673 lines
17 KiB
C
673 lines
17 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2012, 2015 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/fs/zfs.h>
|
|
|
|
/*
|
|
* Virtual device vector for mirroring.
|
|
*/
|
|
|
|
typedef struct mirror_child {
|
|
vdev_t *mc_vd;
|
|
uint64_t mc_offset;
|
|
int mc_error;
|
|
int mc_load;
|
|
uint8_t mc_tried;
|
|
uint8_t mc_skipped;
|
|
uint8_t mc_speculative;
|
|
} mirror_child_t;
|
|
|
|
typedef struct mirror_map {
|
|
int *mm_preferred;
|
|
int mm_preferred_cnt;
|
|
int mm_children;
|
|
boolean_t mm_replacing;
|
|
boolean_t mm_root;
|
|
mirror_child_t mm_child[];
|
|
} mirror_map_t;
|
|
|
|
static int vdev_mirror_shift = 21;
|
|
|
|
/*
|
|
* The load configuration settings below are tuned by default for
|
|
* the case where all devices are of the same rotational type.
|
|
*
|
|
* If there is a mixture of rotating and non-rotating media, setting
|
|
* zfs_vdev_mirror_non_rotating_seek_inc to 0 may well provide better results
|
|
* as it will direct more reads to the non-rotating vdevs which are more likely
|
|
* to have a higher performance.
|
|
*/
|
|
|
|
/* Rotating media load calculation configuration. */
|
|
static int zfs_vdev_mirror_rotating_inc = 0;
|
|
static int zfs_vdev_mirror_rotating_seek_inc = 5;
|
|
static int zfs_vdev_mirror_rotating_seek_offset = 1 * 1024 * 1024;
|
|
|
|
/* Non-rotating media load calculation configuration. */
|
|
static int zfs_vdev_mirror_non_rotating_inc = 0;
|
|
static int zfs_vdev_mirror_non_rotating_seek_inc = 1;
|
|
|
|
static inline size_t
|
|
vdev_mirror_map_size(int children)
|
|
{
|
|
return (offsetof(mirror_map_t, mm_child[children]) +
|
|
sizeof (int) * children);
|
|
}
|
|
|
|
static inline mirror_map_t *
|
|
vdev_mirror_map_alloc(int children, boolean_t replacing, boolean_t root)
|
|
{
|
|
mirror_map_t *mm;
|
|
|
|
mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
|
|
mm->mm_children = children;
|
|
mm->mm_replacing = replacing;
|
|
mm->mm_root = root;
|
|
mm->mm_preferred = (int *)((uintptr_t)mm +
|
|
offsetof(mirror_map_t, mm_child[children]));
|
|
|
|
return (mm);
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_map_free(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm = zio->io_vsd;
|
|
|
|
kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
|
|
}
|
|
|
|
static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
|
|
vdev_mirror_map_free,
|
|
zio_vsd_default_cksum_report
|
|
};
|
|
|
|
static int
|
|
vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
|
|
{
|
|
uint64_t lastoffset;
|
|
int load;
|
|
|
|
/* All DVAs have equal weight at the root. */
|
|
if (mm->mm_root)
|
|
return (INT_MAX);
|
|
|
|
/*
|
|
* We don't return INT_MAX if the device is resilvering i.e.
|
|
* vdev_resilver_txg != 0 as when tested performance was slightly
|
|
* worse overall when resilvering with compared to without.
|
|
*/
|
|
|
|
/* Standard load based on pending queue length. */
|
|
load = vdev_queue_length(vd);
|
|
lastoffset = vdev_queue_lastoffset(vd);
|
|
|
|
if (vd->vdev_nonrot) {
|
|
/* Non-rotating media. */
|
|
if (lastoffset == zio_offset)
|
|
return (load + zfs_vdev_mirror_non_rotating_inc);
|
|
|
|
/*
|
|
* Apply a seek penalty even for non-rotating devices as
|
|
* sequential I/O's can be aggregated into fewer operations on
|
|
* the device, thus avoiding unnecessary per-command overhead
|
|
* and boosting performance.
|
|
*/
|
|
return (load + zfs_vdev_mirror_non_rotating_seek_inc);
|
|
}
|
|
|
|
/* Rotating media I/O's which directly follow the last I/O. */
|
|
if (lastoffset == zio_offset)
|
|
return (load + zfs_vdev_mirror_rotating_inc);
|
|
|
|
/*
|
|
* Apply half the seek increment to I/O's within seek offset
|
|
* of the last I/O queued to this vdev as they should incur less
|
|
* of a seek increment.
|
|
*/
|
|
if (ABS(lastoffset - zio_offset) <
|
|
zfs_vdev_mirror_rotating_seek_offset)
|
|
return (load + (zfs_vdev_mirror_rotating_seek_inc / 2));
|
|
|
|
/* Apply the full seek increment to all other I/O's. */
|
|
return (load + zfs_vdev_mirror_rotating_seek_inc);
|
|
}
|
|
|
|
/*
|
|
* Avoid inlining the function to keep vdev_mirror_io_start(), which
|
|
* is this functions only caller, as small as possible on the stack.
|
|
*/
|
|
noinline static mirror_map_t *
|
|
vdev_mirror_map_init(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm = NULL;
|
|
mirror_child_t *mc;
|
|
vdev_t *vd = zio->io_vd;
|
|
int c;
|
|
|
|
if (vd == NULL) {
|
|
dva_t *dva = zio->io_bp->blk_dva;
|
|
spa_t *spa = zio->io_spa;
|
|
|
|
mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE,
|
|
B_TRUE);
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mc = &mm->mm_child[c];
|
|
|
|
mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
|
|
mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
|
|
}
|
|
} else {
|
|
mm = vdev_mirror_map_alloc(vd->vdev_children,
|
|
(vd->vdev_ops == &vdev_replacing_ops ||
|
|
vd->vdev_ops == &vdev_spare_ops), B_FALSE);
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mc = &mm->mm_child[c];
|
|
mc->mc_vd = vd->vdev_child[c];
|
|
mc->mc_offset = zio->io_offset;
|
|
}
|
|
}
|
|
|
|
zio->io_vsd = mm;
|
|
zio->io_vsd_ops = &vdev_mirror_vsd_ops;
|
|
return (mm);
|
|
}
|
|
|
|
static int
|
|
vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
|
|
uint64_t *ashift)
|
|
{
|
|
int numerrors = 0;
|
|
int lasterror = 0;
|
|
int c;
|
|
|
|
if (vd->vdev_children == 0) {
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
vdev_open_children(vd);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
if (cvd->vdev_open_error) {
|
|
lasterror = cvd->vdev_open_error;
|
|
numerrors++;
|
|
continue;
|
|
}
|
|
|
|
*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
|
|
*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
|
|
*ashift = MAX(*ashift, cvd->vdev_ashift);
|
|
}
|
|
|
|
if (numerrors == vd->vdev_children) {
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
|
|
return (lasterror);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_close(vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_close(vd->vdev_child[c]);
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_child_done(zio_t *zio)
|
|
{
|
|
mirror_child_t *mc = zio->io_private;
|
|
|
|
mc->mc_error = zio->io_error;
|
|
mc->mc_tried = 1;
|
|
mc->mc_skipped = 0;
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_scrub_done(zio_t *zio)
|
|
{
|
|
mirror_child_t *mc = zio->io_private;
|
|
|
|
if (zio->io_error == 0) {
|
|
zio_t *pio;
|
|
zio_link_t *zl = NULL;
|
|
|
|
mutex_enter(&zio->io_lock);
|
|
while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
|
|
mutex_enter(&pio->io_lock);
|
|
ASSERT3U(zio->io_size, >=, pio->io_size);
|
|
abd_copy(pio->io_abd, zio->io_abd, pio->io_size);
|
|
mutex_exit(&pio->io_lock);
|
|
}
|
|
mutex_exit(&zio->io_lock);
|
|
}
|
|
|
|
abd_free(zio->io_abd);
|
|
|
|
mc->mc_error = zio->io_error;
|
|
mc->mc_tried = 1;
|
|
mc->mc_skipped = 0;
|
|
}
|
|
|
|
/*
|
|
* Check the other, lower-index DVAs to see if they're on the same
|
|
* vdev as the child we picked. If they are, use them since they
|
|
* are likely to have been allocated from the primary metaslab in
|
|
* use at the time, and hence are more likely to have locality with
|
|
* single-copy data.
|
|
*/
|
|
static int
|
|
vdev_mirror_dva_select(zio_t *zio, int p)
|
|
{
|
|
dva_t *dva = zio->io_bp->blk_dva;
|
|
mirror_map_t *mm = zio->io_vsd;
|
|
int preferred;
|
|
int c;
|
|
|
|
preferred = mm->mm_preferred[p];
|
|
for (p--; p >= 0; p--) {
|
|
c = mm->mm_preferred[p];
|
|
if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
|
|
preferred = c;
|
|
}
|
|
return (preferred);
|
|
}
|
|
|
|
static int
|
|
vdev_mirror_preferred_child_randomize(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm = zio->io_vsd;
|
|
int p;
|
|
|
|
if (mm->mm_root) {
|
|
p = spa_get_random(mm->mm_preferred_cnt);
|
|
return (vdev_mirror_dva_select(zio, p));
|
|
}
|
|
|
|
/*
|
|
* To ensure we don't always favour the first matching vdev,
|
|
* which could lead to wear leveling issues on SSD's, we
|
|
* use the I/O offset as a pseudo random seed into the vdevs
|
|
* which have the lowest load.
|
|
*/
|
|
p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
|
|
return (mm->mm_preferred[p]);
|
|
}
|
|
|
|
/*
|
|
* Try to find a vdev whose DTL doesn't contain the block we want to read
|
|
* prefering vdevs based on determined load.
|
|
*
|
|
* Try to find a child whose DTL doesn't contain the block we want to read.
|
|
* If we can't, try the read on any vdev we haven't already tried.
|
|
*/
|
|
static int
|
|
vdev_mirror_child_select(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm = zio->io_vsd;
|
|
uint64_t txg = zio->io_txg;
|
|
int c, lowest_load;
|
|
|
|
ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
|
|
|
|
lowest_load = INT_MAX;
|
|
mm->mm_preferred_cnt = 0;
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mirror_child_t *mc;
|
|
|
|
mc = &mm->mm_child[c];
|
|
if (mc->mc_tried || mc->mc_skipped)
|
|
continue;
|
|
|
|
if (mc->mc_vd == NULL || !vdev_readable(mc->mc_vd)) {
|
|
mc->mc_error = SET_ERROR(ENXIO);
|
|
mc->mc_tried = 1; /* don't even try */
|
|
mc->mc_skipped = 1;
|
|
continue;
|
|
}
|
|
|
|
if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
|
|
mc->mc_error = SET_ERROR(ESTALE);
|
|
mc->mc_skipped = 1;
|
|
mc->mc_speculative = 1;
|
|
continue;
|
|
}
|
|
|
|
mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
|
|
if (mc->mc_load > lowest_load)
|
|
continue;
|
|
|
|
if (mc->mc_load < lowest_load) {
|
|
lowest_load = mc->mc_load;
|
|
mm->mm_preferred_cnt = 0;
|
|
}
|
|
mm->mm_preferred[mm->mm_preferred_cnt] = c;
|
|
mm->mm_preferred_cnt++;
|
|
}
|
|
|
|
if (mm->mm_preferred_cnt == 1) {
|
|
vdev_queue_register_lastoffset(
|
|
mm->mm_child[mm->mm_preferred[0]].mc_vd, zio);
|
|
return (mm->mm_preferred[0]);
|
|
}
|
|
|
|
if (mm->mm_preferred_cnt > 1) {
|
|
int c = vdev_mirror_preferred_child_randomize(zio);
|
|
|
|
vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd, zio);
|
|
return (c);
|
|
}
|
|
|
|
/*
|
|
* Every device is either missing or has this txg in its DTL.
|
|
* Look for any child we haven't already tried before giving up.
|
|
*/
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
if (!mm->mm_child[c].mc_tried) {
|
|
vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd,
|
|
zio);
|
|
return (c);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Every child failed. There's no place left to look.
|
|
*/
|
|
return (-1);
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_io_start(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm;
|
|
mirror_child_t *mc;
|
|
int c, children;
|
|
|
|
mm = vdev_mirror_map_init(zio);
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ) {
|
|
if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing) {
|
|
/*
|
|
* For scrubbing reads we need to allocate a read
|
|
* buffer for each child and issue reads to all
|
|
* children. If any child succeeds, it will copy its
|
|
* data into zio->io_data in vdev_mirror_scrub_done.
|
|
*/
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mc = &mm->mm_child[c];
|
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
|
mc->mc_vd, mc->mc_offset,
|
|
abd_alloc_sametype(zio->io_abd,
|
|
zio->io_size), zio->io_size,
|
|
zio->io_type, zio->io_priority, 0,
|
|
vdev_mirror_scrub_done, mc));
|
|
}
|
|
zio_execute(zio);
|
|
return;
|
|
}
|
|
/*
|
|
* For normal reads just pick one child.
|
|
*/
|
|
c = vdev_mirror_child_select(zio);
|
|
children = (c >= 0);
|
|
} else {
|
|
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
|
|
|
|
/*
|
|
* Writes go to all children.
|
|
*/
|
|
c = 0;
|
|
children = mm->mm_children;
|
|
}
|
|
|
|
while (children--) {
|
|
mc = &mm->mm_child[c];
|
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
|
mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
|
|
zio->io_type, zio->io_priority, 0,
|
|
vdev_mirror_child_done, mc));
|
|
c++;
|
|
}
|
|
|
|
zio_execute(zio);
|
|
}
|
|
|
|
static int
|
|
vdev_mirror_worst_error(mirror_map_t *mm)
|
|
{
|
|
int c, error[2] = { 0, 0 };
|
|
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mirror_child_t *mc = &mm->mm_child[c];
|
|
int s = mc->mc_speculative;
|
|
error[s] = zio_worst_error(error[s], mc->mc_error);
|
|
}
|
|
|
|
return (error[0] ? error[0] : error[1]);
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_io_done(zio_t *zio)
|
|
{
|
|
mirror_map_t *mm = zio->io_vsd;
|
|
mirror_child_t *mc;
|
|
int c;
|
|
int good_copies = 0;
|
|
int unexpected_errors = 0;
|
|
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
mc = &mm->mm_child[c];
|
|
|
|
if (mc->mc_error) {
|
|
if (!mc->mc_skipped)
|
|
unexpected_errors++;
|
|
} else if (mc->mc_tried) {
|
|
good_copies++;
|
|
}
|
|
}
|
|
|
|
if (zio->io_type == ZIO_TYPE_WRITE) {
|
|
/*
|
|
* XXX -- for now, treat partial writes as success.
|
|
*
|
|
* Now that we support write reallocation, it would be better
|
|
* to treat partial failure as real failure unless there are
|
|
* no non-degraded top-level vdevs left, and not update DTLs
|
|
* if we intend to reallocate.
|
|
*/
|
|
/* XXPOLICY */
|
|
if (good_copies != mm->mm_children) {
|
|
/*
|
|
* Always require at least one good copy.
|
|
*
|
|
* For ditto blocks (io_vd == NULL), require
|
|
* all copies to be good.
|
|
*
|
|
* XXX -- for replacing vdevs, there's no great answer.
|
|
* If the old device is really dead, we may not even
|
|
* be able to access it -- so we only want to
|
|
* require good writes to the new device. But if
|
|
* the new device turns out to be flaky, we want
|
|
* to be able to detach it -- which requires all
|
|
* writes to the old device to have succeeded.
|
|
*/
|
|
if (good_copies == 0 || zio->io_vd == NULL)
|
|
zio->io_error = vdev_mirror_worst_error(mm);
|
|
}
|
|
return;
|
|
}
|
|
|
|
ASSERT(zio->io_type == ZIO_TYPE_READ);
|
|
|
|
/*
|
|
* If we don't have a good copy yet, keep trying other children.
|
|
*/
|
|
/* XXPOLICY */
|
|
if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
|
|
ASSERT(c >= 0 && c < mm->mm_children);
|
|
mc = &mm->mm_child[c];
|
|
zio_vdev_io_redone(zio);
|
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
|
mc->mc_vd, mc->mc_offset, zio->io_abd, zio->io_size,
|
|
ZIO_TYPE_READ, zio->io_priority, 0,
|
|
vdev_mirror_child_done, mc));
|
|
return;
|
|
}
|
|
|
|
/* XXPOLICY */
|
|
if (good_copies == 0) {
|
|
zio->io_error = vdev_mirror_worst_error(mm);
|
|
ASSERT(zio->io_error != 0);
|
|
}
|
|
|
|
if (good_copies && spa_writeable(zio->io_spa) &&
|
|
(unexpected_errors ||
|
|
(zio->io_flags & ZIO_FLAG_RESILVER) ||
|
|
((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) {
|
|
/*
|
|
* Use the good data we have in hand to repair damaged children.
|
|
*/
|
|
for (c = 0; c < mm->mm_children; c++) {
|
|
/*
|
|
* Don't rewrite known good children.
|
|
* Not only is it unnecessary, it could
|
|
* actually be harmful: if the system lost
|
|
* power while rewriting the only good copy,
|
|
* there would be no good copies left!
|
|
*/
|
|
mc = &mm->mm_child[c];
|
|
|
|
if (mc->mc_error == 0) {
|
|
if (mc->mc_tried)
|
|
continue;
|
|
if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
|
|
!vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
|
|
zio->io_txg, 1))
|
|
continue;
|
|
mc->mc_error = SET_ERROR(ESTALE);
|
|
}
|
|
|
|
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
|
|
mc->mc_vd, mc->mc_offset,
|
|
zio->io_abd, zio->io_size,
|
|
ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
|
|
ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
|
|
ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
|
|
{
|
|
if (faulted == vd->vdev_children)
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_NO_REPLICAS);
|
|
else if (degraded + faulted != 0)
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
|
|
else
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
|
|
}
|
|
|
|
vdev_ops_t vdev_mirror_ops = {
|
|
vdev_mirror_open,
|
|
vdev_mirror_close,
|
|
vdev_default_asize,
|
|
vdev_mirror_io_start,
|
|
vdev_mirror_io_done,
|
|
vdev_mirror_state_change,
|
|
NULL,
|
|
NULL,
|
|
VDEV_TYPE_MIRROR, /* name of this vdev type */
|
|
B_FALSE /* not a leaf vdev */
|
|
};
|
|
|
|
vdev_ops_t vdev_replacing_ops = {
|
|
vdev_mirror_open,
|
|
vdev_mirror_close,
|
|
vdev_default_asize,
|
|
vdev_mirror_io_start,
|
|
vdev_mirror_io_done,
|
|
vdev_mirror_state_change,
|
|
NULL,
|
|
NULL,
|
|
VDEV_TYPE_REPLACING, /* name of this vdev type */
|
|
B_FALSE /* not a leaf vdev */
|
|
};
|
|
|
|
vdev_ops_t vdev_spare_ops = {
|
|
vdev_mirror_open,
|
|
vdev_mirror_close,
|
|
vdev_default_asize,
|
|
vdev_mirror_io_start,
|
|
vdev_mirror_io_done,
|
|
vdev_mirror_state_change,
|
|
NULL,
|
|
NULL,
|
|
VDEV_TYPE_SPARE, /* name of this vdev type */
|
|
B_FALSE /* not a leaf vdev */
|
|
};
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
/* BEGIN CSTYLED */
|
|
module_param(zfs_vdev_mirror_rotating_inc, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_inc,
|
|
"Rotating media load increment for non-seeking I/O's");
|
|
|
|
module_param(zfs_vdev_mirror_rotating_seek_inc, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_seek_inc,
|
|
"Rotating media load increment for seeking I/O's");
|
|
|
|
module_param(zfs_vdev_mirror_rotating_seek_offset, int, 0644);
|
|
|
|
MODULE_PARM_DESC(zfs_vdev_mirror_rotating_seek_offset,
|
|
"Offset in bytes from the last I/O which "
|
|
"triggers a reduced rotating media seek increment");
|
|
|
|
module_param(zfs_vdev_mirror_non_rotating_inc, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_mirror_non_rotating_inc,
|
|
"Non-rotating media load increment for non-seeking I/O's");
|
|
|
|
module_param(zfs_vdev_mirror_non_rotating_seek_inc, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_mirror_non_rotating_seek_inc,
|
|
"Non-rotating media load increment for seeking I/O's");
|
|
/* END CSTYLED */
|
|
#endif
|