freebsd-dev/sys/dev/usb/if_zyd.c
Weongyo Jeong c3d6943244 - improve AL2230 RF handling when the device type is zd1211. After this
patch the RX/TX performance becomes about 17~18 Mbps comparing with
  the previous whose values were RX 7~8Mbps and TX 13~14Mbps.
- improve AL2230 RF handling in zd1211b
- support AL2230S RF that PV2000 is renamed to AL2230S
- use register ZYD_CR244, ZYD_CR243, ZYD_CR242 when the driver writes
  values on RF.  This routine is more faster than the original one
- use private TX lock to avoid LOR at zyd_raw_xmit()
- increase TX slots from 1 to 5
- needs to set the channel at IEEE80211_S_AUTH not IEEE80211_S_RUN
- detailed error handling.  In previous the next command was sent to the
  device even if there was errors
- setting ZYD_MAC_RX_THRESHOLD value should be different between 1211
  and 1211b
- only try to stop the device at zyd_init_locked() if the device is
  UPed
- do not use MTX_RECURSE
- do not try to grap Giant lock when the channel is changing
- move the device initialization routines from zyd_attach to zyd_init to
  give a device full-reset chance to the driver.
- code cleanup at zyd_raw_xmit()
- simplify zyd_attach() routines
- resort functions and clean up variables
- DPRINTF style change.
- style(9)

Reviewed by:	sam
2008-11-25 02:19:02 +00:00

3125 lines
80 KiB
C

/* $OpenBSD: if_zyd.c,v 1.52 2007/02/11 00:08:04 jsg Exp $ */
/* $NetBSD: if_zyd.c,v 1.7 2007/06/21 04:04:29 kiyohara Exp $ */
/* $FreeBSD$ */
/*-
* Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* ZyDAS ZD1211/ZD1211B USB WLAN driver.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <sys/linker.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_phy.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_regdomain.h>
#include <net/bpf.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include "usbdevs.h"
#include <dev/usb/usb_ethersubr.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/usb/if_zydreg.h>
#include <dev/usb/if_zydfw.h>
#ifdef ZYD_DEBUG
SYSCTL_NODE(_hw_usb, OID_AUTO, zyd, CTLFLAG_RW, 0, "ZyDAS zd1211/zd1211b");
int zyd_debug = 0;
SYSCTL_INT(_hw_usb_zyd, OID_AUTO, debug, CTLFLAG_RW, &zyd_debug, 0,
"control debugging printfs");
TUNABLE_INT("hw.usb.zyd.debug", &zyd_debug);
enum {
ZYD_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
ZYD_DEBUG_RECV = 0x00000002, /* basic recv operation */
ZYD_DEBUG_RESET = 0x00000004, /* reset processing */
ZYD_DEBUG_INIT = 0x00000008, /* device init */
ZYD_DEBUG_TX_PROC = 0x00000010, /* tx ISR proc */
ZYD_DEBUG_RX_PROC = 0x00000020, /* rx ISR proc */
ZYD_DEBUG_STATE = 0x00000040, /* 802.11 state transitions */
ZYD_DEBUG_STAT = 0x00000080, /* statistic */
ZYD_DEBUG_FW = 0x00000100, /* firmware */
ZYD_DEBUG_ANY = 0xffffffff
};
#define DPRINTF(sc, m, fmt, ...) do { \
if (sc->sc_debug & (m)) \
printf(fmt, __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(sc, m, fmt, ...) do { \
(void) sc; \
} while (0)
#endif
static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY;
static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB;
/* various supported device vendors/products */
#define ZYD_ZD1211_DEV(v, p) \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 }
#define ZYD_ZD1211B_DEV(v, p) \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B }
static const struct zyd_type {
struct usb_devno dev;
uint8_t rev;
#define ZYD_ZD1211 0
#define ZYD_ZD1211B 1
} zyd_devs[] = {
ZYD_ZD1211_DEV(3COM2, 3CRUSB10075),
ZYD_ZD1211_DEV(ABOCOM, WL54),
ZYD_ZD1211_DEV(ASUS, WL159G),
ZYD_ZD1211_DEV(CYBERTAN, TG54USB),
ZYD_ZD1211_DEV(DRAYTEK, VIGOR550),
ZYD_ZD1211_DEV(PLANEX2, GWUS54GD),
ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL),
ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ),
ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI),
ZYD_ZD1211_DEV(SAGEM, XG760A),
ZYD_ZD1211_DEV(SENAO, NUB8301),
ZYD_ZD1211_DEV(SITECOMEU, WL113),
ZYD_ZD1211_DEV(SWEEX, ZD1211),
ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN),
ZYD_ZD1211_DEV(TEKRAM, ZD1211_1),
ZYD_ZD1211_DEV(TEKRAM, ZD1211_2),
ZYD_ZD1211_DEV(TWINMOS, G240),
ZYD_ZD1211_DEV(UMEDIA, ALL0298V2),
ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A),
ZYD_ZD1211_DEV(UMEDIA, TEW429UB),
ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G),
ZYD_ZD1211_DEV(ZCOM, ZD1211),
ZYD_ZD1211_DEV(ZYDAS, ZD1211),
ZYD_ZD1211_DEV(ZYXEL, AG225H),
ZYD_ZD1211_DEV(ZYXEL, ZYAIRG220),
ZYD_ZD1211_DEV(ZYXEL, G200V2),
ZYD_ZD1211_DEV(ZYXEL, G202),
ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG),
ZYD_ZD1211B_DEV(ACCTON, ZD1211B),
ZYD_ZD1211B_DEV(ASUS, A9T_WIFI),
ZYD_ZD1211B_DEV(BELKIN, F5D7050_V4000),
ZYD_ZD1211B_DEV(BELKIN, ZD1211B),
ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G),
ZYD_ZD1211B_DEV(FIBERLINE, WL430U),
ZYD_ZD1211B_DEV(MELCO, KG54L),
ZYD_ZD1211B_DEV(PHILIPS, SNU5600),
ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS),
ZYD_ZD1211B_DEV(SAGEM, XG76NA),
ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B),
ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1),
#if 0 /* Shall we needs? */
ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_1),
ZYD_ZD1211B_DEV(UNKNOWN1, ZD1211B_2),
ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B),
ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B),
#endif
ZYD_ZD1211B_DEV(USR, USR5423),
ZYD_ZD1211B_DEV(VTECH, ZD1211B),
ZYD_ZD1211B_DEV(ZCOM, ZD1211B),
ZYD_ZD1211B_DEV(ZYDAS, ZD1211B),
ZYD_ZD1211B_DEV(ZYXEL, M202),
ZYD_ZD1211B_DEV(ZYXEL, G220V2),
};
#define zyd_lookup(v, p) \
((const struct zyd_type *)usb_lookup(zyd_devs, v, p))
#define zyd_read16_m(sc, val, data) do { \
error = zyd_read16(sc, val, data); \
if (error != 0) \
goto fail; \
} while (0)
#define zyd_write16_m(sc, val, data) do { \
error = zyd_write16(sc, val, data); \
if (error != 0) \
goto fail; \
} while (0)
#define zyd_read32_m(sc, val, data) do { \
error = zyd_read32(sc, val, data); \
if (error != 0) \
goto fail; \
} while (0)
#define zyd_write32_m(sc, val, data) do { \
error = zyd_write32(sc, val, data); \
if (error != 0) \
goto fail; \
} while (0)
static device_probe_t zyd_match;
static device_attach_t zyd_attach;
static device_detach_t zyd_detach;
static struct ieee80211vap *zyd_vap_create(struct ieee80211com *,
const char name[IFNAMSIZ], int unit, int opmode,
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void zyd_vap_delete(struct ieee80211vap *);
static int zyd_open_pipes(struct zyd_softc *);
static void zyd_close_pipes(struct zyd_softc *);
static int zyd_alloc_tx_list(struct zyd_softc *);
static void zyd_free_tx_list(struct zyd_softc *);
static int zyd_alloc_rx_list(struct zyd_softc *);
static void zyd_free_rx_list(struct zyd_softc *);
static struct ieee80211_node *zyd_node_alloc(struct ieee80211vap *,
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void zyd_task(void *);
static int zyd_newstate(struct ieee80211vap *, enum ieee80211_state, int);
static int zyd_cmd(struct zyd_softc *, uint16_t, const void *, int,
void *, int, u_int);
static int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *);
static int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *);
static int zyd_write16(struct zyd_softc *, uint16_t, uint16_t);
static int zyd_write32(struct zyd_softc *, uint16_t, uint32_t);
static int zyd_rfwrite(struct zyd_softc *, uint32_t);
static int zyd_lock_phy(struct zyd_softc *);
static int zyd_unlock_phy(struct zyd_softc *);
static int zyd_rf_attach(struct zyd_softc *, uint8_t);
static const char *zyd_rf_name(uint8_t);
static int zyd_hw_init(struct zyd_softc *);
static int zyd_read_pod(struct zyd_softc *);
static int zyd_read_eeprom(struct zyd_softc *);
static int zyd_get_macaddr(struct zyd_softc *);
static int zyd_set_macaddr(struct zyd_softc *, const uint8_t *);
static int zyd_set_bssid(struct zyd_softc *, const uint8_t *);
static int zyd_switch_radio(struct zyd_softc *, int);
static int zyd_set_led(struct zyd_softc *, int, int);
static void zyd_set_multi(void *);
static void zyd_update_mcast(struct ifnet *);
static int zyd_set_rxfilter(struct zyd_softc *);
static void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *);
static int zyd_set_beacon_interval(struct zyd_softc *, int);
static void zyd_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
static void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t);
static void zyd_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
static void zyd_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
static int zyd_tx_mgt(struct zyd_softc *, struct mbuf *,
struct ieee80211_node *);
static int zyd_tx_data(struct zyd_softc *, struct mbuf *,
struct ieee80211_node *);
static void zyd_start(struct ifnet *);
static int zyd_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void zyd_watchdog(void *);
static int zyd_ioctl(struct ifnet *, u_long, caddr_t);
static void zyd_init_locked(struct zyd_softc *);
static void zyd_init(void *);
static void zyd_stop(struct zyd_softc *, int);
static int zyd_loadfirmware(struct zyd_softc *);
static void zyd_newassoc(struct ieee80211_node *, int);
static void zyd_scantask(void *);
static void zyd_scan_start(struct ieee80211com *);
static void zyd_scan_end(struct ieee80211com *);
static void zyd_set_channel(struct ieee80211com *);
static void zyd_wakeup(struct zyd_softc *);
static int zyd_rfmd_init(struct zyd_rf *);
static int zyd_rfmd_switch_radio(struct zyd_rf *, int);
static int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t);
static int zyd_al2230_init(struct zyd_rf *);
static int zyd_al2230_switch_radio(struct zyd_rf *, int);
static int zyd_al2230_set_channel(struct zyd_rf *, uint8_t);
static int zyd_al2230_set_channel_b(struct zyd_rf *, uint8_t);
static int zyd_al2230_init_b(struct zyd_rf *);
static int zyd_al7230B_init(struct zyd_rf *);
static int zyd_al7230B_switch_radio(struct zyd_rf *, int);
static int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t);
static int zyd_al2210_init(struct zyd_rf *);
static int zyd_al2210_switch_radio(struct zyd_rf *, int);
static int zyd_al2210_set_channel(struct zyd_rf *, uint8_t);
static int zyd_gct_init(struct zyd_rf *);
static int zyd_gct_switch_radio(struct zyd_rf *, int);
static int zyd_gct_set_channel(struct zyd_rf *, uint8_t);
static int zyd_maxim_init(struct zyd_rf *);
static int zyd_maxim_switch_radio(struct zyd_rf *, int);
static int zyd_maxim_set_channel(struct zyd_rf *, uint8_t);
static int zyd_maxim2_init(struct zyd_rf *);
static int zyd_maxim2_switch_radio(struct zyd_rf *, int);
static int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t);
static int
zyd_match(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
if (!uaa->iface)
return (UMATCH_NONE);
return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ?
(UMATCH_VENDOR_PRODUCT) : (UMATCH_NONE);
}
static int
zyd_attach(device_t dev)
{
int error = ENXIO;
struct ieee80211com *ic;
struct ifnet *ifp;
struct usb_attach_arg *uaa = device_get_ivars(dev);
struct zyd_softc *sc = device_get_softc(dev);
usb_device_descriptor_t* ddesc;
uint8_t bands;
sc->sc_dev = dev;
sc->sc_udev = uaa->device;
sc->sc_macrev = zyd_lookup(uaa->vendor, uaa->product)->rev;
#ifdef ZYD_DEBUG
sc->sc_debug = zyd_debug;
#endif
ddesc = usbd_get_device_descriptor(sc->sc_udev);
if (UGETW(ddesc->bcdDevice) < 0x4330) {
device_printf(dev, "device version mismatch: 0x%x "
"(only >= 43.30 supported)\n",
UGETW(ddesc->bcdDevice));
return (ENXIO);
}
if ((error = zyd_get_macaddr(sc)) != 0) {
device_printf(sc->sc_dev, "could not read EEPROM\n");
return (ENXIO);
}
mtx_init(&sc->sc_txmtx, device_get_nameunit(sc->sc_dev),
MTX_NETWORK_LOCK, MTX_DEF);
usb_init_task(&sc->sc_mcasttask, zyd_set_multi, sc);
usb_init_task(&sc->sc_scantask, zyd_scantask, sc);
usb_init_task(&sc->sc_task, zyd_task, sc);
callout_init(&sc->sc_watchdog_ch, 0);
STAILQ_INIT(&sc->sc_rqh);
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENXIO;
goto fail0;
}
ifp->if_softc = sc;
if_initname(ifp, "zyd", device_get_unit(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
IFF_NEEDSGIANT; /* USB stack is still under Giant lock */
ifp->if_init = zyd_init;
ifp->if_ioctl = zyd_ioctl;
ifp->if_start = zyd_start;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
IFQ_SET_READY(&ifp->if_snd);
ic = ifp->if_l2com;
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA;
IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_bssid);
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_BGSCAN /* capable of bg scanning */
| IEEE80211_C_WPA /* 802.11i */
;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
ieee80211_init_channels(ic, NULL, &bands);
ieee80211_ifattach(ic);
ic->ic_newassoc = zyd_newassoc;
ic->ic_raw_xmit = zyd_raw_xmit;
ic->ic_node_alloc = zyd_node_alloc;
ic->ic_scan_start = zyd_scan_start;
ic->ic_scan_end = zyd_scan_end;
ic->ic_set_channel = zyd_set_channel;
ic->ic_vap_create = zyd_vap_create;
ic->ic_vap_delete = zyd_vap_delete;
ic->ic_update_mcast = zyd_update_mcast;
bpfattach(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + sizeof(sc->sc_txtap));
sc->sc_rxtap_len = sizeof(sc->sc_rxtap);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtap);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT);
if (bootverbose)
ieee80211_announce(ic);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
return (0);
fail0: mtx_destroy(&sc->sc_txmtx);
return (error);
}
static int
zyd_detach(device_t dev)
{
struct zyd_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
if (!device_is_attached(dev))
return (0);
/* set a flag to indicate we're detaching. */
sc->sc_flags |= ZYD_FLAG_DETACHING;
zyd_stop(sc, 1);
bpfdetach(ifp);
ieee80211_ifdetach(ic);
zyd_wakeup(sc);
zyd_close_pipes(sc);
if_free(ifp);
mtx_destroy(&sc->sc_txmtx);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
return (0);
}
static struct ieee80211vap *
zyd_vap_create(struct ieee80211com *ic,
const char name[IFNAMSIZ], int unit, int opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct zyd_vap *zvp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return (NULL);
zvp = (struct zyd_vap *) malloc(sizeof(struct zyd_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (zvp == NULL)
return (NULL);
vap = &zvp->vap;
/* enable s/w bmiss handling for sta mode */
ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
/* override state transition machine */
zvp->newstate = vap->iv_newstate;
vap->iv_newstate = zyd_newstate;
ieee80211_amrr_init(&zvp->amrr, vap,
IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
1000 /* 1 sec */);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change,
ieee80211_media_status);
ic->ic_opmode = opmode;
return (vap);
}
static void
zyd_vap_delete(struct ieee80211vap *vap)
{
struct zyd_vap *zvp = ZYD_VAP(vap);
ieee80211_amrr_cleanup(&zvp->amrr);
ieee80211_vap_detach(vap);
free(zvp, M_80211_VAP);
}
static int
zyd_open_pipes(struct zyd_softc *sc)
{
usb_endpoint_descriptor_t *edesc;
int isize;
usbd_status error;
/* interrupt in */
edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83);
if (edesc == NULL)
return (EINVAL);
isize = UGETW(edesc->wMaxPacketSize);
if (isize == 0) /* should not happen */
return (EINVAL);
sc->sc_ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
if (sc->sc_ibuf == NULL)
return (ENOMEM);
error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK,
&sc->sc_ep[ZYD_ENDPT_IIN], sc, sc->sc_ibuf, isize, zyd_intr,
USBD_DEFAULT_INTERVAL);
if (error != 0) {
device_printf(sc->sc_dev, "open rx intr pipe failed: %s\n",
usbd_errstr(error));
goto fail;
}
/* interrupt out (not necessarily an interrupt pipe) */
error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE,
&sc->sc_ep[ZYD_ENDPT_IOUT]);
if (error != 0) {
device_printf(sc->sc_dev, "open tx intr pipe failed: %s\n",
usbd_errstr(error));
goto fail;
}
/* bulk in */
error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE,
&sc->sc_ep[ZYD_ENDPT_BIN]);
if (error != 0) {
device_printf(sc->sc_dev, "open rx pipe failed: %s\n",
usbd_errstr(error));
goto fail;
}
/* bulk out */
error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE,
&sc->sc_ep[ZYD_ENDPT_BOUT]);
if (error != 0) {
device_printf(sc->sc_dev, "open tx pipe failed: %s\n",
usbd_errstr(error));
goto fail;
}
return (0);
fail: zyd_close_pipes(sc);
return (ENXIO);
}
static void
zyd_close_pipes(struct zyd_softc *sc)
{
int i;
for (i = 0; i < ZYD_ENDPT_CNT; i++) {
if (sc->sc_ep[i] != NULL) {
usbd_abort_pipe(sc->sc_ep[i]);
usbd_close_pipe(sc->sc_ep[i]);
sc->sc_ep[i] = NULL;
}
}
if (sc->sc_ibuf != NULL) {
free(sc->sc_ibuf, M_USBDEV);
sc->sc_ibuf = NULL;
}
}
static int
zyd_alloc_tx_list(struct zyd_softc *sc)
{
int i, error;
sc->sc_txqueued = 0;
for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
struct zyd_tx_data *data = &sc->sc_txdata[i];
data->sc = sc; /* backpointer for callbacks */
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
device_printf(sc->sc_dev,
"could not allocate tx xfer\n");
error = ENOMEM;
goto fail;
}
data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ);
if (data->buf == NULL) {
device_printf(sc->sc_dev,
"could not allocate tx buffer\n");
error = ENOMEM;
goto fail;
}
/* clear Tx descriptor */
bzero(data->buf, sizeof(struct zyd_tx_desc));
}
return (0);
fail: zyd_free_tx_list(sc);
return (error);
}
static void
zyd_free_tx_list(struct zyd_softc *sc)
{
int i;
for (i = 0; i < ZYD_TX_LIST_CNT; i++) {
struct zyd_tx_data *data = &sc->sc_txdata[i];
if (data->xfer != NULL) {
usbd_free_xfer(data->xfer);
data->xfer = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
}
static int
zyd_alloc_rx_list(struct zyd_softc *sc)
{
int i, error;
for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
struct zyd_rx_data *data = &sc->sc_rxdata[i];
data->sc = sc; /* backpointer for callbacks */
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx xfer\n");
error = ENOMEM;
goto fail;
}
data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ);
if (data->buf == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx buffer\n");
error = ENOMEM;
goto fail;
}
}
return (0);
fail: zyd_free_rx_list(sc);
return (error);
}
static void
zyd_free_rx_list(struct zyd_softc *sc)
{
int i;
for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
struct zyd_rx_data *data = &sc->sc_rxdata[i];
if (data->xfer != NULL) {
usbd_free_xfer(data->xfer);
data->xfer = NULL;
}
}
}
/* ARGUSED */
static struct ieee80211_node *
zyd_node_alloc(struct ieee80211vap *vap __unused,
const uint8_t mac[IEEE80211_ADDR_LEN] __unused)
{
struct zyd_node *zn;
zn = malloc(sizeof(struct zyd_node), M_80211_NODE, M_NOWAIT | M_ZERO);
return (zn != NULL) ? (&zn->ni) : (NULL);
}
static void
zyd_task(void *arg)
{
int error;
struct zyd_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ieee80211_node *ni = vap->iv_bss;
struct zyd_vap *zvp = ZYD_VAP(vap);
switch (sc->sc_state) {
case IEEE80211_S_AUTH:
zyd_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_RUN:
if (vap->iv_opmode == IEEE80211_M_MONITOR)
break;
/* turn link LED on */
error = zyd_set_led(sc, ZYD_LED1, 1);
if (error != 0)
goto fail;
/* make data LED blink upon Tx */
zyd_write32_m(sc, sc->sc_fwbase + ZYD_FW_LINK_STATUS, 1);
IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
zyd_set_bssid(sc, sc->sc_bssid);
break;
default:
break;
}
fail:
IEEE80211_LOCK(ic);
zvp->newstate(vap, sc->sc_state, sc->sc_arg);
if (vap->iv_newstate_cb != NULL)
vap->iv_newstate_cb(vap, sc->sc_state, sc->sc_arg);
IEEE80211_UNLOCK(ic);
}
static int
zyd_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct zyd_vap *zvp = ZYD_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct zyd_softc *sc = ic->ic_ifp->if_softc;
DPRINTF(sc, ZYD_DEBUG_STATE, "%s: %s -> %s\n", __func__,
ieee80211_state_name[vap->iv_state],
ieee80211_state_name[nstate]);
usb_rem_task(sc->sc_udev, &sc->sc_scantask);
usb_rem_task(sc->sc_udev, &sc->sc_task);
callout_stop(&sc->sc_watchdog_ch);
/* do it in a process context */
sc->sc_state = nstate;
sc->sc_arg = arg;
if (nstate == IEEE80211_S_INIT) {
zvp->newstate(vap, nstate, arg);
return (0);
} else {
usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
return (EINPROGRESS);
}
}
static int
zyd_cmd(struct zyd_softc *sc, uint16_t code, const void *idata, int ilen,
void *odata, int olen, u_int flags)
{
usbd_xfer_handle xfer;
struct zyd_cmd cmd;
struct zyd_rq rq;
uint16_t xferflags;
usbd_status error;
if (sc->sc_flags & ZYD_FLAG_DETACHING)
return (ENXIO);
if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL)
return (ENOMEM);
cmd.code = htole16(code);
bcopy(idata, cmd.data, ilen);
xferflags = USBD_FORCE_SHORT_XFER;
if (!(flags & ZYD_CMD_FLAG_READ))
xferflags |= USBD_SYNCHRONOUS;
else {
rq.idata = idata;
rq.odata = odata;
rq.len = olen / sizeof(struct zyd_pair);
STAILQ_INSERT_TAIL(&sc->sc_rqh, &rq, rq);
}
usbd_setup_xfer(xfer, sc->sc_ep[ZYD_ENDPT_IOUT], 0, &cmd,
sizeof(uint16_t) + ilen, xferflags, ZYD_INTR_TIMEOUT, NULL);
error = usbd_transfer(xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
device_printf(sc->sc_dev, "could not send command (error=%s)\n",
usbd_errstr(error));
(void)usbd_free_xfer(xfer);
return (EIO);
}
if (!(flags & ZYD_CMD_FLAG_READ)) {
(void)usbd_free_xfer(xfer);
return (0); /* write: don't wait for reply */
}
/* wait at most one second for command reply */
error = tsleep(odata, PCATCH, "zydcmd", hz);
if (error == EWOULDBLOCK)
device_printf(sc->sc_dev, "zyd_read sleep timeout\n");
STAILQ_REMOVE(&sc->sc_rqh, &rq, zyd_rq, rq);
(void)usbd_free_xfer(xfer);
return (error);
}
static int
zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val)
{
struct zyd_pair tmp;
int error;
reg = htole16(reg);
error = zyd_cmd(sc, ZYD_CMD_IORD, &reg, sizeof(reg), &tmp, sizeof(tmp),
ZYD_CMD_FLAG_READ);
if (error == 0)
*val = le16toh(tmp.val);
return (error);
}
static int
zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val)
{
struct zyd_pair tmp[2];
uint16_t regs[2];
int error;
regs[0] = htole16(ZYD_REG32_HI(reg));
regs[1] = htole16(ZYD_REG32_LO(reg));
error = zyd_cmd(sc, ZYD_CMD_IORD, regs, sizeof(regs), tmp, sizeof(tmp),
ZYD_CMD_FLAG_READ);
if (error == 0)
*val = le16toh(tmp[0].val) << 16 | le16toh(tmp[1].val);
return (error);
}
static int
zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val)
{
struct zyd_pair pair;
pair.reg = htole16(reg);
pair.val = htole16(val);
return zyd_cmd(sc, ZYD_CMD_IOWR, &pair, sizeof(pair), NULL, 0, 0);
}
static int
zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val)
{
struct zyd_pair pair[2];
pair[0].reg = htole16(ZYD_REG32_HI(reg));
pair[0].val = htole16(val >> 16);
pair[1].reg = htole16(ZYD_REG32_LO(reg));
pair[1].val = htole16(val & 0xffff);
return zyd_cmd(sc, ZYD_CMD_IOWR, pair, sizeof(pair), NULL, 0, 0);
}
static int
zyd_rfwrite(struct zyd_softc *sc, uint32_t val)
{
struct zyd_rf *rf = &sc->sc_rf;
struct zyd_rfwrite_cmd req;
uint16_t cr203;
int error, i;
zyd_read16_m(sc, ZYD_CR203, &cr203);
cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA);
req.code = htole16(2);
req.width = htole16(rf->width);
for (i = 0; i < rf->width; i++) {
req.bit[i] = htole16(cr203);
if (val & (1 << (rf->width - 1 - i)))
req.bit[i] |= htole16(ZYD_RF_DATA);
}
error = zyd_cmd(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width, NULL, 0, 0);
fail:
return (error);
}
static int
zyd_rfwrite_cr(struct zyd_softc *sc, uint32_t val)
{
int error;
zyd_write16_m(sc, ZYD_CR244, (val >> 16) & 0xff);
zyd_write16_m(sc, ZYD_CR243, (val >> 8) & 0xff);
zyd_write16_m(sc, ZYD_CR242, (val >> 0) & 0xff);
fail:
return (error);
}
static int
zyd_lock_phy(struct zyd_softc *sc)
{
int error;
uint32_t tmp;
zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
tmp &= ~ZYD_UNLOCK_PHY_REGS;
zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
fail:
return (error);
}
static int
zyd_unlock_phy(struct zyd_softc *sc)
{
int error;
uint32_t tmp;
zyd_read32_m(sc, ZYD_MAC_MISC, &tmp);
tmp |= ZYD_UNLOCK_PHY_REGS;
zyd_write32_m(sc, ZYD_MAC_MISC, tmp);
fail:
return (error);
}
/*
* RFMD RF methods.
*/
static int
zyd_rfmd_init(struct zyd_rf *rf)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY;
static const uint32_t rfini[] = ZYD_RFMD_RF;
int i, error;
/* init RF-dependent PHY registers */
for (i = 0; i < N(phyini); i++) {
zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
}
/* init RFMD radio */
for (i = 0; i < N(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return (error);
}
fail:
return (error);
#undef N
}
static int
zyd_rfmd_switch_radio(struct zyd_rf *rf, int on)
{
int error;
struct zyd_softc *sc = rf->rf_sc;
zyd_write16_m(sc, ZYD_CR10, on ? 0x89 : 0x15);
zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x81);
fail:
return (error);
}
static int
zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan)
{
int error;
struct zyd_softc *sc = rf->rf_sc;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_RFMD_CHANTABLE;
error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
if (error != 0)
goto fail;
error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
if (error != 0)
goto fail;
fail:
return (error);
}
/*
* AL2230 RF methods.
*/
static int
zyd_al2230_init(struct zyd_rf *rf)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY;
static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
static const struct zyd_phy_pair phypll[] = {
{ ZYD_CR251, 0x2f }, { ZYD_CR251, 0x3f },
{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 }
};
static const uint32_t rfini1[] = ZYD_AL2230_RF_PART1;
static const uint32_t rfini2[] = ZYD_AL2230_RF_PART2;
static const uint32_t rfini3[] = ZYD_AL2230_RF_PART3;
int i, error;
/* init RF-dependent PHY registers */
for (i = 0; i < N(phyini); i++)
zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0) {
for (i = 0; i < N(phy2230s); i++)
zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
}
/* init AL2230 radio */
for (i = 0; i < N(rfini1); i++) {
error = zyd_rfwrite(sc, rfini1[i]);
if (error != 0)
goto fail;
}
if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
error = zyd_rfwrite(sc, 0x000824);
else
error = zyd_rfwrite(sc, 0x0005a4);
if (error != 0)
goto fail;
for (i = 0; i < N(rfini2); i++) {
error = zyd_rfwrite(sc, rfini2[i]);
if (error != 0)
goto fail;
}
for (i = 0; i < N(phypll); i++)
zyd_write16_m(sc, phypll[i].reg, phypll[i].val);
for (i = 0; i < N(rfini3); i++) {
error = zyd_rfwrite(sc, rfini3[i]);
if (error != 0)
goto fail;
}
fail:
return (error);
#undef N
}
static int
zyd_al2230_fini(struct zyd_rf *rf)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
int error, i;
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phy[] = ZYD_AL2230_PHY_FINI_PART1;
for (i = 0; i < N(phy); i++)
zyd_write16_m(sc, phy[i].reg, phy[i].val);
if (sc->sc_newphy != 0)
zyd_write16_m(sc, ZYD_CR9, 0xe1);
zyd_write16_m(sc, ZYD_CR203, 0x6);
fail:
return (error);
#undef N
}
static int
zyd_al2230_init_b(struct zyd_rf *rf)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
static const struct zyd_phy_pair phy2[] = ZYD_AL2230_PHY_PART2;
static const struct zyd_phy_pair phy3[] = ZYD_AL2230_PHY_PART3;
static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT;
static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B;
static const uint32_t rfini_part1[] = ZYD_AL2230_RF_B_PART1;
static const uint32_t rfini_part2[] = ZYD_AL2230_RF_B_PART2;
static const uint32_t rfini_part3[] = ZYD_AL2230_RF_B_PART3;
static const uint32_t zyd_al2230_chtable[][3] = ZYD_AL2230_CHANTABLE;
int i, error;
for (i = 0; i < N(phy1); i++)
zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
/* init RF-dependent PHY registers */
for (i = 0; i < N(phyini); i++)
zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
zyd_write16_m(sc, phy2230s[i].reg, phy2230s[i].val);
for (i = 0; i < 3; i++) {
error = zyd_rfwrite_cr(sc, zyd_al2230_chtable[0][i]);
if (error != 0)
return (error);
}
for (i = 0; i < N(rfini_part1); i++) {
error = zyd_rfwrite_cr(sc, rfini_part1[i]);
if (error != 0)
return (error);
}
if (sc->sc_rfrev == ZYD_RF_AL2230S || sc->sc_al2230s != 0)
error = zyd_rfwrite(sc, 0x241000);
else
error = zyd_rfwrite(sc, 0x25a000);
if (error != 0)
goto fail;
for (i = 0; i < N(rfini_part2); i++) {
error = zyd_rfwrite_cr(sc, rfini_part2[i]);
if (error != 0)
return (error);
}
for (i = 0; i < N(phy2); i++)
zyd_write16_m(sc, phy2[i].reg, phy2[i].val);
for (i = 0; i < N(rfini_part3); i++) {
error = zyd_rfwrite_cr(sc, rfini_part3[i]);
if (error != 0)
return (error);
}
for (i = 0; i < N(phy3); i++)
zyd_write16_m(sc, phy3[i].reg, phy3[i].val);
error = zyd_al2230_fini(rf);
fail:
return (error);
#undef N
}
static int
zyd_al2230_switch_radio(struct zyd_rf *rf, int on)
{
struct zyd_softc *sc = rf->rf_sc;
int error, on251 = (sc->sc_macrev == ZYD_ZD1211) ? 0x3f : 0x7f;
zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04);
zyd_write16_m(sc, ZYD_CR251, on ? on251 : 0x2f);
fail:
return (error);
}
static int
zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
int error, i;
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phy1[] = {
{ ZYD_CR138, 0x28 }, { ZYD_CR203, 0x06 },
};
static const struct {
uint32_t r1, r2, r3;
} rfprog[] = ZYD_AL2230_CHANTABLE;
error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
if (error != 0)
goto fail;
error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
if (error != 0)
goto fail;
error = zyd_rfwrite(sc, rfprog[chan - 1].r3);
if (error != 0)
goto fail;
for (i = 0; i < N(phy1); i++)
zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
fail:
return (error);
#undef N
}
static int
zyd_al2230_set_channel_b(struct zyd_rf *rf, uint8_t chan)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
int error, i;
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phy1[] = ZYD_AL2230_PHY_PART1;
static const struct {
uint32_t r1, r2, r3;
} rfprog[] = ZYD_AL2230_CHANTABLE_B;
for (i = 0; i < N(phy1); i++)
zyd_write16_m(sc, phy1[i].reg, phy1[i].val);
error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r1);
if (error != 0)
goto fail;
error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r2);
if (error != 0)
goto fail;
error = zyd_rfwrite_cr(sc, rfprog[chan - 1].r3);
if (error != 0)
goto fail;
error = zyd_al2230_fini(rf);
fail:
return (error);
#undef N
}
#define ZYD_AL2230_PHY_BANDEDGE6 \
{ \
{ ZYD_CR128, 0x14 }, { ZYD_CR129, 0x12 }, { ZYD_CR130, 0x10 }, \
{ ZYD_CR47, 0x1e } \
}
static int
zyd_al2230_bandedge6(struct zyd_rf *rf, struct ieee80211_channel *c)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
int error = 0, i;
struct zyd_softc *sc = rf->rf_sc;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct zyd_phy_pair r[] = ZYD_AL2230_PHY_BANDEDGE6;
u_int chan = ieee80211_chan2ieee(ic, c);
if (chan == 1 || chan == 11)
r[0].val = 0x12;
for (i = 0; i < N(r); i++)
zyd_write16_m(sc, r[i].reg, r[i].val);
fail:
return (error);
#undef N
}
/*
* AL7230B RF methods.
*/
static int
zyd_al7230B_init(struct zyd_rf *rf)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1;
static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2;
static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3;
static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1;
static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2;
int i, error;
/* for AL7230B, PHY and RF need to be initialized in "phases" */
/* init RF-dependent PHY registers, part one */
for (i = 0; i < N(phyini_1); i++)
zyd_write16_m(sc, phyini_1[i].reg, phyini_1[i].val);
/* init AL7230B radio, part one */
for (i = 0; i < N(rfini_1); i++) {
if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0)
return (error);
}
/* init RF-dependent PHY registers, part two */
for (i = 0; i < N(phyini_2); i++)
zyd_write16_m(sc, phyini_2[i].reg, phyini_2[i].val);
/* init AL7230B radio, part two */
for (i = 0; i < N(rfini_2); i++) {
if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0)
return (error);
}
/* init RF-dependent PHY registers, part three */
for (i = 0; i < N(phyini_3); i++)
zyd_write16_m(sc, phyini_3[i].reg, phyini_3[i].val);
fail:
return (error);
#undef N
}
static int
zyd_al7230B_switch_radio(struct zyd_rf *rf, int on)
{
int error;
struct zyd_softc *sc = rf->rf_sc;
zyd_write16_m(sc, ZYD_CR11, on ? 0x00 : 0x04);
zyd_write16_m(sc, ZYD_CR251, on ? 0x3f : 0x2f);
fail:
return (error);
}
static int
zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
struct zyd_softc *sc = rf->rf_sc;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_AL7230B_CHANTABLE;
static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL;
int i, error;
zyd_write16_m(sc, ZYD_CR240, 0x57);
zyd_write16_m(sc, ZYD_CR251, 0x2f);
for (i = 0; i < N(rfsc); i++) {
if ((error = zyd_rfwrite(sc, rfsc[i])) != 0)
return (error);
}
zyd_write16_m(sc, ZYD_CR128, 0x14);
zyd_write16_m(sc, ZYD_CR129, 0x12);
zyd_write16_m(sc, ZYD_CR130, 0x10);
zyd_write16_m(sc, ZYD_CR38, 0x38);
zyd_write16_m(sc, ZYD_CR136, 0xdf);
error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
if (error != 0)
goto fail;
error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
if (error != 0)
goto fail;
error = zyd_rfwrite(sc, 0x3c9000);
if (error != 0)
goto fail;
zyd_write16_m(sc, ZYD_CR251, 0x3f);
zyd_write16_m(sc, ZYD_CR203, 0x06);
zyd_write16_m(sc, ZYD_CR240, 0x08);
fail:
return (error);
#undef N
}
/*
* AL2210 RF methods.
*/
static int
zyd_al2210_init(struct zyd_rf *rf)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY;
static const uint32_t rfini[] = ZYD_AL2210_RF;
uint32_t tmp;
int i, error;
zyd_write32_m(sc, ZYD_CR18, 2);
/* init RF-dependent PHY registers */
for (i = 0; i < N(phyini); i++)
zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
/* init AL2210 radio */
for (i = 0; i < N(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return (error);
}
zyd_write16_m(sc, ZYD_CR47, 0x1e);
zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
zyd_write16_m(sc, ZYD_CR47, 0x1e);
zyd_write32_m(sc, ZYD_CR18, 3);
fail:
return (error);
#undef N
}
static int
zyd_al2210_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return (0);
}
static int
zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan)
{
int error;
struct zyd_softc *sc = rf->rf_sc;
static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE;
uint32_t tmp;
zyd_write32_m(sc, ZYD_CR18, 2);
zyd_write16_m(sc, ZYD_CR47, 0x1e);
zyd_read32_m(sc, ZYD_CR_RADIO_PD, &tmp);
zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp & ~1);
zyd_write32_m(sc, ZYD_CR_RADIO_PD, tmp | 1);
zyd_write32_m(sc, ZYD_CR_RFCFG, 0x05);
zyd_write32_m(sc, ZYD_CR_RFCFG, 0x00);
zyd_write16_m(sc, ZYD_CR47, 0x1e);
/* actually set the channel */
error = zyd_rfwrite(sc, rfprog[chan - 1]);
if (error != 0)
goto fail;
zyd_write32_m(sc, ZYD_CR18, 3);
fail:
return (error);
}
/*
* GCT RF methods.
*/
static int
zyd_gct_init(struct zyd_rf *rf)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY;
static const uint32_t rfini[] = ZYD_GCT_RF;
int i, error;
/* init RF-dependent PHY registers */
for (i = 0; i < N(phyini); i++)
zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
/* init cgt radio */
for (i = 0; i < N(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return (error);
}
fail:
return (error);
#undef N
}
static int
zyd_gct_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return (0);
}
static int
zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan)
{
int error;
struct zyd_softc *sc = rf->rf_sc;
static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE;
error = zyd_rfwrite(sc, 0x1c0000);
if (error != 0)
goto fail;
error = zyd_rfwrite(sc, rfprog[chan - 1]);
if (error != 0)
goto fail;
error = zyd_rfwrite(sc, 0x1c0008);
fail:
return (error);
}
/*
* Maxim RF methods.
*/
static int
zyd_maxim_init(struct zyd_rf *rf)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
static const uint32_t rfini[] = ZYD_MAXIM_RF;
uint16_t tmp;
int i, error;
/* init RF-dependent PHY registers */
for (i = 0; i < N(phyini); i++)
zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
zyd_read16_m(sc, ZYD_CR203, &tmp);
zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
/* init maxim radio */
for (i = 0; i < N(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return (error);
}
zyd_read16_m(sc, ZYD_CR203, &tmp);
zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
fail:
return (error);
#undef N
}
static int
zyd_maxim_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return (0);
}
static int
zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY;
static const uint32_t rfini[] = ZYD_MAXIM_RF;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_MAXIM_CHANTABLE;
uint16_t tmp;
int i, error;
/*
* Do the same as we do when initializing it, except for the channel
* values coming from the two channel tables.
*/
/* init RF-dependent PHY registers */
for (i = 0; i < N(phyini); i++)
zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
zyd_read16_m(sc, ZYD_CR203, &tmp);
zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
/* first two values taken from the chantables */
error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
if (error != 0)
goto fail;
error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
if (error != 0)
goto fail;
/* init maxim radio - skipping the two first values */
for (i = 2; i < N(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return (error);
}
zyd_read16_m(sc, ZYD_CR203, &tmp);
zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
fail:
return (error);
#undef N
}
/*
* Maxim2 RF methods.
*/
static int
zyd_maxim2_init(struct zyd_rf *rf)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
static const uint32_t rfini[] = ZYD_MAXIM2_RF;
uint16_t tmp;
int i, error;
/* init RF-dependent PHY registers */
for (i = 0; i < N(phyini); i++)
zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
zyd_read16_m(sc, ZYD_CR203, &tmp);
zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
/* init maxim2 radio */
for (i = 0; i < N(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return (error);
}
zyd_read16_m(sc, ZYD_CR203, &tmp);
zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
fail:
return (error);
#undef N
}
static int
zyd_maxim2_switch_radio(struct zyd_rf *rf, int on)
{
/* vendor driver does nothing for this RF chip */
return (0);
}
static int
zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan)
{
#define N(a) (sizeof(a) / sizeof((a)[0]))
struct zyd_softc *sc = rf->rf_sc;
static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY;
static const uint32_t rfini[] = ZYD_MAXIM2_RF;
static const struct {
uint32_t r1, r2;
} rfprog[] = ZYD_MAXIM2_CHANTABLE;
uint16_t tmp;
int i, error;
/*
* Do the same as we do when initializing it, except for the channel
* values coming from the two channel tables.
*/
/* init RF-dependent PHY registers */
for (i = 0; i < N(phyini); i++)
zyd_write16_m(sc, phyini[i].reg, phyini[i].val);
zyd_read16_m(sc, ZYD_CR203, &tmp);
zyd_write16_m(sc, ZYD_CR203, tmp & ~(1 << 4));
/* first two values taken from the chantables */
error = zyd_rfwrite(sc, rfprog[chan - 1].r1);
if (error != 0)
goto fail;
error = zyd_rfwrite(sc, rfprog[chan - 1].r2);
if (error != 0)
goto fail;
/* init maxim2 radio - skipping the two first values */
for (i = 2; i < N(rfini); i++) {
if ((error = zyd_rfwrite(sc, rfini[i])) != 0)
return (error);
}
zyd_read16_m(sc, ZYD_CR203, &tmp);
zyd_write16_m(sc, ZYD_CR203, tmp | (1 << 4));
fail:
return (error);
#undef N
}
static int
zyd_rf_attach(struct zyd_softc *sc, uint8_t type)
{
struct zyd_rf *rf = &sc->sc_rf;
rf->rf_sc = sc;
switch (type) {
case ZYD_RF_RFMD:
rf->init = zyd_rfmd_init;
rf->switch_radio = zyd_rfmd_switch_radio;
rf->set_channel = zyd_rfmd_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL2230:
case ZYD_RF_AL2230S:
if (sc->sc_macrev == ZYD_ZD1211B) {
rf->init = zyd_al2230_init_b;
rf->set_channel = zyd_al2230_set_channel_b;
} else {
rf->init = zyd_al2230_init;
rf->set_channel = zyd_al2230_set_channel;
}
rf->switch_radio = zyd_al2230_switch_radio;
rf->bandedge6 = zyd_al2230_bandedge6;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL7230B:
rf->init = zyd_al7230B_init;
rf->switch_radio = zyd_al7230B_switch_radio;
rf->set_channel = zyd_al7230B_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_AL2210:
rf->init = zyd_al2210_init;
rf->switch_radio = zyd_al2210_switch_radio;
rf->set_channel = zyd_al2210_set_channel;
rf->width = 24; /* 24-bit RF values */
break;
case ZYD_RF_GCT:
rf->init = zyd_gct_init;
rf->switch_radio = zyd_gct_switch_radio;
rf->set_channel = zyd_gct_set_channel;
rf->width = 21; /* 21-bit RF values */
break;
case ZYD_RF_MAXIM_NEW:
rf->init = zyd_maxim_init;
rf->switch_radio = zyd_maxim_switch_radio;
rf->set_channel = zyd_maxim_set_channel;
rf->width = 18; /* 18-bit RF values */
break;
case ZYD_RF_MAXIM_NEW2:
rf->init = zyd_maxim2_init;
rf->switch_radio = zyd_maxim2_switch_radio;
rf->set_channel = zyd_maxim2_set_channel;
rf->width = 18; /* 18-bit RF values */
break;
default:
device_printf(sc->sc_dev,
"sorry, radio \"%s\" is not supported yet\n",
zyd_rf_name(type));
return (EINVAL);
}
return (0);
}
static const char *
zyd_rf_name(uint8_t type)
{
static const char * const zyd_rfs[] = {
"unknown", "unknown", "UW2451", "UCHIP", "AL2230",
"AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT",
"AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2",
"PHILIPS"
};
return zyd_rfs[(type > 15) ? 0 : type];
}
static int
zyd_hw_init(struct zyd_softc *sc)
{
int error;
const struct zyd_phy_pair *phyp;
struct zyd_rf *rf = &sc->sc_rf;
uint16_t val;
/* specify that the plug and play is finished */
zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
zyd_read16_m(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->sc_fwbase);
DPRINTF(sc, ZYD_DEBUG_FW, "firmware base address=0x%04x\n",
sc->sc_fwbase);
/* retrieve firmware revision number */
zyd_read16_m(sc, sc->sc_fwbase + ZYD_FW_FIRMWARE_REV, &sc->sc_fwrev);
zyd_write32_m(sc, ZYD_CR_GPI_EN, 0);
zyd_write32_m(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f);
/* set mandatory rates - XXX assumes 802.11b/g */
zyd_write32_m(sc, ZYD_MAC_MAN_RATE, 0x150f);
/* disable interrupts */
zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
if ((error = zyd_read_pod(sc)) != 0) {
device_printf(sc->sc_dev, "could not read EEPROM\n");
goto fail;
}
/* PHY init (resetting) */
error = zyd_lock_phy(sc);
if (error != 0)
goto fail;
phyp = (sc->sc_macrev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy;
for (; phyp->reg != 0; phyp++)
zyd_write16_m(sc, phyp->reg, phyp->val);
if (sc->sc_macrev == ZYD_ZD1211 && sc->sc_fix_cr157 != 0) {
zyd_read16_m(sc, ZYD_EEPROM_PHY_REG, &val);
zyd_write32_m(sc, ZYD_CR157, val >> 8);
}
error = zyd_unlock_phy(sc);
if (error != 0)
goto fail;
/* HMAC init */
zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000020);
zyd_write32_m(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808);
zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0x00000000);
zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0x00000000);
zyd_write32_m(sc, ZYD_MAC_GHTBL, 0x00000000);
zyd_write32_m(sc, ZYD_MAC_GHTBH, 0x80000000);
zyd_write32_m(sc, ZYD_MAC_MISC, 0x000000a4);
zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f);
zyd_write32_m(sc, ZYD_MAC_BCNCFG, 0x00f00401);
zyd_write32_m(sc, ZYD_MAC_PHY_DELAY2, 0x00000000);
zyd_write32_m(sc, ZYD_MAC_ACK_EXT, 0x00000080);
zyd_write32_m(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000);
zyd_write32_m(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100);
zyd_write32_m(sc, ZYD_CR_RX_PE_DELAY, 0x00000070);
zyd_write32_m(sc, ZYD_CR_PS_CTRL, 0x10000000);
zyd_write32_m(sc, ZYD_MAC_RTSCTSRATE, 0x02030203);
zyd_write32_m(sc, ZYD_MAC_AFTER_PNP, 1);
zyd_write32_m(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114);
zyd_write32_m(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0a47c032);
zyd_write32_m(sc, ZYD_MAC_CAM_MODE, 0x3);
if (sc->sc_macrev == ZYD_ZD1211) {
zyd_write32_m(sc, ZYD_MAC_RETRY, 0x00000002);
zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640);
} else {
zyd_write32_m(sc, ZYD_MACB_MAX_RETRY, 0x02020202);
zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f);
zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f);
zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f);
zyd_write32_m(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f);
zyd_write32_m(sc, ZYD_MACB_AIFS_CTL1, 0x00280028);
zyd_write32_m(sc, ZYD_MACB_AIFS_CTL2, 0x008C003C);
zyd_write32_m(sc, ZYD_MACB_TXOP, 0x01800824);
zyd_write32_m(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0eff);
}
/* init beacon interval to 100ms */
if ((error = zyd_set_beacon_interval(sc, 100)) != 0)
goto fail;
if ((error = zyd_rf_attach(sc, sc->sc_rfrev)) != 0) {
device_printf(sc->sc_dev, "could not attach RF, rev 0x%x\n",
sc->sc_rfrev);
goto fail;
}
/* RF chip init */
error = zyd_lock_phy(sc);
if (error != 0)
goto fail;
error = (*rf->init)(rf);
if (error != 0) {
device_printf(sc->sc_dev,
"radio initialization failed, error %d\n", error);
goto fail;
}
error = zyd_unlock_phy(sc);
if (error != 0)
goto fail;
if ((error = zyd_read_eeprom(sc)) != 0) {
device_printf(sc->sc_dev, "could not read EEPROM\n");
goto fail;
}
fail: return (error);
}
static int
zyd_read_pod(struct zyd_softc *sc)
{
int error;
uint32_t tmp;
zyd_read32_m(sc, ZYD_EEPROM_POD, &tmp);
sc->sc_rfrev = tmp & 0x0f;
sc->sc_ledtype = (tmp >> 4) & 0x01;
sc->sc_al2230s = (tmp >> 7) & 0x01;
sc->sc_cckgain = (tmp >> 8) & 0x01;
sc->sc_fix_cr157 = (tmp >> 13) & 0x01;
sc->sc_parev = (tmp >> 16) & 0x0f;
sc->sc_bandedge6 = (tmp >> 21) & 0x01;
sc->sc_newphy = (tmp >> 31) & 0x01;
sc->sc_txled = ((tmp & (1 << 24)) && (tmp & (1 << 29))) ? 0 : 1;
fail:
return (error);
}
static int
zyd_read_eeprom(struct zyd_softc *sc)
{
uint16_t val;
int error, i;
/* read Tx power calibration tables */
for (i = 0; i < 7; i++) {
zyd_read16_m(sc, ZYD_EEPROM_PWR_CAL + i, &val);
sc->sc_pwrcal[i * 2] = val >> 8;
sc->sc_pwrcal[i * 2 + 1] = val & 0xff;
zyd_read16_m(sc, ZYD_EEPROM_PWR_INT + i, &val);
sc->sc_pwrint[i * 2] = val >> 8;
sc->sc_pwrint[i * 2 + 1] = val & 0xff;
zyd_read16_m(sc, ZYD_EEPROM_36M_CAL + i, &val);
sc->sc_ofdm36_cal[i * 2] = val >> 8;
sc->sc_ofdm36_cal[i * 2 + 1] = val & 0xff;
zyd_read16_m(sc, ZYD_EEPROM_48M_CAL + i, &val);
sc->sc_ofdm48_cal[i * 2] = val >> 8;
sc->sc_ofdm48_cal[i * 2 + 1] = val & 0xff;
zyd_read16_m(sc, ZYD_EEPROM_54M_CAL + i, &val);
sc->sc_ofdm54_cal[i * 2] = val >> 8;
sc->sc_ofdm54_cal[i * 2 + 1] = val & 0xff;
}
fail:
return (error);
}
static int
zyd_get_macaddr(struct zyd_softc *sc)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = ZYD_READFWDATAREQ;
USETW(req.wValue, ZYD_EEPROM_MAC_ADDR_P1);
USETW(req.wIndex, 0);
USETW(req.wLength, IEEE80211_ADDR_LEN);
error = usbd_do_request(sc->sc_udev, &req, sc->sc_bssid);
if (error != 0) {
device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
usbd_errstr(error));
}
return (error);
}
static int
zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr)
{
int error;
uint32_t tmp;
tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
zyd_write32_m(sc, ZYD_MAC_MACADRL, tmp);
tmp = addr[5] << 8 | addr[4];
zyd_write32_m(sc, ZYD_MAC_MACADRH, tmp);
fail:
return (error);
}
static int
zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr)
{
int error;
uint32_t tmp;
tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0];
zyd_write32_m(sc, ZYD_MAC_BSSADRL, tmp);
tmp = addr[5] << 8 | addr[4];
zyd_write32_m(sc, ZYD_MAC_BSSADRH, tmp);
fail:
return (error);
}
static int
zyd_switch_radio(struct zyd_softc *sc, int on)
{
struct zyd_rf *rf = &sc->sc_rf;
int error;
error = zyd_lock_phy(sc);
if (error != 0)
goto fail;
error = (*rf->switch_radio)(rf, on);
if (error != 0)
goto fail;
error = zyd_unlock_phy(sc);
fail:
return (error);
}
static int
zyd_set_led(struct zyd_softc *sc, int which, int on)
{
int error;
uint32_t tmp;
zyd_read32_m(sc, ZYD_MAC_TX_PE_CONTROL, &tmp);
tmp &= ~which;
if (on)
tmp |= which;
zyd_write32_m(sc, ZYD_MAC_TX_PE_CONTROL, tmp);
fail:
return (error);
}
static void
zyd_set_multi(void *arg)
{
int error;
struct zyd_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ifmultiaddr *ifma;
uint32_t low, high;
uint8_t v;
if (!(ifp->if_flags & IFF_UP))
return;
low = 0x00000000;
high = 0x80000000;
if (ic->ic_opmode == IEEE80211_M_MONITOR ||
(ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) {
low = 0xffffffff;
high = 0xffffffff;
} else {
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
v = ((uint8_t *)LLADDR((struct sockaddr_dl *)
ifma->ifma_addr))[5] >> 2;
if (v < 32)
low |= 1 << v;
else
high |= 1 << (v - 32);
}
IF_ADDR_UNLOCK(ifp);
}
/* reprogram multicast global hash table */
zyd_write32_m(sc, ZYD_MAC_GHTBL, low);
zyd_write32_m(sc, ZYD_MAC_GHTBH, high);
fail:
if (error != 0)
device_printf(sc->sc_dev,
"could not set multicast hash table\n");
}
static void
zyd_update_mcast(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
if (!(sc->sc_flags & ZYD_FLAG_INITDONE))
return;
usb_add_task(sc->sc_udev, &sc->sc_mcasttask, USB_TASKQ_DRIVER);
}
static int
zyd_set_rxfilter(struct zyd_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t rxfilter;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
rxfilter = ZYD_FILTER_BSS;
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_HOSTAP:
rxfilter = ZYD_FILTER_HOSTAP;
break;
case IEEE80211_M_MONITOR:
rxfilter = ZYD_FILTER_MONITOR;
break;
default:
/* should not get there */
return (EINVAL);
}
return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter);
}
static void
zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c)
{
int error;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct zyd_rf *rf = &sc->sc_rf;
uint32_t tmp;
u_int chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY) {
/* XXX should NEVER happen */
device_printf(sc->sc_dev,
"%s: invalid channel %x\n", __func__, chan);
return;
}
error = zyd_lock_phy(sc);
if (error != 0)
goto fail;
error = (*rf->set_channel)(rf, chan);
if (error != 0)
goto fail;
/* update Tx power */
zyd_write16_m(sc, ZYD_CR31, sc->sc_pwrint[chan - 1]);
if (sc->sc_macrev == ZYD_ZD1211B) {
zyd_write16_m(sc, ZYD_CR67, sc->sc_ofdm36_cal[chan - 1]);
zyd_write16_m(sc, ZYD_CR66, sc->sc_ofdm48_cal[chan - 1]);
zyd_write16_m(sc, ZYD_CR65, sc->sc_ofdm54_cal[chan - 1]);
zyd_write16_m(sc, ZYD_CR68, sc->sc_pwrcal[chan - 1]);
zyd_write16_m(sc, ZYD_CR69, 0x28);
zyd_write16_m(sc, ZYD_CR69, 0x2a);
}
if (sc->sc_cckgain) {
/* set CCK baseband gain from EEPROM */
if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0)
zyd_write16_m(sc, ZYD_CR47, tmp & 0xff);
}
if (sc->sc_bandedge6 && rf->bandedge6 != NULL) {
error = (*rf->bandedge6)(rf, c);
if (error != 0)
goto fail;
}
zyd_write32_m(sc, ZYD_CR_CONFIG_PHILIPS, 0);
error = zyd_unlock_phy(sc);
if (error != 0)
goto fail;
sc->sc_rxtap.wr_chan_freq = sc->sc_txtap.wt_chan_freq =
htole16(c->ic_freq);
sc->sc_rxtap.wr_chan_flags = sc->sc_txtap.wt_chan_flags =
htole16(c->ic_flags);
fail:
return;
}
static int
zyd_set_beacon_interval(struct zyd_softc *sc, int bintval)
{
int error;
uint32_t val;
zyd_read32_m(sc, ZYD_CR_ATIM_WND_PERIOD, &val);
sc->sc_atim_wnd = val;
zyd_read32_m(sc, ZYD_CR_PRE_TBTT, &val);
sc->sc_pre_tbtt = val;
sc->sc_bcn_int = bintval;
if (sc->sc_bcn_int <= 5)
sc->sc_bcn_int = 5;
if (sc->sc_pre_tbtt < 4 || sc->sc_pre_tbtt >= sc->sc_bcn_int)
sc->sc_pre_tbtt = sc->sc_bcn_int - 1;
if (sc->sc_atim_wnd >= sc->sc_pre_tbtt)
sc->sc_atim_wnd = sc->sc_pre_tbtt - 1;
zyd_write32_m(sc, ZYD_CR_ATIM_WND_PERIOD, sc->sc_atim_wnd);
zyd_write32_m(sc, ZYD_CR_PRE_TBTT, sc->sc_pre_tbtt);
zyd_write32_m(sc, ZYD_CR_BCN_INTERVAL, sc->sc_bcn_int);
fail:
return (error);
}
static void
zyd_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct zyd_softc *sc = (struct zyd_softc *)priv;
struct zyd_cmd *cmd;
uint32_t datalen;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (status == USBD_STALLED) {
usbd_clear_endpoint_stall_async(
sc->sc_ep[ZYD_ENDPT_IIN]);
}
return;
}
cmd = (struct zyd_cmd *)sc->sc_ibuf;
if (le16toh(cmd->code) == ZYD_NOTIF_RETRYSTATUS) {
struct zyd_notif_retry *retry =
(struct zyd_notif_retry *)cmd->data;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
struct ieee80211_node *ni;
DPRINTF(sc, ZYD_DEBUG_TX_PROC,
"retry intr: rate=0x%x addr=%s count=%d (0x%x)\n",
le16toh(retry->rate), ether_sprintf(retry->macaddr),
le16toh(retry->count) & 0xff, le16toh(retry->count));
/*
* Find the node to which the packet was sent and update its
* retry statistics. In BSS mode, this node is the AP we're
* associated to so no lookup is actually needed.
*/
ni = ieee80211_find_txnode(vap, retry->macaddr);
if (ni != NULL) {
ieee80211_amrr_tx_complete(&ZYD_NODE(ni)->amn,
IEEE80211_AMRR_FAILURE, 1);
ieee80211_free_node(ni);
}
if (le16toh(retry->count) & 0x100)
ifp->if_oerrors++; /* too many retries */
} else if (le16toh(cmd->code) == ZYD_NOTIF_IORD) {
struct zyd_rq *rqp;
if (le16toh(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT)
return; /* HMAC interrupt */
usbd_get_xfer_status(xfer, NULL, NULL, &datalen, NULL);
datalen -= sizeof(cmd->code);
datalen -= 2; /* XXX: padding? */
STAILQ_FOREACH(rqp, &sc->sc_rqh, rq) {
int i;
if (sizeof(struct zyd_pair) * rqp->len != datalen)
continue;
for (i = 0; i < rqp->len; i++) {
if (*(((const uint16_t *)rqp->idata) + i) !=
(((struct zyd_pair *)cmd->data) + i)->reg)
break;
}
if (i != rqp->len)
continue;
/* copy answer into caller-supplied buffer */
bcopy(cmd->data, rqp->odata,
sizeof(struct zyd_pair) * rqp->len);
wakeup(rqp->odata); /* wakeup caller */
return;
}
return; /* unexpected IORD notification */
} else {
device_printf(sc->sc_dev, "unknown notification %x\n",
le16toh(cmd->code));
}
}
static void
zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_node *ni;
const struct zyd_plcphdr *plcp;
const struct zyd_rx_stat *stat;
struct mbuf *m;
int rlen, rssi, nf;
if (len < ZYD_MIN_FRAGSZ) {
DPRINTF(sc, ZYD_DEBUG_RECV, "%s: frame too short (length=%d)\n",
device_get_nameunit(sc->sc_dev), len);
ifp->if_ierrors++;
return;
}
plcp = (const struct zyd_plcphdr *)buf;
stat = (const struct zyd_rx_stat *)
(buf + len - sizeof(struct zyd_rx_stat));
if (stat->flags & ZYD_RX_ERROR) {
DPRINTF(sc, ZYD_DEBUG_RECV,
"%s: RX status indicated error (%x)\n",
device_get_nameunit(sc->sc_dev), stat->flags);
ifp->if_ierrors++;
return;
}
/* compute actual frame length */
rlen = len - sizeof(struct zyd_plcphdr) -
sizeof(struct zyd_rx_stat) - IEEE80211_CRC_LEN;
/* allocate a mbuf to store the frame */
if (rlen > MHLEN)
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
else
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == NULL) {
DPRINTF(sc, ZYD_DEBUG_RECV, "%s: could not allocate rx mbuf\n",
device_get_nameunit(sc->sc_dev));
ifp->if_ierrors++;
return;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = rlen;
bcopy((const uint8_t *)(plcp + 1), mtod(m, uint8_t *), rlen);
if (bpf_peers_present(ifp->if_bpf)) {
struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
if (stat->flags & (ZYD_RX_BADCRC16 | ZYD_RX_BADCRC32))
tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
/* XXX toss, no way to express errors */
if (stat->flags & ZYD_RX_DECRYPTERR)
tap->wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
tap->wr_rate = ieee80211_plcp2rate(plcp->signal,
(stat->flags & ZYD_RX_OFDM) ?
IEEE80211_T_OFDM : IEEE80211_T_CCK);
tap->wr_antsignal = stat->rssi + -95;
tap->wr_antnoise = -95; /* XXX */
bpf_mtap2(ifp->if_bpf, tap, sc->sc_rxtap_len, m);
}
rssi = stat->rssi > 63 ? 127 : 2 * stat->rssi;
nf = -95; /* XXX */
ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
if (ni != NULL) {
(void)ieee80211_input(ni, m, rssi, nf, 0);
ieee80211_free_node(ni);
} else
(void)ieee80211_input_all(ic, m, rssi, nf, 0);
}
static void
zyd_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct zyd_rx_data *data = priv;
struct zyd_softc *sc = data->sc;
struct ifnet *ifp = sc->sc_ifp;
const struct zyd_rx_desc *desc;
int len;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->sc_ep[ZYD_ENDPT_BIN]);
goto skip;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
if (len < ZYD_MIN_RXBUFSZ) {
DPRINTF(sc, ZYD_DEBUG_RECV, "%s: xfer too short (length=%d)\n",
device_get_nameunit(sc->sc_dev), len);
ifp->if_ierrors++; /* XXX not really errors */
goto skip;
}
desc = (const struct zyd_rx_desc *)
(data->buf + len - sizeof(struct zyd_rx_desc));
if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) {
const uint8_t *p = data->buf, *end = p + len;
int i;
DPRINTF(sc, ZYD_DEBUG_RECV,
"%s: received multi-frame transfer\n", __func__);
for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) {
const uint16_t len16 = UGETW(desc->len[i]);
if (len16 == 0 || p + len16 > end)
break;
zyd_rx_data(sc, p, len16);
/* next frame is aligned on a 32-bit boundary */
p += (len16 + 3) & ~3;
}
} else {
DPRINTF(sc, ZYD_DEBUG_RECV,
"%s: received single-frame transfer\n", __func__);
zyd_rx_data(sc, data->buf, len);
}
skip: /* setup a new transfer */
usbd_setup_xfer(xfer, sc->sc_ep[ZYD_ENDPT_BIN], data, NULL,
ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, zyd_rxeof);
(void)usbd_transfer(xfer);
}
static uint8_t
zyd_plcp_signal(int rate)
{
switch (rate) {
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12:
return (0xb);
case 18:
return (0xf);
case 24:
return (0xa);
case 36:
return (0xe);
case 48:
return (0x9);
case 72:
return (0xd);
case 96:
return (0x8);
case 108:
return (0xc);
/* CCK rates (NB: not IEEE std, device-specific) */
case 2:
return (0x0);
case 4:
return (0x1);
case 11:
return (0x2);
case 22:
return (0x3);
}
return (0xff); /* XXX unsupported/unknown rate */
}
static int
zyd_tx_mgt(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = sc->sc_ifp;
struct zyd_tx_desc *desc;
struct zyd_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
int data_idx, rate, totlen, xferlen;
uint16_t pktlen;
usbd_status error;
data_idx = sc->sc_txidx;
sc->sc_txidx = (sc->sc_txidx + 1) % ZYD_TX_LIST_CNT;
data = &sc->sc_txdata[data_idx];
desc = (struct zyd_tx_desc *)data->buf;
rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return (ENOBUFS);
}
}
data->ni = ni;
data->m = m0;
wh = mtod(m0, struct ieee80211_frame *);
xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
/* fill Tx descriptor */
desc->len = htole16(totlen);
desc->flags = ZYD_TX_FLAG_BACKOFF;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (totlen > vap->iv_rtsthreshold) {
desc->flags |= ZYD_TX_FLAG_RTS;
} else if (ZYD_RATE_IS_OFDM(rate) &&
(ic->ic_flags & IEEE80211_F_USEPROT)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
desc->flags |= ZYD_TX_FLAG_RTS;
}
} else
desc->flags |= ZYD_TX_FLAG_MULTICAST;
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
desc->phy = zyd_plcp_signal(rate);
if (ZYD_RATE_IS_OFDM(rate)) {
desc->phy |= ZYD_TX_PHY_OFDM;
if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
desc->phy |= ZYD_TX_PHY_5GHZ;
} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
/* actual transmit length (XXX why +10?) */
pktlen = sizeof(struct zyd_tx_desc) + 10;
if (sc->sc_macrev == ZYD_ZD1211)
pktlen += totlen;
desc->pktlen = htole16(pktlen);
desc->plcp_length = (16 * totlen + rate - 1) / rate;
desc->plcp_service = 0;
if (rate == 22) {
const int remainder = (16 * totlen) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= ZYD_PLCP_LENGEXT;
}
if (bpf_peers_present(ifp->if_bpf)) {
struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
}
m_copydata(m0, 0, m0->m_pkthdr.len,
data->buf + sizeof(struct zyd_tx_desc));
DPRINTF(sc, ZYD_DEBUG_XMIT,
"%s: sending mgt frame len=%zu rate=%u xferlen=%u\n",
device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
rate, xferlen);
usbd_setup_xfer(data->xfer, sc->sc_ep[ZYD_ENDPT_BOUT], data,
data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
ZYD_TX_TIMEOUT, zyd_txeof);
error = usbd_transfer(data->xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
ifp->if_oerrors++;
return (EIO);
}
sc->sc_txqueued++;
return (0);
}
static void
zyd_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct zyd_tx_data *data = priv;
struct zyd_softc *sc = data->sc;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211_node *ni;
struct mbuf *m;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
device_printf(sc->sc_dev, "could not transmit buffer: %s\n",
usbd_errstr(status));
if (status == USBD_STALLED) {
usbd_clear_endpoint_stall_async(
sc->sc_ep[ZYD_ENDPT_BOUT]);
}
ifp->if_oerrors++;
return;
}
ni = data->ni;
/* update rate control statistics */
ieee80211_amrr_tx_complete(&ZYD_NODE(ni)->amn,
IEEE80211_AMRR_SUCCESS, 0);
/*
* Do any tx complete callback. Note this must
* be done before releasing the node reference.
*/
m = data->m;
if (m != NULL && m->m_flags & M_TXCB) {
ieee80211_process_callback(ni, m, 0); /* XXX status? */
m_freem(m);
data->m = NULL;
}
ieee80211_free_node(ni);
data->ni = NULL;
ZYD_TX_LOCK(sc);
sc->sc_txqueued--;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ZYD_TX_UNLOCK(sc);
ifp->if_opackets++;
sc->sc_txtimer = 0;
zyd_start(ifp);
}
static int
zyd_tx_data(struct zyd_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = sc->sc_ifp;
struct zyd_tx_desc *desc;
struct zyd_tx_data *data;
struct ieee80211_frame *wh;
const struct ieee80211_txparam *tp;
struct ieee80211_key *k;
int data_idx, rate, totlen, xferlen;
uint16_t pktlen;
usbd_status error;
data_idx = sc->sc_txidx;
sc->sc_txidx = (sc->sc_txidx + 1) % ZYD_TX_LIST_CNT;
wh = mtod(m0, struct ieee80211_frame *);
data = &sc->sc_txdata[data_idx];
desc = (struct zyd_tx_desc *)data->buf;
desc->flags = ZYD_TX_FLAG_BACKOFF;
tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
rate = tp->mcastrate;
desc->flags |= ZYD_TX_FLAG_MULTICAST;
} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
rate = tp->ucastrate;
} else {
(void) ieee80211_amrr_choose(ni, &ZYD_NODE(ni)->amn);
rate = ni->ni_txrate;
}
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return (ENOBUFS);
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
data->ni = ni;
data->m = NULL;
xferlen = sizeof(struct zyd_tx_desc) + m0->m_pkthdr.len;
totlen = m0->m_pkthdr.len + IEEE80211_CRC_LEN;
/* fill Tx descriptor */
desc->len = htole16(totlen);
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* multicast frames are not sent at OFDM rates in 802.11b/g */
if (totlen > vap->iv_rtsthreshold) {
desc->flags |= ZYD_TX_FLAG_RTS;
} else if (ZYD_RATE_IS_OFDM(rate) &&
(ic->ic_flags & IEEE80211_F_USEPROT)) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
desc->flags |= ZYD_TX_FLAG_RTS;
}
}
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL))
desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL);
desc->phy = zyd_plcp_signal(rate);
if (ZYD_RATE_IS_OFDM(rate)) {
desc->phy |= ZYD_TX_PHY_OFDM;
if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
desc->phy |= ZYD_TX_PHY_5GHZ;
} else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->phy |= ZYD_TX_PHY_SHPREAMBLE;
/* actual transmit length (XXX why +10?) */
pktlen = sizeof(struct zyd_tx_desc) + 10;
if (sc->sc_macrev == ZYD_ZD1211)
pktlen += totlen;
desc->pktlen = htole16(pktlen);
desc->plcp_length = (16 * totlen + rate - 1) / rate;
desc->plcp_service = 0;
if (rate == 22) {
const int remainder = (16 * totlen) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= ZYD_PLCP_LENGEXT;
}
if (bpf_peers_present(ifp->if_bpf)) {
struct zyd_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
bpf_mtap2(ifp->if_bpf, tap, sc->sc_txtap_len, m0);
}
m_copydata(m0, 0, m0->m_pkthdr.len,
data->buf + sizeof(struct zyd_tx_desc));
DPRINTF(sc, ZYD_DEBUG_XMIT,
"%s: sending data frame len=%zu rate=%u xferlen=%u\n",
device_get_nameunit(sc->sc_dev), (size_t)m0->m_pkthdr.len,
rate, xferlen);
m_freem(m0); /* mbuf no longer needed */
usbd_setup_xfer(data->xfer, sc->sc_ep[ZYD_ENDPT_BOUT], data,
data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY,
ZYD_TX_TIMEOUT, zyd_txeof);
error = usbd_transfer(data->xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
ifp->if_oerrors++;
return (EIO);
}
sc->sc_txqueued++;
return (0);
}
static void
zyd_start(struct ifnet *ifp)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct mbuf *m;
ZYD_TX_LOCK(sc);
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (sc->sc_txqueued >= ZYD_TX_LIST_CNT) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
m = ieee80211_encap(ni, m);
if (m == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
if (zyd_tx_data(sc, m, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
sc->sc_txtimer = 5;
}
ZYD_TX_UNLOCK(sc);
}
static int
zyd_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct zyd_softc *sc = ifp->if_softc;
/* prevent management frames from being sent if we're not ready */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
m_freem(m);
ieee80211_free_node(ni);
return (ENETDOWN);
}
ZYD_TX_LOCK(sc);
if (sc->sc_txqueued >= ZYD_TX_LIST_CNT) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
m_freem(m);
ieee80211_free_node(ni);
return (ENOBUFS); /* XXX */
}
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
* XXX raw path
*/
if (zyd_tx_mgt(sc, m, ni) != 0) {
ZYD_TX_UNLOCK(sc);
ifp->if_oerrors++;
ieee80211_free_node(ni);
return (EIO);
}
ZYD_TX_UNLOCK(sc);
ifp->if_opackets++;
sc->sc_txtimer = 5;
return (0);
}
static void
zyd_watchdog(void *arg)
{
struct zyd_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
if (sc->sc_txtimer > 0) {
if (--sc->sc_txtimer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
/* zyd_init(ifp); XXX needs a process context ? */
ifp->if_oerrors++;
return;
}
callout_reset(&sc->sc_watchdog_ch, hz, zyd_watchdog, sc);
}
}
static int
zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct zyd_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0, startall = 0;
switch (cmd) {
case SIOCSIFFLAGS:
ZYD_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->sc_if_flags) &
(IFF_ALLMULTI | IFF_PROMISC))
zyd_set_multi(sc);
} else {
zyd_init_locked(sc);
startall = 1;
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
zyd_stop(sc, 1);
}
sc->sc_if_flags = ifp->if_flags;
ZYD_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return (error);
}
static void
zyd_init_locked(struct zyd_softc *sc)
{
int error, i;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t val;
if (!(sc->sc_flags & ZYD_FLAG_INITONCE)) {
error = zyd_loadfirmware(sc);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load firmware (error=%d)\n", error);
goto fail;
}
error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1);
if (error != 0) {
device_printf(sc->sc_dev, "setting config no failed\n");
goto fail;
}
error = usbd_device2interface_handle(sc->sc_udev,
ZYD_IFACE_INDEX, &sc->sc_iface);
if (error != 0) {
device_printf(sc->sc_dev,
"getting interface handle failed\n");
goto fail;
}
if ((error = zyd_open_pipes(sc)) != 0) {
device_printf(sc->sc_dev, "could not open pipes\n");
goto fail;
}
if ((error = zyd_hw_init(sc)) != 0) {
device_printf(sc->sc_dev,
"hardware initialization failed\n");
goto fail;
}
device_printf(sc->sc_dev,
"HMAC ZD1211%s, FW %02x.%02x, RF %s S%x, PA%x LED %x "
"BE%x NP%x Gain%x F%x\n",
(sc->sc_macrev == ZYD_ZD1211) ? "": "B",
sc->sc_fwrev >> 8, sc->sc_fwrev & 0xff,
zyd_rf_name(sc->sc_rfrev), sc->sc_al2230s, sc->sc_parev,
sc->sc_ledtype, sc->sc_bandedge6, sc->sc_newphy,
sc->sc_cckgain, sc->sc_fix_cr157);
/* read regulatory domain (currently unused) */
zyd_read32_m(sc, ZYD_EEPROM_SUBID, &val);
sc->sc_regdomain = val >> 16;
DPRINTF(sc, ZYD_DEBUG_INIT, "regulatory domain %x\n",
sc->sc_regdomain);
/* we'll do software WEP decryption for now */
DPRINTF(sc, ZYD_DEBUG_INIT, "%s: setting encryption type\n",
__func__);
zyd_write32_m(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER);
sc->sc_flags |= ZYD_FLAG_INITONCE;
}
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
zyd_stop(sc, 0);
/* reset softc variables. */
sc->sc_txidx = 0;
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
DPRINTF(sc, ZYD_DEBUG_INIT, "setting MAC address to %s\n",
ether_sprintf(ic->ic_myaddr));
error = zyd_set_macaddr(sc, ic->ic_myaddr);
if (error != 0)
return;
/* set basic rates */
if (ic->ic_curmode == IEEE80211_MODE_11B)
zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x0003);
else if (ic->ic_curmode == IEEE80211_MODE_11A)
zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0x1500);
else /* assumes 802.11b/g */
zyd_write32_m(sc, ZYD_MAC_BAS_RATE, 0xff0f);
/* promiscuous mode */
zyd_write32_m(sc, ZYD_MAC_SNIFFER, 0);
/* multicast setup */
zyd_set_multi(sc);
/* set RX filter */
error = zyd_set_rxfilter(sc);
if (error != 0)
goto fail;
/* switch radio transmitter ON */
error = zyd_switch_radio(sc, 1);
if (error != 0)
goto fail;
/* set default BSS channel */
zyd_set_chan(sc, ic->ic_curchan);
/*
* Allocate Tx and Rx xfer queues.
*/
if ((error = zyd_alloc_tx_list(sc)) != 0) {
device_printf(sc->sc_dev, "could not allocate Tx list\n");
goto fail;
}
if ((error = zyd_alloc_rx_list(sc)) != 0) {
device_printf(sc->sc_dev, "could not allocate Rx list\n");
goto fail;
}
/*
* Start up the receive pipe.
*/
for (i = 0; i < ZYD_RX_LIST_CNT; i++) {
struct zyd_rx_data *data = &sc->sc_rxdata[i];
usbd_setup_xfer(data->xfer, sc->sc_ep[ZYD_ENDPT_BIN], data,
NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, zyd_rxeof);
error = usbd_transfer(data->xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
device_printf(sc->sc_dev,
"could not queue Rx transfer\n");
goto fail;
}
}
/* enable interrupts */
zyd_write32_m(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
sc->sc_flags |= ZYD_FLAG_INITDONE;
callout_reset(&sc->sc_watchdog_ch, hz, zyd_watchdog, sc);
return;
fail: zyd_stop(sc, 1);
return;
}
static void
zyd_init(void *priv)
{
struct zyd_softc *sc = priv;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
ZYD_LOCK(sc);
zyd_init_locked(sc);
ZYD_UNLOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ieee80211_start_all(ic); /* start all vap's */
}
static void
zyd_stop(struct zyd_softc *sc, int disable)
{
int error;
struct ifnet *ifp = sc->sc_ifp;
sc->sc_txtimer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/* switch radio transmitter OFF */
error = zyd_switch_radio(sc, 0);
if (error != 0)
goto fail;
/* disable Rx */
zyd_write32_m(sc, ZYD_MAC_RXFILTER, 0);
/* disable interrupts */
zyd_write32_m(sc, ZYD_CR_INTERRUPT, 0);
usb_rem_task(sc->sc_udev, &sc->sc_scantask);
usb_rem_task(sc->sc_udev, &sc->sc_task);
callout_stop(&sc->sc_watchdog_ch);
usbd_abort_pipe(sc->sc_ep[ZYD_ENDPT_BIN]);
usbd_abort_pipe(sc->sc_ep[ZYD_ENDPT_BOUT]);
zyd_free_rx_list(sc);
zyd_free_tx_list(sc);
fail:
return;
}
static int
zyd_loadfirmware(struct zyd_softc *sc)
{
usb_device_request_t req;
size_t size;
u_char *fw;
uint8_t stat;
uint16_t addr;
if (sc->sc_flags & ZYD_FLAG_FWLOADED)
return (0);
if (sc->sc_macrev == ZYD_ZD1211) {
fw = (u_char *)zd1211_firmware;
size = sizeof(zd1211_firmware);
} else {
fw = (u_char *)zd1211b_firmware;
size = sizeof(zd1211b_firmware);
}
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = ZYD_DOWNLOADREQ;
USETW(req.wIndex, 0);
addr = ZYD_FIRMWARE_START_ADDR;
while (size > 0) {
/*
* When the transfer size is 4096 bytes, it is not
* likely to be able to transfer it.
* The cause is port or machine or chip?
*/
const int mlen = min(size, 64);
DPRINTF(sc, ZYD_DEBUG_FW,
"loading firmware block: len=%d, addr=0x%x\n", mlen, addr);
USETW(req.wValue, addr);
USETW(req.wLength, mlen);
if (usbd_do_request(sc->sc_udev, &req, fw) != 0)
return (EIO);
addr += mlen / 2;
fw += mlen;
size -= mlen;
}
/* check whether the upload succeeded */
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = ZYD_DOWNLOADSTS;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, sizeof(stat));
if (usbd_do_request(sc->sc_udev, &req, &stat) != 0)
return (EIO);
sc->sc_flags |= ZYD_FLAG_FWLOADED;
return (stat & 0x80) ? (EIO) : (0);
}
static void
zyd_newassoc(struct ieee80211_node *ni, int isnew)
{
struct ieee80211vap *vap = ni->ni_vap;
ieee80211_amrr_node_init(&ZYD_VAP(vap)->amrr, &ZYD_NODE(ni)->amn, ni);
}
static void
zyd_scan_start(struct ieee80211com *ic)
{
struct zyd_softc *sc = ic->ic_ifp->if_softc;
usb_rem_task(sc->sc_udev, &sc->sc_scantask);
/* do it in a process context */
sc->sc_scan_action = ZYD_SCAN_START;
usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
}
static void
zyd_scan_end(struct ieee80211com *ic)
{
struct zyd_softc *sc = ic->ic_ifp->if_softc;
usb_rem_task(sc->sc_udev, &sc->sc_scantask);
/* do it in a process context */
sc->sc_scan_action = ZYD_SCAN_END;
usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
}
static void
zyd_set_channel(struct ieee80211com *ic)
{
struct zyd_softc *sc = ic->ic_ifp->if_softc;
usb_rem_task(sc->sc_udev, &sc->sc_scantask);
/* do it in a process context */
sc->sc_scan_action = ZYD_SET_CHANNEL;
usb_add_task(sc->sc_udev, &sc->sc_scantask, USB_TASKQ_DRIVER);
}
static void
zyd_scantask(void *arg)
{
struct zyd_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
ZYD_LOCK(sc);
switch (sc->sc_scan_action) {
case ZYD_SCAN_START:
/* want broadcast address while scanning */
zyd_set_bssid(sc, ifp->if_broadcastaddr);
break;
case ZYD_SCAN_END:
/* restore previous bssid */
zyd_set_bssid(sc, sc->sc_bssid);
break;
case ZYD_SET_CHANNEL:
zyd_set_chan(sc, ic->ic_curchan);
break;
default:
device_printf(sc->sc_dev, "unknown scan action %d\n",
sc->sc_scan_action);
break;
}
ZYD_UNLOCK(sc);
}
static void
zyd_wakeup(struct zyd_softc *sc)
{
struct zyd_rq *rqp;
STAILQ_FOREACH(rqp, &sc->sc_rqh, rq)
wakeup(rqp->odata); /* wakeup sleeping caller */
}
static device_method_t zyd_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, zyd_match),
DEVMETHOD(device_attach, zyd_attach),
DEVMETHOD(device_detach, zyd_detach),
{ 0, 0 }
};
static driver_t zyd_driver = {
"zyd",
zyd_methods,
sizeof(struct zyd_softc)
};
static devclass_t zyd_devclass;
DRIVER_MODULE(zyd, uhub, zyd_driver, zyd_devclass, usbd_driver_load, 0);
MODULE_DEPEND(zyd, wlan, 1, 1, 1);
MODULE_DEPEND(zyd, wlan_amrr, 1, 1, 1);
MODULE_DEPEND(zyd, usb, 1, 1, 1);