freebsd-dev/sys/dev/hyperv/netvsc/hv_netvsc_drv_freebsd.c
Sepherosa Ziehau aa77d82eca hyperv/hn: Combine per-packet-information parsing.
MFC after:	1 week
Sponsored by:	Microsoft OSTC
2016-05-16 03:26:16 +00:00

3015 lines
78 KiB
C

/*-
* Copyright (c) 2010-2012 Citrix Inc.
* Copyright (c) 2009-2012,2016 Microsoft Corp.
* Copyright (c) 2012 NetApp Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2004-2006 Kip Macy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet6.h"
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <sys/lock.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/buf_ring.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <net/if_var.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/ip6.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/frame.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <sys/mutex.h>
#include <sys/errno.h>
#include <sys/types.h>
#include <machine/atomic.h>
#include <machine/intr_machdep.h>
#include <machine/in_cksum.h>
#include <dev/hyperv/include/hyperv.h>
#include "hv_net_vsc.h"
#include "hv_rndis.h"
#include "hv_rndis_filter.h"
#define hv_chan_rxr hv_chan_priv1
#define hv_chan_txr hv_chan_priv2
/* Short for Hyper-V network interface */
#define NETVSC_DEVNAME "hn"
/*
* It looks like offset 0 of buf is reserved to hold the softc pointer.
* The sc pointer evidently not needed, and is not presently populated.
* The packet offset is where the netvsc_packet starts in the buffer.
*/
#define HV_NV_SC_PTR_OFFSET_IN_BUF 0
#define HV_NV_PACKET_OFFSET_IN_BUF 16
/* YYY should get it from the underlying channel */
#define HN_TX_DESC_CNT 512
#define HN_LROENT_CNT_DEF 128
#define HN_RING_CNT_DEF_MAX 8
#define HN_RNDIS_MSG_LEN \
(sizeof(rndis_msg) + \
RNDIS_HASHVAL_PPI_SIZE + \
RNDIS_VLAN_PPI_SIZE + \
RNDIS_TSO_PPI_SIZE + \
RNDIS_CSUM_PPI_SIZE)
#define HN_RNDIS_MSG_BOUNDARY PAGE_SIZE
#define HN_RNDIS_MSG_ALIGN CACHE_LINE_SIZE
#define HN_TX_DATA_BOUNDARY PAGE_SIZE
#define HN_TX_DATA_MAXSIZE IP_MAXPACKET
#define HN_TX_DATA_SEGSIZE PAGE_SIZE
#define HN_TX_DATA_SEGCNT_MAX \
(NETVSC_PACKET_MAXPAGE - HV_RF_NUM_TX_RESERVED_PAGE_BUFS)
#define HN_DIRECT_TX_SIZE_DEF 128
#define HN_EARLY_TXEOF_THRESH 8
struct hn_txdesc {
#ifndef HN_USE_TXDESC_BUFRING
SLIST_ENTRY(hn_txdesc) link;
#endif
struct mbuf *m;
struct hn_tx_ring *txr;
int refs;
uint32_t flags; /* HN_TXD_FLAG_ */
netvsc_packet netvsc_pkt; /* XXX to be removed */
bus_dmamap_t data_dmap;
bus_addr_t rndis_msg_paddr;
rndis_msg *rndis_msg;
bus_dmamap_t rndis_msg_dmap;
};
#define HN_TXD_FLAG_ONLIST 0x1
#define HN_TXD_FLAG_DMAMAP 0x2
/*
* Only enable UDP checksum offloading when it is on 2012R2 or
* later. UDP checksum offloading doesn't work on earlier
* Windows releases.
*/
#define HN_CSUM_ASSIST_WIN8 (CSUM_IP | CSUM_TCP)
#define HN_CSUM_ASSIST (CSUM_IP | CSUM_UDP | CSUM_TCP)
#define HN_LRO_LENLIM_MULTIRX_DEF (12 * ETHERMTU)
#define HN_LRO_LENLIM_DEF (25 * ETHERMTU)
/* YYY 2*MTU is a bit rough, but should be good enough. */
#define HN_LRO_LENLIM_MIN(ifp) (2 * (ifp)->if_mtu)
#define HN_LRO_ACKCNT_DEF 1
/*
* Be aware that this sleepable mutex will exhibit WITNESS errors when
* certain TCP and ARP code paths are taken. This appears to be a
* well-known condition, as all other drivers checked use a sleeping
* mutex to protect their transmit paths.
* Also Be aware that mutexes do not play well with semaphores, and there
* is a conflicting semaphore in a certain channel code path.
*/
#define NV_LOCK_INIT(_sc, _name) \
mtx_init(&(_sc)->hn_lock, _name, MTX_NETWORK_LOCK, MTX_DEF)
#define NV_LOCK(_sc) mtx_lock(&(_sc)->hn_lock)
#define NV_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->hn_lock, MA_OWNED)
#define NV_UNLOCK(_sc) mtx_unlock(&(_sc)->hn_lock)
#define NV_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->hn_lock)
/*
* Globals
*/
int hv_promisc_mode = 0; /* normal mode by default */
SYSCTL_NODE(_hw, OID_AUTO, hn, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
"Hyper-V network interface");
/* Trust tcp segements verification on host side. */
static int hn_trust_hosttcp = 1;
SYSCTL_INT(_hw_hn, OID_AUTO, trust_hosttcp, CTLFLAG_RDTUN,
&hn_trust_hosttcp, 0,
"Trust tcp segement verification on host side, "
"when csum info is missing (global setting)");
/* Trust udp datagrams verification on host side. */
static int hn_trust_hostudp = 1;
SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostudp, CTLFLAG_RDTUN,
&hn_trust_hostudp, 0,
"Trust udp datagram verification on host side, "
"when csum info is missing (global setting)");
/* Trust ip packets verification on host side. */
static int hn_trust_hostip = 1;
SYSCTL_INT(_hw_hn, OID_AUTO, trust_hostip, CTLFLAG_RDTUN,
&hn_trust_hostip, 0,
"Trust ip packet verification on host side, "
"when csum info is missing (global setting)");
#if __FreeBSD_version >= 1100045
/* Limit TSO burst size */
static int hn_tso_maxlen = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, tso_maxlen, CTLFLAG_RDTUN,
&hn_tso_maxlen, 0, "TSO burst limit");
#endif
/* Limit chimney send size */
static int hn_tx_chimney_size = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, tx_chimney_size, CTLFLAG_RDTUN,
&hn_tx_chimney_size, 0, "Chimney send packet size limit");
/* Limit the size of packet for direct transmission */
static int hn_direct_tx_size = HN_DIRECT_TX_SIZE_DEF;
SYSCTL_INT(_hw_hn, OID_AUTO, direct_tx_size, CTLFLAG_RDTUN,
&hn_direct_tx_size, 0, "Size of the packet for direct transmission");
#if defined(INET) || defined(INET6)
#if __FreeBSD_version >= 1100095
static int hn_lro_entry_count = HN_LROENT_CNT_DEF;
SYSCTL_INT(_hw_hn, OID_AUTO, lro_entry_count, CTLFLAG_RDTUN,
&hn_lro_entry_count, 0, "LRO entry count");
#endif
#endif
static int hn_share_tx_taskq = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, share_tx_taskq, CTLFLAG_RDTUN,
&hn_share_tx_taskq, 0, "Enable shared TX taskqueue");
static struct taskqueue *hn_tx_taskq;
#ifndef HN_USE_TXDESC_BUFRING
static int hn_use_txdesc_bufring = 0;
#else
static int hn_use_txdesc_bufring = 1;
#endif
SYSCTL_INT(_hw_hn, OID_AUTO, use_txdesc_bufring, CTLFLAG_RD,
&hn_use_txdesc_bufring, 0, "Use buf_ring for TX descriptors");
static int hn_bind_tx_taskq = -1;
SYSCTL_INT(_hw_hn, OID_AUTO, bind_tx_taskq, CTLFLAG_RDTUN,
&hn_bind_tx_taskq, 0, "Bind TX taskqueue to the specified cpu");
static int hn_use_if_start = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, use_if_start, CTLFLAG_RDTUN,
&hn_use_if_start, 0, "Use if_start TX method");
static int hn_chan_cnt = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, chan_cnt, CTLFLAG_RDTUN,
&hn_chan_cnt, 0,
"# of channels to use; each channel has one RX ring and one TX ring");
static int hn_tx_ring_cnt = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, tx_ring_cnt, CTLFLAG_RDTUN,
&hn_tx_ring_cnt, 0, "# of TX rings to use");
static int hn_tx_swq_depth = 0;
SYSCTL_INT(_hw_hn, OID_AUTO, tx_swq_depth, CTLFLAG_RDTUN,
&hn_tx_swq_depth, 0, "Depth of IFQ or BUFRING");
static u_int hn_cpu_index;
/*
* Forward declarations
*/
static void hn_stop(hn_softc_t *sc);
static void hn_ifinit_locked(hn_softc_t *sc);
static void hn_ifinit(void *xsc);
static int hn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
static int hn_start_locked(struct hn_tx_ring *txr, int len);
static void hn_start(struct ifnet *ifp);
static void hn_start_txeof(struct hn_tx_ring *);
static int hn_ifmedia_upd(struct ifnet *ifp);
static void hn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
#if __FreeBSD_version >= 1100099
static int hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS);
#endif
static int hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_tx_chimney_size_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS);
static int hn_check_iplen(const struct mbuf *, int);
static int hn_create_tx_ring(struct hn_softc *, int);
static void hn_destroy_tx_ring(struct hn_tx_ring *);
static int hn_create_tx_data(struct hn_softc *, int);
static void hn_destroy_tx_data(struct hn_softc *);
static void hn_start_taskfunc(void *, int);
static void hn_start_txeof_taskfunc(void *, int);
static void hn_stop_tx_tasks(struct hn_softc *);
static int hn_encap(struct hn_tx_ring *, struct hn_txdesc *, struct mbuf **);
static void hn_create_rx_data(struct hn_softc *sc, int);
static void hn_destroy_rx_data(struct hn_softc *sc);
static void hn_set_tx_chimney_size(struct hn_softc *, int);
static void hn_channel_attach(struct hn_softc *, struct hv_vmbus_channel *);
static void hn_subchan_attach(struct hn_softc *, struct hv_vmbus_channel *);
static int hn_transmit(struct ifnet *, struct mbuf *);
static void hn_xmit_qflush(struct ifnet *);
static int hn_xmit(struct hn_tx_ring *, int);
static void hn_xmit_txeof(struct hn_tx_ring *);
static void hn_xmit_taskfunc(void *, int);
static void hn_xmit_txeof_taskfunc(void *, int);
#if __FreeBSD_version >= 1100099
static void
hn_set_lro_lenlim(struct hn_softc *sc, int lenlim)
{
int i;
for (i = 0; i < sc->hn_rx_ring_inuse; ++i)
sc->hn_rx_ring[i].hn_lro.lro_length_lim = lenlim;
}
#endif
static int
hn_get_txswq_depth(const struct hn_tx_ring *txr)
{
KASSERT(txr->hn_txdesc_cnt > 0, ("tx ring is not setup yet"));
if (hn_tx_swq_depth < txr->hn_txdesc_cnt)
return txr->hn_txdesc_cnt;
return hn_tx_swq_depth;
}
static int
hn_ifmedia_upd(struct ifnet *ifp __unused)
{
return EOPNOTSUPP;
}
static void
hn_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct hn_softc *sc = ifp->if_softc;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (!sc->hn_carrier) {
ifmr->ifm_active |= IFM_NONE;
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
}
/* {F8615163-DF3E-46c5-913F-F2D2F965ED0E} */
static const hv_guid g_net_vsc_device_type = {
.data = {0x63, 0x51, 0x61, 0xF8, 0x3E, 0xDF, 0xc5, 0x46,
0x91, 0x3F, 0xF2, 0xD2, 0xF9, 0x65, 0xED, 0x0E}
};
/*
* Standard probe entry point.
*
*/
static int
netvsc_probe(device_t dev)
{
const char *p;
p = vmbus_get_type(dev);
if (!memcmp(p, &g_net_vsc_device_type.data, sizeof(hv_guid))) {
device_set_desc(dev, "Hyper-V Network Interface");
if (bootverbose)
printf("Netvsc probe... DONE \n");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
/*
* Standard attach entry point.
*
* Called when the driver is loaded. It allocates needed resources,
* and initializes the "hardware" and software.
*/
static int
netvsc_attach(device_t dev)
{
struct hv_device *device_ctx = vmbus_get_devctx(dev);
struct hv_vmbus_channel *pri_chan;
netvsc_device_info device_info;
hn_softc_t *sc;
int unit = device_get_unit(dev);
struct ifnet *ifp = NULL;
int error, ring_cnt, tx_ring_cnt;
#if __FreeBSD_version >= 1100045
int tso_maxlen;
#endif
sc = device_get_softc(dev);
sc->hn_unit = unit;
sc->hn_dev = dev;
if (hn_tx_taskq == NULL) {
sc->hn_tx_taskq = taskqueue_create("hn_tx", M_WAITOK,
taskqueue_thread_enqueue, &sc->hn_tx_taskq);
if (hn_bind_tx_taskq >= 0) {
int cpu = hn_bind_tx_taskq;
cpuset_t cpu_set;
if (cpu > mp_ncpus - 1)
cpu = mp_ncpus - 1;
CPU_SETOF(cpu, &cpu_set);
taskqueue_start_threads_cpuset(&sc->hn_tx_taskq, 1,
PI_NET, &cpu_set, "%s tx",
device_get_nameunit(dev));
} else {
taskqueue_start_threads(&sc->hn_tx_taskq, 1, PI_NET,
"%s tx", device_get_nameunit(dev));
}
} else {
sc->hn_tx_taskq = hn_tx_taskq;
}
NV_LOCK_INIT(sc, "NetVSCLock");
sc->hn_dev_obj = device_ctx;
ifp = sc->hn_ifp = if_alloc(IFT_ETHER);
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
/*
* Figure out the # of RX rings (ring_cnt) and the # of TX rings
* to use (tx_ring_cnt).
*
* NOTE:
* The # of RX rings to use is same as the # of channels to use.
*/
ring_cnt = hn_chan_cnt;
if (ring_cnt <= 0) {
/* Default */
ring_cnt = mp_ncpus;
if (ring_cnt > HN_RING_CNT_DEF_MAX)
ring_cnt = HN_RING_CNT_DEF_MAX;
} else if (ring_cnt > mp_ncpus) {
ring_cnt = mp_ncpus;
}
tx_ring_cnt = hn_tx_ring_cnt;
if (tx_ring_cnt <= 0 || tx_ring_cnt > ring_cnt)
tx_ring_cnt = ring_cnt;
if (hn_use_if_start) {
/* ifnet.if_start only needs one TX ring. */
tx_ring_cnt = 1;
}
/*
* Set the leader CPU for channels.
*/
sc->hn_cpu = atomic_fetchadd_int(&hn_cpu_index, ring_cnt) % mp_ncpus;
error = hn_create_tx_data(sc, tx_ring_cnt);
if (error)
goto failed;
hn_create_rx_data(sc, ring_cnt);
/*
* Associate the first TX/RX ring w/ the primary channel.
*/
pri_chan = device_ctx->channel;
KASSERT(HV_VMBUS_CHAN_ISPRIMARY(pri_chan), ("not primary channel"));
KASSERT(pri_chan->offer_msg.offer.sub_channel_index == 0,
("primary channel subidx %u",
pri_chan->offer_msg.offer.sub_channel_index));
hn_channel_attach(sc, pri_chan);
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = hn_ioctl;
ifp->if_init = hn_ifinit;
/* needed by hv_rf_on_device_add() code */
ifp->if_mtu = ETHERMTU;
if (hn_use_if_start) {
int qdepth = hn_get_txswq_depth(&sc->hn_tx_ring[0]);
ifp->if_start = hn_start;
IFQ_SET_MAXLEN(&ifp->if_snd, qdepth);
ifp->if_snd.ifq_drv_maxlen = qdepth - 1;
IFQ_SET_READY(&ifp->if_snd);
} else {
ifp->if_transmit = hn_transmit;
ifp->if_qflush = hn_xmit_qflush;
}
ifmedia_init(&sc->hn_media, 0, hn_ifmedia_upd, hn_ifmedia_sts);
ifmedia_add(&sc->hn_media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->hn_media, IFM_ETHER | IFM_AUTO);
/* XXX ifmedia_set really should do this for us */
sc->hn_media.ifm_media = sc->hn_media.ifm_cur->ifm_media;
/*
* Tell upper layers that we support full VLAN capability.
*/
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |=
IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | IFCAP_TSO |
IFCAP_LRO;
ifp->if_capenable |=
IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | IFCAP_TSO |
IFCAP_LRO;
ifp->if_hwassist = sc->hn_tx_ring[0].hn_csum_assist | CSUM_TSO;
error = hv_rf_on_device_add(device_ctx, &device_info, ring_cnt);
if (error)
goto failed;
KASSERT(sc->net_dev->num_channel > 0 &&
sc->net_dev->num_channel <= sc->hn_rx_ring_inuse,
("invalid channel count %u, should be less than %d",
sc->net_dev->num_channel, sc->hn_rx_ring_inuse));
/*
* Set the # of TX/RX rings that could be used according to
* the # of channels that host offered.
*/
if (sc->hn_tx_ring_inuse > sc->net_dev->num_channel)
sc->hn_tx_ring_inuse = sc->net_dev->num_channel;
sc->hn_rx_ring_inuse = sc->net_dev->num_channel;
device_printf(dev, "%d TX ring, %d RX ring\n",
sc->hn_tx_ring_inuse, sc->hn_rx_ring_inuse);
if (sc->net_dev->num_channel > 1) {
struct hv_vmbus_channel **subchan;
int subchan_cnt = sc->net_dev->num_channel - 1;
int i;
/* Wait for sub-channels setup to complete. */
subchan = vmbus_get_subchan(pri_chan, subchan_cnt);
/* Attach the sub-channels. */
for (i = 0; i < subchan_cnt; ++i) {
/* NOTE: Calling order is critical. */
hn_subchan_attach(sc, subchan[i]);
hv_nv_subchan_attach(subchan[i]);
}
/* Release the sub-channels */
vmbus_rel_subchan(subchan, subchan_cnt);
device_printf(dev, "%d sub-channels setup done\n", subchan_cnt);
}
#if __FreeBSD_version >= 1100099
if (sc->hn_rx_ring_inuse > 1) {
/*
* Reduce TCP segment aggregation limit for multiple
* RX rings to increase ACK timeliness.
*/
hn_set_lro_lenlim(sc, HN_LRO_LENLIM_MULTIRX_DEF);
}
#endif
if (device_info.link_state == 0) {
sc->hn_carrier = 1;
}
#if __FreeBSD_version >= 1100045
tso_maxlen = hn_tso_maxlen;
if (tso_maxlen <= 0 || tso_maxlen > IP_MAXPACKET)
tso_maxlen = IP_MAXPACKET;
ifp->if_hw_tsomaxsegcount = HN_TX_DATA_SEGCNT_MAX;
ifp->if_hw_tsomaxsegsize = PAGE_SIZE;
ifp->if_hw_tsomax = tso_maxlen -
(ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
#endif
ether_ifattach(ifp, device_info.mac_addr);
#if __FreeBSD_version >= 1100045
if_printf(ifp, "TSO: %u/%u/%u\n", ifp->if_hw_tsomax,
ifp->if_hw_tsomaxsegcount, ifp->if_hw_tsomaxsegsize);
#endif
sc->hn_tx_chimney_max = sc->net_dev->send_section_size;
hn_set_tx_chimney_size(sc, sc->hn_tx_chimney_max);
if (hn_tx_chimney_size > 0 &&
hn_tx_chimney_size < sc->hn_tx_chimney_max)
hn_set_tx_chimney_size(sc, hn_tx_chimney_size);
return (0);
failed:
hn_destroy_tx_data(sc);
if (ifp != NULL)
if_free(ifp);
return (error);
}
/*
* Standard detach entry point
*/
static int
netvsc_detach(device_t dev)
{
struct hn_softc *sc = device_get_softc(dev);
struct hv_device *hv_device = vmbus_get_devctx(dev);
if (bootverbose)
printf("netvsc_detach\n");
/*
* XXXKYS: Need to clean up all our
* driver state; this is the driver
* unloading.
*/
/*
* XXXKYS: Need to stop outgoing traffic and unregister
* the netdevice.
*/
hv_rf_on_device_remove(hv_device, HV_RF_NV_DESTROY_CHANNEL);
hn_stop_tx_tasks(sc);
ifmedia_removeall(&sc->hn_media);
hn_destroy_rx_data(sc);
hn_destroy_tx_data(sc);
if (sc->hn_tx_taskq != hn_tx_taskq)
taskqueue_free(sc->hn_tx_taskq);
return (0);
}
/*
* Standard shutdown entry point
*/
static int
netvsc_shutdown(device_t dev)
{
return (0);
}
static __inline int
hn_txdesc_dmamap_load(struct hn_tx_ring *txr, struct hn_txdesc *txd,
struct mbuf **m_head, bus_dma_segment_t *segs, int *nsegs)
{
struct mbuf *m = *m_head;
int error;
error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag, txd->data_dmap,
m, segs, nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
struct mbuf *m_new;
m_new = m_collapse(m, M_NOWAIT, HN_TX_DATA_SEGCNT_MAX);
if (m_new == NULL)
return ENOBUFS;
else
*m_head = m = m_new;
txr->hn_tx_collapsed++;
error = bus_dmamap_load_mbuf_sg(txr->hn_tx_data_dtag,
txd->data_dmap, m, segs, nsegs, BUS_DMA_NOWAIT);
}
if (!error) {
bus_dmamap_sync(txr->hn_tx_data_dtag, txd->data_dmap,
BUS_DMASYNC_PREWRITE);
txd->flags |= HN_TXD_FLAG_DMAMAP;
}
return error;
}
static __inline void
hn_txdesc_dmamap_unload(struct hn_tx_ring *txr, struct hn_txdesc *txd)
{
if (txd->flags & HN_TXD_FLAG_DMAMAP) {
bus_dmamap_sync(txr->hn_tx_data_dtag,
txd->data_dmap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(txr->hn_tx_data_dtag,
txd->data_dmap);
txd->flags &= ~HN_TXD_FLAG_DMAMAP;
}
}
static __inline int
hn_txdesc_put(struct hn_tx_ring *txr, struct hn_txdesc *txd)
{
KASSERT((txd->flags & HN_TXD_FLAG_ONLIST) == 0,
("put an onlist txd %#x", txd->flags));
KASSERT(txd->refs > 0, ("invalid txd refs %d", txd->refs));
if (atomic_fetchadd_int(&txd->refs, -1) != 1)
return 0;
hn_txdesc_dmamap_unload(txr, txd);
if (txd->m != NULL) {
m_freem(txd->m);
txd->m = NULL;
}
txd->flags |= HN_TXD_FLAG_ONLIST;
#ifndef HN_USE_TXDESC_BUFRING
mtx_lock_spin(&txr->hn_txlist_spin);
KASSERT(txr->hn_txdesc_avail >= 0 &&
txr->hn_txdesc_avail < txr->hn_txdesc_cnt,
("txdesc_put: invalid txd avail %d", txr->hn_txdesc_avail));
txr->hn_txdesc_avail++;
SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link);
mtx_unlock_spin(&txr->hn_txlist_spin);
#else
atomic_add_int(&txr->hn_txdesc_avail, 1);
buf_ring_enqueue(txr->hn_txdesc_br, txd);
#endif
return 1;
}
static __inline struct hn_txdesc *
hn_txdesc_get(struct hn_tx_ring *txr)
{
struct hn_txdesc *txd;
#ifndef HN_USE_TXDESC_BUFRING
mtx_lock_spin(&txr->hn_txlist_spin);
txd = SLIST_FIRST(&txr->hn_txlist);
if (txd != NULL) {
KASSERT(txr->hn_txdesc_avail > 0,
("txdesc_get: invalid txd avail %d", txr->hn_txdesc_avail));
txr->hn_txdesc_avail--;
SLIST_REMOVE_HEAD(&txr->hn_txlist, link);
}
mtx_unlock_spin(&txr->hn_txlist_spin);
#else
txd = buf_ring_dequeue_sc(txr->hn_txdesc_br);
#endif
if (txd != NULL) {
#ifdef HN_USE_TXDESC_BUFRING
atomic_subtract_int(&txr->hn_txdesc_avail, 1);
#endif
KASSERT(txd->m == NULL && txd->refs == 0 &&
(txd->flags & HN_TXD_FLAG_ONLIST), ("invalid txd"));
txd->flags &= ~HN_TXD_FLAG_ONLIST;
txd->refs = 1;
}
return txd;
}
static __inline void
hn_txdesc_hold(struct hn_txdesc *txd)
{
/* 0->1 transition will never work */
KASSERT(txd->refs > 0, ("invalid refs %d", txd->refs));
atomic_add_int(&txd->refs, 1);
}
static __inline void
hn_txeof(struct hn_tx_ring *txr)
{
txr->hn_has_txeof = 0;
txr->hn_txeof(txr);
}
static void
hn_tx_done(struct hv_vmbus_channel *chan, void *xpkt)
{
netvsc_packet *packet = xpkt;
struct hn_txdesc *txd;
struct hn_tx_ring *txr;
txd = (struct hn_txdesc *)(uintptr_t)
packet->compl.send.send_completion_tid;
txr = txd->txr;
KASSERT(txr->hn_chan == chan,
("channel mismatch, on channel%u, should be channel%u",
chan->offer_msg.offer.sub_channel_index,
txr->hn_chan->offer_msg.offer.sub_channel_index));
txr->hn_has_txeof = 1;
hn_txdesc_put(txr, txd);
++txr->hn_txdone_cnt;
if (txr->hn_txdone_cnt >= HN_EARLY_TXEOF_THRESH) {
txr->hn_txdone_cnt = 0;
if (txr->hn_oactive)
hn_txeof(txr);
}
}
void
netvsc_channel_rollup(struct hv_vmbus_channel *chan)
{
struct hn_tx_ring *txr = chan->hv_chan_txr;
#if defined(INET) || defined(INET6)
struct hn_rx_ring *rxr = chan->hv_chan_rxr;
tcp_lro_flush_all(&rxr->hn_lro);
#endif
/*
* NOTE:
* 'txr' could be NULL, if multiple channels and
* ifnet.if_start method are enabled.
*/
if (txr == NULL || !txr->hn_has_txeof)
return;
txr->hn_txdone_cnt = 0;
hn_txeof(txr);
}
/*
* NOTE:
* If this function fails, then both txd and m_head0 will be freed.
*/
static int
hn_encap(struct hn_tx_ring *txr, struct hn_txdesc *txd, struct mbuf **m_head0)
{
bus_dma_segment_t segs[HN_TX_DATA_SEGCNT_MAX];
int error, nsegs, i;
struct mbuf *m_head = *m_head0;
netvsc_packet *packet;
rndis_msg *rndis_mesg;
rndis_packet *rndis_pkt;
rndis_per_packet_info *rppi;
struct rndis_hash_value *hash_value;
uint32_t rndis_msg_size;
packet = &txd->netvsc_pkt;
packet->is_data_pkt = TRUE;
packet->tot_data_buf_len = m_head->m_pkthdr.len;
/*
* extension points to the area reserved for the
* rndis_filter_packet, which is placed just after
* the netvsc_packet (and rppi struct, if present;
* length is updated later).
*/
rndis_mesg = txd->rndis_msg;
/* XXX not necessary */
memset(rndis_mesg, 0, HN_RNDIS_MSG_LEN);
rndis_mesg->ndis_msg_type = REMOTE_NDIS_PACKET_MSG;
rndis_pkt = &rndis_mesg->msg.packet;
rndis_pkt->data_offset = sizeof(rndis_packet);
rndis_pkt->data_length = packet->tot_data_buf_len;
rndis_pkt->per_pkt_info_offset = sizeof(rndis_packet);
rndis_msg_size = RNDIS_MESSAGE_SIZE(rndis_packet);
/*
* Set the hash value for this packet, so that the host could
* dispatch the TX done event for this packet back to this TX
* ring's channel.
*/
rndis_msg_size += RNDIS_HASHVAL_PPI_SIZE;
rppi = hv_set_rppi_data(rndis_mesg, RNDIS_HASHVAL_PPI_SIZE,
nbl_hash_value);
hash_value = (struct rndis_hash_value *)((uint8_t *)rppi +
rppi->per_packet_info_offset);
hash_value->hash_value = txr->hn_tx_idx;
if (m_head->m_flags & M_VLANTAG) {
ndis_8021q_info *rppi_vlan_info;
rndis_msg_size += RNDIS_VLAN_PPI_SIZE;
rppi = hv_set_rppi_data(rndis_mesg, RNDIS_VLAN_PPI_SIZE,
ieee_8021q_info);
rppi_vlan_info = (ndis_8021q_info *)((uint8_t *)rppi +
rppi->per_packet_info_offset);
rppi_vlan_info->u1.s1.vlan_id =
m_head->m_pkthdr.ether_vtag & 0xfff;
}
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
rndis_tcp_tso_info *tso_info;
struct ether_vlan_header *eh;
int ether_len;
/*
* XXX need m_pullup and use mtodo
*/
eh = mtod(m_head, struct ether_vlan_header*);
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
ether_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
else
ether_len = ETHER_HDR_LEN;
rndis_msg_size += RNDIS_TSO_PPI_SIZE;
rppi = hv_set_rppi_data(rndis_mesg, RNDIS_TSO_PPI_SIZE,
tcp_large_send_info);
tso_info = (rndis_tcp_tso_info *)((uint8_t *)rppi +
rppi->per_packet_info_offset);
tso_info->lso_v2_xmit.type =
RNDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
#ifdef INET
if (m_head->m_pkthdr.csum_flags & CSUM_IP_TSO) {
struct ip *ip =
(struct ip *)(m_head->m_data + ether_len);
unsigned long iph_len = ip->ip_hl << 2;
struct tcphdr *th =
(struct tcphdr *)((caddr_t)ip + iph_len);
tso_info->lso_v2_xmit.ip_version =
RNDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
ip->ip_len = 0;
ip->ip_sum = 0;
th->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
}
#endif
#if defined(INET6) && defined(INET)
else
#endif
#ifdef INET6
{
struct ip6_hdr *ip6 = (struct ip6_hdr *)
(m_head->m_data + ether_len);
struct tcphdr *th = (struct tcphdr *)(ip6 + 1);
tso_info->lso_v2_xmit.ip_version =
RNDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
ip6->ip6_plen = 0;
th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
}
#endif
tso_info->lso_v2_xmit.tcp_header_offset = 0;
tso_info->lso_v2_xmit.mss = m_head->m_pkthdr.tso_segsz;
} else if (m_head->m_pkthdr.csum_flags & txr->hn_csum_assist) {
rndis_tcp_ip_csum_info *csum_info;
rndis_msg_size += RNDIS_CSUM_PPI_SIZE;
rppi = hv_set_rppi_data(rndis_mesg, RNDIS_CSUM_PPI_SIZE,
tcpip_chksum_info);
csum_info = (rndis_tcp_ip_csum_info *)((uint8_t *)rppi +
rppi->per_packet_info_offset);
csum_info->xmit.is_ipv4 = 1;
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
csum_info->xmit.ip_header_csum = 1;
if (m_head->m_pkthdr.csum_flags & CSUM_TCP) {
csum_info->xmit.tcp_csum = 1;
csum_info->xmit.tcp_header_offset = 0;
} else if (m_head->m_pkthdr.csum_flags & CSUM_UDP) {
csum_info->xmit.udp_csum = 1;
}
}
rndis_mesg->msg_len = packet->tot_data_buf_len + rndis_msg_size;
packet->tot_data_buf_len = rndis_mesg->msg_len;
/*
* Chimney send, if the packet could fit into one chimney buffer.
*/
if (packet->tot_data_buf_len < txr->hn_tx_chimney_size) {
netvsc_dev *net_dev = txr->hn_sc->net_dev;
uint32_t send_buf_section_idx;
txr->hn_tx_chimney_tried++;
send_buf_section_idx =
hv_nv_get_next_send_section(net_dev);
if (send_buf_section_idx !=
NVSP_1_CHIMNEY_SEND_INVALID_SECTION_INDEX) {
uint8_t *dest = ((uint8_t *)net_dev->send_buf +
(send_buf_section_idx *
net_dev->send_section_size));
memcpy(dest, rndis_mesg, rndis_msg_size);
dest += rndis_msg_size;
m_copydata(m_head, 0, m_head->m_pkthdr.len, dest);
packet->send_buf_section_idx = send_buf_section_idx;
packet->send_buf_section_size =
packet->tot_data_buf_len;
packet->page_buf_count = 0;
txr->hn_tx_chimney++;
goto done;
}
}
error = hn_txdesc_dmamap_load(txr, txd, &m_head, segs, &nsegs);
if (error) {
int freed;
/*
* This mbuf is not linked w/ the txd yet, so free it now.
*/
m_freem(m_head);
*m_head0 = NULL;
freed = hn_txdesc_put(txr, txd);
KASSERT(freed != 0,
("fail to free txd upon txdma error"));
txr->hn_txdma_failed++;
if_inc_counter(txr->hn_sc->hn_ifp, IFCOUNTER_OERRORS, 1);
return error;
}
*m_head0 = m_head;
packet->page_buf_count = nsegs + HV_RF_NUM_TX_RESERVED_PAGE_BUFS;
/* send packet with page buffer */
packet->page_buffers[0].pfn = atop(txd->rndis_msg_paddr);
packet->page_buffers[0].offset = txd->rndis_msg_paddr & PAGE_MASK;
packet->page_buffers[0].length = rndis_msg_size;
/*
* Fill the page buffers with mbuf info starting at index
* HV_RF_NUM_TX_RESERVED_PAGE_BUFS.
*/
for (i = 0; i < nsegs; ++i) {
hv_vmbus_page_buffer *pb = &packet->page_buffers[
i + HV_RF_NUM_TX_RESERVED_PAGE_BUFS];
pb->pfn = atop(segs[i].ds_addr);
pb->offset = segs[i].ds_addr & PAGE_MASK;
pb->length = segs[i].ds_len;
}
packet->send_buf_section_idx =
NVSP_1_CHIMNEY_SEND_INVALID_SECTION_INDEX;
packet->send_buf_section_size = 0;
done:
txd->m = m_head;
/* Set the completion routine */
packet->compl.send.on_send_completion = hn_tx_done;
packet->compl.send.send_completion_context = packet;
packet->compl.send.send_completion_tid = (uint64_t)(uintptr_t)txd;
return 0;
}
/*
* NOTE:
* If this function fails, then txd will be freed, but the mbuf
* associated w/ the txd will _not_ be freed.
*/
static int
hn_send_pkt(struct ifnet *ifp, struct hn_tx_ring *txr, struct hn_txdesc *txd)
{
int error, send_failed = 0;
again:
/*
* Make sure that txd is not freed before ETHER_BPF_MTAP.
*/
hn_txdesc_hold(txd);
error = hv_nv_on_send(txr->hn_chan, &txd->netvsc_pkt);
if (!error) {
ETHER_BPF_MTAP(ifp, txd->m);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
if (!hn_use_if_start) {
if_inc_counter(ifp, IFCOUNTER_OBYTES,
txd->m->m_pkthdr.len);
if (txd->m->m_flags & M_MCAST)
if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
}
txr->hn_pkts++;
}
hn_txdesc_put(txr, txd);
if (__predict_false(error)) {
int freed;
/*
* This should "really rarely" happen.
*
* XXX Too many RX to be acked or too many sideband
* commands to run? Ask netvsc_channel_rollup()
* to kick start later.
*/
txr->hn_has_txeof = 1;
if (!send_failed) {
txr->hn_send_failed++;
send_failed = 1;
/*
* Try sending again after set hn_has_txeof;
* in case that we missed the last
* netvsc_channel_rollup().
*/
goto again;
}
if_printf(ifp, "send failed\n");
/*
* Caller will perform further processing on the
* associated mbuf, so don't free it in hn_txdesc_put();
* only unload it from the DMA map in hn_txdesc_put(),
* if it was loaded.
*/
txd->m = NULL;
freed = hn_txdesc_put(txr, txd);
KASSERT(freed != 0,
("fail to free txd upon send error"));
txr->hn_send_failed++;
}
return error;
}
/*
* Start a transmit of one or more packets
*/
static int
hn_start_locked(struct hn_tx_ring *txr, int len)
{
struct hn_softc *sc = txr->hn_sc;
struct ifnet *ifp = sc->hn_ifp;
KASSERT(hn_use_if_start,
("hn_start_locked is called, when if_start is disabled"));
KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring"));
mtx_assert(&txr->hn_tx_lock, MA_OWNED);
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return 0;
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
struct hn_txdesc *txd;
struct mbuf *m_head;
int error;
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (len > 0 && m_head->m_pkthdr.len > len) {
/*
* This sending could be time consuming; let callers
* dispatch this packet sending (and sending of any
* following up packets) to tx taskqueue.
*/
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
return 1;
}
txd = hn_txdesc_get(txr);
if (txd == NULL) {
txr->hn_no_txdescs++;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
break;
}
error = hn_encap(txr, txd, &m_head);
if (error) {
/* Both txd and m_head are freed */
continue;
}
error = hn_send_pkt(ifp, txr, txd);
if (__predict_false(error)) {
/* txd is freed, but m_head is not */
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
atomic_set_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
break;
}
}
return 0;
}
/*
* Link up/down notification
*/
void
netvsc_linkstatus_callback(struct hv_device *device_obj, uint32_t status)
{
hn_softc_t *sc = device_get_softc(device_obj->device);
if (status == 1) {
sc->hn_carrier = 1;
} else {
sc->hn_carrier = 0;
}
}
/*
* Append the specified data to the indicated mbuf chain,
* Extend the mbuf chain if the new data does not fit in
* existing space.
*
* This is a minor rewrite of m_append() from sys/kern/uipc_mbuf.c.
* There should be an equivalent in the kernel mbuf code,
* but there does not appear to be one yet.
*
* Differs from m_append() in that additional mbufs are
* allocated with cluster size MJUMPAGESIZE, and filled
* accordingly.
*
* Return 1 if able to complete the job; otherwise 0.
*/
static int
hv_m_append(struct mbuf *m0, int len, c_caddr_t cp)
{
struct mbuf *m, *n;
int remainder, space;
for (m = m0; m->m_next != NULL; m = m->m_next)
;
remainder = len;
space = M_TRAILINGSPACE(m);
if (space > 0) {
/*
* Copy into available space.
*/
if (space > remainder)
space = remainder;
bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
m->m_len += space;
cp += space;
remainder -= space;
}
while (remainder > 0) {
/*
* Allocate a new mbuf; could check space
* and allocate a cluster instead.
*/
n = m_getjcl(M_NOWAIT, m->m_type, 0, MJUMPAGESIZE);
if (n == NULL)
break;
n->m_len = min(MJUMPAGESIZE, remainder);
bcopy(cp, mtod(n, caddr_t), n->m_len);
cp += n->m_len;
remainder -= n->m_len;
m->m_next = n;
m = n;
}
if (m0->m_flags & M_PKTHDR)
m0->m_pkthdr.len += len - remainder;
return (remainder == 0);
}
/*
* Called when we receive a data packet from the "wire" on the
* specified device
*
* Note: This is no longer used as a callback
*/
int
netvsc_recv(struct hv_vmbus_channel *chan, netvsc_packet *packet,
const rndis_tcp_ip_csum_info *csum_info,
const struct rndis_hash_info *hash_info,
const struct rndis_hash_value *hash_value)
{
struct hn_rx_ring *rxr = chan->hv_chan_rxr;
struct ifnet *ifp = rxr->hn_ifp;
struct mbuf *m_new;
int size, do_lro = 0, do_csum = 1;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
return (0);
/*
* Bail out if packet contains more data than configured MTU.
*/
if (packet->tot_data_buf_len > (ifp->if_mtu + ETHER_HDR_LEN)) {
return (0);
} else if (packet->tot_data_buf_len <= MHLEN) {
m_new = m_gethdr(M_NOWAIT, MT_DATA);
if (m_new == NULL) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
return (0);
}
memcpy(mtod(m_new, void *), packet->data,
packet->tot_data_buf_len);
m_new->m_pkthdr.len = m_new->m_len = packet->tot_data_buf_len;
rxr->hn_small_pkts++;
} else {
/*
* Get an mbuf with a cluster. For packets 2K or less,
* get a standard 2K cluster. For anything larger, get a
* 4K cluster. Any buffers larger than 4K can cause problems
* if looped around to the Hyper-V TX channel, so avoid them.
*/
size = MCLBYTES;
if (packet->tot_data_buf_len > MCLBYTES) {
/* 4096 */
size = MJUMPAGESIZE;
}
m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, size);
if (m_new == NULL) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
return (0);
}
hv_m_append(m_new, packet->tot_data_buf_len, packet->data);
}
m_new->m_pkthdr.rcvif = ifp;
if (__predict_false((ifp->if_capenable & IFCAP_RXCSUM) == 0))
do_csum = 0;
/* receive side checksum offload */
if (csum_info != NULL) {
/* IP csum offload */
if (csum_info->receive.ip_csum_succeeded && do_csum) {
m_new->m_pkthdr.csum_flags |=
(CSUM_IP_CHECKED | CSUM_IP_VALID);
rxr->hn_csum_ip++;
}
/* TCP/UDP csum offload */
if ((csum_info->receive.tcp_csum_succeeded ||
csum_info->receive.udp_csum_succeeded) && do_csum) {
m_new->m_pkthdr.csum_flags |=
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
m_new->m_pkthdr.csum_data = 0xffff;
if (csum_info->receive.tcp_csum_succeeded)
rxr->hn_csum_tcp++;
else
rxr->hn_csum_udp++;
}
if (csum_info->receive.ip_csum_succeeded &&
csum_info->receive.tcp_csum_succeeded)
do_lro = 1;
} else {
const struct ether_header *eh;
uint16_t etype;
int hoff;
hoff = sizeof(*eh);
if (m_new->m_len < hoff)
goto skip;
eh = mtod(m_new, struct ether_header *);
etype = ntohs(eh->ether_type);
if (etype == ETHERTYPE_VLAN) {
const struct ether_vlan_header *evl;
hoff = sizeof(*evl);
if (m_new->m_len < hoff)
goto skip;
evl = mtod(m_new, struct ether_vlan_header *);
etype = ntohs(evl->evl_proto);
}
if (etype == ETHERTYPE_IP) {
int pr;
pr = hn_check_iplen(m_new, hoff);
if (pr == IPPROTO_TCP) {
if (do_csum &&
(rxr->hn_trust_hcsum &
HN_TRUST_HCSUM_TCP)) {
rxr->hn_csum_trusted++;
m_new->m_pkthdr.csum_flags |=
(CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
m_new->m_pkthdr.csum_data = 0xffff;
}
do_lro = 1;
} else if (pr == IPPROTO_UDP) {
if (do_csum &&
(rxr->hn_trust_hcsum &
HN_TRUST_HCSUM_UDP)) {
rxr->hn_csum_trusted++;
m_new->m_pkthdr.csum_flags |=
(CSUM_IP_CHECKED | CSUM_IP_VALID |
CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
m_new->m_pkthdr.csum_data = 0xffff;
}
} else if (pr != IPPROTO_DONE && do_csum &&
(rxr->hn_trust_hcsum & HN_TRUST_HCSUM_IP)) {
rxr->hn_csum_trusted++;
m_new->m_pkthdr.csum_flags |=
(CSUM_IP_CHECKED | CSUM_IP_VALID);
}
}
}
skip:
if ((packet->vlan_tci != 0) &&
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
m_new->m_pkthdr.ether_vtag = packet->vlan_tci;
m_new->m_flags |= M_VLANTAG;
}
if (hash_info != NULL && hash_value != NULL) {
int hash_type = M_HASHTYPE_OPAQUE;
rxr->hn_rss_pkts++;
m_new->m_pkthdr.flowid = hash_value->hash_value;
if ((hash_info->hash_info & NDIS_HASH_FUNCTION_MASK) ==
NDIS_HASH_FUNCTION_TOEPLITZ) {
uint32_t type =
(hash_info->hash_info & NDIS_HASH_TYPE_MASK);
switch (type) {
case NDIS_HASH_IPV4:
hash_type = M_HASHTYPE_RSS_IPV4;
break;
case NDIS_HASH_TCP_IPV4:
hash_type = M_HASHTYPE_RSS_TCP_IPV4;
break;
case NDIS_HASH_IPV6:
hash_type = M_HASHTYPE_RSS_IPV6;
break;
case NDIS_HASH_IPV6_EX:
hash_type = M_HASHTYPE_RSS_IPV6_EX;
break;
case NDIS_HASH_TCP_IPV6:
hash_type = M_HASHTYPE_RSS_TCP_IPV6;
break;
case NDIS_HASH_TCP_IPV6_EX:
hash_type = M_HASHTYPE_RSS_TCP_IPV6_EX;
break;
}
}
M_HASHTYPE_SET(m_new, hash_type);
} else {
if (hash_value != NULL)
m_new->m_pkthdr.flowid = hash_value->hash_value;
else
m_new->m_pkthdr.flowid = rxr->hn_rx_idx;
M_HASHTYPE_SET(m_new, M_HASHTYPE_OPAQUE);
}
/*
* Note: Moved RX completion back to hv_nv_on_receive() so all
* messages (not just data messages) will trigger a response.
*/
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
rxr->hn_pkts++;
if ((ifp->if_capenable & IFCAP_LRO) && do_lro) {
#if defined(INET) || defined(INET6)
struct lro_ctrl *lro = &rxr->hn_lro;
if (lro->lro_cnt) {
rxr->hn_lro_tried++;
if (tcp_lro_rx(lro, m_new, 0) == 0) {
/* DONE! */
return 0;
}
}
#endif
}
/* We're not holding the lock here, so don't release it */
(*ifp->if_input)(ifp, m_new);
return (0);
}
/*
* Rules for using sc->temp_unusable:
* 1. sc->temp_unusable can only be read or written while holding NV_LOCK()
* 2. code reading sc->temp_unusable under NV_LOCK(), and finding
* sc->temp_unusable set, must release NV_LOCK() and exit
* 3. to retain exclusive control of the interface,
* sc->temp_unusable must be set by code before releasing NV_LOCK()
* 4. only code setting sc->temp_unusable can clear sc->temp_unusable
* 5. code setting sc->temp_unusable must eventually clear sc->temp_unusable
*/
/*
* Standard ioctl entry point. Called when the user wants to configure
* the interface.
*/
static int
hn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
hn_softc_t *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
#ifdef INET
struct ifaddr *ifa = (struct ifaddr *)data;
#endif
netvsc_device_info device_info;
struct hv_device *hn_dev;
int mask, error = 0;
int retry_cnt = 500;
switch(cmd) {
case SIOCSIFADDR:
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET) {
ifp->if_flags |= IFF_UP;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
hn_ifinit(sc);
arp_ifinit(ifp, ifa);
} else
#endif
error = ether_ioctl(ifp, cmd, data);
break;
case SIOCSIFMTU:
hn_dev = vmbus_get_devctx(sc->hn_dev);
/* Check MTU value change */
if (ifp->if_mtu == ifr->ifr_mtu)
break;
if (ifr->ifr_mtu > NETVSC_MAX_CONFIGURABLE_MTU) {
error = EINVAL;
break;
}
/* Obtain and record requested MTU */
ifp->if_mtu = ifr->ifr_mtu;
#if __FreeBSD_version >= 1100099
/*
* Make sure that LRO aggregation length limit is still
* valid, after the MTU change.
*/
NV_LOCK(sc);
if (sc->hn_rx_ring[0].hn_lro.lro_length_lim <
HN_LRO_LENLIM_MIN(ifp))
hn_set_lro_lenlim(sc, HN_LRO_LENLIM_MIN(ifp));
NV_UNLOCK(sc);
#endif
do {
NV_LOCK(sc);
if (!sc->temp_unusable) {
sc->temp_unusable = TRUE;
retry_cnt = -1;
}
NV_UNLOCK(sc);
if (retry_cnt > 0) {
retry_cnt--;
DELAY(5 * 1000);
}
} while (retry_cnt > 0);
if (retry_cnt == 0) {
error = EINVAL;
break;
}
/* We must remove and add back the device to cause the new
* MTU to take effect. This includes tearing down, but not
* deleting the channel, then bringing it back up.
*/
error = hv_rf_on_device_remove(hn_dev, HV_RF_NV_RETAIN_CHANNEL);
if (error) {
NV_LOCK(sc);
sc->temp_unusable = FALSE;
NV_UNLOCK(sc);
break;
}
error = hv_rf_on_device_add(hn_dev, &device_info,
sc->hn_rx_ring_inuse);
if (error) {
NV_LOCK(sc);
sc->temp_unusable = FALSE;
NV_UNLOCK(sc);
break;
}
sc->hn_tx_chimney_max = sc->net_dev->send_section_size;
if (sc->hn_tx_ring[0].hn_tx_chimney_size >
sc->hn_tx_chimney_max)
hn_set_tx_chimney_size(sc, sc->hn_tx_chimney_max);
hn_ifinit_locked(sc);
NV_LOCK(sc);
sc->temp_unusable = FALSE;
NV_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
do {
NV_LOCK(sc);
if (!sc->temp_unusable) {
sc->temp_unusable = TRUE;
retry_cnt = -1;
}
NV_UNLOCK(sc);
if (retry_cnt > 0) {
retry_cnt--;
DELAY(5 * 1000);
}
} while (retry_cnt > 0);
if (retry_cnt == 0) {
error = EINVAL;
break;
}
if (ifp->if_flags & IFF_UP) {
/*
* If only the state of the PROMISC flag changed,
* then just use the 'set promisc mode' command
* instead of reinitializing the entire NIC. Doing
* a full re-init means reloading the firmware and
* waiting for it to start up, which may take a
* second or two.
*/
#ifdef notyet
/* Fixme: Promiscuous mode? */
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->hn_if_flags & IFF_PROMISC)) {
/* do something here for Hyper-V */
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->hn_if_flags & IFF_PROMISC) {
/* do something here for Hyper-V */
} else
#endif
hn_ifinit_locked(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
hn_stop(sc);
}
}
NV_LOCK(sc);
sc->temp_unusable = FALSE;
NV_UNLOCK(sc);
sc->hn_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCSIFCAP:
NV_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if (mask & IFCAP_TXCSUM) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if (ifp->if_capenable & IFCAP_TXCSUM) {
ifp->if_hwassist |=
sc->hn_tx_ring[0].hn_csum_assist;
} else {
ifp->if_hwassist &=
~sc->hn_tx_ring[0].hn_csum_assist;
}
}
if (mask & IFCAP_RXCSUM)
ifp->if_capenable ^= IFCAP_RXCSUM;
if (mask & IFCAP_LRO)
ifp->if_capenable ^= IFCAP_LRO;
if (mask & IFCAP_TSO4) {
ifp->if_capenable ^= IFCAP_TSO4;
if (ifp->if_capenable & IFCAP_TSO4)
ifp->if_hwassist |= CSUM_IP_TSO;
else
ifp->if_hwassist &= ~CSUM_IP_TSO;
}
if (mask & IFCAP_TSO6) {
ifp->if_capenable ^= IFCAP_TSO6;
if (ifp->if_capenable & IFCAP_TSO6)
ifp->if_hwassist |= CSUM_IP6_TSO;
else
ifp->if_hwassist &= ~CSUM_IP6_TSO;
}
NV_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
#ifdef notyet
/* Fixme: Multicast mode? */
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
NV_LOCK(sc);
netvsc_setmulti(sc);
NV_UNLOCK(sc);
error = 0;
}
#endif
error = EINVAL;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->hn_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
/*
*
*/
static void
hn_stop(hn_softc_t *sc)
{
struct ifnet *ifp;
int ret, i;
struct hv_device *device_ctx = vmbus_get_devctx(sc->hn_dev);
ifp = sc->hn_ifp;
if (bootverbose)
printf(" Closing Device ...\n");
atomic_clear_int(&ifp->if_drv_flags,
(IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
for (i = 0; i < sc->hn_tx_ring_inuse; ++i)
sc->hn_tx_ring[i].hn_oactive = 0;
if_link_state_change(ifp, LINK_STATE_DOWN);
sc->hn_initdone = 0;
ret = hv_rf_on_close(device_ctx);
}
/*
* FreeBSD transmit entry point
*/
static void
hn_start(struct ifnet *ifp)
{
struct hn_softc *sc = ifp->if_softc;
struct hn_tx_ring *txr = &sc->hn_tx_ring[0];
if (txr->hn_sched_tx)
goto do_sched;
if (mtx_trylock(&txr->hn_tx_lock)) {
int sched;
sched = hn_start_locked(txr, txr->hn_direct_tx_size);
mtx_unlock(&txr->hn_tx_lock);
if (!sched)
return;
}
do_sched:
taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task);
}
static void
hn_start_txeof(struct hn_tx_ring *txr)
{
struct hn_softc *sc = txr->hn_sc;
struct ifnet *ifp = sc->hn_ifp;
KASSERT(txr == &sc->hn_tx_ring[0], ("not the first TX ring"));
if (txr->hn_sched_tx)
goto do_sched;
if (mtx_trylock(&txr->hn_tx_lock)) {
int sched;
atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
sched = hn_start_locked(txr, txr->hn_direct_tx_size);
mtx_unlock(&txr->hn_tx_lock);
if (sched) {
taskqueue_enqueue(txr->hn_tx_taskq,
&txr->hn_tx_task);
}
} else {
do_sched:
/*
* Release the OACTIVE earlier, with the hope, that
* others could catch up. The task will clear the
* flag again with the hn_tx_lock to avoid possible
* races.
*/
atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task);
}
}
/*
*
*/
static void
hn_ifinit_locked(hn_softc_t *sc)
{
struct ifnet *ifp;
struct hv_device *device_ctx = vmbus_get_devctx(sc->hn_dev);
int ret, i;
ifp = sc->hn_ifp;
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
return;
}
hv_promisc_mode = 1;
ret = hv_rf_on_open(device_ctx);
if (ret != 0) {
return;
} else {
sc->hn_initdone = 1;
}
atomic_clear_int(&ifp->if_drv_flags, IFF_DRV_OACTIVE);
for (i = 0; i < sc->hn_tx_ring_inuse; ++i)
sc->hn_tx_ring[i].hn_oactive = 0;
atomic_set_int(&ifp->if_drv_flags, IFF_DRV_RUNNING);
if_link_state_change(ifp, LINK_STATE_UP);
}
/*
*
*/
static void
hn_ifinit(void *xsc)
{
hn_softc_t *sc = xsc;
NV_LOCK(sc);
if (sc->temp_unusable) {
NV_UNLOCK(sc);
return;
}
sc->temp_unusable = TRUE;
NV_UNLOCK(sc);
hn_ifinit_locked(sc);
NV_LOCK(sc);
sc->temp_unusable = FALSE;
NV_UNLOCK(sc);
}
#ifdef LATER
/*
*
*/
static void
hn_watchdog(struct ifnet *ifp)
{
hn_softc_t *sc;
sc = ifp->if_softc;
printf("hn%d: watchdog timeout -- resetting\n", sc->hn_unit);
hn_ifinit(sc); /*???*/
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
}
#endif
#if __FreeBSD_version >= 1100099
static int
hn_lro_lenlim_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
unsigned int lenlim;
int error;
lenlim = sc->hn_rx_ring[0].hn_lro.lro_length_lim;
error = sysctl_handle_int(oidp, &lenlim, 0, req);
if (error || req->newptr == NULL)
return error;
if (lenlim < HN_LRO_LENLIM_MIN(sc->hn_ifp) ||
lenlim > TCP_LRO_LENGTH_MAX)
return EINVAL;
NV_LOCK(sc);
hn_set_lro_lenlim(sc, lenlim);
NV_UNLOCK(sc);
return 0;
}
static int
hn_lro_ackcnt_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int ackcnt, error, i;
/*
* lro_ackcnt_lim is append count limit,
* +1 to turn it into aggregation limit.
*/
ackcnt = sc->hn_rx_ring[0].hn_lro.lro_ackcnt_lim + 1;
error = sysctl_handle_int(oidp, &ackcnt, 0, req);
if (error || req->newptr == NULL)
return error;
if (ackcnt < 2 || ackcnt > (TCP_LRO_ACKCNT_MAX + 1))
return EINVAL;
/*
* Convert aggregation limit back to append
* count limit.
*/
--ackcnt;
NV_LOCK(sc);
for (i = 0; i < sc->hn_rx_ring_inuse; ++i)
sc->hn_rx_ring[i].hn_lro.lro_ackcnt_lim = ackcnt;
NV_UNLOCK(sc);
return 0;
}
#endif
static int
hn_trust_hcsum_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int hcsum = arg2;
int on, error, i;
on = 0;
if (sc->hn_rx_ring[0].hn_trust_hcsum & hcsum)
on = 1;
error = sysctl_handle_int(oidp, &on, 0, req);
if (error || req->newptr == NULL)
return error;
NV_LOCK(sc);
for (i = 0; i < sc->hn_rx_ring_inuse; ++i) {
struct hn_rx_ring *rxr = &sc->hn_rx_ring[i];
if (on)
rxr->hn_trust_hcsum |= hcsum;
else
rxr->hn_trust_hcsum &= ~hcsum;
}
NV_UNLOCK(sc);
return 0;
}
static int
hn_tx_chimney_size_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int chimney_size, error;
chimney_size = sc->hn_tx_ring[0].hn_tx_chimney_size;
error = sysctl_handle_int(oidp, &chimney_size, 0, req);
if (error || req->newptr == NULL)
return error;
if (chimney_size > sc->hn_tx_chimney_max || chimney_size <= 0)
return EINVAL;
hn_set_tx_chimney_size(sc, chimney_size);
return 0;
}
static int
hn_rx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int ofs = arg2, i, error;
struct hn_rx_ring *rxr;
u_long stat;
stat = 0;
for (i = 0; i < sc->hn_rx_ring_inuse; ++i) {
rxr = &sc->hn_rx_ring[i];
stat += *((u_long *)((uint8_t *)rxr + ofs));
}
error = sysctl_handle_long(oidp, &stat, 0, req);
if (error || req->newptr == NULL)
return error;
/* Zero out this stat. */
for (i = 0; i < sc->hn_rx_ring_inuse; ++i) {
rxr = &sc->hn_rx_ring[i];
*((u_long *)((uint8_t *)rxr + ofs)) = 0;
}
return 0;
}
static int
hn_rx_stat_u64_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int ofs = arg2, i, error;
struct hn_rx_ring *rxr;
uint64_t stat;
stat = 0;
for (i = 0; i < sc->hn_rx_ring_inuse; ++i) {
rxr = &sc->hn_rx_ring[i];
stat += *((uint64_t *)((uint8_t *)rxr + ofs));
}
error = sysctl_handle_64(oidp, &stat, 0, req);
if (error || req->newptr == NULL)
return error;
/* Zero out this stat. */
for (i = 0; i < sc->hn_rx_ring_inuse; ++i) {
rxr = &sc->hn_rx_ring[i];
*((uint64_t *)((uint8_t *)rxr + ofs)) = 0;
}
return 0;
}
static int
hn_tx_stat_ulong_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int ofs = arg2, i, error;
struct hn_tx_ring *txr;
u_long stat;
stat = 0;
for (i = 0; i < sc->hn_tx_ring_inuse; ++i) {
txr = &sc->hn_tx_ring[i];
stat += *((u_long *)((uint8_t *)txr + ofs));
}
error = sysctl_handle_long(oidp, &stat, 0, req);
if (error || req->newptr == NULL)
return error;
/* Zero out this stat. */
for (i = 0; i < sc->hn_tx_ring_inuse; ++i) {
txr = &sc->hn_tx_ring[i];
*((u_long *)((uint8_t *)txr + ofs)) = 0;
}
return 0;
}
static int
hn_tx_conf_int_sysctl(SYSCTL_HANDLER_ARGS)
{
struct hn_softc *sc = arg1;
int ofs = arg2, i, error, conf;
struct hn_tx_ring *txr;
txr = &sc->hn_tx_ring[0];
conf = *((int *)((uint8_t *)txr + ofs));
error = sysctl_handle_int(oidp, &conf, 0, req);
if (error || req->newptr == NULL)
return error;
NV_LOCK(sc);
for (i = 0; i < sc->hn_tx_ring_inuse; ++i) {
txr = &sc->hn_tx_ring[i];
*((int *)((uint8_t *)txr + ofs)) = conf;
}
NV_UNLOCK(sc);
return 0;
}
static int
hn_check_iplen(const struct mbuf *m, int hoff)
{
const struct ip *ip;
int len, iphlen, iplen;
const struct tcphdr *th;
int thoff; /* TCP data offset */
len = hoff + sizeof(struct ip);
/* The packet must be at least the size of an IP header. */
if (m->m_pkthdr.len < len)
return IPPROTO_DONE;
/* The fixed IP header must reside completely in the first mbuf. */
if (m->m_len < len)
return IPPROTO_DONE;
ip = mtodo(m, hoff);
/* Bound check the packet's stated IP header length. */
iphlen = ip->ip_hl << 2;
if (iphlen < sizeof(struct ip)) /* minimum header length */
return IPPROTO_DONE;
/* The full IP header must reside completely in the one mbuf. */
if (m->m_len < hoff + iphlen)
return IPPROTO_DONE;
iplen = ntohs(ip->ip_len);
/*
* Check that the amount of data in the buffers is as
* at least much as the IP header would have us expect.
*/
if (m->m_pkthdr.len < hoff + iplen)
return IPPROTO_DONE;
/*
* Ignore IP fragments.
*/
if (ntohs(ip->ip_off) & (IP_OFFMASK | IP_MF))
return IPPROTO_DONE;
/*
* The TCP/IP or UDP/IP header must be entirely contained within
* the first fragment of a packet.
*/
switch (ip->ip_p) {
case IPPROTO_TCP:
if (iplen < iphlen + sizeof(struct tcphdr))
return IPPROTO_DONE;
if (m->m_len < hoff + iphlen + sizeof(struct tcphdr))
return IPPROTO_DONE;
th = (const struct tcphdr *)((const uint8_t *)ip + iphlen);
thoff = th->th_off << 2;
if (thoff < sizeof(struct tcphdr) || thoff + iphlen > iplen)
return IPPROTO_DONE;
if (m->m_len < hoff + iphlen + thoff)
return IPPROTO_DONE;
break;
case IPPROTO_UDP:
if (iplen < iphlen + sizeof(struct udphdr))
return IPPROTO_DONE;
if (m->m_len < hoff + iphlen + sizeof(struct udphdr))
return IPPROTO_DONE;
break;
default:
if (iplen < iphlen)
return IPPROTO_DONE;
break;
}
return ip->ip_p;
}
static void
hn_dma_map_paddr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *paddr = arg;
if (error)
return;
KASSERT(nseg == 1, ("too many segments %d!", nseg));
*paddr = segs->ds_addr;
}
static void
hn_create_rx_data(struct hn_softc *sc, int ring_cnt)
{
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx;
device_t dev = sc->hn_dev;
#if defined(INET) || defined(INET6)
#if __FreeBSD_version >= 1100095
int lroent_cnt;
#endif
#endif
int i;
sc->hn_rx_ring_cnt = ring_cnt;
sc->hn_rx_ring_inuse = sc->hn_rx_ring_cnt;
sc->hn_rx_ring = malloc(sizeof(struct hn_rx_ring) * sc->hn_rx_ring_cnt,
M_NETVSC, M_WAITOK | M_ZERO);
#if defined(INET) || defined(INET6)
#if __FreeBSD_version >= 1100095
lroent_cnt = hn_lro_entry_count;
if (lroent_cnt < TCP_LRO_ENTRIES)
lroent_cnt = TCP_LRO_ENTRIES;
device_printf(dev, "LRO: entry count %d\n", lroent_cnt);
#endif
#endif /* INET || INET6 */
ctx = device_get_sysctl_ctx(dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(dev));
/* Create dev.hn.UNIT.rx sysctl tree */
sc->hn_rx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "rx",
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
for (i = 0; i < sc->hn_rx_ring_cnt; ++i) {
struct hn_rx_ring *rxr = &sc->hn_rx_ring[i];
if (hn_trust_hosttcp)
rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_TCP;
if (hn_trust_hostudp)
rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_UDP;
if (hn_trust_hostip)
rxr->hn_trust_hcsum |= HN_TRUST_HCSUM_IP;
rxr->hn_ifp = sc->hn_ifp;
rxr->hn_rx_idx = i;
/*
* Initialize LRO.
*/
#if defined(INET) || defined(INET6)
#if __FreeBSD_version >= 1100095
tcp_lro_init_args(&rxr->hn_lro, sc->hn_ifp, lroent_cnt, 0);
#else
tcp_lro_init(&rxr->hn_lro);
rxr->hn_lro.ifp = sc->hn_ifp;
#endif
#if __FreeBSD_version >= 1100099
rxr->hn_lro.lro_length_lim = HN_LRO_LENLIM_DEF;
rxr->hn_lro.lro_ackcnt_lim = HN_LRO_ACKCNT_DEF;
#endif
#endif /* INET || INET6 */
if (sc->hn_rx_sysctl_tree != NULL) {
char name[16];
/*
* Create per RX ring sysctl tree:
* dev.hn.UNIT.rx.RINGID
*/
snprintf(name, sizeof(name), "%d", i);
rxr->hn_rx_sysctl_tree = SYSCTL_ADD_NODE(ctx,
SYSCTL_CHILDREN(sc->hn_rx_sysctl_tree),
OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
if (rxr->hn_rx_sysctl_tree != NULL) {
SYSCTL_ADD_ULONG(ctx,
SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
OID_AUTO, "packets", CTLFLAG_RW,
&rxr->hn_pkts, "# of packets received");
SYSCTL_ADD_ULONG(ctx,
SYSCTL_CHILDREN(rxr->hn_rx_sysctl_tree),
OID_AUTO, "rss_pkts", CTLFLAG_RW,
&rxr->hn_rss_pkts,
"# of packets w/ RSS info received");
}
}
}
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_queued",
CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_lro.lro_queued),
hn_rx_stat_u64_sysctl, "LU", "LRO queued");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_flushed",
CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_lro.lro_flushed),
hn_rx_stat_u64_sysctl, "LU", "LRO flushed");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_tried",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_lro_tried),
hn_rx_stat_ulong_sysctl, "LU", "# of LRO tries");
#if __FreeBSD_version >= 1100099
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_length_lim",
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_lro_lenlim_sysctl, "IU",
"Max # of data bytes to be aggregated by LRO");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "lro_ackcnt_lim",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_lro_ackcnt_sysctl, "I",
"Max # of ACKs to be aggregated by LRO");
#endif
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hosttcp",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_TCP,
hn_trust_hcsum_sysctl, "I",
"Trust tcp segement verification on host side, "
"when csum info is missing");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostudp",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_UDP,
hn_trust_hcsum_sysctl, "I",
"Trust udp datagram verification on host side, "
"when csum info is missing");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "trust_hostip",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, HN_TRUST_HCSUM_IP,
hn_trust_hcsum_sysctl, "I",
"Trust ip packet verification on host side, "
"when csum info is missing");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_ip",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_csum_ip),
hn_rx_stat_ulong_sysctl, "LU", "RXCSUM IP");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_tcp",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_csum_tcp),
hn_rx_stat_ulong_sysctl, "LU", "RXCSUM TCP");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_udp",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_csum_udp),
hn_rx_stat_ulong_sysctl, "LU", "RXCSUM UDP");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "csum_trusted",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_csum_trusted),
hn_rx_stat_ulong_sysctl, "LU",
"# of packets that we trust host's csum verification");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "small_pkts",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_rx_ring, hn_small_pkts),
hn_rx_stat_ulong_sysctl, "LU", "# of small packets received");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_ring_cnt",
CTLFLAG_RD, &sc->hn_rx_ring_cnt, 0, "# created RX rings");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_ring_inuse",
CTLFLAG_RD, &sc->hn_rx_ring_inuse, 0, "# used RX rings");
}
static void
hn_destroy_rx_data(struct hn_softc *sc)
{
#if defined(INET) || defined(INET6)
int i;
#endif
if (sc->hn_rx_ring_cnt == 0)
return;
#if defined(INET) || defined(INET6)
for (i = 0; i < sc->hn_rx_ring_cnt; ++i)
tcp_lro_free(&sc->hn_rx_ring[i].hn_lro);
#endif
free(sc->hn_rx_ring, M_NETVSC);
sc->hn_rx_ring = NULL;
sc->hn_rx_ring_cnt = 0;
sc->hn_rx_ring_inuse = 0;
}
static int
hn_create_tx_ring(struct hn_softc *sc, int id)
{
struct hn_tx_ring *txr = &sc->hn_tx_ring[id];
bus_dma_tag_t parent_dtag;
int error, i;
txr->hn_sc = sc;
txr->hn_tx_idx = id;
#ifndef HN_USE_TXDESC_BUFRING
mtx_init(&txr->hn_txlist_spin, "hn txlist", NULL, MTX_SPIN);
#endif
mtx_init(&txr->hn_tx_lock, "hn tx", NULL, MTX_DEF);
txr->hn_txdesc_cnt = HN_TX_DESC_CNT;
txr->hn_txdesc = malloc(sizeof(struct hn_txdesc) * txr->hn_txdesc_cnt,
M_NETVSC, M_WAITOK | M_ZERO);
#ifndef HN_USE_TXDESC_BUFRING
SLIST_INIT(&txr->hn_txlist);
#else
txr->hn_txdesc_br = buf_ring_alloc(txr->hn_txdesc_cnt, M_NETVSC,
M_WAITOK, &txr->hn_tx_lock);
#endif
txr->hn_tx_taskq = sc->hn_tx_taskq;
if (hn_use_if_start) {
txr->hn_txeof = hn_start_txeof;
TASK_INIT(&txr->hn_tx_task, 0, hn_start_taskfunc, txr);
TASK_INIT(&txr->hn_txeof_task, 0, hn_start_txeof_taskfunc, txr);
} else {
int br_depth;
txr->hn_txeof = hn_xmit_txeof;
TASK_INIT(&txr->hn_tx_task, 0, hn_xmit_taskfunc, txr);
TASK_INIT(&txr->hn_txeof_task, 0, hn_xmit_txeof_taskfunc, txr);
br_depth = hn_get_txswq_depth(txr);
txr->hn_mbuf_br = buf_ring_alloc(br_depth, M_NETVSC,
M_WAITOK, &txr->hn_tx_lock);
}
txr->hn_direct_tx_size = hn_direct_tx_size;
if (hv_vmbus_protocal_version >= HV_VMBUS_VERSION_WIN8_1)
txr->hn_csum_assist = HN_CSUM_ASSIST;
else
txr->hn_csum_assist = HN_CSUM_ASSIST_WIN8;
/*
* Always schedule transmission instead of trying to do direct
* transmission. This one gives the best performance so far.
*/
txr->hn_sched_tx = 1;
parent_dtag = bus_get_dma_tag(sc->hn_dev);
/* DMA tag for RNDIS messages. */
error = bus_dma_tag_create(parent_dtag, /* parent */
HN_RNDIS_MSG_ALIGN, /* alignment */
HN_RNDIS_MSG_BOUNDARY, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
HN_RNDIS_MSG_LEN, /* maxsize */
1, /* nsegments */
HN_RNDIS_MSG_LEN, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&txr->hn_tx_rndis_dtag);
if (error) {
device_printf(sc->hn_dev, "failed to create rndis dmatag\n");
return error;
}
/* DMA tag for data. */
error = bus_dma_tag_create(parent_dtag, /* parent */
1, /* alignment */
HN_TX_DATA_BOUNDARY, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
HN_TX_DATA_MAXSIZE, /* maxsize */
HN_TX_DATA_SEGCNT_MAX, /* nsegments */
HN_TX_DATA_SEGSIZE, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockfuncarg */
&txr->hn_tx_data_dtag);
if (error) {
device_printf(sc->hn_dev, "failed to create data dmatag\n");
return error;
}
for (i = 0; i < txr->hn_txdesc_cnt; ++i) {
struct hn_txdesc *txd = &txr->hn_txdesc[i];
txd->txr = txr;
/*
* Allocate and load RNDIS messages.
*/
error = bus_dmamem_alloc(txr->hn_tx_rndis_dtag,
(void **)&txd->rndis_msg,
BUS_DMA_WAITOK | BUS_DMA_COHERENT,
&txd->rndis_msg_dmap);
if (error) {
device_printf(sc->hn_dev,
"failed to allocate rndis_msg, %d\n", i);
return error;
}
error = bus_dmamap_load(txr->hn_tx_rndis_dtag,
txd->rndis_msg_dmap,
txd->rndis_msg, HN_RNDIS_MSG_LEN,
hn_dma_map_paddr, &txd->rndis_msg_paddr,
BUS_DMA_NOWAIT);
if (error) {
device_printf(sc->hn_dev,
"failed to load rndis_msg, %d\n", i);
bus_dmamem_free(txr->hn_tx_rndis_dtag,
txd->rndis_msg, txd->rndis_msg_dmap);
return error;
}
/* DMA map for TX data. */
error = bus_dmamap_create(txr->hn_tx_data_dtag, 0,
&txd->data_dmap);
if (error) {
device_printf(sc->hn_dev,
"failed to allocate tx data dmamap\n");
bus_dmamap_unload(txr->hn_tx_rndis_dtag,
txd->rndis_msg_dmap);
bus_dmamem_free(txr->hn_tx_rndis_dtag,
txd->rndis_msg, txd->rndis_msg_dmap);
return error;
}
/* All set, put it to list */
txd->flags |= HN_TXD_FLAG_ONLIST;
#ifndef HN_USE_TXDESC_BUFRING
SLIST_INSERT_HEAD(&txr->hn_txlist, txd, link);
#else
buf_ring_enqueue(txr->hn_txdesc_br, txd);
#endif
}
txr->hn_txdesc_avail = txr->hn_txdesc_cnt;
if (sc->hn_tx_sysctl_tree != NULL) {
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx;
char name[16];
/*
* Create per TX ring sysctl tree:
* dev.hn.UNIT.tx.RINGID
*/
ctx = device_get_sysctl_ctx(sc->hn_dev);
child = SYSCTL_CHILDREN(sc->hn_tx_sysctl_tree);
snprintf(name, sizeof(name), "%d", id);
txr->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO,
name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
if (txr->hn_tx_sysctl_tree != NULL) {
child = SYSCTL_CHILDREN(txr->hn_tx_sysctl_tree);
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_avail",
CTLFLAG_RD, &txr->hn_txdesc_avail, 0,
"# of available TX descs");
if (!hn_use_if_start) {
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "oactive",
CTLFLAG_RD, &txr->hn_oactive, 0,
"over active");
}
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "packets",
CTLFLAG_RW, &txr->hn_pkts,
"# of packets transmitted");
}
}
return 0;
}
static void
hn_txdesc_dmamap_destroy(struct hn_txdesc *txd)
{
struct hn_tx_ring *txr = txd->txr;
KASSERT(txd->m == NULL, ("still has mbuf installed"));
KASSERT((txd->flags & HN_TXD_FLAG_DMAMAP) == 0, ("still dma mapped"));
bus_dmamap_unload(txr->hn_tx_rndis_dtag, txd->rndis_msg_dmap);
bus_dmamem_free(txr->hn_tx_rndis_dtag, txd->rndis_msg,
txd->rndis_msg_dmap);
bus_dmamap_destroy(txr->hn_tx_data_dtag, txd->data_dmap);
}
static void
hn_destroy_tx_ring(struct hn_tx_ring *txr)
{
struct hn_txdesc *txd;
if (txr->hn_txdesc == NULL)
return;
#ifndef HN_USE_TXDESC_BUFRING
while ((txd = SLIST_FIRST(&txr->hn_txlist)) != NULL) {
SLIST_REMOVE_HEAD(&txr->hn_txlist, link);
hn_txdesc_dmamap_destroy(txd);
}
#else
mtx_lock(&txr->hn_tx_lock);
while ((txd = buf_ring_dequeue_sc(txr->hn_txdesc_br)) != NULL)
hn_txdesc_dmamap_destroy(txd);
mtx_unlock(&txr->hn_tx_lock);
#endif
if (txr->hn_tx_data_dtag != NULL)
bus_dma_tag_destroy(txr->hn_tx_data_dtag);
if (txr->hn_tx_rndis_dtag != NULL)
bus_dma_tag_destroy(txr->hn_tx_rndis_dtag);
#ifdef HN_USE_TXDESC_BUFRING
buf_ring_free(txr->hn_txdesc_br, M_NETVSC);
#endif
free(txr->hn_txdesc, M_NETVSC);
txr->hn_txdesc = NULL;
if (txr->hn_mbuf_br != NULL)
buf_ring_free(txr->hn_mbuf_br, M_NETVSC);
#ifndef HN_USE_TXDESC_BUFRING
mtx_destroy(&txr->hn_txlist_spin);
#endif
mtx_destroy(&txr->hn_tx_lock);
}
static int
hn_create_tx_data(struct hn_softc *sc, int ring_cnt)
{
struct sysctl_oid_list *child;
struct sysctl_ctx_list *ctx;
int i;
sc->hn_tx_ring_cnt = ring_cnt;
sc->hn_tx_ring_inuse = sc->hn_tx_ring_cnt;
sc->hn_tx_ring = malloc(sizeof(struct hn_tx_ring) * sc->hn_tx_ring_cnt,
M_NETVSC, M_WAITOK | M_ZERO);
ctx = device_get_sysctl_ctx(sc->hn_dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->hn_dev));
/* Create dev.hn.UNIT.tx sysctl tree */
sc->hn_tx_sysctl_tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "tx",
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
for (i = 0; i < sc->hn_tx_ring_cnt; ++i) {
int error;
error = hn_create_tx_ring(sc, i);
if (error)
return error;
}
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "no_txdescs",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_no_txdescs),
hn_tx_stat_ulong_sysctl, "LU", "# of times short of TX descs");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "send_failed",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_send_failed),
hn_tx_stat_ulong_sysctl, "LU", "# of hyper-v sending failure");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "txdma_failed",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_txdma_failed),
hn_tx_stat_ulong_sysctl, "LU", "# of TX DMA failure");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_collapsed",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_tx_collapsed),
hn_tx_stat_ulong_sysctl, "LU", "# of TX mbuf collapsed");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_tx_chimney),
hn_tx_stat_ulong_sysctl, "LU", "# of chimney send");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_tried",
CTLTYPE_ULONG | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_tx_chimney_tried),
hn_tx_stat_ulong_sysctl, "LU", "# of chimney send tries");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "txdesc_cnt",
CTLFLAG_RD, &sc->hn_tx_ring[0].hn_txdesc_cnt, 0,
"# of total TX descs");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_chimney_max",
CTLFLAG_RD, &sc->hn_tx_chimney_max, 0,
"Chimney send packet size upper boundary");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "tx_chimney_size",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
hn_tx_chimney_size_sysctl,
"I", "Chimney send packet size limit");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "direct_tx_size",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_direct_tx_size),
hn_tx_conf_int_sysctl, "I",
"Size of the packet for direct transmission");
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "sched_tx",
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc,
__offsetof(struct hn_tx_ring, hn_sched_tx),
hn_tx_conf_int_sysctl, "I",
"Always schedule transmission "
"instead of doing direct transmission");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_ring_cnt",
CTLFLAG_RD, &sc->hn_tx_ring_cnt, 0, "# created TX rings");
SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_ring_inuse",
CTLFLAG_RD, &sc->hn_tx_ring_inuse, 0, "# used TX rings");
return 0;
}
static void
hn_set_tx_chimney_size(struct hn_softc *sc, int chimney_size)
{
int i;
NV_LOCK(sc);
for (i = 0; i < sc->hn_tx_ring_inuse; ++i)
sc->hn_tx_ring[i].hn_tx_chimney_size = chimney_size;
NV_UNLOCK(sc);
}
static void
hn_destroy_tx_data(struct hn_softc *sc)
{
int i;
if (sc->hn_tx_ring_cnt == 0)
return;
for (i = 0; i < sc->hn_tx_ring_cnt; ++i)
hn_destroy_tx_ring(&sc->hn_tx_ring[i]);
free(sc->hn_tx_ring, M_NETVSC);
sc->hn_tx_ring = NULL;
sc->hn_tx_ring_cnt = 0;
sc->hn_tx_ring_inuse = 0;
}
static void
hn_start_taskfunc(void *xtxr, int pending __unused)
{
struct hn_tx_ring *txr = xtxr;
mtx_lock(&txr->hn_tx_lock);
hn_start_locked(txr, 0);
mtx_unlock(&txr->hn_tx_lock);
}
static void
hn_start_txeof_taskfunc(void *xtxr, int pending __unused)
{
struct hn_tx_ring *txr = xtxr;
mtx_lock(&txr->hn_tx_lock);
atomic_clear_int(&txr->hn_sc->hn_ifp->if_drv_flags, IFF_DRV_OACTIVE);
hn_start_locked(txr, 0);
mtx_unlock(&txr->hn_tx_lock);
}
static void
hn_stop_tx_tasks(struct hn_softc *sc)
{
int i;
for (i = 0; i < sc->hn_tx_ring_inuse; ++i) {
struct hn_tx_ring *txr = &sc->hn_tx_ring[i];
taskqueue_drain(txr->hn_tx_taskq, &txr->hn_tx_task);
taskqueue_drain(txr->hn_tx_taskq, &txr->hn_txeof_task);
}
}
static int
hn_xmit(struct hn_tx_ring *txr, int len)
{
struct hn_softc *sc = txr->hn_sc;
struct ifnet *ifp = sc->hn_ifp;
struct mbuf *m_head;
mtx_assert(&txr->hn_tx_lock, MA_OWNED);
KASSERT(hn_use_if_start == 0,
("hn_xmit is called, when if_start is enabled"));
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || txr->hn_oactive)
return 0;
while ((m_head = drbr_peek(ifp, txr->hn_mbuf_br)) != NULL) {
struct hn_txdesc *txd;
int error;
if (len > 0 && m_head->m_pkthdr.len > len) {
/*
* This sending could be time consuming; let callers
* dispatch this packet sending (and sending of any
* following up packets) to tx taskqueue.
*/
drbr_putback(ifp, txr->hn_mbuf_br, m_head);
return 1;
}
txd = hn_txdesc_get(txr);
if (txd == NULL) {
txr->hn_no_txdescs++;
drbr_putback(ifp, txr->hn_mbuf_br, m_head);
txr->hn_oactive = 1;
break;
}
error = hn_encap(txr, txd, &m_head);
if (error) {
/* Both txd and m_head are freed; discard */
drbr_advance(ifp, txr->hn_mbuf_br);
continue;
}
error = hn_send_pkt(ifp, txr, txd);
if (__predict_false(error)) {
/* txd is freed, but m_head is not */
drbr_putback(ifp, txr->hn_mbuf_br, m_head);
txr->hn_oactive = 1;
break;
}
/* Sent */
drbr_advance(ifp, txr->hn_mbuf_br);
}
return 0;
}
static int
hn_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct hn_softc *sc = ifp->if_softc;
struct hn_tx_ring *txr;
int error, idx = 0;
/*
* Select the TX ring based on flowid
*/
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
idx = m->m_pkthdr.flowid % sc->hn_tx_ring_inuse;
txr = &sc->hn_tx_ring[idx];
error = drbr_enqueue(ifp, txr->hn_mbuf_br, m);
if (error) {
if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
return error;
}
if (txr->hn_oactive)
return 0;
if (txr->hn_sched_tx)
goto do_sched;
if (mtx_trylock(&txr->hn_tx_lock)) {
int sched;
sched = hn_xmit(txr, txr->hn_direct_tx_size);
mtx_unlock(&txr->hn_tx_lock);
if (!sched)
return 0;
}
do_sched:
taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_tx_task);
return 0;
}
static void
hn_xmit_qflush(struct ifnet *ifp)
{
struct hn_softc *sc = ifp->if_softc;
int i;
for (i = 0; i < sc->hn_tx_ring_inuse; ++i) {
struct hn_tx_ring *txr = &sc->hn_tx_ring[i];
struct mbuf *m;
mtx_lock(&txr->hn_tx_lock);
while ((m = buf_ring_dequeue_sc(txr->hn_mbuf_br)) != NULL)
m_freem(m);
mtx_unlock(&txr->hn_tx_lock);
}
if_qflush(ifp);
}
static void
hn_xmit_txeof(struct hn_tx_ring *txr)
{
if (txr->hn_sched_tx)
goto do_sched;
if (mtx_trylock(&txr->hn_tx_lock)) {
int sched;
txr->hn_oactive = 0;
sched = hn_xmit(txr, txr->hn_direct_tx_size);
mtx_unlock(&txr->hn_tx_lock);
if (sched) {
taskqueue_enqueue(txr->hn_tx_taskq,
&txr->hn_tx_task);
}
} else {
do_sched:
/*
* Release the oactive earlier, with the hope, that
* others could catch up. The task will clear the
* oactive again with the hn_tx_lock to avoid possible
* races.
*/
txr->hn_oactive = 0;
taskqueue_enqueue(txr->hn_tx_taskq, &txr->hn_txeof_task);
}
}
static void
hn_xmit_taskfunc(void *xtxr, int pending __unused)
{
struct hn_tx_ring *txr = xtxr;
mtx_lock(&txr->hn_tx_lock);
hn_xmit(txr, 0);
mtx_unlock(&txr->hn_tx_lock);
}
static void
hn_xmit_txeof_taskfunc(void *xtxr, int pending __unused)
{
struct hn_tx_ring *txr = xtxr;
mtx_lock(&txr->hn_tx_lock);
txr->hn_oactive = 0;
hn_xmit(txr, 0);
mtx_unlock(&txr->hn_tx_lock);
}
static void
hn_channel_attach(struct hn_softc *sc, struct hv_vmbus_channel *chan)
{
struct hn_rx_ring *rxr;
int idx;
idx = chan->offer_msg.offer.sub_channel_index;
KASSERT(idx >= 0 && idx < sc->hn_rx_ring_inuse,
("invalid channel index %d, should > 0 && < %d",
idx, sc->hn_rx_ring_inuse));
rxr = &sc->hn_rx_ring[idx];
KASSERT((rxr->hn_rx_flags & HN_RX_FLAG_ATTACHED) == 0,
("RX ring %d already attached", idx));
rxr->hn_rx_flags |= HN_RX_FLAG_ATTACHED;
chan->hv_chan_rxr = rxr;
if (bootverbose) {
if_printf(sc->hn_ifp, "link RX ring %d to channel%u\n",
idx, chan->offer_msg.child_rel_id);
}
if (idx < sc->hn_tx_ring_inuse) {
struct hn_tx_ring *txr = &sc->hn_tx_ring[idx];
KASSERT((txr->hn_tx_flags & HN_TX_FLAG_ATTACHED) == 0,
("TX ring %d already attached", idx));
txr->hn_tx_flags |= HN_TX_FLAG_ATTACHED;
chan->hv_chan_txr = txr;
txr->hn_chan = chan;
if (bootverbose) {
if_printf(sc->hn_ifp, "link TX ring %d to channel%u\n",
idx, chan->offer_msg.child_rel_id);
}
}
/* Bind channel to a proper CPU */
vmbus_channel_cpu_set(chan, (sc->hn_cpu + idx) % mp_ncpus);
}
static void
hn_subchan_attach(struct hn_softc *sc, struct hv_vmbus_channel *chan)
{
KASSERT(!HV_VMBUS_CHAN_ISPRIMARY(chan),
("subchannel callback on primary channel"));
KASSERT(chan->offer_msg.offer.sub_channel_index > 0,
("invalid channel subidx %u",
chan->offer_msg.offer.sub_channel_index));
hn_channel_attach(sc, chan);
}
static void
hn_tx_taskq_create(void *arg __unused)
{
if (!hn_share_tx_taskq)
return;
hn_tx_taskq = taskqueue_create("hn_tx", M_WAITOK,
taskqueue_thread_enqueue, &hn_tx_taskq);
if (hn_bind_tx_taskq >= 0) {
int cpu = hn_bind_tx_taskq;
cpuset_t cpu_set;
if (cpu > mp_ncpus - 1)
cpu = mp_ncpus - 1;
CPU_SETOF(cpu, &cpu_set);
taskqueue_start_threads_cpuset(&hn_tx_taskq, 1, PI_NET,
&cpu_set, "hn tx");
} else {
taskqueue_start_threads(&hn_tx_taskq, 1, PI_NET, "hn tx");
}
}
SYSINIT(hn_txtq_create, SI_SUB_DRIVERS, SI_ORDER_FIRST,
hn_tx_taskq_create, NULL);
static void
hn_tx_taskq_destroy(void *arg __unused)
{
if (hn_tx_taskq != NULL)
taskqueue_free(hn_tx_taskq);
}
SYSUNINIT(hn_txtq_destroy, SI_SUB_DRIVERS, SI_ORDER_FIRST,
hn_tx_taskq_destroy, NULL);
static device_method_t netvsc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, netvsc_probe),
DEVMETHOD(device_attach, netvsc_attach),
DEVMETHOD(device_detach, netvsc_detach),
DEVMETHOD(device_shutdown, netvsc_shutdown),
{ 0, 0 }
};
static driver_t netvsc_driver = {
NETVSC_DEVNAME,
netvsc_methods,
sizeof(hn_softc_t)
};
static devclass_t netvsc_devclass;
DRIVER_MODULE(hn, vmbus, netvsc_driver, netvsc_devclass, 0, 0);
MODULE_VERSION(hn, 1);
MODULE_DEPEND(hn, vmbus, 1, 1, 1);