];
if (entry->full_id == (full_id & entry->id_mask))
return (entry);
}
return (NULL);
}
static int
ahc_pci_probe(device_t dev)
{
struct ahc_pci_identity *entry;
entry = ahc_find_pci_device(dev);
if (entry != NULL) {
device_set_desc(dev, entry->name);
return (0);
}
return (ENXIO);
}
static int
ahc_pci_attach(device_t dev)
{
struct ahc_probe_config probe_config;
bus_dma_tag_t parent_dmat;
struct ahc_pci_identity *entry;
struct resource *regs;
struct ahc_softc *ahc;
struct scb_data *shared_scb_data;
u_int command;
int regs_type;
int regs_id;
u_int our_id = 0;
u_int sxfrctl1;
u_int scsiseq;
u_int dscommand0;
int error;
int zero;
uint8_t sblkctl;
shared_scb_data = NULL;
command = pci_read_config(dev, PCIR_COMMAND, /*bytes*/1);
entry = ahc_find_pci_device(dev);
if (entry == NULL)
return (ENXIO);
ahc_init_probe_config(&probe_config);
error = entry->setup(dev, &probe_config);
probe_config.chip |= AHC_PCI;
probe_config.description = entry->name;
if (error != 0)
return (error);
regs = NULL;
regs_type = 0;
regs_id = 0;
#ifdef AHC_ALLOW_MEMIO
if ((command & PCIM_CMD_MEMEN) != 0) {
regs_type = SYS_RES_MEMORY;
regs_id = AHC_PCI_MEMADDR;
regs = bus_alloc_resource(dev, regs_type,
&regs_id, 0, ~0, 1, RF_ACTIVE);
}
#endif
if (regs == NULL && (command & PCIM_CMD_PORTEN) != 0) {
regs_type = SYS_RES_IOPORT;
regs_id = AHC_PCI_IOADDR;
regs = bus_alloc_resource(dev, regs_type,
&regs_id, 0, ~0, 1, RF_ACTIVE);
}
if (regs == NULL) {
device_printf(dev, "can't allocate register resources\n");
return (ENOMEM);
}
/* Ensure busmastering is enabled */
command |= PCIM_CMD_BUSMASTEREN;
pci_write_config(dev, PCIR_COMMAND, command, /*bytes*/1);
/* Allocate a dmatag for our SCB DMA maps */
/* XXX Should be a child of the PCI bus dma tag */
error = bus_dma_tag_create(/*parent*/NULL, /*alignment*/1,
/*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/MAXBSIZE, /*nsegments*/AHC_NSEG,
/*maxsegsz*/AHC_MAXTRANSFER_SIZE,
/*flags*/BUS_DMA_ALLOCNOW, &parent_dmat);
if (error != 0) {
printf("ahc_pci_attach: Could not allocate DMA tag "
"- error %d\n", error);
return (ENOMEM);
}
/* On all PCI adapters, we allow SCB paging */
probe_config.flags |= AHC_PAGESCBS;
if ((ahc = ahc_alloc(dev, regs, regs_type, regs_id, parent_dmat,
&probe_config, shared_scb_data)) == NULL)
return (ENOMEM);
/* Store our PCI bus information for use in our PCI error handler */
ahc->device = dev;
/* Remeber how the card was setup in case there is no SEEPROM */
pause_sequencer(ahc);
if ((ahc->features & AHC_ULTRA2) != 0)
our_id = ahc_inb(ahc, SCSIID_ULTRA2) & OID;
else
our_id = ahc_inb(ahc, SCSIID) & OID;
sxfrctl1 = ahc_inb(ahc, SXFRCTL1) & STPWEN;
scsiseq = ahc_inb(ahc, SCSISEQ);
if (ahc_reset(ahc) != 0) {
/* Failed */
ahc_free(ahc);
return (ENXIO);
}
if ((ahc->features & AHC_DT) != 0) {
u_int sfunct;
/* Perform ALT-Mode Setup */
sfunct = ahc_inb(ahc, SFUNCT) & ~ALT_MODE;
ahc_outb(ahc, SFUNCT, sfunct | ALT_MODE);
ahc_outb(ahc, OPTIONMODE, OPTIONMODE_DEFAULTS);
/* Send CRC info in target mode every 4K */
ahc_outb(ahc, TARGCRCCNT, 0);
ahc_outb(ahc, TARGCRCCNT + 1, 0x10);
ahc_outb(ahc, SFUNCT, sfunct);
/* Normal mode setup */
ahc_outb(ahc, CRCCONTROL1, CRCVALCHKEN|CRCENDCHKEN|CRCREQCHKEN
|TARGCRCENDEN|TARGCRCCNTEN);
}
zero = 0;
ahc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &zero,
0, ~0, 1, RF_ACTIVE | RF_SHAREABLE);
if (ahc->irq == NULL) {
ahc_free(ahc);
return (ENOMEM);
}
ahc->irq_res_type = SYS_RES_IRQ;
dscommand0 = ahc_inb(ahc, DSCOMMAND0);
dscommand0 |= MPARCKEN;
if ((ahc->features & AHC_ULTRA2) != 0) {
/*
* DPARCKEN doesn't work correctly on
* some MBs so don't use it.
*/
dscommand0 &= ~DPARCKEN;
/*
* We default to using 32byte SCBs
* and using cacheline streaming.
* If external SCB ram is detected,
* we'll switch to using 64 byte SCBs.
*/
dscommand0 |= CACHETHEN|USCBSIZE32;
}
/*
* Handle chips that must have cache line
* streaming (dis/en)abled.
*/
if ((ahc->bugs & AHC_CACHETHEN_DIS_BUG) != 0)
dscommand0 |= CACHETHEN;
if ((ahc->bugs & AHC_CACHETHEN_BUG) != 0)
dscommand0 &= ~CACHETHEN;
ahc_outb(ahc, DSCOMMAND0, dscommand0);
/* See if we have a SEEPROM and perform auto-term */
check_extport(ahc, &sxfrctl1);
/*
* Take the LED out of diagnostic mode
*/
sblkctl = ahc_inb(ahc, SBLKCTL);
ahc_outb(ahc, SBLKCTL, (sblkctl & ~(DIAGLEDEN|DIAGLEDON)));
/*
* I don't know where this is set in the SEEPROM or by the
* BIOS, so we default to 100% on Ultra or slower controllers
* and 75% on ULTRA2 controllers.
*/
if ((ahc->features & AHC_ULTRA2) != 0) {
ahc_outb(ahc, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
} else {
ahc_outb(ahc, DSPCISTATUS, DFTHRSH_100);
}
if (ahc->flags & AHC_USEDEFAULTS) {
/*
* PCI Adapter default setup
* Should only be used if the adapter does not have
* an SEEPROM.
*/
/* See if someone else set us up already */
if (scsiseq != 0) {
printf("%s: Using left over BIOS settings\n",
ahc_name(ahc));
ahc->flags &= ~AHC_USEDEFAULTS;
} else {
/*
* Assume only one connector and always turn
* on termination.
*/
our_id = 0x07;
sxfrctl1 = STPWEN;
}
ahc_outb(ahc, SCSICONF, our_id|ENSPCHK|RESET_SCSI);
ahc->our_id = our_id;
}
/*
* Take a look to see if we have external SRAM.
* We currently do not attempt to use SRAM that is
* shared among multiple controllers.
*/
ahc_probe_ext_scbram(ahc);
printf("%s: %s ", ahc_name(ahc),
ahc_chip_names[ahc->chip & AHC_CHIPID_MASK]);
/*
* Record our termination setting for the
* generic initialization routine.
*/
if ((sxfrctl1 & STPWEN) != 0)
ahc->flags |= AHC_TERM_ENB_A;
if (ahc_init(ahc)) {
ahc_free(ahc);
return (ENOMEM);
}
/* XXX Crude hack - fix sometime */
if (ahc->flags & AHC_SHARED_SRAM) {
/* Only set this once we've successfully probed */
if (shared_scb_data == NULL)
first_398X = ahc;
}
ahc_attach(ahc);
return (0);
}
/*
* Test for the presense of external sram in an
* "unshared" configuration.
*/
static int
ahc_ext_scbram_present(struct ahc_softc *ahc)
{
int ramps;
int single_user;
uint32_t devconfig;
devconfig = pci_read_config(ahc->device, DEVCONFIG, /*bytes*/4);
single_user = (devconfig & MPORTMODE) != 0;
if ((ahc->features & AHC_ULTRA2) != 0)
ramps = (ahc_inb(ahc, DSCOMMAND0) & RAMPS) != 0;
else if ((ahc->chip & AHC_CHIPID_MASK) >= AHC_AIC7870)
ramps = (devconfig & RAMPSM) != 0;
else
ramps = 0;
if (ramps && single_user)
return (1);
return (0);
}
/*
* Enable external scbram.
*/
static void
ahc_scbram_config(struct ahc_softc *ahc, int enable, int pcheck,
int fast, int large)
{
uint32_t devconfig;
if (ahc->features & AHC_MULTI_FUNC) {
/*
* Set the SCB Base addr (highest address bit)
* depending on which channel we are.
*/
ahc_outb(ahc, SCBBADDR, pci_get_function(ahc->device));
}
devconfig = pci_read_config(ahc->device, DEVCONFIG, /*bytes*/4);
if ((ahc->features & AHC_ULTRA2) != 0) {
u_int dscommand0;
dscommand0 = ahc_inb(ahc, DSCOMMAND0);
if (enable)
dscommand0 &= ~INTSCBRAMSEL;
else
dscommand0 |= INTSCBRAMSEL;
if (large)
dscommand0 |= USCBSIZE32;
else
dscommand0 &= ~USCBSIZE32;
ahc_outb(ahc, DSCOMMAND0, dscommand0);
} else {
if (fast)
devconfig &= ~EXTSCBTIME;
else
devconfig |= EXTSCBTIME;
if (enable)
devconfig &= ~SCBRAMSEL;
else
devconfig |= SCBRAMSEL;
if (large)
devconfig &= ~SCBSIZE32;
else
devconfig |= SCBSIZE32;
}
if (pcheck)
devconfig |= EXTSCBPEN;
else
devconfig &= ~EXTSCBPEN;
pci_write_config(ahc->device, DEVCONFIG, devconfig, /*bytes*/4);
}
/*
* Take a look to see if we have external SRAM.
* We currently do not attempt to use SRAM that is
* shared among multiple controllers.
*/
static void
ahc_probe_ext_scbram(struct ahc_softc *ahc)
{
int num_scbs;
int test_num_scbs;
int enable;
int pcheck;
int fast;
int large;
enable = FALSE;
pcheck = FALSE;
fast = FALSE;
large = FALSE;
num_scbs = 0;
if (ahc_ext_scbram_present(ahc) == 0)
return;
/*
* Probe for the best parameters to use.
*/
ahc_scbram_config(ahc, /*enable*/TRUE, pcheck, fast, large);
num_scbs = ahc_probe_scbs(ahc);
if (num_scbs == 0) {
/* The SRAM wasn't really present. */
goto done;
}
enable = TRUE;
/*
* Clear any outstanding parity error
* and ensure that parity error reporting
* is enabled.
*/
ahc_outb(ahc, SEQCTL, 0);
ahc_outb(ahc, CLRINT, CLRPARERR);
ahc_outb(ahc, CLRINT, CLRBRKADRINT);
/* Now see if we can do parity */
ahc_scbram_config(ahc, enable, /*pcheck*/TRUE, fast, large);
num_scbs = ahc_probe_scbs(ahc);
if ((ahc_inb(ahc, INTSTAT) & BRKADRINT) == 0
|| (ahc_inb(ahc, ERROR) & MPARERR) == 0)
pcheck = TRUE;
/* Clear any resulting parity error */
ahc_outb(ahc, CLRINT, CLRPARERR);
ahc_outb(ahc, CLRINT, CLRBRKADRINT);
/* Now see if we can do fast timing */
ahc_scbram_config(ahc, enable, pcheck, /*fast*/TRUE, large);
test_num_scbs = ahc_probe_scbs(ahc);
if (test_num_scbs == num_scbs
&& ((ahc_inb(ahc, INTSTAT) & BRKADRINT) == 0
|| (ahc_inb(ahc, ERROR) & MPARERR) == 0))
fast = TRUE;
/*
* See if we can use large SCBs and still maintain
* the same overall count of SCBs.
*/
if ((ahc->features & AHC_LARGE_SCBS) != 0) {
ahc_scbram_config(ahc, enable, pcheck, fast, /*large*/TRUE);
test_num_scbs = ahc_probe_scbs(ahc);
if (test_num_scbs >= num_scbs) {
large = TRUE;
num_scbs = test_num_scbs;
}
if (num_scbs >= 64)
/*
* We have enough space to move the "busy targets
* table" into SCB space and make it qualify all
* the way to the lun level.
*/
ahc->flags |= AHC_SCB_BTT;
}
done:
/*
* Disable parity error reporting until we
* can load instruction ram.
*/
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS);
/* Clear any latched parity error */
ahc_outb(ahc, CLRINT, CLRPARERR);
ahc_outb(ahc, CLRINT, CLRBRKADRINT);
if (bootverbose && enable) {
printf("%s: External SRAM, %s access%s\n",
ahc_name(ahc), fast ? "fast" : "slow",
pcheck ? ", parity checking enabled" : "");
}
ahc_scbram_config(ahc, enable, pcheck, fast, large);
}
static int
verify_cksum(struct seeprom_config *sc)
{
int i;
int maxaddr;
uint32_t checksum;
uint16_t *scarray;
maxaddr = (sizeof(*sc)/2) - 1;
checksum = 0;
scarray = (uint16_t *)sc;
for (i = 0; i < maxaddr; i++)
checksum = checksum + scarray[i];
if (checksum == 0
|| (checksum & 0xFFFF) != sc->checksum) {
return (0);
} else {
return(1);
}
}
/*
* Check the external port logic for a serial eeprom
* and termination/cable detection contrls.
*/
static void
check_extport(struct ahc_softc *ahc, u_int *sxfrctl1)
{
struct seeprom_descriptor sd;
struct seeprom_config sc;
u_int scsi_conf;
u_int adapter_control;
int have_seeprom;
int have_autoterm;
sd.sd_tag = ahc->tag;
sd.sd_bsh = ahc->bsh;
sd.sd_control_offset = SEECTL;
sd.sd_status_offset = SEECTL;
sd.sd_dataout_offset = SEECTL;
/*
* For some multi-channel devices, the c46 is simply too
* small to work. For the other controller types, we can
* get our information from either SEEPROM type. Set the
* type to start our probe with accordingly.
*/
if (ahc->flags & AHC_LARGE_SEEPROM)
sd.sd_chip = C56_66;
else
sd.sd_chip = C46;
sd.sd_MS = SEEMS;
sd.sd_RDY = SEERDY;
sd.sd_CS = SEECS;
sd.sd_CK = SEECK;
sd.sd_DO = SEEDO;
sd.sd_DI = SEEDI;
have_seeprom = acquire_seeprom(ahc, &sd);
if (have_seeprom) {
if (bootverbose)
printf("%s: Reading SEEPROM...", ahc_name(ahc));
for (;;) {
bus_size_t start_addr;
start_addr = 32 * (ahc->channel - 'A');
have_seeprom = read_seeprom(&sd, (uint16_t *)&sc,
start_addr, sizeof(sc)/2);
if (have_seeprom)
have_seeprom = verify_cksum(&sc);
if (have_seeprom != 0 || sd.sd_chip == C56_66) {
if (bootverbose) {
if (have_seeprom == 0)
printf ("checksum error\n");
else
printf ("done.\n");
}
break;
}
sd.sd_chip = C56_66;
}
}
#ifdef 0
/*
* This code causes a machine with an aic7880 chipset
* to reboot spontaneously. Whatever it's supposed to do,
* it's doing it wrong. -wpaul
*/
if (!have_seeprom) {
/*
* Pull scratch ram settings and treat them as
* if they are the contents of an seeprom if
* the 'ADPT' signature is found in SCB2.
*/
ahc_outb(ahc, SCBPTR, 2);
if (ahc_inb(ahc, SCB_CONTROL) == 'A'
&& ahc_inb(ahc, SCB_CONTROL + 1) == 'D'
&& ahc_inb(ahc, SCB_CONTROL + 2) == 'P'
&& ahc_inb(ahc, SCB_CONTROL + 3) == 'T') {
uint8_t *sc_bytes;
int i;
printf("Got Here!\n");
sc_bytes = (uint8_t *)&sc;
for (i = 0; i < 64; i++)
sc_bytes[i] = ahc_inb(ahc, TARG_SCSIRATE + i);
/* Byte 0x1c is stored in byte 4 of SCB2 */
sc_bytes[0x1c] = ahc_inb(ahc, SCB_CONTROL + 4);
have_seeprom = verify_cksum(&sc);
if (have_seeprom)
printf("And it even worked!\n");
}
}
#endif
if (!have_seeprom) {
if (bootverbose)
printf("%s: No SEEPROM available.\n", ahc_name(ahc));
ahc->flags |= AHC_USEDEFAULTS;
} else {
/*
* Put the data we've collected down into SRAM
* where ahc_init will find it.
*/
int i;
int max_targ = sc.max_targets & CFMAXTARG;
uint16_t discenable;
uint16_t ultraenb;
discenable = 0;
ultraenb = 0;
if ((sc.adapter_control & CFULTRAEN) != 0) {
/*
* Determine if this adapter has a "newstyle"
* SEEPROM format.
*/
for (i = 0; i < max_targ; i++) {
if ((sc.device_flags[i] & CFSYNCHISULTRA) != 0){
ahc->flags |= AHC_NEWEEPROM_FMT;
break;
}
}
}
for (i = 0; i < max_targ; i++) {
u_int scsirate;
uint16_t target_mask;
target_mask = 0x01 << i;
if (sc.device_flags[i] & CFDISC)
discenable |= target_mask;
if ((ahc->flags & AHC_NEWEEPROM_FMT) != 0) {
if ((sc.device_flags[i] & CFSYNCHISULTRA) != 0)
ultraenb |= target_mask;
} else if ((sc.adapter_control & CFULTRAEN) != 0) {
ultraenb |= target_mask;
}
if ((sc.device_flags[i] & CFXFER) == 0x04
&& (ultraenb & target_mask) != 0) {
/* Treat 10MHz as a non-ultra speed */
sc.device_flags[i] &= ~CFXFER;
ultraenb &= ~target_mask;
}
if ((ahc->features & AHC_ULTRA2) != 0) {
u_int offset;
if (sc.device_flags[i] & CFSYNCH)
offset = MAX_OFFSET_ULTRA2;
else
offset = 0;
ahc_outb(ahc, TARG_OFFSET + i, offset);
/*
* The ultra enable bits contain the
* high bit of the ultra2 sync rate
* field.
*/
scsirate = (sc.device_flags[i] & CFXFER)
| ((ultraenb & target_mask)
? 0x8 : 0x0);
if (sc.device_flags[i] & CFWIDEB)
scsirate |= WIDEXFER;
} else {
scsirate = (sc.device_flags[i] & CFXFER) << 4;
if (sc.device_flags[i] & CFSYNCH)
scsirate |= SOFS;
if (sc.device_flags[i] & CFWIDEB)
scsirate |= WIDEXFER;
}
ahc_outb(ahc, TARG_SCSIRATE + i, scsirate);
}
ahc->our_id = sc.brtime_id & CFSCSIID;
scsi_conf = (ahc->our_id & 0x7);
if (sc.adapter_control & CFSPARITY)
scsi_conf |= ENSPCHK;
if (sc.adapter_control & CFRESETB)
scsi_conf |= RESET_SCSI;
if (sc.bios_control & CFEXTEND)
ahc->flags |= AHC_EXTENDED_TRANS_A;
if (ahc->features & AHC_ULTRA
&& (ahc->flags & AHC_NEWEEPROM_FMT) == 0) {
/* Should we enable Ultra mode? */
if (!(sc.adapter_control & CFULTRAEN))
/* Treat us as a non-ultra card */
ultraenb = 0;
}
if (sc.signature == CFSIGNATURE) {
uint32_t devconfig;
/* Honor the STPWLEVEL settings */
devconfig = pci_read_config(ahc->device, DEVCONFIG,
/*bytes*/4);
devconfig &= ~STPWLEVEL;
if ((sc.bios_control & CFSTPWLEVEL) != 0)
devconfig |= STPWLEVEL;
pci_write_config(ahc->device, DEVCONFIG,
devconfig, /*bytes*/4);
}
/* Set SCSICONF info */
ahc_outb(ahc, SCSICONF, scsi_conf);
ahc_outb(ahc, DISC_DSB, ~(discenable & 0xff));
ahc_outb(ahc, DISC_DSB + 1, ~((discenable >> 8) & 0xff));
ahc_outb(ahc, ULTRA_ENB, ultraenb & 0xff);
ahc_outb(ahc, ULTRA_ENB + 1, (ultraenb >> 8) & 0xff);
}
/*
* Cards that have the external logic necessary to talk to
* a SEEPROM, are almost certain to have the remaining logic
* necessary for auto-termination control. This assumption
* hasn't failed yet...
*/
have_autoterm = have_seeprom;
if (have_seeprom)
adapter_control = sc.adapter_control;
else
adapter_control = CFAUTOTERM;
/*
* Some low-cost chips have SEEPROM and auto-term control built
* in, instead of using a GAL. They can tell us directly
* if the termination logic is enabled.
*/
if ((ahc->features & AHC_SPIOCAP) != 0) {
if ((ahc_inb(ahc, SPIOCAP) & SSPIOCPS) != 0)
have_autoterm = TRUE;
else
have_autoterm = FALSE;
}
if (have_autoterm)
configure_termination(ahc, &sd, adapter_control, sxfrctl1);
release_seeprom(&sd);
}
static void
configure_termination(struct ahc_softc *ahc,
struct seeprom_descriptor *sd,
u_int adapter_control,
u_int *sxfrctl1)
{
uint8_t brddat;
brddat = 0;
/*
* Update the settings in sxfrctl1 to match the
* termination settings
*/
*sxfrctl1 = 0;
/*
* SEECS must be on for the GALS to latch
* the data properly. Be sure to leave MS
* on or we will release the seeprom.
*/
SEEPROM_OUTB(sd, sd->sd_MS | sd->sd_CS);
if ((adapter_control & CFAUTOTERM) != 0
|| (ahc->features & AHC_NEW_TERMCTL) != 0) {
int internal50_present;
int internal68_present;
int externalcable_present;
int eeprom_present;
int enableSEC_low;
int enableSEC_high;
int enablePRI_low;
int enablePRI_high;
enableSEC_low = 0;
enableSEC_high = 0;
enablePRI_low = 0;
enablePRI_high = 0;
if ((ahc->features & AHC_NEW_TERMCTL) != 0) {
ahc_new_term_detect(ahc, &enableSEC_low,
&enableSEC_high,
&enablePRI_low,
&enablePRI_high,
&eeprom_present);
if ((adapter_control & CFSEAUTOTERM) == 0) {
if (bootverbose)
printf("%s: Manual SE Termination\n",
ahc_name(ahc));
enableSEC_low = (adapter_control & CFSELOWTERM);
enableSEC_high =
(adapter_control & CFSEHIGHTERM);
}
if ((adapter_control & CFAUTOTERM) == 0) {
if (bootverbose)
printf("%s: Manual LVD Termination\n",
ahc_name(ahc));
enablePRI_low = (adapter_control & CFSTERM);
enablePRI_high = (adapter_control & CFWSTERM);
}
/* Make the table calculations below happy */
internal50_present = 0;
internal68_present = 1;
externalcable_present = 1;
} else if ((ahc->features & AHC_SPIOCAP) != 0) {
aic785X_cable_detect(ahc, &internal50_present,
&externalcable_present,
&eeprom_present);
} else {
aic787X_cable_detect(ahc, &internal50_present,
&internal68_present,
&externalcable_present,
&eeprom_present);
}
if ((ahc->features & AHC_WIDE) == 0)
internal68_present = 0;
if (bootverbose) {
if ((ahc->features & AHC_ULTRA2) == 0) {
printf("%s: internal 50 cable %s present, "
"internal 68 cable %s present\n",
ahc_name(ahc),
internal50_present ? "is":"not",
internal68_present ? "is":"not");
printf("%s: external cable %s present\n",
ahc_name(ahc),
externalcable_present ? "is":"not");
}
printf("%s: BIOS eeprom %s present\n",
ahc_name(ahc), eeprom_present ? "is" : "not");
}
if ((ahc->flags & AHC_INT50_SPEEDFLEX) != 0) {
/*
* The 50 pin connector is a separate bus,
* so force it to always be terminated.
* In the future, perform current sensing
* to determine if we are in the middle of
* a properly terminated bus.
*/
internal50_present = 0;
}
/*
* Now set the termination based on what
* we found.
* Flash Enable = BRDDAT7
* Secondary High Term Enable = BRDDAT6
* Secondary Low Term Enable = BRDDAT5 (7890)
* Primary High Term Enable = BRDDAT4 (7890)
*/
if ((ahc->features & AHC_ULTRA2) == 0
&& (internal50_present != 0)
&& (internal68_present != 0)
&& (externalcable_present != 0)) {
printf("%s: Illegal cable configuration!!. "
"Only two connectors on the "
"adapter may be used at a "
"time!\n", ahc_name(ahc));
}
if ((ahc->features & AHC_WIDE) != 0
&& ((externalcable_present == 0)
|| (internal68_present == 0)
|| (enableSEC_high != 0))) {
brddat |= BRDDAT6;
if (bootverbose) {
if ((ahc->flags & AHC_INT50_SPEEDFLEX) != 0)
printf("%s: 68 pin termination "
"Enabled\n", ahc_name(ahc));
else
printf("%s: %sHigh byte termination "
"Enabled\n", ahc_name(ahc),
enableSEC_high ? "Secondary "
: "");
}
}
if (((internal50_present ? 1 : 0)
+ (internal68_present ? 1 : 0)
+ (externalcable_present ? 1 : 0)) <= 1
|| (enableSEC_low != 0)) {
if ((ahc->features & AHC_ULTRA2) != 0)
brddat |= BRDDAT5;
else
*sxfrctl1 |= STPWEN;
if (bootverbose) {
if ((ahc->flags & AHC_INT50_SPEEDFLEX) != 0)
printf("%s: 50 pin termination "
"Enabled\n", ahc_name(ahc));
else
printf("%s: %sLow byte termination "
"Enabled\n", ahc_name(ahc),
enableSEC_low ? "Secondary "
: "");
}
}
if (enablePRI_low != 0) {
*sxfrctl1 |= STPWEN;
if (bootverbose)
printf("%s: Primary Low Byte termination "
"Enabled\n", ahc_name(ahc));
}
/*
* Setup STPWEN before setting up the rest of
* the termination per the tech note on the U160 cards.
*/
ahc_outb(ahc, SXFRCTL1, *sxfrctl1);
if (enablePRI_high != 0) {
brddat |= BRDDAT4;
if (bootverbose)
printf("%s: Primary High Byte "
"termination Enabled\n",
ahc_name(ahc));
}
write_brdctl(ahc, brddat);
} else {
if ((adapter_control & CFSTERM) != 0) {
*sxfrctl1 |= STPWEN;
if (bootverbose)
printf("%s: %sLow byte termination Enabled\n",
ahc_name(ahc),
(ahc->features & AHC_ULTRA2) ? "Primary "
: "");
}
if ((adapter_control & CFWSTERM) != 0) {
brddat |= BRDDAT6;
if (bootverbose)
printf("%s: %sHigh byte termination Enabled\n",
ahc_name(ahc),
(ahc->features & AHC_ULTRA2)
? "Secondary " : "");
}
/*
* Setup STPWEN before setting up the rest of
* the termination per the tech note on the U160 cards.
*/
ahc_outb(ahc, SXFRCTL1, *sxfrctl1);
write_brdctl(ahc, brddat);
}
SEEPROM_OUTB(sd, sd->sd_MS); /* Clear CS */
}
static void
ahc_new_term_detect(struct ahc_softc *ahc, int *enableSEC_low,
int *enableSEC_high, int *enablePRI_low,
int *enablePRI_high, int *eeprom_present)
{
uint8_t brdctl;
/*
* BRDDAT7 = Eeprom
* BRDDAT6 = Enable Secondary High Byte termination
* BRDDAT5 = Enable Secondary Low Byte termination
* BRDDAT4 = Enable Primary high byte termination
* BRDDAT3 = Enable Primary low byte termination
*/
brdctl = read_brdctl(ahc);
*eeprom_present = brdctl & BRDDAT7;
*enableSEC_high = (brdctl & BRDDAT6);
*enableSEC_low = (brdctl & BRDDAT5);
*enablePRI_high = (brdctl & BRDDAT4);
*enablePRI_low = (brdctl & BRDDAT3);
}
static void
aic787X_cable_detect(struct ahc_softc *ahc, int *internal50_present,
int *internal68_present, int *externalcable_present,
int *eeprom_present)
{
uint8_t brdctl;
/*
* First read the status of our cables.
* Set the rom bank to 0 since the
* bank setting serves as a multiplexor
* for the cable detection logic.
* BRDDAT5 controls the bank switch.
*/
write_brdctl(ahc, 0);
/*
* Now read the state of the internal
* connectors. BRDDAT6 is INT50 and
* BRDDAT7 is INT68.
*/
brdctl = read_brdctl(ahc);
*internal50_present = !(brdctl & BRDDAT6);
*internal68_present = !(brdctl & BRDDAT7);
/*
* Set the rom bank to 1 and determine
* the other signals.
*/
write_brdctl(ahc, BRDDAT5);
/*
* Now read the state of the external
* connectors. BRDDAT6 is EXT68 and
* BRDDAT7 is EPROMPS.
*/
brdctl = read_brdctl(ahc);
*externalcable_present = !(brdctl & BRDDAT6);
*eeprom_present = brdctl & BRDDAT7;
}
static void
aic785X_cable_detect(struct ahc_softc *ahc, int *internal50_present,
int *externalcable_present, int *eeprom_present)
{
uint8_t brdctl;
ahc_outb(ahc, BRDCTL, BRDRW|BRDCS);
ahc_outb(ahc, BRDCTL, 0);
brdctl = ahc_inb(ahc, BRDCTL);
*internal50_present = !(brdctl & BRDDAT5);
*externalcable_present = !(brdctl & BRDDAT6);
*eeprom_present = (ahc_inb(ahc, SPIOCAP) & EEPROM) != 0;
}
static int
acquire_seeprom(struct ahc_softc *ahc, struct seeprom_descriptor *sd)
{
int wait;
if ((ahc->features & AHC_SPIOCAP) != 0
&& (ahc_inb(ahc, SPIOCAP) & SEEPROM) == 0)
return (0);
/*
* Request access of the memory port. When access is
* granted, SEERDY will go high. We use a 1 second
* timeout which should be near 1 second more than
* is needed. Reason: after the chip reset, there
* should be no contention.
*/
SEEPROM_OUTB(sd, sd->sd_MS);
wait = 1000; /* 1 second timeout in msec */
while (--wait && ((SEEPROM_STATUS_INB(sd) & sd->sd_RDY) == 0)) {
DELAY(1000); /* delay 1 msec */
}
if ((SEEPROM_STATUS_INB(sd) & sd->sd_RDY) == 0) {
SEEPROM_OUTB(sd, 0);
return (0);
}
return(1);
}
static void
release_seeprom(struct seeprom_descriptor *sd)
{
/* Release access to the memory port and the serial EEPROM. */
SEEPROM_OUTB(sd, 0);
}
static void
write_brdctl(struct ahc_softc *ahc, uint8_t value)
{
uint8_t brdctl;
if ((ahc->chip & AHC_CHIPID_MASK) == AHC_AIC7895) {
brdctl = BRDSTB;
if (ahc->channel == 'B')
brdctl |= BRDCS;
} else if ((ahc->features & AHC_ULTRA2) != 0) {
brdctl = 0;
} else {
brdctl = BRDSTB|BRDCS;
}
ahc_outb(ahc, BRDCTL, brdctl);
DELAY(20);
brdctl |= value;
ahc_outb(ahc, BRDCTL, brdctl);
DELAY(20);
if ((ahc->features & AHC_ULTRA2) != 0)
brdctl |= BRDSTB_ULTRA2;
else
brdctl &= ~BRDSTB;
ahc_outb(ahc, BRDCTL, brdctl);
DELAY(20);
if ((ahc->features & AHC_ULTRA2) != 0)
brdctl = 0;
else
brdctl &= ~BRDCS;
ahc_outb(ahc, BRDCTL, brdctl);
}
static uint8_t
read_brdctl(ahc)
struct ahc_softc *ahc;
{
uint8_t brdctl;
uint8_t value;
if ((ahc->chip & AHC_CHIPID_MASK) == AHC_AIC7895) {
brdctl = BRDRW;
if (ahc->channel == 'B')
brdctl |= BRDCS;
} else if ((ahc->features & AHC_ULTRA2) != 0) {
brdctl = BRDRW_ULTRA2;
} else {
brdctl = BRDRW|BRDCS;
}
ahc_outb(ahc, BRDCTL, brdctl);
DELAY(20);
value = ahc_inb(ahc, BRDCTL);
ahc_outb(ahc, BRDCTL, 0);
return (value);
}
#define DPE 0x80
#define SSE 0x40
#define RMA 0x20
#define RTA 0x10
#define STA 0x08
#define DPR 0x01
void
ahc_pci_intr(struct ahc_softc *ahc)
{
uint8_t status1;
status1 = pci_read_config(ahc->device, PCIR_STATUS + 1, /*bytes*/1);
if (status1 & DPE) {
printf("%s: Data Parity Error Detected during address "
"or write data phase\n", ahc_name(ahc));
}
if (status1 & SSE) {
printf("%s: Signal System Error Detected\n", ahc_name(ahc));
}
if (status1 & RMA) {
printf("%s: Received a Master Abort\n", ahc_name(ahc));
}
if (status1 & RTA) {
printf("%s: Received a Target Abort\n", ahc_name(ahc));
}
if (status1 & STA) {
printf("%s: Signaled a Target Abort\n", ahc_name(ahc));
}
if (status1 & DPR) {
printf("%s: Data Parity Error has been reported via PERR#\n",
ahc_name(ahc));
}
if ((status1 & (DPE|SSE|RMA|RTA|STA|DPR)) == 0) {
printf("%s: Latched PCIERR interrupt with "
"no status bits set\n", ahc_name(ahc));
}
pci_write_config(ahc->device, PCIR_STATUS + 1, status1, /*bytes*/1);
if (status1 & (DPR|RMA|RTA)) {
ahc_outb(ahc, CLRINT, CLRPARERR);
}
}
static int
ahc_aic7850_setup(device_t dev, struct ahc_probe_config *probe_config)
{
probe_config->channel = 'A';
probe_config->chip = AHC_AIC7850;
probe_config->features = AHC_AIC7850_FE;
probe_config->bugs |= AHC_TMODE_WIDEODD_BUG;
return (0);
}
static int
ahc_aic7855_setup(device_t dev, struct ahc_probe_config *probe_config)
{
probe_config->channel = 'A';
probe_config->chip = AHC_AIC7855;
probe_config->features = AHC_AIC7855_FE;
probe_config->bugs |= AHC_TMODE_WIDEODD_BUG;
return (0);
}
static int
ahc_aic7859_setup(device_t dev, struct ahc_probe_config *probe_config)
{
probe_config->channel = 'A';
probe_config->chip = AHC_AIC7859;
probe_config->features = AHC_AIC7859_FE;
probe_config->bugs |= AHC_TMODE_WIDEODD_BUG;
return (0);
}
static int
ahc_aic7860_setup(device_t dev, struct ahc_probe_config *probe_config)
{
probe_config->channel = 'A';
probe_config->chip = AHC_AIC7860;
probe_config->features = AHC_AIC7860_FE;
probe_config->bugs |= AHC_TMODE_WIDEODD_BUG;
return (0);
}
static int
ahc_aic7870_setup(device_t dev, struct ahc_probe_config *probe_config)
{
probe_config->channel = 'A';
probe_config->chip = AHC_AIC7870;
probe_config->features = AHC_AIC7870_FE;
probe_config->bugs |= AHC_TMODE_WIDEODD_BUG;
return (0);
}
static int
ahc_aha394X_setup(device_t dev, struct ahc_probe_config *probe_config)
{
int error;
error = ahc_aic7870_setup(dev, probe_config);
if (error == 0)
error = ahc_aha394XX_setup(dev, probe_config);
return (error);
}
static int
ahc_aha398X_setup(device_t dev, struct ahc_probe_config *probe_config)
{
int error;
error = ahc_aic7870_setup(dev, probe_config);
if (error == 0)
error = ahc_aha398XX_setup(dev, probe_config);
return (error);
}
static int
ahc_aha494X_setup(device_t dev, struct ahc_probe_config *probe_config)
{
int error;
error = ahc_aic7870_setup(dev, probe_config);
if (error == 0)
error = ahc_aha494XX_setup(dev, probe_config);
return (error);
}
static int
ahc_aic7880_setup(device_t dev, struct ahc_probe_config *probe_config)
{
probe_config->channel = 'A';
probe_config->chip = AHC_AIC7880;
probe_config->features = AHC_AIC7880_FE;
probe_config->bugs |= AHC_TMODE_WIDEODD_BUG;
return (0);
}
static int
ahc_2940Pro_setup(device_t dev, struct ahc_probe_config *probe_config)
{
int error;
probe_config->flags |= AHC_INT50_SPEEDFLEX;
error = ahc_aic7880_setup(dev, probe_config);
return (0);
}
static int
ahc_aha394XU_setup(device_t dev, struct ahc_probe_config *probe_config)
{
int error;
error = ahc_aic7880_setup(dev, probe_config);
if (error == 0)
error = ahc_aha394XX_setup(dev, probe_config);
return (error);
}
static int
ahc_aha398XU_setup(device_t dev, struct ahc_probe_config *probe_config)
{
int error;
error = ahc_aic7880_setup(dev, probe_config);
if (error == 0)
error = ahc_aha398XX_setup(dev, probe_config);
return (error);
}
static int
ahc_aic7890_setup(device_t dev, struct ahc_probe_config *probe_config)
{
probe_config->channel = 'A';
probe_config->chip = AHC_AIC7890;
probe_config->features = AHC_AIC7890_FE;
probe_config->flags |= AHC_NEWEEPROM_FMT;
if (pci_get_revid(dev) == 0)
probe_config->bugs |= AHC_AUTOFLUSH_BUG|AHC_CACHETHEN_BUG;
return (0);
}
static int
ahc_aic7892_setup(device_t dev, struct ahc_probe_config *probe_config)
{
probe_config->channel = 'A';
probe_config->chip = AHC_AIC7892;
probe_config->features = AHC_AIC7892_FE;
probe_config->flags |= AHC_NEWEEPROM_FMT;
return (0);
}
static int
ahc_aic7895_setup(device_t dev, struct ahc_probe_config *probe_config)
{
uint32_t devconfig;
probe_config->channel = pci_get_function(dev) == 1 ? 'B' : 'A';
probe_config->chip = AHC_AIC7895;
/* The 'C' revision of the aic7895 has a few additional features */
if (pci_get_revid(dev) >= 4)
probe_config->features = AHC_AIC7895C_FE;
else
probe_config->features = AHC_AIC7895_FE;
probe_config->bugs |= AHC_TMODE_WIDEODD_BUG;
probe_config->flags |= AHC_NEWEEPROM_FMT;
devconfig = pci_read_config(dev, DEVCONFIG, /*bytes*/4);
devconfig |= SCBSIZE32;
pci_write_config(dev, DEVCONFIG, devconfig, /*bytes*/4);
return (0);
}
static int
ahc_aic7896_setup(device_t dev, struct ahc_probe_config *probe_config)
{
probe_config->channel = pci_get_function(dev) == 1 ? 'B' : 'A';
probe_config->chip = AHC_AIC7896;
probe_config->features = AHC_AIC7896_FE;
probe_config->flags |= AHC_NEWEEPROM_FMT;
probe_config->bugs |= AHC_CACHETHEN_DIS_BUG;
return (0);
}
static int
ahc_aic7899_setup(device_t dev, struct ahc_probe_config *probe_config)
{
probe_config->channel = pci_get_function(dev) == 1 ? 'B' : 'A';
probe_config->chip = AHC_AIC7899;
probe_config->features = AHC_AIC7899_FE;
probe_config->flags |= AHC_NEWEEPROM_FMT;
return (0);
}
static int
ahc_raid_setup(device_t dev, struct ahc_probe_config *probe_config)
{
printf("RAID functionality unsupported\n");
return (ENXIO);
}
static int
ahc_aha394XX_setup(device_t dev, struct ahc_probe_config *probe_config)
{
switch (pci_get_slot(dev)) {
case AHC_394X_SLOT_CHANNEL_A:
probe_config->channel = 'A';
break;
case AHC_394X_SLOT_CHANNEL_B:
probe_config->channel = 'B';
break;
default:
printf("adapter at unexpected slot %d\n"
"unable to map to a channel\n",
pci_get_slot(dev));
probe_config->channel = 'A';
}
return (0);
}
static int
ahc_aha398XX_setup(device_t dev, struct ahc_probe_config *probe_config)
{
switch (pci_get_slot(dev)) {
case AHC_398X_SLOT_CHANNEL_A:
probe_config->channel = 'A';
break;
case AHC_398X_SLOT_CHANNEL_B:
probe_config->channel = 'B';
break;
case AHC_398X_SLOT_CHANNEL_C:
probe_config->channel = 'C';
break;
default:
printf("adapter at unexpected slot %d\n"
"unable to map to a channel\n",
pci_get_slot(dev));
probe_config->channel = 'A';
break;
}
probe_config->flags |= AHC_LARGE_SEEPROM;
return (0);
}
static int
ahc_aha494XX_setup(device_t dev, struct ahc_probe_config *probe_config)
{
switch (pci_get_slot(dev)) {
case AHC_494X_SLOT_CHANNEL_A:
probe_config->channel = 'A';
break;
case AHC_494X_SLOT_CHANNEL_B:
probe_config->channel = 'B';
break;
case AHC_494X_SLOT_CHANNEL_C:
probe_config->channel = 'C';
break;
case AHC_494X_SLOT_CHANNEL_D:
probe_config->channel = 'D';
break;
default:
printf("adapter at unexpected slot %d\n"
"unable to map to a channel\n",
pci_get_slot(dev));
probe_config->channel = 'A';
}
probe_config->flags |= AHC_LARGE_SEEPROM;
return (0);
}