freebsd-dev/sys/dev/fxp/if_fxp.c
Pedro F. Giffuni 718cf2ccb9 sys/dev: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 14:52:40 +00:00

3263 lines
94 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-NetBSD
*
* Copyright (c) 1995, David Greenman
* Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Intel EtherExpress Pro/100B PCI Fast Ethernet driver
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <machine/bus.h>
#include <machine/in_cksum.h>
#include <machine/resource.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcireg.h> /* for PCIM_CMD_xxx */
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/fxp/if_fxpreg.h>
#include <dev/fxp/if_fxpvar.h>
#include <dev/fxp/rcvbundl.h>
MODULE_DEPEND(fxp, pci, 1, 1, 1);
MODULE_DEPEND(fxp, ether, 1, 1, 1);
MODULE_DEPEND(fxp, miibus, 1, 1, 1);
#include "miibus_if.h"
/*
* NOTE! On !x86 we typically have an alignment constraint. The
* card DMAs the packet immediately following the RFA. However,
* the first thing in the packet is a 14-byte Ethernet header.
* This means that the packet is misaligned. To compensate,
* we actually offset the RFA 2 bytes into the cluster. This
* alignes the packet after the Ethernet header at a 32-bit
* boundary. HOWEVER! This means that the RFA is misaligned!
*/
#define RFA_ALIGNMENT_FUDGE 2
/*
* Set initial transmit threshold at 64 (512 bytes). This is
* increased by 64 (512 bytes) at a time, to maximum of 192
* (1536 bytes), if an underrun occurs.
*/
static int tx_threshold = 64;
/*
* The configuration byte map has several undefined fields which
* must be one or must be zero. Set up a template for these bits.
* The actual configuration is performed in fxp_init_body.
*
* See struct fxp_cb_config for the bit definitions.
*/
static const u_char fxp_cb_config_template[] = {
0x0, 0x0, /* cb_status */
0x0, 0x0, /* cb_command */
0x0, 0x0, 0x0, 0x0, /* link_addr */
0x0, /* 0 */
0x0, /* 1 */
0x0, /* 2 */
0x0, /* 3 */
0x0, /* 4 */
0x0, /* 5 */
0x32, /* 6 */
0x0, /* 7 */
0x0, /* 8 */
0x0, /* 9 */
0x6, /* 10 */
0x0, /* 11 */
0x0, /* 12 */
0x0, /* 13 */
0xf2, /* 14 */
0x48, /* 15 */
0x0, /* 16 */
0x40, /* 17 */
0xf0, /* 18 */
0x0, /* 19 */
0x3f, /* 20 */
0x5, /* 21 */
0x0, /* 22 */
0x0, /* 23 */
0x0, /* 24 */
0x0, /* 25 */
0x0, /* 26 */
0x0, /* 27 */
0x0, /* 28 */
0x0, /* 29 */
0x0, /* 30 */
0x0 /* 31 */
};
/*
* Claim various Intel PCI device identifiers for this driver. The
* sub-vendor and sub-device field are extensively used to identify
* particular variants, but we don't currently differentiate between
* them.
*/
static const struct fxp_ident fxp_ident_table[] = {
{ 0x8086, 0x1029, -1, 0, "Intel 82559 PCI/CardBus Pro/100" },
{ 0x8086, 0x1030, -1, 0, "Intel 82559 Pro/100 Ethernet" },
{ 0x8086, 0x1031, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
{ 0x8086, 0x1032, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VE Ethernet" },
{ 0x8086, 0x1033, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
{ 0x8086, 0x1034, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
{ 0x8086, 0x1035, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
{ 0x8086, 0x1036, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
{ 0x8086, 0x1037, -1, 3, "Intel 82801CAM (ICH3) Pro/100 Ethernet" },
{ 0x8086, 0x1038, -1, 3, "Intel 82801CAM (ICH3) Pro/100 VM Ethernet" },
{ 0x8086, 0x1039, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
{ 0x8086, 0x103A, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
{ 0x8086, 0x103B, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
{ 0x8086, 0x103C, -1, 4, "Intel 82801DB (ICH4) Pro/100 Ethernet" },
{ 0x8086, 0x103D, -1, 4, "Intel 82801DB (ICH4) Pro/100 VE Ethernet" },
{ 0x8086, 0x103E, -1, 4, "Intel 82801DB (ICH4) Pro/100 VM Ethernet" },
{ 0x8086, 0x1050, -1, 5, "Intel 82801BA (D865) Pro/100 VE Ethernet" },
{ 0x8086, 0x1051, -1, 5, "Intel 82562ET (ICH5/ICH5R) Pro/100 VE Ethernet" },
{ 0x8086, 0x1059, -1, 0, "Intel 82551QM Pro/100 M Mobile Connection" },
{ 0x8086, 0x1064, -1, 6, "Intel 82562EZ (ICH6)" },
{ 0x8086, 0x1065, -1, 6, "Intel 82562ET/EZ/GT/GZ PRO/100 VE Ethernet" },
{ 0x8086, 0x1068, -1, 6, "Intel 82801FBM (ICH6-M) Pro/100 VE Ethernet" },
{ 0x8086, 0x1069, -1, 6, "Intel 82562EM/EX/GX Pro/100 Ethernet" },
{ 0x8086, 0x1091, -1, 7, "Intel 82562GX Pro/100 Ethernet" },
{ 0x8086, 0x1092, -1, 7, "Intel Pro/100 VE Network Connection" },
{ 0x8086, 0x1093, -1, 7, "Intel Pro/100 VM Network Connection" },
{ 0x8086, 0x1094, -1, 7, "Intel Pro/100 946GZ (ICH7) Network Connection" },
{ 0x8086, 0x1209, -1, 0, "Intel 82559ER Embedded 10/100 Ethernet" },
{ 0x8086, 0x1229, 0x01, 0, "Intel 82557 Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x02, 0, "Intel 82557 Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x03, 0, "Intel 82557 Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x04, 0, "Intel 82558 Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x05, 0, "Intel 82558 Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x06, 0, "Intel 82559 Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x07, 0, "Intel 82559 Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x08, 0, "Intel 82559 Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x09, 0, "Intel 82559ER Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x0c, 0, "Intel 82550 Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x0d, 0, "Intel 82550C Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x0e, 0, "Intel 82550 Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x0f, 0, "Intel 82551 Pro/100 Ethernet" },
{ 0x8086, 0x1229, 0x10, 0, "Intel 82551 Pro/100 Ethernet" },
{ 0x8086, 0x1229, -1, 0, "Intel 82557/8/9 Pro/100 Ethernet" },
{ 0x8086, 0x2449, -1, 2, "Intel 82801BA/CAM (ICH2/3) Pro/100 Ethernet" },
{ 0x8086, 0x27dc, -1, 7, "Intel 82801GB (ICH7) 10/100 Ethernet" },
{ 0, 0, -1, 0, NULL },
};
#ifdef FXP_IP_CSUM_WAR
#define FXP_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
#else
#define FXP_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
#endif
static int fxp_probe(device_t dev);
static int fxp_attach(device_t dev);
static int fxp_detach(device_t dev);
static int fxp_shutdown(device_t dev);
static int fxp_suspend(device_t dev);
static int fxp_resume(device_t dev);
static const struct fxp_ident *fxp_find_ident(device_t dev);
static void fxp_intr(void *xsc);
static void fxp_rxcsum(struct fxp_softc *sc, if_t ifp,
struct mbuf *m, uint16_t status, int pos);
static int fxp_intr_body(struct fxp_softc *sc, if_t ifp,
uint8_t statack, int count);
static void fxp_init(void *xsc);
static void fxp_init_body(struct fxp_softc *sc, int);
static void fxp_tick(void *xsc);
static void fxp_start(if_t ifp);
static void fxp_start_body(if_t ifp);
static int fxp_encap(struct fxp_softc *sc, struct mbuf **m_head);
static void fxp_txeof(struct fxp_softc *sc);
static void fxp_stop(struct fxp_softc *sc);
static void fxp_release(struct fxp_softc *sc);
static int fxp_ioctl(if_t ifp, u_long command,
caddr_t data);
static void fxp_watchdog(struct fxp_softc *sc);
static void fxp_add_rfabuf(struct fxp_softc *sc,
struct fxp_rx *rxp);
static void fxp_discard_rfabuf(struct fxp_softc *sc,
struct fxp_rx *rxp);
static int fxp_new_rfabuf(struct fxp_softc *sc,
struct fxp_rx *rxp);
static int fxp_mc_addrs(struct fxp_softc *sc);
static void fxp_mc_setup(struct fxp_softc *sc);
static uint16_t fxp_eeprom_getword(struct fxp_softc *sc, int offset,
int autosize);
static void fxp_eeprom_putword(struct fxp_softc *sc, int offset,
uint16_t data);
static void fxp_autosize_eeprom(struct fxp_softc *sc);
static void fxp_load_eeprom(struct fxp_softc *sc);
static void fxp_read_eeprom(struct fxp_softc *sc, u_short *data,
int offset, int words);
static void fxp_write_eeprom(struct fxp_softc *sc, u_short *data,
int offset, int words);
static int fxp_ifmedia_upd(if_t ifp);
static void fxp_ifmedia_sts(if_t ifp,
struct ifmediareq *ifmr);
static int fxp_serial_ifmedia_upd(if_t ifp);
static void fxp_serial_ifmedia_sts(if_t ifp,
struct ifmediareq *ifmr);
static int fxp_miibus_readreg(device_t dev, int phy, int reg);
static int fxp_miibus_writereg(device_t dev, int phy, int reg,
int value);
static void fxp_miibus_statchg(device_t dev);
static void fxp_load_ucode(struct fxp_softc *sc);
static void fxp_update_stats(struct fxp_softc *sc);
static void fxp_sysctl_node(struct fxp_softc *sc);
static int sysctl_int_range(SYSCTL_HANDLER_ARGS,
int low, int high);
static int sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS);
static void fxp_scb_wait(struct fxp_softc *sc);
static void fxp_scb_cmd(struct fxp_softc *sc, int cmd);
static void fxp_dma_wait(struct fxp_softc *sc,
volatile uint16_t *status, bus_dma_tag_t dmat,
bus_dmamap_t map);
static device_method_t fxp_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fxp_probe),
DEVMETHOD(device_attach, fxp_attach),
DEVMETHOD(device_detach, fxp_detach),
DEVMETHOD(device_shutdown, fxp_shutdown),
DEVMETHOD(device_suspend, fxp_suspend),
DEVMETHOD(device_resume, fxp_resume),
/* MII interface */
DEVMETHOD(miibus_readreg, fxp_miibus_readreg),
DEVMETHOD(miibus_writereg, fxp_miibus_writereg),
DEVMETHOD(miibus_statchg, fxp_miibus_statchg),
DEVMETHOD_END
};
static driver_t fxp_driver = {
"fxp",
fxp_methods,
sizeof(struct fxp_softc),
};
static devclass_t fxp_devclass;
DRIVER_MODULE_ORDERED(fxp, pci, fxp_driver, fxp_devclass, NULL, NULL,
SI_ORDER_ANY);
DRIVER_MODULE(miibus, fxp, miibus_driver, miibus_devclass, NULL, NULL);
static struct resource_spec fxp_res_spec_mem[] = {
{ SYS_RES_MEMORY, FXP_PCI_MMBA, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0 }
};
static struct resource_spec fxp_res_spec_io[] = {
{ SYS_RES_IOPORT, FXP_PCI_IOBA, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
{ -1, 0 }
};
/*
* Wait for the previous command to be accepted (but not necessarily
* completed).
*/
static void
fxp_scb_wait(struct fxp_softc *sc)
{
union {
uint16_t w;
uint8_t b[2];
} flowctl;
int i = 10000;
while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
DELAY(2);
if (i == 0) {
flowctl.b[0] = CSR_READ_1(sc, FXP_CSR_FC_THRESH);
flowctl.b[1] = CSR_READ_1(sc, FXP_CSR_FC_STATUS);
device_printf(sc->dev, "SCB timeout: 0x%x 0x%x 0x%x 0x%x\n",
CSR_READ_1(sc, FXP_CSR_SCB_COMMAND),
CSR_READ_1(sc, FXP_CSR_SCB_STATACK),
CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS), flowctl.w);
}
}
static void
fxp_scb_cmd(struct fxp_softc *sc, int cmd)
{
if (cmd == FXP_SCB_COMMAND_CU_RESUME && sc->cu_resume_bug) {
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, FXP_CB_COMMAND_NOP);
fxp_scb_wait(sc);
}
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
}
static void
fxp_dma_wait(struct fxp_softc *sc, volatile uint16_t *status,
bus_dma_tag_t dmat, bus_dmamap_t map)
{
int i;
for (i = 10000; i > 0; i--) {
DELAY(2);
bus_dmamap_sync(dmat, map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if ((le16toh(*status) & FXP_CB_STATUS_C) != 0)
break;
}
if (i == 0)
device_printf(sc->dev, "DMA timeout\n");
}
static const struct fxp_ident *
fxp_find_ident(device_t dev)
{
uint16_t vendor;
uint16_t device;
uint8_t revid;
const struct fxp_ident *ident;
vendor = pci_get_vendor(dev);
device = pci_get_device(dev);
revid = pci_get_revid(dev);
for (ident = fxp_ident_table; ident->name != NULL; ident++) {
if (ident->vendor == vendor && ident->device == device &&
(ident->revid == revid || ident->revid == -1)) {
return (ident);
}
}
return (NULL);
}
/*
* Return identification string if this device is ours.
*/
static int
fxp_probe(device_t dev)
{
const struct fxp_ident *ident;
ident = fxp_find_ident(dev);
if (ident != NULL) {
device_set_desc(dev, ident->name);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static void
fxp_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
uint32_t *addr;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
addr = arg;
*addr = segs->ds_addr;
}
static int
fxp_attach(device_t dev)
{
struct fxp_softc *sc;
struct fxp_cb_tx *tcbp;
struct fxp_tx *txp;
struct fxp_rx *rxp;
if_t ifp;
uint32_t val;
uint16_t data;
u_char eaddr[ETHER_ADDR_LEN];
int error, flags, i, pmc, prefer_iomap;
error = 0;
sc = device_get_softc(dev);
sc->dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->stat_ch, &sc->sc_mtx, 0);
ifmedia_init(&sc->sc_media, 0, fxp_serial_ifmedia_upd,
fxp_serial_ifmedia_sts);
ifp = sc->ifp = if_gethandle(IFT_ETHER);
if (ifp == (void *)NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
/*
* Enable bus mastering.
*/
pci_enable_busmaster(dev);
/*
* Figure out which we should try first - memory mapping or i/o mapping?
* We default to memory mapping. Then we accept an override from the
* command line. Then we check to see which one is enabled.
*/
prefer_iomap = 0;
resource_int_value(device_get_name(dev), device_get_unit(dev),
"prefer_iomap", &prefer_iomap);
if (prefer_iomap)
sc->fxp_spec = fxp_res_spec_io;
else
sc->fxp_spec = fxp_res_spec_mem;
error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
if (error) {
if (sc->fxp_spec == fxp_res_spec_mem)
sc->fxp_spec = fxp_res_spec_io;
else
sc->fxp_spec = fxp_res_spec_mem;
error = bus_alloc_resources(dev, sc->fxp_spec, sc->fxp_res);
}
if (error) {
device_printf(dev, "could not allocate resources\n");
error = ENXIO;
goto fail;
}
if (bootverbose) {
device_printf(dev, "using %s space register mapping\n",
sc->fxp_spec == fxp_res_spec_mem ? "memory" : "I/O");
}
/*
* Put CU/RU idle state and prepare full reset.
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/* Full reset and disable interrupts. */
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
DELAY(10);
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
/*
* Find out how large of an SEEPROM we have.
*/
fxp_autosize_eeprom(sc);
fxp_load_eeprom(sc);
/*
* Find out the chip revision; lump all 82557 revs together.
*/
sc->ident = fxp_find_ident(dev);
if (sc->ident->ich > 0) {
/* Assume ICH controllers are 82559. */
sc->revision = FXP_REV_82559_A0;
} else {
data = sc->eeprom[FXP_EEPROM_MAP_CNTR];
if ((data >> 8) == 1)
sc->revision = FXP_REV_82557;
else
sc->revision = pci_get_revid(dev);
}
/*
* Check availability of WOL. 82559ER does not support WOL.
*/
if (sc->revision >= FXP_REV_82558_A4 &&
sc->revision != FXP_REV_82559S_A) {
data = sc->eeprom[FXP_EEPROM_MAP_ID];
if ((data & 0x20) != 0 &&
pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0)
sc->flags |= FXP_FLAG_WOLCAP;
}
if (sc->revision == FXP_REV_82550_C) {
/*
* 82550C with server extension requires microcode to
* receive fragmented UDP datagrams. However if the
* microcode is used for client-only featured 82550C
* it locks up controller.
*/
data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
if ((data & 0x0400) == 0)
sc->flags |= FXP_FLAG_NO_UCODE;
}
/* Receiver lock-up workaround detection. */
if (sc->revision < FXP_REV_82558_A4) {
data = sc->eeprom[FXP_EEPROM_MAP_COMPAT];
if ((data & 0x03) != 0x03) {
sc->flags |= FXP_FLAG_RXBUG;
device_printf(dev, "Enabling Rx lock-up workaround\n");
}
}
/*
* Determine whether we must use the 503 serial interface.
*/
data = sc->eeprom[FXP_EEPROM_MAP_PRI_PHY];
if (sc->revision == FXP_REV_82557 && (data & FXP_PHY_DEVICE_MASK) != 0
&& (data & FXP_PHY_SERIAL_ONLY))
sc->flags |= FXP_FLAG_SERIAL_MEDIA;
fxp_sysctl_node(sc);
/*
* Enable workarounds for certain chip revision deficiencies.
*
* Systems based on the ICH2/ICH2-M chip from Intel, and possibly
* some systems based a normal 82559 design, have a defect where
* the chip can cause a PCI protocol violation if it receives
* a CU_RESUME command when it is entering the IDLE state. The
* workaround is to disable Dynamic Standby Mode, so the chip never
* deasserts CLKRUN#, and always remains in an active state.
*
* See Intel 82801BA/82801BAM Specification Update, Errata #30.
*/
if ((sc->ident->ich >= 2 && sc->ident->ich <= 3) ||
(sc->ident->ich == 0 && sc->revision >= FXP_REV_82559_A0)) {
data = sc->eeprom[FXP_EEPROM_MAP_ID];
if (data & 0x02) { /* STB enable */
uint16_t cksum;
int i;
device_printf(dev,
"Disabling dynamic standby mode in EEPROM\n");
data &= ~0x02;
sc->eeprom[FXP_EEPROM_MAP_ID] = data;
fxp_write_eeprom(sc, &data, FXP_EEPROM_MAP_ID, 1);
device_printf(dev, "New EEPROM ID: 0x%x\n", data);
cksum = 0;
for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
cksum += sc->eeprom[i];
i = (1 << sc->eeprom_size) - 1;
cksum = 0xBABA - cksum;
fxp_write_eeprom(sc, &cksum, i, 1);
device_printf(dev,
"EEPROM checksum @ 0x%x: 0x%x -> 0x%x\n",
i, sc->eeprom[i], cksum);
sc->eeprom[i] = cksum;
/*
* If the user elects to continue, try the software
* workaround, as it is better than nothing.
*/
sc->flags |= FXP_FLAG_CU_RESUME_BUG;
}
}
/*
* If we are not a 82557 chip, we can enable extended features.
*/
if (sc->revision != FXP_REV_82557) {
/*
* If MWI is enabled in the PCI configuration, and there
* is a valid cacheline size (8 or 16 dwords), then tell
* the board to turn on MWI.
*/
val = pci_read_config(dev, PCIR_COMMAND, 2);
if (val & PCIM_CMD_MWRICEN &&
pci_read_config(dev, PCIR_CACHELNSZ, 1) != 0)
sc->flags |= FXP_FLAG_MWI_ENABLE;
/* turn on the extended TxCB feature */
sc->flags |= FXP_FLAG_EXT_TXCB;
/* enable reception of long frames for VLAN */
sc->flags |= FXP_FLAG_LONG_PKT_EN;
} else {
/* a hack to get long VLAN frames on a 82557 */
sc->flags |= FXP_FLAG_SAVE_BAD;
}
/* For 82559 or later chips, Rx checksum offload is supported. */
if (sc->revision >= FXP_REV_82559_A0) {
/* 82559ER does not support Rx checksum offloading. */
if (sc->ident->device != 0x1209)
sc->flags |= FXP_FLAG_82559_RXCSUM;
}
/*
* Enable use of extended RFDs and TCBs for 82550
* and later chips. Note: we need extended TXCB support
* too, but that's already enabled by the code above.
* Be careful to do this only on the right devices.
*/
if (sc->revision == FXP_REV_82550 || sc->revision == FXP_REV_82550_C ||
sc->revision == FXP_REV_82551_E || sc->revision == FXP_REV_82551_F
|| sc->revision == FXP_REV_82551_10) {
sc->rfa_size = sizeof (struct fxp_rfa);
sc->tx_cmd = FXP_CB_COMMAND_IPCBXMIT;
sc->flags |= FXP_FLAG_EXT_RFA;
/* Use extended RFA instead of 82559 checksum mode. */
sc->flags &= ~FXP_FLAG_82559_RXCSUM;
} else {
sc->rfa_size = sizeof (struct fxp_rfa) - FXP_RFAX_LEN;
sc->tx_cmd = FXP_CB_COMMAND_XMIT;
}
/*
* Allocate DMA tags and DMA safe memory.
*/
sc->maxtxseg = FXP_NTXSEG;
sc->maxsegsize = MCLBYTES;
if (sc->flags & FXP_FLAG_EXT_RFA) {
sc->maxtxseg--;
sc->maxsegsize = FXP_TSO_SEGSIZE;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sc->maxsegsize * sc->maxtxseg + sizeof(struct ether_vlan_header),
sc->maxtxseg, sc->maxsegsize, 0,
busdma_lock_mutex, &Giant, &sc->fxp_txmtag);
if (error) {
device_printf(dev, "could not create TX DMA tag\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 2, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES, 1, MCLBYTES, 0,
busdma_lock_mutex, &Giant, &sc->fxp_rxmtag);
if (error) {
device_printf(dev, "could not create RX DMA tag\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct fxp_stats), 1, sizeof(struct fxp_stats), 0,
busdma_lock_mutex, &Giant, &sc->fxp_stag);
if (error) {
device_printf(dev, "could not create stats DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->fxp_stag, (void **)&sc->fxp_stats,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->fxp_smap);
if (error) {
device_printf(dev, "could not allocate stats DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->fxp_stag, sc->fxp_smap, sc->fxp_stats,
sizeof(struct fxp_stats), fxp_dma_map_addr, &sc->stats_addr,
BUS_DMA_NOWAIT);
if (error) {
device_printf(dev, "could not load the stats DMA buffer\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
FXP_TXCB_SZ, 1, FXP_TXCB_SZ, 0,
busdma_lock_mutex, &Giant, &sc->cbl_tag);
if (error) {
device_printf(dev, "could not create TxCB DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->cbl_tag, (void **)&sc->fxp_desc.cbl_list,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->cbl_map);
if (error) {
device_printf(dev, "could not allocate TxCB DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->cbl_tag, sc->cbl_map,
sc->fxp_desc.cbl_list, FXP_TXCB_SZ, fxp_dma_map_addr,
&sc->fxp_desc.cbl_addr, BUS_DMA_NOWAIT);
if (error) {
device_printf(dev, "could not load TxCB DMA buffer\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct fxp_cb_mcs), 1, sizeof(struct fxp_cb_mcs), 0,
busdma_lock_mutex, &Giant, &sc->mcs_tag);
if (error) {
device_printf(dev,
"could not create multicast setup DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->mcs_tag, (void **)&sc->mcsp,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->mcs_map);
if (error) {
device_printf(dev,
"could not allocate multicast setup DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->mcs_tag, sc->mcs_map, sc->mcsp,
sizeof(struct fxp_cb_mcs), fxp_dma_map_addr, &sc->mcs_addr,
BUS_DMA_NOWAIT);
if (error) {
device_printf(dev,
"can't load the multicast setup DMA buffer\n");
goto fail;
}
/*
* Pre-allocate the TX DMA maps and setup the pointers to
* the TX command blocks.
*/
txp = sc->fxp_desc.tx_list;
tcbp = sc->fxp_desc.cbl_list;
for (i = 0; i < FXP_NTXCB; i++) {
txp[i].tx_cb = tcbp + i;
error = bus_dmamap_create(sc->fxp_txmtag, 0, &txp[i].tx_map);
if (error) {
device_printf(dev, "can't create DMA map for TX\n");
goto fail;
}
}
error = bus_dmamap_create(sc->fxp_rxmtag, 0, &sc->spare_map);
if (error) {
device_printf(dev, "can't create spare DMA map\n");
goto fail;
}
/*
* Pre-allocate our receive buffers.
*/
sc->fxp_desc.rx_head = sc->fxp_desc.rx_tail = NULL;
for (i = 0; i < FXP_NRFABUFS; i++) {
rxp = &sc->fxp_desc.rx_list[i];
error = bus_dmamap_create(sc->fxp_rxmtag, 0, &rxp->rx_map);
if (error) {
device_printf(dev, "can't create DMA map for RX\n");
goto fail;
}
if (fxp_new_rfabuf(sc, rxp) != 0) {
error = ENOMEM;
goto fail;
}
fxp_add_rfabuf(sc, rxp);
}
/*
* Read MAC address.
*/
eaddr[0] = sc->eeprom[FXP_EEPROM_MAP_IA0] & 0xff;
eaddr[1] = sc->eeprom[FXP_EEPROM_MAP_IA0] >> 8;
eaddr[2] = sc->eeprom[FXP_EEPROM_MAP_IA1] & 0xff;
eaddr[3] = sc->eeprom[FXP_EEPROM_MAP_IA1] >> 8;
eaddr[4] = sc->eeprom[FXP_EEPROM_MAP_IA2] & 0xff;
eaddr[5] = sc->eeprom[FXP_EEPROM_MAP_IA2] >> 8;
if (bootverbose) {
device_printf(dev, "PCI IDs: %04x %04x %04x %04x %04x\n",
pci_get_vendor(dev), pci_get_device(dev),
pci_get_subvendor(dev), pci_get_subdevice(dev),
pci_get_revid(dev));
device_printf(dev, "Dynamic Standby mode is %s\n",
sc->eeprom[FXP_EEPROM_MAP_ID] & 0x02 ? "enabled" :
"disabled");
}
/*
* If this is only a 10Mbps device, then there is no MII, and
* the PHY will use a serial interface instead.
*
* The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
* doesn't have a programming interface of any sort. The
* media is sensed automatically based on how the link partner
* is configured. This is, in essence, manual configuration.
*/
if (sc->flags & FXP_FLAG_SERIAL_MEDIA) {
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
} else {
/*
* i82557 wedge when isolating all of their PHYs.
*/
flags = MIIF_NOISOLATE;
if (sc->revision >= FXP_REV_82558_A4)
flags |= MIIF_DOPAUSE;
error = mii_attach(dev, &sc->miibus, ifp,
(ifm_change_cb_t)fxp_ifmedia_upd,
(ifm_stat_cb_t)fxp_ifmedia_sts, BMSR_DEFCAPMASK,
MII_PHY_ANY, MII_OFFSET_ANY, flags);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
if_setdev(ifp, dev);
if_setinitfn(ifp, fxp_init);
if_setsoftc(ifp, sc);
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
if_setioctlfn(ifp, fxp_ioctl);
if_setstartfn(ifp, fxp_start);
if_setcapabilities(ifp, 0);
if_setcapenable(ifp, 0);
/* Enable checksum offload/TSO for 82550 or better chips */
if (sc->flags & FXP_FLAG_EXT_RFA) {
if_sethwassist(ifp, FXP_CSUM_FEATURES | CSUM_TSO);
if_setcapabilitiesbit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
if_setcapenablebit(ifp, IFCAP_HWCSUM | IFCAP_TSO4, 0);
}
if (sc->flags & FXP_FLAG_82559_RXCSUM) {
if_setcapabilitiesbit(ifp, IFCAP_RXCSUM, 0);
if_setcapenablebit(ifp, IFCAP_RXCSUM, 0);
}
if (sc->flags & FXP_FLAG_WOLCAP) {
if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC, 0);
if_setcapenablebit(ifp, IFCAP_WOL_MAGIC, 0);
}
#ifdef DEVICE_POLLING
/* Inform the world we support polling. */
if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
#endif
/*
* Attach the interface.
*/
ether_ifattach(ifp, eaddr);
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU, 0);
if_setcapenablebit(ifp, IFCAP_VLAN_MTU, 0);
if ((sc->flags & FXP_FLAG_EXT_RFA) != 0) {
if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
if_setcapenablebit(ifp, IFCAP_VLAN_HWTAGGING |
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
}
/*
* Let the system queue as many packets as we have available
* TX descriptors.
*/
if_setsendqlen(ifp, FXP_NTXCB - 1);
if_setsendqready(ifp);
/*
* Hook our interrupt after all initialization is complete.
*/
error = bus_setup_intr(dev, sc->fxp_res[1], INTR_TYPE_NET | INTR_MPSAFE,
NULL, fxp_intr, sc, &sc->ih);
if (error) {
device_printf(dev, "could not setup irq\n");
ether_ifdetach(sc->ifp);
goto fail;
}
/*
* Configure hardware to reject magic frames otherwise
* system will hang on recipt of magic frames.
*/
if ((sc->flags & FXP_FLAG_WOLCAP) != 0) {
FXP_LOCK(sc);
/* Clear wakeup events. */
CSR_WRITE_1(sc, FXP_CSR_PMDR, CSR_READ_1(sc, FXP_CSR_PMDR));
fxp_init_body(sc, 0);
fxp_stop(sc);
FXP_UNLOCK(sc);
}
fail:
if (error)
fxp_release(sc);
return (error);
}
/*
* Release all resources. The softc lock should not be held and the
* interrupt should already be torn down.
*/
static void
fxp_release(struct fxp_softc *sc)
{
struct fxp_rx *rxp;
struct fxp_tx *txp;
int i;
FXP_LOCK_ASSERT(sc, MA_NOTOWNED);
KASSERT(sc->ih == NULL,
("fxp_release() called with intr handle still active"));
if (sc->miibus)
device_delete_child(sc->dev, sc->miibus);
bus_generic_detach(sc->dev);
ifmedia_removeall(&sc->sc_media);
if (sc->fxp_desc.cbl_list) {
bus_dmamap_unload(sc->cbl_tag, sc->cbl_map);
bus_dmamem_free(sc->cbl_tag, sc->fxp_desc.cbl_list,
sc->cbl_map);
}
if (sc->fxp_stats) {
bus_dmamap_unload(sc->fxp_stag, sc->fxp_smap);
bus_dmamem_free(sc->fxp_stag, sc->fxp_stats, sc->fxp_smap);
}
if (sc->mcsp) {
bus_dmamap_unload(sc->mcs_tag, sc->mcs_map);
bus_dmamem_free(sc->mcs_tag, sc->mcsp, sc->mcs_map);
}
bus_release_resources(sc->dev, sc->fxp_spec, sc->fxp_res);
if (sc->fxp_rxmtag) {
for (i = 0; i < FXP_NRFABUFS; i++) {
rxp = &sc->fxp_desc.rx_list[i];
if (rxp->rx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
m_freem(rxp->rx_mbuf);
}
bus_dmamap_destroy(sc->fxp_rxmtag, rxp->rx_map);
}
bus_dmamap_destroy(sc->fxp_rxmtag, sc->spare_map);
bus_dma_tag_destroy(sc->fxp_rxmtag);
}
if (sc->fxp_txmtag) {
for (i = 0; i < FXP_NTXCB; i++) {
txp = &sc->fxp_desc.tx_list[i];
if (txp->tx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
m_freem(txp->tx_mbuf);
}
bus_dmamap_destroy(sc->fxp_txmtag, txp->tx_map);
}
bus_dma_tag_destroy(sc->fxp_txmtag);
}
if (sc->fxp_stag)
bus_dma_tag_destroy(sc->fxp_stag);
if (sc->cbl_tag)
bus_dma_tag_destroy(sc->cbl_tag);
if (sc->mcs_tag)
bus_dma_tag_destroy(sc->mcs_tag);
if (sc->ifp)
if_free(sc->ifp);
mtx_destroy(&sc->sc_mtx);
}
/*
* Detach interface.
*/
static int
fxp_detach(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
#ifdef DEVICE_POLLING
if (if_getcapenable(sc->ifp) & IFCAP_POLLING)
ether_poll_deregister(sc->ifp);
#endif
FXP_LOCK(sc);
/*
* Stop DMA and drop transmit queue, but disable interrupts first.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
fxp_stop(sc);
FXP_UNLOCK(sc);
callout_drain(&sc->stat_ch);
/*
* Close down routes etc.
*/
ether_ifdetach(sc->ifp);
/*
* Unhook interrupt before dropping lock. This is to prevent
* races with fxp_intr().
*/
bus_teardown_intr(sc->dev, sc->fxp_res[1], sc->ih);
sc->ih = NULL;
/* Release our allocated resources. */
fxp_release(sc);
return (0);
}
/*
* Device shutdown routine. Called at system shutdown after sync. The
* main purpose of this routine is to shut off receiver DMA so that
* kernel memory doesn't get clobbered during warmboot.
*/
static int
fxp_shutdown(device_t dev)
{
/*
* Make sure that DMA is disabled prior to reboot. Not doing
* do could allow DMA to corrupt kernel memory during the
* reboot before the driver initializes.
*/
return (fxp_suspend(dev));
}
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
fxp_suspend(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
if_t ifp;
int pmc;
uint16_t pmstat;
FXP_LOCK(sc);
ifp = sc->ifp;
if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) {
/* Request PME. */
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
sc->flags |= FXP_FLAG_WOL;
/* Reconfigure hardware to accept magic frames. */
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
fxp_init_body(sc, 0);
}
pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}
fxp_stop(sc);
sc->suspended = 1;
FXP_UNLOCK(sc);
return (0);
}
/*
* Device resume routine. re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
fxp_resume(device_t dev)
{
struct fxp_softc *sc = device_get_softc(dev);
if_t ifp = sc->ifp;
int pmc;
uint16_t pmstat;
FXP_LOCK(sc);
if (pci_find_cap(sc->dev, PCIY_PMG, &pmc) == 0) {
sc->flags &= ~FXP_FLAG_WOL;
pmstat = pci_read_config(sc->dev, pmc + PCIR_POWER_STATUS, 2);
/* Disable PME and clear PME status. */
pmstat &= ~PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
if ((sc->flags & FXP_FLAG_WOLCAP) != 0)
CSR_WRITE_1(sc, FXP_CSR_PMDR,
CSR_READ_1(sc, FXP_CSR_PMDR));
}
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(10);
/* reinitialize interface if necessary */
if (if_getflags(ifp) & IFF_UP)
fxp_init_body(sc, 1);
sc->suspended = 0;
FXP_UNLOCK(sc);
return (0);
}
static void
fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int length)
{
uint16_t reg;
int x;
/*
* Shift in data.
*/
for (x = 1 << (length - 1); x; x >>= 1) {
if (data & x)
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
else
reg = FXP_EEPROM_EECS;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
}
/*
* Read from the serial EEPROM. Basically, you manually shift in
* the read opcode (one bit at a time) and then shift in the address,
* and then you shift out the data (all of this one bit at a time).
* The word size is 16 bits, so you have to provide the address for
* every 16 bits of data.
*/
static uint16_t
fxp_eeprom_getword(struct fxp_softc *sc, int offset, int autosize)
{
uint16_t reg, data;
int x;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
/*
* Shift in read opcode.
*/
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
/*
* Shift in address.
*/
data = 0;
for (x = 1 << (sc->eeprom_size - 1); x; x >>= 1) {
if (offset & x)
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
else
reg = FXP_EEPROM_EECS;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
DELAY(1);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
reg = CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO;
data++;
if (autosize && reg == 0) {
sc->eeprom_size = data;
break;
}
}
/*
* Shift out data.
*/
data = 0;
reg = FXP_EEPROM_EECS;
for (x = 1 << 15; x; x >>= 1) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg | FXP_EEPROM_EESK);
DELAY(1);
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
data |= x;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(1);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
return (data);
}
static void
fxp_eeprom_putword(struct fxp_softc *sc, int offset, uint16_t data)
{
int i;
/*
* Erase/write enable.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, 0x4, 3);
fxp_eeprom_shiftin(sc, 0x03 << (sc->eeprom_size - 2), sc->eeprom_size);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
/*
* Shift in write opcode, address, data.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
fxp_eeprom_shiftin(sc, offset, sc->eeprom_size);
fxp_eeprom_shiftin(sc, data, 16);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
/*
* Wait for EEPROM to finish up.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
DELAY(1);
for (i = 0; i < 1000; i++) {
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) & FXP_EEPROM_EEDO)
break;
DELAY(50);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
/*
* Erase/write disable.
*/
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, 0x4, 3);
fxp_eeprom_shiftin(sc, 0, sc->eeprom_size);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(1);
}
/*
* From NetBSD:
*
* Figure out EEPROM size.
*
* 559's can have either 64-word or 256-word EEPROMs, the 558
* datasheet only talks about 64-word EEPROMs, and the 557 datasheet
* talks about the existence of 16 to 256 word EEPROMs.
*
* The only known sizes are 64 and 256, where the 256 version is used
* by CardBus cards to store CIS information.
*
* The address is shifted in msb-to-lsb, and after the last
* address-bit the EEPROM is supposed to output a `dummy zero' bit,
* after which follows the actual data. We try to detect this zero, by
* probing the data-out bit in the EEPROM control register just after
* having shifted in a bit. If the bit is zero, we assume we've
* shifted enough address bits. The data-out should be tri-state,
* before this, which should translate to a logical one.
*/
static void
fxp_autosize_eeprom(struct fxp_softc *sc)
{
/* guess maximum size of 256 words */
sc->eeprom_size = 8;
/* autosize */
(void) fxp_eeprom_getword(sc, 0, 1);
}
static void
fxp_read_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
{
int i;
for (i = 0; i < words; i++)
data[i] = fxp_eeprom_getword(sc, offset + i, 0);
}
static void
fxp_write_eeprom(struct fxp_softc *sc, u_short *data, int offset, int words)
{
int i;
for (i = 0; i < words; i++)
fxp_eeprom_putword(sc, offset + i, data[i]);
}
static void
fxp_load_eeprom(struct fxp_softc *sc)
{
int i;
uint16_t cksum;
fxp_read_eeprom(sc, sc->eeprom, 0, 1 << sc->eeprom_size);
cksum = 0;
for (i = 0; i < (1 << sc->eeprom_size) - 1; i++)
cksum += sc->eeprom[i];
cksum = 0xBABA - cksum;
if (cksum != sc->eeprom[(1 << sc->eeprom_size) - 1])
device_printf(sc->dev,
"EEPROM checksum mismatch! (0x%04x -> 0x%04x)\n",
cksum, sc->eeprom[(1 << sc->eeprom_size) - 1]);
}
/*
* Grab the softc lock and call the real fxp_start_body() routine
*/
static void
fxp_start(if_t ifp)
{
struct fxp_softc *sc = if_getsoftc(ifp);
FXP_LOCK(sc);
fxp_start_body(ifp);
FXP_UNLOCK(sc);
}
/*
* Start packet transmission on the interface.
* This routine must be called with the softc lock held, and is an
* internal entry point only.
*/
static void
fxp_start_body(if_t ifp)
{
struct fxp_softc *sc = if_getsoftc(ifp);
struct mbuf *mb_head;
int txqueued;
FXP_LOCK_ASSERT(sc, MA_OWNED);
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING)
return;
if (sc->tx_queued > FXP_NTXCB_HIWAT)
fxp_txeof(sc);
/*
* We're finished if there is nothing more to add to the list or if
* we're all filled up with buffers to transmit.
* NOTE: One TxCB is reserved to guarantee that fxp_mc_setup() can add
* a NOP command when needed.
*/
txqueued = 0;
while (!if_sendq_empty(ifp) && sc->tx_queued < FXP_NTXCB - 1) {
/*
* Grab a packet to transmit.
*/
mb_head = if_dequeue(ifp);
if (mb_head == NULL)
break;
if (fxp_encap(sc, &mb_head)) {
if (mb_head == NULL)
break;
if_sendq_prepend(ifp, mb_head);
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
}
txqueued++;
/*
* Pass packet to bpf if there is a listener.
*/
if_bpfmtap(ifp, mb_head);
}
/*
* We're finished. If we added to the list, issue a RESUME to get DMA
* going again if suspended.
*/
if (txqueued > 0) {
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
fxp_scb_wait(sc);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
/*
* Set a 5 second timer just in case we don't hear
* from the card again.
*/
sc->watchdog_timer = 5;
}
}
static int
fxp_encap(struct fxp_softc *sc, struct mbuf **m_head)
{
if_t ifp;
struct mbuf *m;
struct fxp_tx *txp;
struct fxp_cb_tx *cbp;
struct tcphdr *tcp;
bus_dma_segment_t segs[FXP_NTXSEG];
int error, i, nseg, tcp_payload;
FXP_LOCK_ASSERT(sc, MA_OWNED);
ifp = sc->ifp;
tcp_payload = 0;
tcp = NULL;
/*
* Get pointer to next available tx desc.
*/
txp = sc->fxp_desc.tx_last->tx_next;
/*
* A note in Appendix B of the Intel 8255x 10/100 Mbps
* Ethernet Controller Family Open Source Software
* Developer Manual says:
* Using software parsing is only allowed with legal
* TCP/IP or UDP/IP packets.
* ...
* For all other datagrams, hardware parsing must
* be used.
* Software parsing appears to truncate ICMP and
* fragmented UDP packets that contain one to three
* bytes in the second (and final) mbuf of the packet.
*/
if (sc->flags & FXP_FLAG_EXT_RFA)
txp->tx_cb->ipcb_ip_activation_high =
FXP_IPCB_HARDWAREPARSING_ENABLE;
m = *m_head;
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
/*
* 82550/82551 requires ethernet/IP/TCP headers must be
* contained in the first active transmit buffer.
*/
struct ether_header *eh;
struct ip *ip;
uint32_t ip_off, poff;
if (M_WRITABLE(*m_head) == 0) {
/* Get a writable copy. */
m = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
}
ip_off = sizeof(struct ether_header);
m = m_pullup(*m_head, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
eh = mtod(m, struct ether_header *);
/* Check the existence of VLAN tag. */
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
ip_off = sizeof(struct ether_vlan_header);
m = m_pullup(m, ip_off);
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
}
m = m_pullup(m, ip_off + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, char *) + ip_off);
poff = ip_off + (ip->ip_hl << 2);
m = m_pullup(m, poff + sizeof(struct tcphdr));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
m = m_pullup(m, poff + (tcp->th_off << 2));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
/*
* Since 82550/82551 doesn't modify IP length and pseudo
* checksum in the first frame driver should compute it.
*/
ip = (struct ip *)(mtod(m, char *) + ip_off);
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
ip->ip_sum = 0;
ip->ip_len = htons(m->m_pkthdr.tso_segsz + (ip->ip_hl << 2) +
(tcp->th_off << 2));
tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
htons(IPPROTO_TCP + (tcp->th_off << 2) +
m->m_pkthdr.tso_segsz));
/* Compute total TCP payload. */
tcp_payload = m->m_pkthdr.len - ip_off - (ip->ip_hl << 2);
tcp_payload -= tcp->th_off << 2;
*m_head = m;
} else if (m->m_pkthdr.csum_flags & FXP_CSUM_FEATURES) {
/*
* Deal with TCP/IP checksum offload. Note that
* in order for TCP checksum offload to work,
* the pseudo header checksum must have already
* been computed and stored in the checksum field
* in the TCP header. The stack should have
* already done this for us.
*/
txp->tx_cb->ipcb_ip_schedule = FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
if (m->m_pkthdr.csum_flags & CSUM_TCP)
txp->tx_cb->ipcb_ip_schedule |= FXP_IPCB_TCP_PACKET;
#ifdef FXP_IP_CSUM_WAR
/*
* XXX The 82550 chip appears to have trouble
* dealing with IP header checksums in very small
* datagrams, namely fragments from 1 to 3 bytes
* in size. For example, say you want to transmit
* a UDP packet of 1473 bytes. The packet will be
* fragmented over two IP datagrams, the latter
* containing only one byte of data. The 82550 will
* botch the header checksum on the 1-byte fragment.
* As long as the datagram contains 4 or more bytes
* of data, you're ok.
*
* The following code attempts to work around this
* problem: if the datagram is less than 38 bytes
* in size (14 bytes ether header, 20 bytes IP header,
* plus 4 bytes of data), we punt and compute the IP
* header checksum by hand. This workaround doesn't
* work very well, however, since it can be fooled
* by things like VLAN tags and IP options that make
* the header sizes/offsets vary.
*/
if (m->m_pkthdr.csum_flags & CSUM_IP) {
if (m->m_pkthdr.len < 38) {
struct ip *ip;
m->m_data += ETHER_HDR_LEN;
ip = mtod(m, struct ip *);
ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
m->m_data -= ETHER_HDR_LEN;
m->m_pkthdr.csum_flags &= ~CSUM_IP;
} else {
txp->tx_cb->ipcb_ip_activation_high =
FXP_IPCB_HARDWAREPARSING_ENABLE;
txp->tx_cb->ipcb_ip_schedule |=
FXP_IPCB_IP_CHECKSUM_ENABLE;
}
}
#endif
}
error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map, *m_head,
segs, &nseg, 0);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, sc->maxtxseg);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->fxp_txmtag, txp->tx_map,
*m_head, segs, &nseg, 0);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (ENOMEM);
}
} else if (error != 0)
return (error);
if (nseg == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
KASSERT(nseg <= sc->maxtxseg, ("too many DMA segments"));
bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map, BUS_DMASYNC_PREWRITE);
cbp = txp->tx_cb;
for (i = 0; i < nseg; i++) {
/*
* If this is an 82550/82551, then we're using extended
* TxCBs _and_ we're using checksum offload. This means
* that the TxCB is really an IPCB. One major difference
* between the two is that with plain extended TxCBs,
* the bottom half of the TxCB contains two entries from
* the TBD array, whereas IPCBs contain just one entry:
* one entry (8 bytes) has been sacrificed for the TCP/IP
* checksum offload control bits. So to make things work
* right, we have to start filling in the TBD array
* starting from a different place depending on whether
* the chip is an 82550/82551 or not.
*/
if (sc->flags & FXP_FLAG_EXT_RFA) {
cbp->tbd[i + 1].tb_addr = htole32(segs[i].ds_addr);
cbp->tbd[i + 1].tb_size = htole32(segs[i].ds_len);
} else {
cbp->tbd[i].tb_addr = htole32(segs[i].ds_addr);
cbp->tbd[i].tb_size = htole32(segs[i].ds_len);
}
}
if (sc->flags & FXP_FLAG_EXT_RFA) {
/* Configure dynamic TBD for 82550/82551. */
cbp->tbd_number = 0xFF;
cbp->tbd[nseg].tb_size |= htole32(0x8000);
} else
cbp->tbd_number = nseg;
/* Configure TSO. */
if (m->m_pkthdr.csum_flags & CSUM_TSO) {
cbp->tbd[-1].tb_size = htole32(m->m_pkthdr.tso_segsz << 16);
cbp->tbd[1].tb_size |= htole32(tcp_payload << 16);
cbp->ipcb_ip_schedule |= FXP_IPCB_LARGESEND_ENABLE |
FXP_IPCB_IP_CHECKSUM_ENABLE |
FXP_IPCB_TCP_PACKET |
FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
}
/* Configure VLAN hardware tag insertion. */
if ((m->m_flags & M_VLANTAG) != 0) {
cbp->ipcb_vlan_id = htons(m->m_pkthdr.ether_vtag);
txp->tx_cb->ipcb_ip_activation_high |=
FXP_IPCB_INSERTVLAN_ENABLE;
}
txp->tx_mbuf = m;
txp->tx_cb->cb_status = 0;
txp->tx_cb->byte_count = 0;
if (sc->tx_queued != FXP_CXINT_THRESH - 1)
txp->tx_cb->cb_command =
htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
FXP_CB_COMMAND_S);
else
txp->tx_cb->cb_command =
htole16(sc->tx_cmd | FXP_CB_COMMAND_SF |
FXP_CB_COMMAND_S | FXP_CB_COMMAND_I);
if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0)
txp->tx_cb->tx_threshold = tx_threshold;
/*
* Advance the end of list forward.
*/
sc->fxp_desc.tx_last->tx_cb->cb_command &= htole16(~FXP_CB_COMMAND_S);
sc->fxp_desc.tx_last = txp;
/*
* Advance the beginning of the list forward if there are
* no other packets queued (when nothing is queued, tx_first
* sits on the last TxCB that was sent out).
*/
if (sc->tx_queued == 0)
sc->fxp_desc.tx_first = txp;
sc->tx_queued++;
return (0);
}
#ifdef DEVICE_POLLING
static poll_handler_t fxp_poll;
static int
fxp_poll(if_t ifp, enum poll_cmd cmd, int count)
{
struct fxp_softc *sc = if_getsoftc(ifp);
uint8_t statack;
int rx_npkts = 0;
FXP_LOCK(sc);
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
FXP_UNLOCK(sc);
return (rx_npkts);
}
statack = FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA |
FXP_SCB_STATACK_FR;
if (cmd == POLL_AND_CHECK_STATUS) {
uint8_t tmp;
tmp = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
if (tmp == 0xff || tmp == 0) {
FXP_UNLOCK(sc);
return (rx_npkts); /* nothing to do */
}
tmp &= ~statack;
/* ack what we can */
if (tmp != 0)
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, tmp);
statack |= tmp;
}
rx_npkts = fxp_intr_body(sc, ifp, statack, count);
FXP_UNLOCK(sc);
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
/*
* Process interface interrupts.
*/
static void
fxp_intr(void *xsc)
{
struct fxp_softc *sc = xsc;
if_t ifp = sc->ifp;
uint8_t statack;
FXP_LOCK(sc);
if (sc->suspended) {
FXP_UNLOCK(sc);
return;
}
#ifdef DEVICE_POLLING
if (if_getcapenable(ifp) & IFCAP_POLLING) {
FXP_UNLOCK(sc);
return;
}
#endif
while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
/*
* It should not be possible to have all bits set; the
* FXP_SCB_INTR_SWI bit always returns 0 on a read. If
* all bits are set, this may indicate that the card has
* been physically ejected, so ignore it.
*/
if (statack == 0xff) {
FXP_UNLOCK(sc);
return;
}
/*
* First ACK all the interrupts in this pass.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
fxp_intr_body(sc, ifp, statack, -1);
}
FXP_UNLOCK(sc);
}
static void
fxp_txeof(struct fxp_softc *sc)
{
if_t ifp;
struct fxp_tx *txp;
ifp = sc->ifp;
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (txp = sc->fxp_desc.tx_first; sc->tx_queued &&
(le16toh(txp->tx_cb->cb_status) & FXP_CB_STATUS_C) != 0;
txp = txp->tx_next) {
if (txp->tx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_txmtag, txp->tx_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fxp_txmtag, txp->tx_map);
m_freem(txp->tx_mbuf);
txp->tx_mbuf = NULL;
/* clear this to reset csum offload bits */
txp->tx_cb->tbd[0].tb_addr = 0;
}
sc->tx_queued--;
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
}
sc->fxp_desc.tx_first = txp;
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (sc->tx_queued == 0)
sc->watchdog_timer = 0;
}
static void
fxp_rxcsum(struct fxp_softc *sc, if_t ifp, struct mbuf *m,
uint16_t status, int pos)
{
struct ether_header *eh;
struct ip *ip;
struct udphdr *uh;
int32_t hlen, len, pktlen, temp32;
uint16_t csum, *opts;
if ((sc->flags & FXP_FLAG_82559_RXCSUM) == 0) {
if ((status & FXP_RFA_STATUS_PARSE) != 0) {
if (status & FXP_RFDX_CS_IP_CSUM_BIT_VALID)
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (status & FXP_RFDX_CS_IP_CSUM_VALID)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((status & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) &&
(status & FXP_RFDX_CS_TCPUDP_CSUM_VALID)) {
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
return;
}
pktlen = m->m_pkthdr.len;
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
return;
eh = mtod(m, struct ether_header *);
if (eh->ether_type != htons(ETHERTYPE_IP))
return;
ip = (struct ip *)(eh + 1);
if (ip->ip_v != IPVERSION)
return;
hlen = ip->ip_hl << 2;
pktlen -= sizeof(struct ether_header);
if (hlen < sizeof(struct ip))
return;
if (ntohs(ip->ip_len) < hlen)
return;
if (ntohs(ip->ip_len) != pktlen)
return;
if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
return; /* can't handle fragmented packet */
switch (ip->ip_p) {
case IPPROTO_TCP:
if (pktlen < (hlen + sizeof(struct tcphdr)))
return;
break;
case IPPROTO_UDP:
if (pktlen < (hlen + sizeof(struct udphdr)))
return;
uh = (struct udphdr *)((caddr_t)ip + hlen);
if (uh->uh_sum == 0)
return; /* no checksum */
break;
default:
return;
}
/* Extract computed checksum. */
csum = be16dec(mtod(m, char *) + pos);
/* checksum fixup for IP options */
len = hlen - sizeof(struct ip);
if (len > 0) {
opts = (uint16_t *)(ip + 1);
for (; len > 0; len -= sizeof(uint16_t), opts++) {
temp32 = csum - *opts;
temp32 = (temp32 >> 16) + (temp32 & 65535);
csum = temp32 & 65535;
}
}
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
m->m_pkthdr.csum_data = csum;
}
static int
fxp_intr_body(struct fxp_softc *sc, if_t ifp, uint8_t statack,
int count)
{
struct mbuf *m;
struct fxp_rx *rxp;
struct fxp_rfa *rfa;
int rnr = (statack & FXP_SCB_STATACK_RNR) ? 1 : 0;
int rx_npkts;
uint16_t status;
rx_npkts = 0;
FXP_LOCK_ASSERT(sc, MA_OWNED);
if (rnr)
sc->rnr++;
#ifdef DEVICE_POLLING
/* Pick up a deferred RNR condition if `count' ran out last time. */
if (sc->flags & FXP_FLAG_DEFERRED_RNR) {
sc->flags &= ~FXP_FLAG_DEFERRED_RNR;
rnr = 1;
}
#endif
/*
* Free any finished transmit mbuf chains.
*
* Handle the CNA event likt a CXTNO event. It used to
* be that this event (control unit not ready) was not
* encountered, but it is now with the SMPng modifications.
* The exact sequence of events that occur when the interface
* is brought up are different now, and if this event
* goes unhandled, the configuration/rxfilter setup sequence
* can stall for several seconds. The result is that no
* packets go out onto the wire for about 5 to 10 seconds
* after the interface is ifconfig'ed for the first time.
*/
if (statack & (FXP_SCB_STATACK_CXTNO | FXP_SCB_STATACK_CNA))
fxp_txeof(sc);
/*
* Try to start more packets transmitting.
*/
if (!if_sendq_empty(ifp))
fxp_start_body(ifp);
/*
* Just return if nothing happened on the receive side.
*/
if (!rnr && (statack & FXP_SCB_STATACK_FR) == 0)
return (rx_npkts);
/*
* Process receiver interrupts. If a no-resource (RNR)
* condition exists, get whatever packets we can and
* re-start the receiver.
*
* When using polling, we do not process the list to completion,
* so when we get an RNR interrupt we must defer the restart
* until we hit the last buffer with the C bit set.
* If we run out of cycles and rfa_headm has the C bit set,
* record the pending RNR in the FXP_FLAG_DEFERRED_RNR flag so
* that the info will be used in the subsequent polling cycle.
*/
for (;;) {
rxp = sc->fxp_desc.rx_head;
m = rxp->rx_mbuf;
rfa = (struct fxp_rfa *)(m->m_ext.ext_buf +
RFA_ALIGNMENT_FUDGE);
bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
#ifdef DEVICE_POLLING /* loop at most count times if count >=0 */
if (count >= 0 && count-- == 0) {
if (rnr) {
/* Defer RNR processing until the next time. */
sc->flags |= FXP_FLAG_DEFERRED_RNR;
rnr = 0;
}
break;
}
#endif /* DEVICE_POLLING */
status = le16toh(rfa->rfa_status);
if ((status & FXP_RFA_STATUS_C) == 0)
break;
if ((status & FXP_RFA_STATUS_RNR) != 0)
rnr++;
/*
* Advance head forward.
*/
sc->fxp_desc.rx_head = rxp->rx_next;
/*
* Add a new buffer to the receive chain.
* If this fails, the old buffer is recycled
* instead.
*/
if (fxp_new_rfabuf(sc, rxp) == 0) {
int total_len;
/*
* Fetch packet length (the top 2 bits of
* actual_size are flags set by the controller
* upon completion), and drop the packet in case
* of bogus length or CRC errors.
*/
total_len = le16toh(rfa->actual_size) & 0x3fff;
if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
(if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) {
/* Adjust for appended checksum bytes. */
total_len -= 2;
}
if (total_len < (int)sizeof(struct ether_header) ||
total_len > (MCLBYTES - RFA_ALIGNMENT_FUDGE -
sc->rfa_size) ||
status & (FXP_RFA_STATUS_CRC |
FXP_RFA_STATUS_ALIGN | FXP_RFA_STATUS_OVERRUN)) {
m_freem(m);
fxp_add_rfabuf(sc, rxp);
continue;
}
m->m_pkthdr.len = m->m_len = total_len;
if_setrcvif(m, ifp);
/* Do IP checksum checking. */
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
fxp_rxcsum(sc, ifp, m, status, total_len);
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
(status & FXP_RFA_STATUS_VLAN) != 0) {
m->m_pkthdr.ether_vtag =
ntohs(rfa->rfax_vlan_id);
m->m_flags |= M_VLANTAG;
}
/*
* Drop locks before calling if_input() since it
* may re-enter fxp_start() in the netisr case.
* This would result in a lock reversal. Better
* performance might be obtained by chaining all
* packets received, dropping the lock, and then
* calling if_input() on each one.
*/
FXP_UNLOCK(sc);
if_input(ifp, m);
FXP_LOCK(sc);
rx_npkts++;
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
return (rx_npkts);
} else {
/* Reuse RFA and loaded DMA map. */
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
fxp_discard_rfabuf(sc, rxp);
}
fxp_add_rfabuf(sc, rxp);
}
if (rnr) {
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
sc->fxp_desc.rx_head->rx_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
}
return (rx_npkts);
}
static void
fxp_update_stats(struct fxp_softc *sc)
{
if_t ifp = sc->ifp;
struct fxp_stats *sp = sc->fxp_stats;
struct fxp_hwstats *hsp;
uint32_t *status;
FXP_LOCK_ASSERT(sc, MA_OWNED);
bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Update statistical counters. */
if (sc->revision >= FXP_REV_82559_A0)
status = &sp->completion_status;
else if (sc->revision >= FXP_REV_82558_A4)
status = (uint32_t *)&sp->tx_tco;
else
status = &sp->tx_pause;
if (*status == htole32(FXP_STATS_DR_COMPLETE)) {
hsp = &sc->fxp_hwstats;
hsp->tx_good += le32toh(sp->tx_good);
hsp->tx_maxcols += le32toh(sp->tx_maxcols);
hsp->tx_latecols += le32toh(sp->tx_latecols);
hsp->tx_underruns += le32toh(sp->tx_underruns);
hsp->tx_lostcrs += le32toh(sp->tx_lostcrs);
hsp->tx_deffered += le32toh(sp->tx_deffered);
hsp->tx_single_collisions += le32toh(sp->tx_single_collisions);
hsp->tx_multiple_collisions +=
le32toh(sp->tx_multiple_collisions);
hsp->tx_total_collisions += le32toh(sp->tx_total_collisions);
hsp->rx_good += le32toh(sp->rx_good);
hsp->rx_crc_errors += le32toh(sp->rx_crc_errors);
hsp->rx_alignment_errors += le32toh(sp->rx_alignment_errors);
hsp->rx_rnr_errors += le32toh(sp->rx_rnr_errors);
hsp->rx_overrun_errors += le32toh(sp->rx_overrun_errors);
hsp->rx_cdt_errors += le32toh(sp->rx_cdt_errors);
hsp->rx_shortframes += le32toh(sp->rx_shortframes);
hsp->tx_pause += le32toh(sp->tx_pause);
hsp->rx_pause += le32toh(sp->rx_pause);
hsp->rx_controls += le32toh(sp->rx_controls);
hsp->tx_tco += le16toh(sp->tx_tco);
hsp->rx_tco += le16toh(sp->rx_tco);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, le32toh(sp->tx_good));
if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
le32toh(sp->tx_total_collisions));
if (sp->rx_good) {
if_inc_counter(ifp, IFCOUNTER_IPACKETS,
le32toh(sp->rx_good));
sc->rx_idle_secs = 0;
} else if (sc->flags & FXP_FLAG_RXBUG) {
/*
* Receiver's been idle for another second.
*/
sc->rx_idle_secs++;
}
if_inc_counter(ifp, IFCOUNTER_IERRORS,
le32toh(sp->rx_crc_errors) +
le32toh(sp->rx_alignment_errors) +
le32toh(sp->rx_rnr_errors) +
le32toh(sp->rx_overrun_errors));
/*
* If any transmit underruns occurred, bump up the transmit
* threshold by another 512 bytes (64 * 8).
*/
if (sp->tx_underruns) {
if_inc_counter(ifp, IFCOUNTER_OERRORS,
le32toh(sp->tx_underruns));
if (tx_threshold < 192)
tx_threshold += 64;
}
*status = 0;
bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
}
/*
* Update packet in/out/collision statistics. The i82557 doesn't
* allow you to access these counters without doing a fairly
* expensive DMA to get _all_ of the statistics it maintains, so
* we do this operation here only once per second. The statistics
* counters in the kernel are updated from the previous dump-stats
* DMA and then a new dump-stats DMA is started. The on-chip
* counters are zeroed when the DMA completes. If we can't start
* the DMA immediately, we don't wait - we just prepare to read
* them again next time.
*/
static void
fxp_tick(void *xsc)
{
struct fxp_softc *sc = xsc;
if_t ifp = sc->ifp;
FXP_LOCK_ASSERT(sc, MA_OWNED);
/* Update statistical counters. */
fxp_update_stats(sc);
/*
* Release any xmit buffers that have completed DMA. This isn't
* strictly necessary to do here, but it's advantagous for mbufs
* with external storage to be released in a timely manner rather
* than being defered for a potentially long time. This limits
* the delay to a maximum of one second.
*/
fxp_txeof(sc);
/*
* If we haven't received any packets in FXP_MAC_RX_IDLE seconds,
* then assume the receiver has locked up and attempt to clear
* the condition by reprogramming the multicast filter. This is
* a work-around for a bug in the 82557 where the receiver locks
* up if it gets certain types of garbage in the synchronization
* bits prior to the packet header. This bug is supposed to only
* occur in 10Mbps mode, but has been seen to occur in 100Mbps
* mode as well (perhaps due to a 10/100 speed transition).
*/
if (sc->rx_idle_secs > FXP_MAX_RX_IDLE) {
sc->rx_idle_secs = 0;
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
fxp_init_body(sc, 1);
}
return;
}
/*
* If there is no pending command, start another stats
* dump. Otherwise punt for now.
*/
if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
/*
* Start another stats dump.
*/
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
}
if (sc->miibus != NULL)
mii_tick(device_get_softc(sc->miibus));
/*
* Check that chip hasn't hung.
*/
fxp_watchdog(sc);
/*
* Schedule another timeout one second from now.
*/
callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
}
/*
* Stop the interface. Cancels the statistics updater and resets
* the interface.
*/
static void
fxp_stop(struct fxp_softc *sc)
{
if_t ifp = sc->ifp;
struct fxp_tx *txp;
int i;
if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
sc->watchdog_timer = 0;
/*
* Cancel stats updater.
*/
callout_stop(&sc->stat_ch);
/*
* Preserve PCI configuration, configure, IA/multicast
* setup and put RU and CU into idle state.
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(50);
/* Disable interrupts. */
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
fxp_update_stats(sc);
/*
* Release any xmit buffers.
*/
txp = sc->fxp_desc.tx_list;
for (i = 0; i < FXP_NTXCB; i++) {
if (txp[i].tx_mbuf != NULL) {
bus_dmamap_sync(sc->fxp_txmtag, txp[i].tx_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->fxp_txmtag, txp[i].tx_map);
m_freem(txp[i].tx_mbuf);
txp[i].tx_mbuf = NULL;
/* clear this to reset csum offload bits */
txp[i].tx_cb->tbd[0].tb_addr = 0;
}
}
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->tx_queued = 0;
}
/*
* Watchdog/transmission transmit timeout handler. Called when a
* transmission is started on the interface, but no interrupt is
* received before the timeout. This usually indicates that the
* card has wedged for some reason.
*/
static void
fxp_watchdog(struct fxp_softc *sc)
{
if_t ifp = sc->ifp;
FXP_LOCK_ASSERT(sc, MA_OWNED);
if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
return;
device_printf(sc->dev, "device timeout\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
fxp_init_body(sc, 1);
}
/*
* Acquire locks and then call the real initialization function. This
* is necessary because ether_ioctl() calls if_init() and this would
* result in mutex recursion if the mutex was held.
*/
static void
fxp_init(void *xsc)
{
struct fxp_softc *sc = xsc;
FXP_LOCK(sc);
fxp_init_body(sc, 1);
FXP_UNLOCK(sc);
}
/*
* Perform device initialization. This routine must be called with the
* softc lock held.
*/
static void
fxp_init_body(struct fxp_softc *sc, int setmedia)
{
if_t ifp = sc->ifp;
struct mii_data *mii;
struct fxp_cb_config *cbp;
struct fxp_cb_ias *cb_ias;
struct fxp_cb_tx *tcbp;
struct fxp_tx *txp;
int i, prm;
FXP_LOCK_ASSERT(sc, MA_OWNED);
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
return;
/*
* Cancel any pending I/O
*/
fxp_stop(sc);
/*
* Issue software reset, which also unloads the microcode.
*/
sc->flags &= ~FXP_FLAG_UCODE;
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
DELAY(50);
prm = (if_getflags(ifp) & IFF_PROMISC) ? 1 : 0;
/*
* Initialize base of CBL and RFA memory. Loading with zero
* sets it up for regular linear addressing.
*/
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
fxp_scb_wait(sc);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
/*
* Initialize base of dump-stats buffer.
*/
fxp_scb_wait(sc);
bzero(sc->fxp_stats, sizeof(struct fxp_stats));
bus_dmamap_sync(sc->fxp_stag, sc->fxp_smap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->stats_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
/*
* Attempt to load microcode if requested.
* For ICH based controllers do not load microcode.
*/
if (sc->ident->ich == 0) {
if (if_getflags(ifp) & IFF_LINK0 &&
(sc->flags & FXP_FLAG_UCODE) == 0)
fxp_load_ucode(sc);
}
/*
* Set IFF_ALLMULTI status. It's needed in configure action
* command.
*/
fxp_mc_addrs(sc);
/*
* We temporarily use memory that contains the TxCB list to
* construct the config CB. The TxCB list memory is rebuilt
* later.
*/
cbp = (struct fxp_cb_config *)sc->fxp_desc.cbl_list;
/*
* This bcopy is kind of disgusting, but there are a bunch of must be
* zero and must be one bits in this structure and this is the easiest
* way to initialize them all to proper values.
*/
bcopy(fxp_cb_config_template, cbp, sizeof(fxp_cb_config_template));
cbp->cb_status = 0;
cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
FXP_CB_COMMAND_EL);
cbp->link_addr = 0xffffffff; /* (no) next command */
cbp->byte_count = sc->flags & FXP_FLAG_EXT_RFA ? 32 : 22;
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
cbp->mwi_enable = sc->flags & FXP_FLAG_MWI_ENABLE ? 1 : 0;
cbp->type_enable = 0; /* actually reserved */
cbp->read_align_en = sc->flags & FXP_FLAG_READ_ALIGN ? 1 : 0;
cbp->end_wr_on_cl = sc->flags & FXP_FLAG_WRITE_ALIGN ? 1 : 0;
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
cbp->dma_mbce = 0; /* (disable) dma max counters */
cbp->late_scb = 0; /* (don't) defer SCB update */
cbp->direct_dma_dis = 1; /* disable direct rcv dma mode */
cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
cbp->ci_int = 1; /* interrupt on CU idle */
cbp->ext_txcb_dis = sc->flags & FXP_FLAG_EXT_TXCB ? 0 : 1;
cbp->ext_stats_dis = 1; /* disable extended counters */
cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
cbp->save_bf = sc->flags & FXP_FLAG_SAVE_BAD ? 1 : prm;
cbp->disc_short_rx = !prm; /* discard short packets */
cbp->underrun_retry = 1; /* retry mode (once) on DMA underrun */
cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
cbp->dyn_tbd = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
cbp->ext_rfa = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
cbp->mediatype = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 0 : 1;
cbp->csma_dis = 0; /* (don't) disable link */
cbp->tcp_udp_cksum = ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0 &&
(if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) ? 1 : 0;
cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
cbp->mc_wake_en = 0; /* (don't) enable PME# on mcmatch */
cbp->nsai = 1; /* (don't) disable source addr insert */
cbp->preamble_length = 2; /* (7 byte) preamble */
cbp->loopback = 0; /* (don't) loopback */
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
cbp->promiscuous = prm; /* promiscuous mode */
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
cbp->crscdt = sc->flags & FXP_FLAG_SERIAL_MEDIA ? 1 : 0;
cbp->stripping = !prm; /* truncate rx packet to byte count */
cbp->padding = 1; /* (do) pad short tx packets */
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
cbp->long_rx_en = sc->flags & FXP_FLAG_LONG_PKT_EN ? 1 : 0;
cbp->ia_wake_en = 0; /* (don't) wake up on address match */
cbp->magic_pkt_dis = sc->flags & FXP_FLAG_WOL ? 0 : 1;
cbp->force_fdx = 0; /* (don't) force full duplex */
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
cbp->mc_all = if_getflags(ifp) & IFF_ALLMULTI ? 1 : prm;
cbp->gamla_rx = sc->flags & FXP_FLAG_EXT_RFA ? 1 : 0;
cbp->vlan_strip_en = ((sc->flags & FXP_FLAG_EXT_RFA) != 0 &&
(if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) ? 1 : 0;
if (sc->revision == FXP_REV_82557) {
/*
* The 82557 has no hardware flow control, the values
* below are the defaults for the chip.
*/
cbp->fc_delay_lsb = 0;
cbp->fc_delay_msb = 0x40;
cbp->pri_fc_thresh = 3;
cbp->tx_fc_dis = 0;
cbp->rx_fc_restop = 0;
cbp->rx_fc_restart = 0;
cbp->fc_filter = 0;
cbp->pri_fc_loc = 1;
} else {
/* Set pause RX FIFO threshold to 1KB. */
CSR_WRITE_1(sc, FXP_CSR_FC_THRESH, 1);
/* Set pause time. */
cbp->fc_delay_lsb = 0xff;
cbp->fc_delay_msb = 0xff;
cbp->pri_fc_thresh = 3;
mii = device_get_softc(sc->miibus);
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_TXPAUSE) != 0)
/* enable transmit FC */
cbp->tx_fc_dis = 0;
else
/* disable transmit FC */
cbp->tx_fc_dis = 1;
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_RXPAUSE) != 0) {
/* enable FC restart/restop frames */
cbp->rx_fc_restart = 1;
cbp->rx_fc_restop = 1;
} else {
/* disable FC restart/restop frames */
cbp->rx_fc_restart = 0;
cbp->rx_fc_restop = 0;
}
cbp->fc_filter = !prm; /* drop FC frames to host */
cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
}
/* Enable 82558 and 82559 extended statistics functionality. */
if (sc->revision >= FXP_REV_82558_A4) {
if (sc->revision >= FXP_REV_82559_A0) {
/*
* Extend configuration table size to 32
* to include TCO configuration.
*/
cbp->byte_count = 32;
cbp->ext_stats_dis = 1;
/* Enable TCO stats. */
cbp->tno_int_or_tco_en = 1;
cbp->gamla_rx = 1;
} else
cbp->ext_stats_dis = 0;
}
/*
* Start the config command/DMA.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
/*
* Now initialize the station address. Temporarily use the TxCB
* memory area like we did above for the config CB.
*/
cb_ias = (struct fxp_cb_ias *)sc->fxp_desc.cbl_list;
cb_ias->cb_status = 0;
cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
cb_ias->link_addr = 0xffffffff;
bcopy(if_getlladdr(sc->ifp), cb_ias->macaddr, ETHER_ADDR_LEN);
/*
* Start the IAS (Individual Address Setup) command/DMA.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &cb_ias->cb_status, sc->cbl_tag, sc->cbl_map);
/*
* Initialize the multicast address list.
*/
fxp_mc_setup(sc);
/*
* Initialize transmit control block (TxCB) list.
*/
txp = sc->fxp_desc.tx_list;
tcbp = sc->fxp_desc.cbl_list;
bzero(tcbp, FXP_TXCB_SZ);
for (i = 0; i < FXP_NTXCB; i++) {
txp[i].tx_mbuf = NULL;
tcbp[i].cb_status = htole16(FXP_CB_STATUS_C | FXP_CB_STATUS_OK);
tcbp[i].cb_command = htole16(FXP_CB_COMMAND_NOP);
tcbp[i].link_addr = htole32(sc->fxp_desc.cbl_addr +
(((i + 1) & FXP_TXCB_MASK) * sizeof(struct fxp_cb_tx)));
if (sc->flags & FXP_FLAG_EXT_TXCB)
tcbp[i].tbd_array_addr =
htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[2]));
else
tcbp[i].tbd_array_addr =
htole32(FXP_TXCB_DMA_ADDR(sc, &tcbp[i].tbd[0]));
txp[i].tx_next = &txp[(i + 1) & FXP_TXCB_MASK];
}
/*
* Set the suspend flag on the first TxCB and start the control
* unit. It will execute the NOP and then suspend.
*/
tcbp->cb_command = htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->fxp_desc.tx_first = sc->fxp_desc.tx_last = txp;
sc->tx_queued = 1;
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/*
* Initialize receiver buffer area - RFA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.rx_head->rx_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
if (sc->miibus != NULL && setmedia != 0)
mii_mediachg(device_get_softc(sc->miibus));
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
/*
* Enable interrupts.
*/
#ifdef DEVICE_POLLING
/*
* ... but only do that if we are not polling. And because (presumably)
* the default is interrupts on, we need to disable them explicitly!
*/
if (if_getcapenable(ifp) & IFCAP_POLLING )
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTR_DISABLE);
else
#endif /* DEVICE_POLLING */
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
/*
* Start stats updater.
*/
callout_reset(&sc->stat_ch, hz, fxp_tick, sc);
}
static int
fxp_serial_ifmedia_upd(if_t ifp)
{
return (0);
}
static void
fxp_serial_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
{
ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
}
/*
* Change media according to request.
*/
static int
fxp_ifmedia_upd(if_t ifp)
{
struct fxp_softc *sc = if_getsoftc(ifp);
struct mii_data *mii;
struct mii_softc *miisc;
mii = device_get_softc(sc->miibus);
FXP_LOCK(sc);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
mii_mediachg(mii);
FXP_UNLOCK(sc);
return (0);
}
/*
* Notify the world which media we're using.
*/
static void
fxp_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
{
struct fxp_softc *sc = if_getsoftc(ifp);
struct mii_data *mii;
mii = device_get_softc(sc->miibus);
FXP_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
FXP_UNLOCK(sc);
}
/*
* Add a buffer to the end of the RFA buffer list.
* Return 0 if successful, 1 for failure. A failure results in
* reusing the RFA buffer.
* The RFA struct is stuck at the beginning of mbuf cluster and the
* data pointer is fixed up to point just past it.
*/
static int
fxp_new_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
{
struct mbuf *m;
struct fxp_rfa *rfa;
bus_dmamap_t tmp_map;
int error;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
/*
* Move the data pointer up so that the incoming data packet
* will be 32-bit aligned.
*/
m->m_data += RFA_ALIGNMENT_FUDGE;
/*
* Get a pointer to the base of the mbuf cluster and move
* data start past it.
*/
rfa = mtod(m, struct fxp_rfa *);
m->m_data += sc->rfa_size;
rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
rfa->rfa_status = 0;
rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
rfa->actual_size = 0;
m->m_len = m->m_pkthdr.len = MCLBYTES - RFA_ALIGNMENT_FUDGE -
sc->rfa_size;
/*
* Initialize the rest of the RFA. Note that since the RFA
* is misaligned, we cannot store values directly. We're thus
* using the le32enc() function which handles endianness and
* is also alignment-safe.
*/
le32enc(&rfa->link_addr, 0xffffffff);
le32enc(&rfa->rbd_addr, 0xffffffff);
/* Map the RFA into DMA memory. */
error = bus_dmamap_load(sc->fxp_rxmtag, sc->spare_map, rfa,
MCLBYTES - RFA_ALIGNMENT_FUDGE, fxp_dma_map_addr,
&rxp->rx_addr, BUS_DMA_NOWAIT);
if (error) {
m_freem(m);
return (error);
}
if (rxp->rx_mbuf != NULL)
bus_dmamap_unload(sc->fxp_rxmtag, rxp->rx_map);
tmp_map = sc->spare_map;
sc->spare_map = rxp->rx_map;
rxp->rx_map = tmp_map;
rxp->rx_mbuf = m;
bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return (0);
}
static void
fxp_add_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
{
struct fxp_rfa *p_rfa;
struct fxp_rx *p_rx;
/*
* If there are other buffers already on the list, attach this
* one to the end by fixing up the tail to point to this one.
*/
if (sc->fxp_desc.rx_head != NULL) {
p_rx = sc->fxp_desc.rx_tail;
p_rfa = (struct fxp_rfa *)
(p_rx->rx_mbuf->m_ext.ext_buf + RFA_ALIGNMENT_FUDGE);
p_rx->rx_next = rxp;
le32enc(&p_rfa->link_addr, rxp->rx_addr);
p_rfa->rfa_control = 0;
bus_dmamap_sync(sc->fxp_rxmtag, p_rx->rx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
} else {
rxp->rx_next = NULL;
sc->fxp_desc.rx_head = rxp;
}
sc->fxp_desc.rx_tail = rxp;
}
static void
fxp_discard_rfabuf(struct fxp_softc *sc, struct fxp_rx *rxp)
{
struct mbuf *m;
struct fxp_rfa *rfa;
m = rxp->rx_mbuf;
m->m_data = m->m_ext.ext_buf;
/*
* Move the data pointer up so that the incoming data packet
* will be 32-bit aligned.
*/
m->m_data += RFA_ALIGNMENT_FUDGE;
/*
* Get a pointer to the base of the mbuf cluster and move
* data start past it.
*/
rfa = mtod(m, struct fxp_rfa *);
m->m_data += sc->rfa_size;
rfa->size = htole16(MCLBYTES - sc->rfa_size - RFA_ALIGNMENT_FUDGE);
rfa->rfa_status = 0;
rfa->rfa_control = htole16(FXP_RFA_CONTROL_EL);
rfa->actual_size = 0;
/*
* Initialize the rest of the RFA. Note that since the RFA
* is misaligned, we cannot store values directly. We're thus
* using the le32enc() function which handles endianness and
* is also alignment-safe.
*/
le32enc(&rfa->link_addr, 0xffffffff);
le32enc(&rfa->rbd_addr, 0xffffffff);
bus_dmamap_sync(sc->fxp_rxmtag, rxp->rx_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static int
fxp_miibus_readreg(device_t dev, int phy, int reg)
{
struct fxp_softc *sc = device_get_softc(dev);
int count = 10000;
int value;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) & 0x10000000) == 0
&& count--)
DELAY(10);
if (count <= 0)
device_printf(dev, "fxp_miibus_readreg: timed out\n");
return (value & 0xffff);
}
static int
fxp_miibus_writereg(device_t dev, int phy, int reg, int value)
{
struct fxp_softc *sc = device_get_softc(dev);
int count = 10000;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
(value & 0xffff));
while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
count--)
DELAY(10);
if (count <= 0)
device_printf(dev, "fxp_miibus_writereg: timed out\n");
return (0);
}
static void
fxp_miibus_statchg(device_t dev)
{
struct fxp_softc *sc;
struct mii_data *mii;
if_t ifp;
sc = device_get_softc(dev);
mii = device_get_softc(sc->miibus);
ifp = sc->ifp;
if (mii == NULL || ifp == (void *)NULL ||
(if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
(mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) !=
(IFM_AVALID | IFM_ACTIVE))
return;
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T &&
sc->flags & FXP_FLAG_CU_RESUME_BUG)
sc->cu_resume_bug = 1;
else
sc->cu_resume_bug = 0;
/*
* Call fxp_init_body in order to adjust the flow control settings.
* Note that the 82557 doesn't support hardware flow control.
*/
if (sc->revision == FXP_REV_82557)
return;
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
fxp_init_body(sc, 0);
}
static int
fxp_ioctl(if_t ifp, u_long command, caddr_t data)
{
struct fxp_softc *sc = if_getsoftc(ifp);
struct ifreq *ifr = (struct ifreq *)data;
struct mii_data *mii;
int flag, mask, error = 0, reinit;
switch (command) {
case SIOCSIFFLAGS:
FXP_LOCK(sc);
/*
* If interface is marked up and not running, then start it.
* If it is marked down and running, stop it.
* XXX If it's up then re-initialize it. This is so flags
* such as IFF_PROMISC are handled.
*/
if (if_getflags(ifp) & IFF_UP) {
if (((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) &&
((if_getflags(ifp) ^ sc->if_flags) &
(IFF_PROMISC | IFF_ALLMULTI | IFF_LINK0)) != 0) {
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
fxp_init_body(sc, 0);
} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
fxp_init_body(sc, 1);
} else {
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
fxp_stop(sc);
}
sc->if_flags = if_getflags(ifp);
FXP_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
FXP_LOCK(sc);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
fxp_init_body(sc, 0);
}
FXP_UNLOCK(sc);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
if (sc->miibus != NULL) {
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr,
&mii->mii_media, command);
} else {
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command);
}
break;
case SIOCSIFCAP:
reinit = 0;
mask = if_getcapenable(ifp) ^ ifr->ifr_reqcap;
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(fxp_poll, ifp);
if (error)
return(error);
FXP_LOCK(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL,
FXP_SCB_INTR_DISABLE);
if_setcapenablebit(ifp, IFCAP_POLLING, 0);
FXP_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts in any case */
FXP_LOCK(sc);
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, 0);
if_setcapenablebit(ifp, 0, IFCAP_POLLING);
FXP_UNLOCK(sc);
}
}
#endif
FXP_LOCK(sc);
if ((mask & IFCAP_TXCSUM) != 0 &&
(if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
if_togglecapenable(ifp, IFCAP_TXCSUM);
if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
if_sethwassistbits(ifp, FXP_CSUM_FEATURES, 0);
else
if_sethwassistbits(ifp, 0, FXP_CSUM_FEATURES);
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
if_togglecapenable(ifp, IFCAP_RXCSUM);
if ((sc->flags & FXP_FLAG_82559_RXCSUM) != 0)
reinit++;
}
if ((mask & IFCAP_TSO4) != 0 &&
(if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
if_togglecapenable(ifp, IFCAP_TSO4);
if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
if_sethwassistbits(ifp, CSUM_TSO, 0);
else
if_sethwassistbits(ifp, 0, CSUM_TSO);
}
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
(if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
if ((mask & IFCAP_VLAN_MTU) != 0 &&
(if_getcapabilities(ifp) & IFCAP_VLAN_MTU) != 0) {
if_togglecapenable(ifp, IFCAP_VLAN_MTU);
if (sc->revision != FXP_REV_82557)
flag = FXP_FLAG_LONG_PKT_EN;
else /* a hack to get long frames on the old chip */
flag = FXP_FLAG_SAVE_BAD;
sc->flags ^= flag;
if (if_getflags(ifp) & IFF_UP)
reinit++;
}
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
(if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO |
IFCAP_VLAN_HWCSUM);
reinit++;
}
if (reinit > 0 &&
(if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
fxp_init_body(sc, 0);
}
FXP_UNLOCK(sc);
if_vlancap(ifp);
break;
default:
error = ether_ioctl(ifp, command, data);
}
return (error);
}
/*
* Fill in the multicast address list and return number of entries.
*/
static int
fxp_mc_addrs(struct fxp_softc *sc)
{
struct fxp_cb_mcs *mcsp = sc->mcsp;
if_t ifp = sc->ifp;
int nmcasts = 0;
if ((if_getflags(ifp) & IFF_ALLMULTI) == 0) {
if_maddr_rlock(ifp);
if_setupmultiaddr(ifp, mcsp->mc_addr, &nmcasts, MAXMCADDR);
if (nmcasts >= MAXMCADDR) {
if_setflagbits(ifp, IFF_ALLMULTI, 0);
nmcasts = 0;
}
if_maddr_runlock(ifp);
}
mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
return (nmcasts);
}
/*
* Program the multicast filter.
*
* We have an artificial restriction that the multicast setup command
* must be the first command in the chain, so we take steps to ensure
* this. By requiring this, it allows us to keep up the performance of
* the pre-initialized command ring (esp. link pointers) by not actually
* inserting the mcsetup command in the ring - i.e. its link pointer
* points to the TxCB ring, but the mcsetup descriptor itself is not part
* of it. We then can do 'CU_START' on the mcsetup descriptor and have it
* lead into the regular TxCB ring when it completes.
*/
static void
fxp_mc_setup(struct fxp_softc *sc)
{
struct fxp_cb_mcs *mcsp;
int count;
FXP_LOCK_ASSERT(sc, MA_OWNED);
mcsp = sc->mcsp;
mcsp->cb_status = 0;
mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
mcsp->link_addr = 0xffffffff;
fxp_mc_addrs(sc);
/*
* Wait until command unit is idle. This should never be the
* case when nothing is queued, but make sure anyway.
*/
count = 100;
while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) !=
FXP_SCB_CUS_IDLE && --count)
DELAY(10);
if (count == 0) {
device_printf(sc->dev, "command queue timeout\n");
return;
}
/*
* Start the multicast setup command.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->mcs_tag, sc->mcs_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->mcs_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &mcsp->cb_status, sc->mcs_tag, sc->mcs_map);
}
static uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
static uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
static uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
static uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
static uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
static uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
static uint32_t fxp_ucode_d102e[] = D102_E_RCVBUNDLE_UCODE;
#define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
static const struct ucode {
uint32_t revision;
uint32_t *ucode;
int length;
u_short int_delay_offset;
u_short bundle_max_offset;
} ucode_table[] = {
{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a), D101_CPUSAVER_DWORD, 0 },
{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0), D101_CPUSAVER_DWORD, 0 },
{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82550, UCODE(fxp_ucode_d102),
D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82551_F, UCODE(fxp_ucode_d102e),
D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82551_10, UCODE(fxp_ucode_d102e),
D102_E_CPUSAVER_DWORD, D102_E_CPUSAVER_BUNDLE_MAX_DWORD },
{ 0, NULL, 0, 0, 0 }
};
static void
fxp_load_ucode(struct fxp_softc *sc)
{
const struct ucode *uc;
struct fxp_cb_ucode *cbp;
int i;
if (sc->flags & FXP_FLAG_NO_UCODE)
return;
for (uc = ucode_table; uc->ucode != NULL; uc++)
if (sc->revision == uc->revision)
break;
if (uc->ucode == NULL)
return;
cbp = (struct fxp_cb_ucode *)sc->fxp_desc.cbl_list;
cbp->cb_status = 0;
cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
cbp->link_addr = 0xffffffff; /* (no) next command */
for (i = 0; i < uc->length; i++)
cbp->ucode[i] = htole32(uc->ucode[i]);
if (uc->int_delay_offset)
*(uint16_t *)&cbp->ucode[uc->int_delay_offset] =
htole16(sc->tunable_int_delay + sc->tunable_int_delay / 2);
if (uc->bundle_max_offset)
*(uint16_t *)&cbp->ucode[uc->bundle_max_offset] =
htole16(sc->tunable_bundle_max);
/*
* Download the ucode to the chip.
*/
fxp_scb_wait(sc);
bus_dmamap_sync(sc->cbl_tag, sc->cbl_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->fxp_desc.cbl_addr);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
fxp_dma_wait(sc, &cbp->cb_status, sc->cbl_tag, sc->cbl_map);
device_printf(sc->dev,
"Microcode loaded, int_delay: %d usec bundle_max: %d\n",
sc->tunable_int_delay,
uc->bundle_max_offset == 0 ? 0 : sc->tunable_bundle_max);
sc->flags |= FXP_FLAG_UCODE;
bzero(cbp, FXP_TXCB_SZ);
}
#define FXP_SYSCTL_STAT_ADD(c, h, n, p, d) \
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
static void
fxp_sysctl_node(struct fxp_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *child, *parent;
struct sysctl_oid *tree;
struct fxp_hwstats *hsp;
ctx = device_get_sysctl_ctx(sc->dev);
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
SYSCTL_ADD_PROC(ctx, child,
OID_AUTO, "int_delay", CTLTYPE_INT | CTLFLAG_RW,
&sc->tunable_int_delay, 0, sysctl_hw_fxp_int_delay, "I",
"FXP driver receive interrupt microcode bundling delay");
SYSCTL_ADD_PROC(ctx, child,
OID_AUTO, "bundle_max", CTLTYPE_INT | CTLFLAG_RW,
&sc->tunable_bundle_max, 0, sysctl_hw_fxp_bundle_max, "I",
"FXP driver receive interrupt microcode bundle size limit");
SYSCTL_ADD_INT(ctx, child,OID_AUTO, "rnr", CTLFLAG_RD, &sc->rnr, 0,
"FXP RNR events");
/*
* Pull in device tunables.
*/
sc->tunable_int_delay = TUNABLE_INT_DELAY;
sc->tunable_bundle_max = TUNABLE_BUNDLE_MAX;
(void) resource_int_value(device_get_name(sc->dev),
device_get_unit(sc->dev), "int_delay", &sc->tunable_int_delay);
(void) resource_int_value(device_get_name(sc->dev),
device_get_unit(sc->dev), "bundle_max", &sc->tunable_bundle_max);
sc->rnr = 0;
hsp = &sc->fxp_hwstats;
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "FXP statistics");
parent = SYSCTL_CHILDREN(tree);
/* Rx MAC statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
NULL, "Rx MAC statistics");
child = SYSCTL_CHILDREN(tree);
FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
&hsp->rx_good, "Good frames");
FXP_SYSCTL_STAT_ADD(ctx, child, "crc_errors",
&hsp->rx_crc_errors, "CRC errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "alignment_errors",
&hsp->rx_alignment_errors, "Alignment errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "rnr_errors",
&hsp->rx_rnr_errors, "RNR errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "overrun_errors",
&hsp->rx_overrun_errors, "Overrun errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "cdt_errors",
&hsp->rx_cdt_errors, "Collision detect errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "shortframes",
&hsp->rx_shortframes, "Short frame errors");
if (sc->revision >= FXP_REV_82558_A4) {
FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
&hsp->rx_pause, "Pause frames");
FXP_SYSCTL_STAT_ADD(ctx, child, "controls",
&hsp->rx_controls, "Unsupported control frames");
}
if (sc->revision >= FXP_REV_82559_A0)
FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
&hsp->rx_tco, "TCO frames");
/* Tx MAC statistics. */
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
NULL, "Tx MAC statistics");
child = SYSCTL_CHILDREN(tree);
FXP_SYSCTL_STAT_ADD(ctx, child, "good_frames",
&hsp->tx_good, "Good frames");
FXP_SYSCTL_STAT_ADD(ctx, child, "maxcols",
&hsp->tx_maxcols, "Maximum collisions errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "latecols",
&hsp->tx_latecols, "Late collisions errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "underruns",
&hsp->tx_underruns, "Underrun errors");
FXP_SYSCTL_STAT_ADD(ctx, child, "lostcrs",
&hsp->tx_lostcrs, "Lost carrier sense");
FXP_SYSCTL_STAT_ADD(ctx, child, "deffered",
&hsp->tx_deffered, "Deferred");
FXP_SYSCTL_STAT_ADD(ctx, child, "single_collisions",
&hsp->tx_single_collisions, "Single collisions");
FXP_SYSCTL_STAT_ADD(ctx, child, "multiple_collisions",
&hsp->tx_multiple_collisions, "Multiple collisions");
FXP_SYSCTL_STAT_ADD(ctx, child, "total_collisions",
&hsp->tx_total_collisions, "Total collisions");
if (sc->revision >= FXP_REV_82558_A4)
FXP_SYSCTL_STAT_ADD(ctx, child, "pause",
&hsp->tx_pause, "Pause frames");
if (sc->revision >= FXP_REV_82559_A0)
FXP_SYSCTL_STAT_ADD(ctx, child, "tco",
&hsp->tx_tco, "TCO frames");
}
#undef FXP_SYSCTL_STAT_ADD
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || !req->newptr)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
/*
* Interrupt delay is expressed in microseconds, a multiplier is used
* to convert this to the appropriate clock ticks before using.
*/
static int
sysctl_hw_fxp_int_delay(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, 300, 3000));
}
static int
sysctl_hw_fxp_bundle_max(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, 1, 0xffff));
}