freebsd-dev/sys/vm/vm_page.c
Matthew Dillon 4f79d873c1 Add MAP_NOSYNC feature to mmap(), and MADV_NOSYNC and MADV_AUTOSYNC to
madvise().

    This feature prevents the update daemon from gratuitously flushing
    dirty pages associated with a mapped file-backed region of memory.  The
    system pager will still page the memory as necessary and the VM system
    will still be fully coherent with the filesystem.  Modifications made
    by other means to the same area of memory, for example by write(), are
    unaffected.  The feature works on a page-granularity basis.

    MAP_NOSYNC allows one to use mmap() to share memory between processes
    without incuring any significant filesystem overhead, putting it in
    the same performance category as SysV Shared memory and anonymous memory.

Reviewed by: julian, alc, dg
1999-12-12 03:19:33 +00:00

1931 lines
45 KiB
C

/*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
* $FreeBSD$
*/
/*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* Resident memory management module.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <sys/lock.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_extern.h>
static void vm_page_queue_init __P((void));
static vm_page_t vm_page_select_cache __P((vm_object_t, vm_pindex_t));
/*
* Associated with page of user-allocatable memory is a
* page structure.
*/
static struct vm_page **vm_page_buckets; /* Array of buckets */
static int vm_page_bucket_count; /* How big is array? */
static int vm_page_hash_mask; /* Mask for hash function */
static volatile int vm_page_bucket_generation;
struct vpgqueues vm_page_queues[PQ_COUNT];
static void
vm_page_queue_init(void) {
int i;
for(i=0;i<PQ_L2_SIZE;i++) {
vm_page_queues[PQ_FREE+i].cnt = &cnt.v_free_count;
}
vm_page_queues[PQ_INACTIVE].cnt = &cnt.v_inactive_count;
vm_page_queues[PQ_ACTIVE].cnt = &cnt.v_active_count;
for(i=0;i<PQ_L2_SIZE;i++) {
vm_page_queues[PQ_CACHE+i].cnt = &cnt.v_cache_count;
}
for(i=0;i<PQ_COUNT;i++) {
TAILQ_INIT(&vm_page_queues[i].pl);
}
}
vm_page_t vm_page_array = 0;
static int vm_page_array_size = 0;
long first_page = 0;
int vm_page_zero_count = 0;
static __inline int vm_page_hash __P((vm_object_t object, vm_pindex_t pindex));
static void vm_page_free_wakeup __P((void));
/*
* vm_set_page_size:
*
* Sets the page size, perhaps based upon the memory
* size. Must be called before any use of page-size
* dependent functions.
*/
void
vm_set_page_size()
{
if (cnt.v_page_size == 0)
cnt.v_page_size = PAGE_SIZE;
if (((cnt.v_page_size - 1) & cnt.v_page_size) != 0)
panic("vm_set_page_size: page size not a power of two");
}
/*
* vm_page_startup:
*
* Initializes the resident memory module.
*
* Allocates memory for the page cells, and
* for the object/offset-to-page hash table headers.
* Each page cell is initialized and placed on the free list.
*/
vm_offset_t
vm_page_startup(starta, enda, vaddr)
register vm_offset_t starta;
vm_offset_t enda;
register vm_offset_t vaddr;
{
register vm_offset_t mapped;
register vm_page_t m;
register struct vm_page **bucket;
vm_size_t npages, page_range;
register vm_offset_t new_start;
int i;
vm_offset_t pa;
int nblocks;
vm_offset_t first_managed_page;
/* the biggest memory array is the second group of pages */
vm_offset_t start;
vm_offset_t biggestone, biggestsize;
vm_offset_t total;
total = 0;
biggestsize = 0;
biggestone = 0;
nblocks = 0;
vaddr = round_page(vaddr);
for (i = 0; phys_avail[i + 1]; i += 2) {
phys_avail[i] = round_page(phys_avail[i]);
phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
}
for (i = 0; phys_avail[i + 1]; i += 2) {
int size = phys_avail[i + 1] - phys_avail[i];
if (size > biggestsize) {
biggestone = i;
biggestsize = size;
}
++nblocks;
total += size;
}
start = phys_avail[biggestone];
/*
* Initialize the queue headers for the free queue, the active queue
* and the inactive queue.
*/
vm_page_queue_init();
/*
* Allocate (and initialize) the hash table buckets.
*
* The number of buckets MUST BE a power of 2, and the actual value is
* the next power of 2 greater than the number of physical pages in
* the system.
*
* We make the hash table approximately 2x the number of pages to
* reduce the chain length. This is about the same size using the
* singly-linked list as the 1x hash table we were using before
* using TAILQ but the chain length will be smaller.
*
* Note: This computation can be tweaked if desired.
*/
vm_page_buckets = (struct vm_page **)vaddr;
bucket = vm_page_buckets;
if (vm_page_bucket_count == 0) {
vm_page_bucket_count = 1;
while (vm_page_bucket_count < atop(total))
vm_page_bucket_count <<= 1;
}
vm_page_bucket_count <<= 1;
vm_page_hash_mask = vm_page_bucket_count - 1;
/*
* Validate these addresses.
*/
new_start = start + vm_page_bucket_count * sizeof(struct vm_page *);
new_start = round_page(new_start);
mapped = round_page(vaddr);
vaddr = pmap_map(mapped, start, new_start,
VM_PROT_READ | VM_PROT_WRITE);
start = new_start;
vaddr = round_page(vaddr);
bzero((caddr_t) mapped, vaddr - mapped);
for (i = 0; i < vm_page_bucket_count; i++) {
*bucket = NULL;
bucket++;
}
/*
* Compute the number of pages of memory that will be available for
* use (taking into account the overhead of a page structure per
* page).
*/
first_page = phys_avail[0] / PAGE_SIZE;
page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
npages = (total - (page_range * sizeof(struct vm_page)) -
(start - phys_avail[biggestone])) / PAGE_SIZE;
/*
* Initialize the mem entry structures now, and put them in the free
* queue.
*/
vm_page_array = (vm_page_t) vaddr;
mapped = vaddr;
/*
* Validate these addresses.
*/
new_start = round_page(start + page_range * sizeof(struct vm_page));
mapped = pmap_map(mapped, start, new_start,
VM_PROT_READ | VM_PROT_WRITE);
start = new_start;
first_managed_page = start / PAGE_SIZE;
/*
* Clear all of the page structures
*/
bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
vm_page_array_size = page_range;
/*
* Construct the free queue(s) in descending order (by physical
* address) so that the first 16MB of physical memory is allocated
* last rather than first. On large-memory machines, this avoids
* the exhaustion of low physical memory before isa_dmainit has run.
*/
cnt.v_page_count = 0;
cnt.v_free_count = 0;
for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
if (i == biggestone)
pa = ptoa(first_managed_page);
else
pa = phys_avail[i];
while (pa < phys_avail[i + 1] && npages-- > 0) {
++cnt.v_page_count;
++cnt.v_free_count;
m = PHYS_TO_VM_PAGE(pa);
m->phys_addr = pa;
m->flags = 0;
m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
m->queue = m->pc + PQ_FREE;
TAILQ_INSERT_HEAD(&vm_page_queues[m->queue].pl, m, pageq);
vm_page_queues[m->queue].lcnt++;
pa += PAGE_SIZE;
}
}
return (mapped);
}
/*
* vm_page_hash:
*
* Distributes the object/offset key pair among hash buckets.
*
* NOTE: This macro depends on vm_page_bucket_count being a power of 2.
* This routine may not block.
*
* We try to randomize the hash based on the object to spread the pages
* out in the hash table without it costing us too much.
*/
static __inline int
vm_page_hash(object, pindex)
vm_object_t object;
vm_pindex_t pindex;
{
int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
return(i & vm_page_hash_mask);
}
/*
* vm_page_insert: [ internal use only ]
*
* Inserts the given mem entry into the object and object list.
*
* The pagetables are not updated but will presumably fault the page
* in if necessary, or if a kernel page the caller will at some point
* enter the page into the kernel's pmap. We are not allowed to block
* here so we *can't* do this anyway.
*
* The object and page must be locked, and must be splhigh.
* This routine may not block.
*/
void
vm_page_insert(m, object, pindex)
register vm_page_t m;
register vm_object_t object;
register vm_pindex_t pindex;
{
register struct vm_page **bucket;
if (m->object != NULL)
panic("vm_page_insert: already inserted");
/*
* Record the object/offset pair in this page
*/
m->object = object;
m->pindex = pindex;
/*
* Insert it into the object_object/offset hash table
*/
bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
m->hnext = *bucket;
*bucket = m;
vm_page_bucket_generation++;
/*
* Now link into the object's list of backed pages.
*/
TAILQ_INSERT_TAIL(&object->memq, m, listq);
object->generation++;
/*
* show that the object has one more resident page.
*/
object->resident_page_count++;
/*
* Since we are inserting a new and possibly dirty page,
* update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
*/
if (m->flags & PG_WRITEABLE)
vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
}
/*
* vm_page_remove:
* NOTE: used by device pager as well -wfj
*
* Removes the given mem entry from the object/offset-page
* table and the object page list, but do not invalidate/terminate
* the backing store.
*
* The object and page must be locked, and at splhigh.
* The underlying pmap entry (if any) is NOT removed here.
* This routine may not block.
*/
void
vm_page_remove(m)
vm_page_t m;
{
vm_object_t object;
if (m->object == NULL)
return;
#if !defined(MAX_PERF)
if ((m->flags & PG_BUSY) == 0) {
panic("vm_page_remove: page not busy");
}
#endif
/*
* Basically destroy the page.
*/
vm_page_wakeup(m);
object = m->object;
/*
* Remove from the object_object/offset hash table. The object
* must be on the hash queue, we will panic if it isn't
*
* Note: we must NULL-out m->hnext to prevent loops in detached
* buffers with vm_page_lookup().
*/
{
struct vm_page **bucket;
bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
while (*bucket != m) {
#if !defined(MAX_PERF)
if (*bucket == NULL)
panic("vm_page_remove(): page not found in hash");
#endif
bucket = &(*bucket)->hnext;
}
*bucket = m->hnext;
m->hnext = NULL;
vm_page_bucket_generation++;
}
/*
* Now remove from the object's list of backed pages.
*/
TAILQ_REMOVE(&object->memq, m, listq);
/*
* And show that the object has one fewer resident page.
*/
object->resident_page_count--;
object->generation++;
m->object = NULL;
}
/*
* vm_page_lookup:
*
* Returns the page associated with the object/offset
* pair specified; if none is found, NULL is returned.
*
* NOTE: the code below does not lock. It will operate properly if
* an interrupt makes a change, but the generation algorithm will not
* operate properly in an SMP environment where both cpu's are able to run
* kernel code simultaniously.
*
* The object must be locked. No side effects.
* This routine may not block.
* This is a critical path routine
*/
vm_page_t
vm_page_lookup(object, pindex)
register vm_object_t object;
register vm_pindex_t pindex;
{
register vm_page_t m;
register struct vm_page **bucket;
int generation;
/*
* Search the hash table for this object/offset pair
*/
retry:
generation = vm_page_bucket_generation;
bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
for (m = *bucket; m != NULL; m = m->hnext) {
if ((m->object == object) && (m->pindex == pindex)) {
if (vm_page_bucket_generation != generation)
goto retry;
return (m);
}
}
if (vm_page_bucket_generation != generation)
goto retry;
return (NULL);
}
/*
* vm_page_rename:
*
* Move the given memory entry from its
* current object to the specified target object/offset.
*
* The object must be locked.
* This routine may not block.
*
* Note: this routine will raise itself to splvm(), the caller need not.
*
* Note: swap associated with the page must be invalidated by the move. We
* have to do this for several reasons: (1) we aren't freeing the
* page, (2) we are dirtying the page, (3) the VM system is probably
* moving the page from object A to B, and will then later move
* the backing store from A to B and we can't have a conflict.
*
* Note: we *always* dirty the page. It is necessary both for the
* fact that we moved it, and because we may be invalidating
* swap. If the page is on the cache, we have to deactivate it
* or vm_page_dirty() will panic. Dirty pages are not allowed
* on the cache.
*/
void
vm_page_rename(m, new_object, new_pindex)
register vm_page_t m;
register vm_object_t new_object;
vm_pindex_t new_pindex;
{
int s;
s = splvm();
vm_page_remove(m);
vm_page_insert(m, new_object, new_pindex);
if (m->queue - m->pc == PQ_CACHE)
vm_page_deactivate(m);
vm_page_dirty(m);
splx(s);
}
/*
* vm_page_unqueue_nowakeup:
*
* vm_page_unqueue() without any wakeup
*
* This routine must be called at splhigh().
* This routine may not block.
*/
void
vm_page_unqueue_nowakeup(m)
vm_page_t m;
{
int queue = m->queue;
struct vpgqueues *pq;
if (queue != PQ_NONE) {
pq = &vm_page_queues[queue];
m->queue = PQ_NONE;
TAILQ_REMOVE(&pq->pl, m, pageq);
(*pq->cnt)--;
pq->lcnt--;
}
}
/*
* vm_page_unqueue:
*
* Remove a page from its queue.
*
* This routine must be called at splhigh().
* This routine may not block.
*/
void
vm_page_unqueue(m)
vm_page_t m;
{
int queue = m->queue;
struct vpgqueues *pq;
if (queue != PQ_NONE) {
m->queue = PQ_NONE;
pq = &vm_page_queues[queue];
TAILQ_REMOVE(&pq->pl, m, pageq);
(*pq->cnt)--;
pq->lcnt--;
if ((queue - m->pc) == PQ_CACHE) {
if (vm_paging_needed())
pagedaemon_wakeup();
}
}
}
#if PQ_L2_SIZE > 1
/*
* vm_page_list_find:
*
* Find a page on the specified queue with color optimization.
*
* The page coloring optimization attempts to locate a page
* that does not overload other nearby pages in the object in
* the cpu's L1 or L2 caches. We need this optmization because
* cpu caches tend to be physical caches, while object spaces tend
* to be virtual.
*
* This routine must be called at splvm().
* This routine may not block.
*
* This routine may only be called from the vm_page_list_find() macro
* in vm_page.h
*/
vm_page_t
_vm_page_list_find(basequeue, index)
int basequeue, index;
{
int i;
vm_page_t m = NULL;
struct vpgqueues *pq;
pq = &vm_page_queues[basequeue];
/*
* Note that for the first loop, index+i and index-i wind up at the
* same place. Even though this is not totally optimal, we've already
* blown it by missing the cache case so we do not care.
*/
for(i = PQ_L2_SIZE / 2; i > 0; --i) {
if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
break;
if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
break;
}
return(m);
}
#endif
/*
* vm_page_select_cache:
*
* Find a page on the cache queue with color optimization. As pages
* might be found, but not applicable, they are deactivated. This
* keeps us from using potentially busy cached pages.
*
* This routine must be called at splvm().
* This routine may not block.
*/
vm_page_t
vm_page_select_cache(object, pindex)
vm_object_t object;
vm_pindex_t pindex;
{
vm_page_t m;
while (TRUE) {
m = vm_page_list_find(
PQ_CACHE,
(pindex + object->pg_color) & PQ_L2_MASK,
FALSE
);
if (m && ((m->flags & PG_BUSY) || m->busy ||
m->hold_count || m->wire_count)) {
vm_page_deactivate(m);
continue;
}
return m;
}
}
/*
* vm_page_select_free:
*
* Find a free or zero page, with specified preference. We attempt to
* inline the nominal case and fall back to _vm_page_select_free()
* otherwise.
*
* This routine must be called at splvm().
* This routine may not block.
*/
static __inline vm_page_t
vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
{
vm_page_t m;
m = vm_page_list_find(
PQ_FREE,
(pindex + object->pg_color) & PQ_L2_MASK,
prefer_zero
);
return(m);
}
/*
* vm_page_alloc:
*
* Allocate and return a memory cell associated
* with this VM object/offset pair.
*
* page_req classes:
* VM_ALLOC_NORMAL normal process request
* VM_ALLOC_SYSTEM system *really* needs a page
* VM_ALLOC_INTERRUPT interrupt time request
* VM_ALLOC_ZERO zero page
*
* Object must be locked.
* This routine may not block.
*
* Additional special handling is required when called from an
* interrupt (VM_ALLOC_INTERRUPT). We are not allowed to mess with
* the page cache in this case.
*/
vm_page_t
vm_page_alloc(object, pindex, page_req)
vm_object_t object;
vm_pindex_t pindex;
int page_req;
{
register vm_page_t m = NULL;
int s;
KASSERT(!vm_page_lookup(object, pindex),
("vm_page_alloc: page already allocated"));
/*
* The pager is allowed to eat deeper into the free page list.
*/
if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) {
page_req = VM_ALLOC_SYSTEM;
};
s = splvm();
loop:
if (cnt.v_free_count > cnt.v_free_reserved) {
/*
* Allocate from the free queue if there are plenty of pages
* in it.
*/
if (page_req == VM_ALLOC_ZERO)
m = vm_page_select_free(object, pindex, TRUE);
else
m = vm_page_select_free(object, pindex, FALSE);
} else if (
(page_req == VM_ALLOC_SYSTEM &&
cnt.v_cache_count == 0 &&
cnt.v_free_count > cnt.v_interrupt_free_min) ||
(page_req == VM_ALLOC_INTERRUPT && cnt.v_free_count > 0)
) {
/*
* Interrupt or system, dig deeper into the free list.
*/
m = vm_page_select_free(object, pindex, FALSE);
} else if (page_req != VM_ALLOC_INTERRUPT) {
/*
* Allocateable from cache (non-interrupt only). On success,
* we must free the page and try again, thus ensuring that
* cnt.v_*_free_min counters are replenished.
*/
m = vm_page_select_cache(object, pindex);
if (m == NULL) {
splx(s);
#if defined(DIAGNOSTIC)
if (cnt.v_cache_count > 0)
printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count);
#endif
vm_pageout_deficit++;
pagedaemon_wakeup();
return (NULL);
}
KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
vm_page_busy(m);
vm_page_protect(m, VM_PROT_NONE);
vm_page_free(m);
goto loop;
} else {
/*
* Not allocateable from cache from interrupt, give up.
*/
splx(s);
vm_pageout_deficit++;
pagedaemon_wakeup();
return (NULL);
}
/*
* At this point we had better have found a good page.
*/
KASSERT(
m != NULL,
("vm_page_alloc(): missing page on free queue\n")
);
/*
* Remove from free queue
*/
vm_page_unqueue_nowakeup(m);
/*
* Initialize structure. Only the PG_ZERO flag is inherited.
*/
if (m->flags & PG_ZERO) {
vm_page_zero_count--;
m->flags = PG_ZERO | PG_BUSY;
} else {
m->flags = PG_BUSY;
}
m->wire_count = 0;
m->hold_count = 0;
m->act_count = 0;
m->busy = 0;
m->valid = 0;
KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
/*
* vm_page_insert() is safe prior to the splx(). Note also that
* inserting a page here does not insert it into the pmap (which
* could cause us to block allocating memory). We cannot block
* anywhere.
*/
vm_page_insert(m, object, pindex);
/*
* Don't wakeup too often - wakeup the pageout daemon when
* we would be nearly out of memory.
*/
if (vm_paging_needed() || cnt.v_free_count < cnt.v_pageout_free_min)
pagedaemon_wakeup();
splx(s);
return (m);
}
/*
* vm_wait: (also see VM_WAIT macro)
*
* Block until free pages are available for allocation
*/
void
vm_wait()
{
int s;
s = splvm();
if (curproc == pageproc) {
vm_pageout_pages_needed = 1;
tsleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
} else {
if (!vm_pages_needed) {
vm_pages_needed++;
wakeup(&vm_pages_needed);
}
tsleep(&cnt.v_free_count, PVM, "vmwait", 0);
}
splx(s);
}
/*
* vm_await: (also see VM_AWAIT macro)
*
* asleep on an event that will signal when free pages are available
* for allocation.
*/
void
vm_await()
{
int s;
s = splvm();
if (curproc == pageproc) {
vm_pageout_pages_needed = 1;
asleep(&vm_pageout_pages_needed, PSWP, "vmwait", 0);
} else {
if (!vm_pages_needed) {
vm_pages_needed++;
wakeup(&vm_pages_needed);
}
asleep(&cnt.v_free_count, PVM, "vmwait", 0);
}
splx(s);
}
#if 0
/*
* vm_page_sleep:
*
* Block until page is no longer busy.
*/
int
vm_page_sleep(vm_page_t m, char *msg, char *busy) {
int slept = 0;
if ((busy && *busy) || (m->flags & PG_BUSY)) {
int s;
s = splvm();
if ((busy && *busy) || (m->flags & PG_BUSY)) {
vm_page_flag_set(m, PG_WANTED);
tsleep(m, PVM, msg, 0);
slept = 1;
}
splx(s);
}
return slept;
}
#endif
#if 0
/*
* vm_page_asleep:
*
* Similar to vm_page_sleep(), but does not block. Returns 0 if
* the page is not busy, or 1 if the page is busy.
*
* This routine has the side effect of calling asleep() if the page
* was busy (1 returned).
*/
int
vm_page_asleep(vm_page_t m, char *msg, char *busy) {
int slept = 0;
if ((busy && *busy) || (m->flags & PG_BUSY)) {
int s;
s = splvm();
if ((busy && *busy) || (m->flags & PG_BUSY)) {
vm_page_flag_set(m, PG_WANTED);
asleep(m, PVM, msg, 0);
slept = 1;
}
splx(s);
}
return slept;
}
#endif
/*
* vm_page_activate:
*
* Put the specified page on the active list (if appropriate).
* Ensure that act_count is at least ACT_INIT but do not otherwise
* mess with it.
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_activate(m)
register vm_page_t m;
{
int s;
s = splvm();
if (m->queue != PQ_ACTIVE) {
if ((m->queue - m->pc) == PQ_CACHE)
cnt.v_reactivated++;
vm_page_unqueue(m);
if (m->wire_count == 0) {
m->queue = PQ_ACTIVE;
vm_page_queues[PQ_ACTIVE].lcnt++;
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
if (m->act_count < ACT_INIT)
m->act_count = ACT_INIT;
cnt.v_active_count++;
}
} else {
if (m->act_count < ACT_INIT)
m->act_count = ACT_INIT;
}
splx(s);
}
/*
* vm_page_free_wakeup:
*
* Helper routine for vm_page_free_toq() and vm_page_cache(). This
* routine is called when a page has been added to the cache or free
* queues.
*
* This routine may not block.
* This routine must be called at splvm()
*/
static __inline void
vm_page_free_wakeup()
{
/*
* if pageout daemon needs pages, then tell it that there are
* some free.
*/
if (vm_pageout_pages_needed) {
wakeup(&vm_pageout_pages_needed);
vm_pageout_pages_needed = 0;
}
/*
* wakeup processes that are waiting on memory if we hit a
* high water mark. And wakeup scheduler process if we have
* lots of memory. this process will swapin processes.
*/
if (vm_pages_needed && vm_page_count_min()) {
wakeup(&cnt.v_free_count);
vm_pages_needed = 0;
}
}
/*
* vm_page_free_toq:
*
* Returns the given page to the PQ_FREE list,
* disassociating it with any VM object.
*
* Object and page must be locked prior to entry.
* This routine may not block.
*/
void
vm_page_free_toq(vm_page_t m)
{
int s;
struct vpgqueues *pq;
vm_object_t object = m->object;
s = splvm();
cnt.v_tfree++;
#if !defined(MAX_PERF)
if (m->busy || ((m->queue - m->pc) == PQ_FREE) ||
(m->hold_count != 0)) {
printf(
"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
(u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
m->hold_count);
if ((m->queue - m->pc) == PQ_FREE)
panic("vm_page_free: freeing free page");
else
panic("vm_page_free: freeing busy page");
}
#endif
/*
* unqueue, then remove page. Note that we cannot destroy
* the page here because we do not want to call the pager's
* callback routine until after we've put the page on the
* appropriate free queue.
*/
vm_page_unqueue_nowakeup(m);
vm_page_remove(m);
/*
* If fictitious remove object association and
* return, otherwise delay object association removal.
*/
if ((m->flags & PG_FICTITIOUS) != 0) {
splx(s);
return;
}
m->valid = 0;
vm_page_undirty(m);
if (m->wire_count != 0) {
#if !defined(MAX_PERF)
if (m->wire_count > 1) {
panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
m->wire_count, (long)m->pindex);
}
#endif
panic("vm_page_free: freeing wired page\n");
}
/*
* If we've exhausted the object's resident pages we want to free
* it up.
*/
if (object &&
(object->type == OBJT_VNODE) &&
((object->flags & OBJ_DEAD) == 0)
) {
struct vnode *vp = (struct vnode *)object->handle;
if (vp && VSHOULDFREE(vp)) {
if ((vp->v_flag & (VTBFREE|VDOOMED|VFREE)) == 0) {
TAILQ_INSERT_TAIL(&vnode_tobefree_list, vp, v_freelist);
vp->v_flag |= VTBFREE;
}
}
}
#ifdef __alpha__
pmap_page_is_free(m);
#endif
m->queue = PQ_FREE + m->pc;
pq = &vm_page_queues[m->queue];
pq->lcnt++;
++(*pq->cnt);
/*
* Put zero'd pages on the end ( where we look for zero'd pages
* first ) and non-zerod pages at the head.
*/
if (m->flags & PG_ZERO) {
TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
++vm_page_zero_count;
} else {
TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
}
vm_page_free_wakeup();
splx(s);
}
/*
* vm_page_wire:
*
* Mark this page as wired down by yet
* another map, removing it from paging queues
* as necessary.
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_wire(m)
register vm_page_t m;
{
int s;
s = splvm();
if (m->wire_count == 0) {
vm_page_unqueue(m);
cnt.v_wire_count++;
}
m->wire_count++;
splx(s);
vm_page_flag_set(m, PG_MAPPED);
}
/*
* vm_page_unwire:
*
* Release one wiring of this page, potentially
* enabling it to be paged again.
*
* Many pages placed on the inactive queue should actually go
* into the cache, but it is difficult to figure out which. What
* we do instead, if the inactive target is well met, is to put
* clean pages at the head of the inactive queue instead of the tail.
* This will cause them to be moved to the cache more quickly and
* if not actively re-referenced, freed more quickly. If we just
* stick these pages at the end of the inactive queue, heavy filesystem
* meta-data accesses can cause an unnecessary paging load on memory bound
* processes. This optimization causes one-time-use metadata to be
* reused more quickly.
*
* A number of routines use vm_page_unwire() to guarentee that the page
* will go into either the inactive or active queues, and will NEVER
* be placed in the cache - for example, just after dirtying a page.
* dirty pages in the cache are not allowed.
*
* The page queues must be locked.
* This routine may not block.
*/
void
vm_page_unwire(m, activate)
register vm_page_t m;
int activate;
{
int s;
s = splvm();
if (m->wire_count > 0) {
m->wire_count--;
if (m->wire_count == 0) {
cnt.v_wire_count--;
if (activate) {
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
m->queue = PQ_ACTIVE;
vm_page_queues[PQ_ACTIVE].lcnt++;
cnt.v_active_count++;
} else {
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
m->queue = PQ_INACTIVE;
vm_page_queues[PQ_INACTIVE].lcnt++;
cnt.v_inactive_count++;
}
}
} else {
#if !defined(MAX_PERF)
panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
#endif
}
splx(s);
}
/*
* Move the specified page to the inactive queue. If the page has
* any associated swap, the swap is deallocated.
*
* Normally athead is 0 resulting in LRU operation. athead is set
* to 1 if we want this page to be 'as if it were placed in the cache',
* except without unmapping it from the process address space.
*
* This routine may not block.
*/
static __inline void
_vm_page_deactivate(vm_page_t m, int athead)
{
int s;
/*
* Ignore if already inactive.
*/
if (m->queue == PQ_INACTIVE)
return;
s = splvm();
if (m->wire_count == 0) {
if ((m->queue - m->pc) == PQ_CACHE)
cnt.v_reactivated++;
vm_page_unqueue(m);
if (athead)
TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
else
TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
m->queue = PQ_INACTIVE;
vm_page_queues[PQ_INACTIVE].lcnt++;
cnt.v_inactive_count++;
}
splx(s);
}
void
vm_page_deactivate(vm_page_t m)
{
_vm_page_deactivate(m, 0);
}
/*
* vm_page_cache
*
* Put the specified page onto the page cache queue (if appropriate).
*
* This routine may not block.
*/
void
vm_page_cache(m)
register vm_page_t m;
{
int s;
#if !defined(MAX_PERF)
if ((m->flags & PG_BUSY) || m->busy || m->wire_count) {
printf("vm_page_cache: attempting to cache busy page\n");
return;
}
#endif
if ((m->queue - m->pc) == PQ_CACHE)
return;
/*
* Remove all pmaps and indicate that the page is not
* writeable or mapped.
*/
vm_page_protect(m, VM_PROT_NONE);
#if !defined(MAX_PERF)
if (m->dirty != 0) {
panic("vm_page_cache: caching a dirty page, pindex: %ld",
(long)m->pindex);
}
#endif
s = splvm();
vm_page_unqueue_nowakeup(m);
m->queue = PQ_CACHE + m->pc;
vm_page_queues[m->queue].lcnt++;
TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
cnt.v_cache_count++;
vm_page_free_wakeup();
splx(s);
}
/*
* vm_page_dontneed
*
* Cache, deactivate, or do nothing as appropriate. This routine
* is typically used by madvise() MADV_DONTNEED.
*
* Generally speaking we want to move the page into the cache so
* it gets reused quickly. However, this can result in a silly syndrome
* due to the page recycling too quickly. Small objects will not be
* fully cached. On the otherhand, if we move the page to the inactive
* queue we wind up with a problem whereby very large objects
* unnecessarily blow away our inactive and cache queues.
*
* The solution is to move the pages based on a fixed weighting. We
* either leave them alone, deactivate them, or move them to the cache,
* where moving them to the cache has the highest weighting.
* By forcing some pages into other queues we eventually force the
* system to balance the queues, potentially recovering other unrelated
* space from active. The idea is to not force this to happen too
* often.
*/
void
vm_page_dontneed(m)
vm_page_t m;
{
static int dnweight;
int dnw;
int head;
dnw = ++dnweight;
/*
* occassionally leave the page alone
*/
if ((dnw & 0x01F0) == 0 ||
m->queue == PQ_INACTIVE ||
m->queue - m->pc == PQ_CACHE
) {
if (m->act_count >= ACT_INIT)
--m->act_count;
return;
}
if (m->dirty == 0)
vm_page_test_dirty(m);
if (m->dirty || (dnw & 0x0070) == 0) {
/*
* Deactivate the page 3 times out of 32.
*/
head = 0;
} else {
/*
* Cache the page 28 times out of every 32. Note that
* the page is deactivated instead of cached, but placed
* at the head of the queue instead of the tail.
*/
head = 1;
}
_vm_page_deactivate(m, head);
}
/*
* Grab a page, waiting until we are waken up due to the page
* changing state. We keep on waiting, if the page continues
* to be in the object. If the page doesn't exist, allocate it.
*
* This routine may block.
*/
vm_page_t
vm_page_grab(object, pindex, allocflags)
vm_object_t object;
vm_pindex_t pindex;
int allocflags;
{
vm_page_t m;
int s, generation;
retrylookup:
if ((m = vm_page_lookup(object, pindex)) != NULL) {
if (m->busy || (m->flags & PG_BUSY)) {
generation = object->generation;
s = splvm();
while ((object->generation == generation) &&
(m->busy || (m->flags & PG_BUSY))) {
vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
tsleep(m, PVM, "pgrbwt", 0);
if ((allocflags & VM_ALLOC_RETRY) == 0) {
splx(s);
return NULL;
}
}
splx(s);
goto retrylookup;
} else {
vm_page_busy(m);
return m;
}
}
m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
if (m == NULL) {
VM_WAIT;
if ((allocflags & VM_ALLOC_RETRY) == 0)
return NULL;
goto retrylookup;
}
return m;
}
/*
* Mapping function for valid bits or for dirty bits in
* a page. May not block.
*
* Inputs are required to range within a page.
*/
__inline int
vm_page_bits(int base, int size)
{
int first_bit;
int last_bit;
KASSERT(
base + size <= PAGE_SIZE,
("vm_page_bits: illegal base/size %d/%d", base, size)
);
if (size == 0) /* handle degenerate case */
return(0);
first_bit = base >> DEV_BSHIFT;
last_bit = (base + size - 1) >> DEV_BSHIFT;
return ((2 << last_bit) - (1 << first_bit));
}
/*
* vm_page_set_validclean:
*
* Sets portions of a page valid and clean. The arguments are expected
* to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
* of any partial chunks touched by the range. The invalid portion of
* such chunks will be zero'd.
*
* This routine may not block.
*
* (base + size) must be less then or equal to PAGE_SIZE.
*/
void
vm_page_set_validclean(m, base, size)
vm_page_t m;
int base;
int size;
{
int pagebits;
int frag;
int endoff;
if (size == 0) /* handle degenerate case */
return;
/*
* If the base is not DEV_BSIZE aligned and the valid
* bit is clear, we have to zero out a portion of the
* first block.
*/
if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
(m->valid & (1 << (base >> DEV_BSHIFT))) == 0
) {
pmap_zero_page_area(
VM_PAGE_TO_PHYS(m),
frag,
base - frag
);
}
/*
* If the ending offset is not DEV_BSIZE aligned and the
* valid bit is clear, we have to zero out a portion of
* the last block.
*/
endoff = base + size;
if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
(m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
) {
pmap_zero_page_area(
VM_PAGE_TO_PHYS(m),
endoff,
DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
);
}
/*
* Set valid, clear dirty bits. If validating the entire
* page we can safely clear the pmap modify bit. We also
* use this opportunity to clear the PG_NOSYNC flag. If a process
* takes a write fault on a MAP_NOSYNC memory area the flag will
* be set again.
*/
pagebits = vm_page_bits(base, size);
m->valid |= pagebits;
m->dirty &= ~pagebits;
if (base == 0 && size == PAGE_SIZE) {
pmap_clear_modify(VM_PAGE_TO_PHYS(m));
vm_page_flag_clear(m, PG_NOSYNC);
}
}
#if 0
void
vm_page_set_dirty(m, base, size)
vm_page_t m;
int base;
int size;
{
m->dirty |= vm_page_bits(base, size);
}
#endif
void
vm_page_clear_dirty(m, base, size)
vm_page_t m;
int base;
int size;
{
m->dirty &= ~vm_page_bits(base, size);
}
/*
* vm_page_set_invalid:
*
* Invalidates DEV_BSIZE'd chunks within a page. Both the
* valid and dirty bits for the effected areas are cleared.
*
* May not block.
*/
void
vm_page_set_invalid(m, base, size)
vm_page_t m;
int base;
int size;
{
int bits;
bits = vm_page_bits(base, size);
m->valid &= ~bits;
m->dirty &= ~bits;
m->object->generation++;
}
/*
* vm_page_zero_invalid()
*
* The kernel assumes that the invalid portions of a page contain
* garbage, but such pages can be mapped into memory by user code.
* When this occurs, we must zero out the non-valid portions of the
* page so user code sees what it expects.
*
* Pages are most often semi-valid when the end of a file is mapped
* into memory and the file's size is not page aligned.
*/
void
vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
{
int b;
int i;
/*
* Scan the valid bits looking for invalid sections that
* must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the
* valid bit may be set ) have already been zerod by
* vm_page_set_validclean().
*/
for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
if (i == (PAGE_SIZE / DEV_BSIZE) ||
(m->valid & (1 << i))
) {
if (i > b) {
pmap_zero_page_area(
VM_PAGE_TO_PHYS(m),
b << DEV_BSHIFT,
(i - b) << DEV_BSHIFT
);
}
b = i + 1;
}
}
/*
* setvalid is TRUE when we can safely set the zero'd areas
* as being valid. We can do this if there are no cache consistancy
* issues. e.g. it is ok to do with UFS, but not ok to do with NFS.
*/
if (setvalid)
m->valid = VM_PAGE_BITS_ALL;
}
/*
* vm_page_is_valid:
*
* Is (partial) page valid? Note that the case where size == 0
* will return FALSE in the degenerate case where the page is
* entirely invalid, and TRUE otherwise.
*
* May not block.
*/
int
vm_page_is_valid(m, base, size)
vm_page_t m;
int base;
int size;
{
int bits = vm_page_bits(base, size);
if (m->valid && ((m->valid & bits) == bits))
return 1;
else
return 0;
}
/*
* update dirty bits from pmap/mmu. May not block.
*/
void
vm_page_test_dirty(m)
vm_page_t m;
{
if ((m->dirty != VM_PAGE_BITS_ALL) &&
pmap_is_modified(VM_PAGE_TO_PHYS(m))) {
vm_page_dirty(m);
}
}
/*
* This interface is for merging with malloc() someday.
* Even if we never implement compaction so that contiguous allocation
* works after initialization time, malloc()'s data structures are good
* for statistics and for allocations of less than a page.
*/
void *
contigmalloc1(size, type, flags, low, high, alignment, boundary, map)
unsigned long size; /* should be size_t here and for malloc() */
struct malloc_type *type;
int flags;
unsigned long low;
unsigned long high;
unsigned long alignment;
unsigned long boundary;
vm_map_t map;
{
int i, s, start;
vm_offset_t addr, phys, tmp_addr;
int pass;
vm_page_t pga = vm_page_array;
size = round_page(size);
#if !defined(MAX_PERF)
if (size == 0)
panic("contigmalloc1: size must not be 0");
if ((alignment & (alignment - 1)) != 0)
panic("contigmalloc1: alignment must be a power of 2");
if ((boundary & (boundary - 1)) != 0)
panic("contigmalloc1: boundary must be a power of 2");
#endif
start = 0;
for (pass = 0; pass <= 1; pass++) {
s = splvm();
again:
/*
* Find first page in array that is free, within range, aligned, and
* such that the boundary won't be crossed.
*/
for (i = start; i < cnt.v_page_count; i++) {
int pqtype;
phys = VM_PAGE_TO_PHYS(&pga[i]);
pqtype = pga[i].queue - pga[i].pc;
if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
(phys >= low) && (phys < high) &&
((phys & (alignment - 1)) == 0) &&
(((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
break;
}
/*
* If the above failed or we will exceed the upper bound, fail.
*/
if ((i == cnt.v_page_count) ||
((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
vm_page_t m, next;
again1:
for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
m != NULL;
m = next) {
KASSERT(m->queue == PQ_INACTIVE,
("contigmalloc1: page %p is not PQ_INACTIVE", m));
next = TAILQ_NEXT(m, pageq);
if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
goto again1;
vm_page_test_dirty(m);
if (m->dirty) {
if (m->object->type == OBJT_VNODE) {
vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
VOP_UNLOCK(m->object->handle, 0, curproc);
goto again1;
} else if (m->object->type == OBJT_SWAP ||
m->object->type == OBJT_DEFAULT) {
vm_pageout_flush(&m, 1, 0);
goto again1;
}
}
if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
vm_page_cache(m);
}
for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
m != NULL;
m = next) {
KASSERT(m->queue == PQ_ACTIVE,
("contigmalloc1: page %p is not PQ_ACTIVE", m));
next = TAILQ_NEXT(m, pageq);
if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
goto again1;
vm_page_test_dirty(m);
if (m->dirty) {
if (m->object->type == OBJT_VNODE) {
vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
VOP_UNLOCK(m->object->handle, 0, curproc);
goto again1;
} else if (m->object->type == OBJT_SWAP ||
m->object->type == OBJT_DEFAULT) {
vm_pageout_flush(&m, 1, 0);
goto again1;
}
}
if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
vm_page_cache(m);
}
splx(s);
continue;
}
start = i;
/*
* Check successive pages for contiguous and free.
*/
for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
int pqtype;
pqtype = pga[i].queue - pga[i].pc;
if ((VM_PAGE_TO_PHYS(&pga[i]) !=
(VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
start++;
goto again;
}
}
for (i = start; i < (start + size / PAGE_SIZE); i++) {
int pqtype;
vm_page_t m = &pga[i];
pqtype = m->queue - m->pc;
if (pqtype == PQ_CACHE) {
vm_page_busy(m);
vm_page_free(m);
}
TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
vm_page_queues[m->queue].lcnt--;
cnt.v_free_count--;
m->valid = VM_PAGE_BITS_ALL;
m->flags = 0;
KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
m->wire_count = 0;
m->busy = 0;
m->queue = PQ_NONE;
m->object = NULL;
vm_page_wire(m);
}
/*
* We've found a contiguous chunk that meets are requirements.
* Allocate kernel VM, unfree and assign the physical pages to it and
* return kernel VM pointer.
*/
tmp_addr = addr = kmem_alloc_pageable(map, size);
if (addr == 0) {
/*
* XXX We almost never run out of kernel virtual
* space, so we don't make the allocated memory
* above available.
*/
splx(s);
return (NULL);
}
for (i = start; i < (start + size / PAGE_SIZE); i++) {
vm_page_t m = &pga[i];
vm_page_insert(m, kernel_object,
OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m));
tmp_addr += PAGE_SIZE;
}
splx(s);
return ((void *)addr);
}
return NULL;
}
void *
contigmalloc(size, type, flags, low, high, alignment, boundary)
unsigned long size; /* should be size_t here and for malloc() */
struct malloc_type *type;
int flags;
unsigned long low;
unsigned long high;
unsigned long alignment;
unsigned long boundary;
{
return contigmalloc1(size, type, flags, low, high, alignment, boundary,
kernel_map);
}
void
contigfree(addr, size, type)
void *addr;
unsigned long size;
struct malloc_type *type;
{
kmem_free(kernel_map, (vm_offset_t)addr, size);
}
vm_offset_t
vm_page_alloc_contig(size, low, high, alignment)
vm_offset_t size;
vm_offset_t low;
vm_offset_t high;
vm_offset_t alignment;
{
return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
alignment, 0ul, kernel_map));
}
#include "opt_ddb.h"
#ifdef DDB
#include <sys/kernel.h>
#include <ddb/ddb.h>
DB_SHOW_COMMAND(page, vm_page_print_page_info)
{
db_printf("cnt.v_free_count: %d\n", cnt.v_free_count);
db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count);
db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count);
db_printf("cnt.v_active_count: %d\n", cnt.v_active_count);
db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count);
db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved);
db_printf("cnt.v_free_min: %d\n", cnt.v_free_min);
db_printf("cnt.v_free_target: %d\n", cnt.v_free_target);
db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min);
db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target);
}
DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
{
int i;
db_printf("PQ_FREE:");
for(i=0;i<PQ_L2_SIZE;i++) {
db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
}
db_printf("\n");
db_printf("PQ_CACHE:");
for(i=0;i<PQ_L2_SIZE;i++) {
db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
}
db_printf("\n");
db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
vm_page_queues[PQ_ACTIVE].lcnt,
vm_page_queues[PQ_INACTIVE].lcnt);
}
#endif /* DDB */