6485a22ccb
if all processors in the map are not available, simply return. Approved by: kib (mentor) MFC after: 1 week
636 lines
16 KiB
C
636 lines
16 KiB
C
/*-
|
|
* Copyright (c) 2001, John Baldwin <jhb@FreeBSD.org>.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This module holds the global variables and machine independent functions
|
|
* used for the kernel SMP support.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/smp.h>
|
|
|
|
#include "opt_sched.h"
|
|
|
|
#ifdef SMP
|
|
volatile cpumask_t stopped_cpus;
|
|
volatile cpumask_t started_cpus;
|
|
cpumask_t idle_cpus_mask;
|
|
cpumask_t hlt_cpus_mask;
|
|
cpumask_t logical_cpus_mask;
|
|
|
|
void (*cpustop_restartfunc)(void);
|
|
#endif
|
|
/* This is used in modules that need to work in both SMP and UP. */
|
|
cpumask_t all_cpus;
|
|
|
|
int mp_ncpus;
|
|
/* export this for libkvm consumers. */
|
|
int mp_maxcpus = MAXCPU;
|
|
|
|
volatile int smp_started;
|
|
u_int mp_maxid;
|
|
|
|
SYSCTL_NODE(_kern, OID_AUTO, smp, CTLFLAG_RD, NULL, "Kernel SMP");
|
|
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, maxid, CTLFLAG_RD, &mp_maxid, 0,
|
|
"Max CPU ID.");
|
|
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, maxcpus, CTLFLAG_RD, &mp_maxcpus, 0,
|
|
"Max number of CPUs that the system was compiled for.");
|
|
|
|
int smp_active = 0; /* are the APs allowed to run? */
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, active, CTLFLAG_RW, &smp_active, 0,
|
|
"Number of Auxillary Processors (APs) that were successfully started");
|
|
|
|
int smp_disabled = 0; /* has smp been disabled? */
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, disabled, CTLFLAG_RDTUN, &smp_disabled, 0,
|
|
"SMP has been disabled from the loader");
|
|
TUNABLE_INT("kern.smp.disabled", &smp_disabled);
|
|
|
|
int smp_cpus = 1; /* how many cpu's running */
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, cpus, CTLFLAG_RD, &smp_cpus, 0,
|
|
"Number of CPUs online");
|
|
|
|
int smp_topology = 0; /* Which topology we're using. */
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, topology, CTLFLAG_RD, &smp_topology, 0,
|
|
"Topology override setting; 0 is default provided by hardware.");
|
|
TUNABLE_INT("kern.smp.topology", &smp_topology);
|
|
|
|
#ifdef SMP
|
|
/* Enable forwarding of a signal to a process running on a different CPU */
|
|
static int forward_signal_enabled = 1;
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, forward_signal_enabled, CTLFLAG_RW,
|
|
&forward_signal_enabled, 0,
|
|
"Forwarding of a signal to a process on a different CPU");
|
|
|
|
/* Enable forwarding of roundrobin to all other cpus */
|
|
static int forward_roundrobin_enabled = 1;
|
|
SYSCTL_INT(_kern_smp, OID_AUTO, forward_roundrobin_enabled, CTLFLAG_RW,
|
|
&forward_roundrobin_enabled, 0,
|
|
"Forwarding of roundrobin to all other CPUs");
|
|
|
|
/* Variables needed for SMP rendezvous. */
|
|
static volatile int smp_rv_ncpus;
|
|
static void (*volatile smp_rv_setup_func)(void *arg);
|
|
static void (*volatile smp_rv_action_func)(void *arg);
|
|
static void (*volatile smp_rv_teardown_func)(void *arg);
|
|
static void *volatile smp_rv_func_arg;
|
|
static volatile int smp_rv_waiters[3];
|
|
|
|
/*
|
|
* Shared mutex to restrict busywaits between smp_rendezvous() and
|
|
* smp(_targeted)_tlb_shootdown(). A deadlock occurs if both of these
|
|
* functions trigger at once and cause multiple CPUs to busywait with
|
|
* interrupts disabled.
|
|
*/
|
|
struct mtx smp_ipi_mtx;
|
|
|
|
/*
|
|
* Let the MD SMP code initialize mp_maxid very early if it can.
|
|
*/
|
|
static void
|
|
mp_setmaxid(void *dummy)
|
|
{
|
|
cpu_mp_setmaxid();
|
|
}
|
|
SYSINIT(cpu_mp_setmaxid, SI_SUB_TUNABLES, SI_ORDER_FIRST, mp_setmaxid, NULL);
|
|
|
|
/*
|
|
* Call the MD SMP initialization code.
|
|
*/
|
|
static void
|
|
mp_start(void *dummy)
|
|
{
|
|
|
|
/* Probe for MP hardware. */
|
|
if (smp_disabled != 0 || cpu_mp_probe() == 0) {
|
|
mp_ncpus = 1;
|
|
all_cpus = PCPU_GET(cpumask);
|
|
return;
|
|
}
|
|
|
|
mtx_init(&smp_ipi_mtx, "smp rendezvous", NULL, MTX_SPIN);
|
|
cpu_mp_start();
|
|
printf("FreeBSD/SMP: Multiprocessor System Detected: %d CPUs\n",
|
|
mp_ncpus);
|
|
cpu_mp_announce();
|
|
}
|
|
SYSINIT(cpu_mp, SI_SUB_CPU, SI_ORDER_THIRD, mp_start, NULL);
|
|
|
|
void
|
|
forward_signal(struct thread *td)
|
|
{
|
|
int id;
|
|
|
|
/*
|
|
* signotify() has already set TDF_ASTPENDING and TDF_NEEDSIGCHECK on
|
|
* this thread, so all we need to do is poke it if it is currently
|
|
* executing so that it executes ast().
|
|
*/
|
|
THREAD_LOCK_ASSERT(td, MA_OWNED);
|
|
KASSERT(TD_IS_RUNNING(td),
|
|
("forward_signal: thread is not TDS_RUNNING"));
|
|
|
|
CTR1(KTR_SMP, "forward_signal(%p)", td->td_proc);
|
|
|
|
if (!smp_started || cold || panicstr)
|
|
return;
|
|
if (!forward_signal_enabled)
|
|
return;
|
|
|
|
/* No need to IPI ourself. */
|
|
if (td == curthread)
|
|
return;
|
|
|
|
id = td->td_oncpu;
|
|
if (id == NOCPU)
|
|
return;
|
|
ipi_selected(1 << id, IPI_AST);
|
|
}
|
|
|
|
void
|
|
forward_roundrobin(void)
|
|
{
|
|
struct pcpu *pc;
|
|
struct thread *td;
|
|
cpumask_t id, map, me;
|
|
|
|
CTR0(KTR_SMP, "forward_roundrobin()");
|
|
|
|
if (!smp_started || cold || panicstr)
|
|
return;
|
|
if (!forward_roundrobin_enabled)
|
|
return;
|
|
map = 0;
|
|
me = PCPU_GET(cpumask);
|
|
SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
|
|
td = pc->pc_curthread;
|
|
id = pc->pc_cpumask;
|
|
if (id != me && (id & stopped_cpus) == 0 &&
|
|
!TD_IS_IDLETHREAD(td)) {
|
|
td->td_flags |= TDF_NEEDRESCHED;
|
|
map |= id;
|
|
}
|
|
}
|
|
ipi_selected(map, IPI_AST);
|
|
}
|
|
|
|
/*
|
|
* When called the executing CPU will send an IPI to all other CPUs
|
|
* requesting that they halt execution.
|
|
*
|
|
* Usually (but not necessarily) called with 'other_cpus' as its arg.
|
|
*
|
|
* - Signals all CPUs in map to stop.
|
|
* - Waits for each to stop.
|
|
*
|
|
* Returns:
|
|
* -1: error
|
|
* 0: NA
|
|
* 1: ok
|
|
*
|
|
* XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
|
|
* from executing at same time.
|
|
*/
|
|
int
|
|
stop_cpus(cpumask_t map)
|
|
{
|
|
int i;
|
|
|
|
if (!smp_started)
|
|
return 0;
|
|
|
|
CTR1(KTR_SMP, "stop_cpus(%x)", map);
|
|
|
|
/* send the stop IPI to all CPUs in map */
|
|
ipi_selected(map, IPI_STOP);
|
|
|
|
i = 0;
|
|
while ((stopped_cpus & map) != map) {
|
|
/* spin */
|
|
cpu_spinwait();
|
|
i++;
|
|
#ifdef DIAGNOSTIC
|
|
if (i == 100000) {
|
|
printf("timeout stopping cpus\n");
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Called by a CPU to restart stopped CPUs.
|
|
*
|
|
* Usually (but not necessarily) called with 'stopped_cpus' as its arg.
|
|
*
|
|
* - Signals all CPUs in map to restart.
|
|
* - Waits for each to restart.
|
|
*
|
|
* Returns:
|
|
* -1: error
|
|
* 0: NA
|
|
* 1: ok
|
|
*/
|
|
int
|
|
restart_cpus(cpumask_t map)
|
|
{
|
|
|
|
if (!smp_started)
|
|
return 0;
|
|
|
|
CTR1(KTR_SMP, "restart_cpus(%x)", map);
|
|
|
|
/* signal other cpus to restart */
|
|
atomic_store_rel_int(&started_cpus, map);
|
|
|
|
/* wait for each to clear its bit */
|
|
while ((stopped_cpus & map) != 0)
|
|
cpu_spinwait();
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* All-CPU rendezvous. CPUs are signalled, all execute the setup function
|
|
* (if specified), rendezvous, execute the action function (if specified),
|
|
* rendezvous again, execute the teardown function (if specified), and then
|
|
* resume.
|
|
*
|
|
* Note that the supplied external functions _must_ be reentrant and aware
|
|
* that they are running in parallel and in an unknown lock context.
|
|
*/
|
|
void
|
|
smp_rendezvous_action(void)
|
|
{
|
|
void* local_func_arg = smp_rv_func_arg;
|
|
void (*local_setup_func)(void*) = smp_rv_setup_func;
|
|
void (*local_action_func)(void*) = smp_rv_action_func;
|
|
void (*local_teardown_func)(void*) = smp_rv_teardown_func;
|
|
|
|
/* Ensure we have up-to-date values. */
|
|
atomic_add_acq_int(&smp_rv_waiters[0], 1);
|
|
while (smp_rv_waiters[0] < smp_rv_ncpus)
|
|
cpu_spinwait();
|
|
|
|
/* setup function */
|
|
if (local_setup_func != smp_no_rendevous_barrier) {
|
|
if (smp_rv_setup_func != NULL)
|
|
smp_rv_setup_func(smp_rv_func_arg);
|
|
|
|
/* spin on entry rendezvous */
|
|
atomic_add_int(&smp_rv_waiters[1], 1);
|
|
while (smp_rv_waiters[1] < smp_rv_ncpus)
|
|
cpu_spinwait();
|
|
}
|
|
|
|
/* action function */
|
|
if (local_action_func != NULL)
|
|
local_action_func(local_func_arg);
|
|
|
|
/* spin on exit rendezvous */
|
|
atomic_add_int(&smp_rv_waiters[2], 1);
|
|
if (local_teardown_func == smp_no_rendevous_barrier)
|
|
return;
|
|
while (smp_rv_waiters[2] < smp_rv_ncpus)
|
|
cpu_spinwait();
|
|
|
|
/* teardown function */
|
|
if (local_teardown_func != NULL)
|
|
local_teardown_func(local_func_arg);
|
|
}
|
|
|
|
void
|
|
smp_rendezvous_cpus(cpumask_t map,
|
|
void (* setup_func)(void *),
|
|
void (* action_func)(void *),
|
|
void (* teardown_func)(void *),
|
|
void *arg)
|
|
{
|
|
int i, ncpus = 0;
|
|
|
|
if (!smp_started) {
|
|
if (setup_func != NULL)
|
|
setup_func(arg);
|
|
if (action_func != NULL)
|
|
action_func(arg);
|
|
if (teardown_func != NULL)
|
|
teardown_func(arg);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i <= mp_maxid; i++)
|
|
if (((1 << i) & map) != 0 && !CPU_ABSENT(i))
|
|
ncpus++;
|
|
if (ncpus == 0)
|
|
return;
|
|
|
|
/* obtain rendezvous lock */
|
|
mtx_lock_spin(&smp_ipi_mtx);
|
|
|
|
/* set static function pointers */
|
|
smp_rv_ncpus = ncpus;
|
|
smp_rv_setup_func = setup_func;
|
|
smp_rv_action_func = action_func;
|
|
smp_rv_teardown_func = teardown_func;
|
|
smp_rv_func_arg = arg;
|
|
smp_rv_waiters[1] = 0;
|
|
smp_rv_waiters[2] = 0;
|
|
atomic_store_rel_int(&smp_rv_waiters[0], 0);
|
|
|
|
/* signal other processors, which will enter the IPI with interrupts off */
|
|
ipi_selected(map & ~(1 << curcpu), IPI_RENDEZVOUS);
|
|
|
|
/* Check if the current CPU is in the map */
|
|
if ((map & (1 << curcpu)) != 0)
|
|
smp_rendezvous_action();
|
|
|
|
if (teardown_func == smp_no_rendevous_barrier)
|
|
while (atomic_load_acq_int(&smp_rv_waiters[2]) < ncpus)
|
|
cpu_spinwait();
|
|
|
|
/* release lock */
|
|
mtx_unlock_spin(&smp_ipi_mtx);
|
|
}
|
|
|
|
void
|
|
smp_rendezvous(void (* setup_func)(void *),
|
|
void (* action_func)(void *),
|
|
void (* teardown_func)(void *),
|
|
void *arg)
|
|
{
|
|
smp_rendezvous_cpus(all_cpus, setup_func, action_func, teardown_func, arg);
|
|
}
|
|
|
|
static struct cpu_group group[MAXCPU];
|
|
|
|
struct cpu_group *
|
|
smp_topo(void)
|
|
{
|
|
struct cpu_group *top;
|
|
|
|
/*
|
|
* Check for a fake topology request for debugging purposes.
|
|
*/
|
|
switch (smp_topology) {
|
|
case 1:
|
|
/* Dual core with no sharing. */
|
|
top = smp_topo_1level(CG_SHARE_NONE, 2, 0);
|
|
break;
|
|
case 2:
|
|
/* No topology, all cpus are equal. */
|
|
top = smp_topo_none();
|
|
break;
|
|
case 3:
|
|
/* Dual core with shared L2. */
|
|
top = smp_topo_1level(CG_SHARE_L2, 2, 0);
|
|
break;
|
|
case 4:
|
|
/* quad core, shared l3 among each package, private l2. */
|
|
top = smp_topo_1level(CG_SHARE_L3, 4, 0);
|
|
break;
|
|
case 5:
|
|
/* quad core, 2 dualcore parts on each package share l2. */
|
|
top = smp_topo_2level(CG_SHARE_NONE, 2, CG_SHARE_L2, 2, 0);
|
|
break;
|
|
case 6:
|
|
/* Single-core 2xHTT */
|
|
top = smp_topo_1level(CG_SHARE_L1, 2, CG_FLAG_HTT);
|
|
break;
|
|
case 7:
|
|
/* quad core with a shared l3, 8 threads sharing L2. */
|
|
top = smp_topo_2level(CG_SHARE_L3, 4, CG_SHARE_L2, 8,
|
|
CG_FLAG_THREAD);
|
|
break;
|
|
default:
|
|
/* Default, ask the system what it wants. */
|
|
top = cpu_topo();
|
|
break;
|
|
}
|
|
/*
|
|
* Verify the returned topology.
|
|
*/
|
|
if (top->cg_count != mp_ncpus)
|
|
panic("Built bad topology at %p. CPU count %d != %d",
|
|
top, top->cg_count, mp_ncpus);
|
|
if (top->cg_mask != all_cpus)
|
|
panic("Built bad topology at %p. CPU mask 0x%X != 0x%X",
|
|
top, top->cg_mask, all_cpus);
|
|
return (top);
|
|
}
|
|
|
|
struct cpu_group *
|
|
smp_topo_none(void)
|
|
{
|
|
struct cpu_group *top;
|
|
|
|
top = &group[0];
|
|
top->cg_parent = NULL;
|
|
top->cg_child = NULL;
|
|
top->cg_mask = (1 << mp_ncpus) - 1;
|
|
top->cg_count = mp_ncpus;
|
|
top->cg_children = 0;
|
|
top->cg_level = CG_SHARE_NONE;
|
|
top->cg_flags = 0;
|
|
|
|
return (top);
|
|
}
|
|
|
|
static int
|
|
smp_topo_addleaf(struct cpu_group *parent, struct cpu_group *child, int share,
|
|
int count, int flags, int start)
|
|
{
|
|
cpumask_t mask;
|
|
int i;
|
|
|
|
for (mask = 0, i = 0; i < count; i++, start++)
|
|
mask |= (1 << start);
|
|
child->cg_parent = parent;
|
|
child->cg_child = NULL;
|
|
child->cg_children = 0;
|
|
child->cg_level = share;
|
|
child->cg_count = count;
|
|
child->cg_flags = flags;
|
|
child->cg_mask = mask;
|
|
parent->cg_children++;
|
|
for (; parent != NULL; parent = parent->cg_parent) {
|
|
if ((parent->cg_mask & child->cg_mask) != 0)
|
|
panic("Duplicate children in %p. mask 0x%X child 0x%X",
|
|
parent, parent->cg_mask, child->cg_mask);
|
|
parent->cg_mask |= child->cg_mask;
|
|
parent->cg_count += child->cg_count;
|
|
}
|
|
|
|
return (start);
|
|
}
|
|
|
|
struct cpu_group *
|
|
smp_topo_1level(int share, int count, int flags)
|
|
{
|
|
struct cpu_group *child;
|
|
struct cpu_group *top;
|
|
int packages;
|
|
int cpu;
|
|
int i;
|
|
|
|
cpu = 0;
|
|
top = &group[0];
|
|
packages = mp_ncpus / count;
|
|
top->cg_child = child = &group[1];
|
|
top->cg_level = CG_SHARE_NONE;
|
|
for (i = 0; i < packages; i++, child++)
|
|
cpu = smp_topo_addleaf(top, child, share, count, flags, cpu);
|
|
return (top);
|
|
}
|
|
|
|
struct cpu_group *
|
|
smp_topo_2level(int l2share, int l2count, int l1share, int l1count,
|
|
int l1flags)
|
|
{
|
|
struct cpu_group *top;
|
|
struct cpu_group *l1g;
|
|
struct cpu_group *l2g;
|
|
int cpu;
|
|
int i;
|
|
int j;
|
|
|
|
cpu = 0;
|
|
top = &group[0];
|
|
l2g = &group[1];
|
|
top->cg_child = l2g;
|
|
top->cg_level = CG_SHARE_NONE;
|
|
top->cg_children = mp_ncpus / (l2count * l1count);
|
|
l1g = l2g + top->cg_children;
|
|
for (i = 0; i < top->cg_children; i++, l2g++) {
|
|
l2g->cg_parent = top;
|
|
l2g->cg_child = l1g;
|
|
l2g->cg_level = l2share;
|
|
for (j = 0; j < l2count; j++, l1g++)
|
|
cpu = smp_topo_addleaf(l2g, l1g, l1share, l1count,
|
|
l1flags, cpu);
|
|
}
|
|
return (top);
|
|
}
|
|
|
|
|
|
struct cpu_group *
|
|
smp_topo_find(struct cpu_group *top, int cpu)
|
|
{
|
|
struct cpu_group *cg;
|
|
cpumask_t mask;
|
|
int children;
|
|
int i;
|
|
|
|
mask = (1 << cpu);
|
|
cg = top;
|
|
for (;;) {
|
|
if ((cg->cg_mask & mask) == 0)
|
|
return (NULL);
|
|
if (cg->cg_children == 0)
|
|
return (cg);
|
|
children = cg->cg_children;
|
|
for (i = 0, cg = cg->cg_child; i < children; cg++, i++)
|
|
if ((cg->cg_mask & mask) != 0)
|
|
break;
|
|
}
|
|
return (NULL);
|
|
}
|
|
#else /* !SMP */
|
|
|
|
void
|
|
smp_rendezvous_cpus(cpumask_t map,
|
|
void (*setup_func)(void *),
|
|
void (*action_func)(void *),
|
|
void (*teardown_func)(void *),
|
|
void *arg)
|
|
{
|
|
if (setup_func != NULL)
|
|
setup_func(arg);
|
|
if (action_func != NULL)
|
|
action_func(arg);
|
|
if (teardown_func != NULL)
|
|
teardown_func(arg);
|
|
}
|
|
|
|
void
|
|
smp_rendezvous(void (*setup_func)(void *),
|
|
void (*action_func)(void *),
|
|
void (*teardown_func)(void *),
|
|
void *arg)
|
|
{
|
|
|
|
if (setup_func != NULL)
|
|
setup_func(arg);
|
|
if (action_func != NULL)
|
|
action_func(arg);
|
|
if (teardown_func != NULL)
|
|
teardown_func(arg);
|
|
}
|
|
|
|
/*
|
|
* Provide dummy SMP support for UP kernels. Modules that need to use SMP
|
|
* APIs will still work using this dummy support.
|
|
*/
|
|
static void
|
|
mp_setvariables_for_up(void *dummy)
|
|
{
|
|
mp_ncpus = 1;
|
|
mp_maxid = PCPU_GET(cpuid);
|
|
all_cpus = PCPU_GET(cpumask);
|
|
KASSERT(PCPU_GET(cpuid) == 0, ("UP must have a CPU ID of zero"));
|
|
}
|
|
SYSINIT(cpu_mp_setvariables, SI_SUB_TUNABLES, SI_ORDER_FIRST,
|
|
mp_setvariables_for_up, NULL);
|
|
#endif /* SMP */
|
|
|
|
void
|
|
smp_no_rendevous_barrier(void *dummy)
|
|
{
|
|
#ifdef SMP
|
|
KASSERT((!smp_started),("smp_no_rendevous called and smp is started"));
|
|
#endif
|
|
}
|