freebsd-dev/sys/dev/usb/wlan/if_rum.c
Adrian Chadd 65d7e4d9f1 Fix an issue with 11g beacon frames which looks to be a limitation
on the largest multi-write size.

From the submitter:

==
I looked further into the magic 88-byte threshold after which the bug
occurs.  It turns out that figure included the 24-byte tx_desc, and up
to 64 bytes of beacon frame (header+data).

rum_write_multi doesn't seem happy with writing >64 bytes at a time to
the MAC register.  If I break it up into separate calls (e.g. bytes
0-63, then bytes 64-65, written at the appropriate offset) I see the
proper beacon frames being transmitted now.
==

Submitted by:	Steven Chamberlain <steven@pyro.eu.org>
MFC after:	3 days
2011-10-17 13:12:47 +00:00

2376 lines
60 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
* Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Ralink Technology RT2501USB/RT2601USB chipset driver
* http://www.ralinktech.com.tw/
*/
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kdb.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#endif
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_ratectl.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR rum_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/wlan/if_rumreg.h>
#include <dev/usb/wlan/if_rumvar.h>
#include <dev/usb/wlan/if_rumfw.h>
#ifdef USB_DEBUG
static int rum_debug = 0;
SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0,
"Debug level");
#endif
static const STRUCT_USB_HOST_ID rum_devs[] = {
#define RUM_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
RUM_DEV(ABOCOM, HWU54DM),
RUM_DEV(ABOCOM, RT2573_2),
RUM_DEV(ABOCOM, RT2573_3),
RUM_DEV(ABOCOM, RT2573_4),
RUM_DEV(ABOCOM, WUG2700),
RUM_DEV(AMIT, CGWLUSB2GO),
RUM_DEV(ASUS, RT2573_1),
RUM_DEV(ASUS, RT2573_2),
RUM_DEV(BELKIN, F5D7050A),
RUM_DEV(BELKIN, F5D9050V3),
RUM_DEV(CISCOLINKSYS, WUSB54GC),
RUM_DEV(CISCOLINKSYS, WUSB54GR),
RUM_DEV(CONCEPTRONIC2, C54RU2),
RUM_DEV(COREGA, CGWLUSB2GL),
RUM_DEV(COREGA, CGWLUSB2GPX),
RUM_DEV(DICKSMITH, CWD854F),
RUM_DEV(DICKSMITH, RT2573),
RUM_DEV(EDIMAX, EW7318USG),
RUM_DEV(DLINK2, DWLG122C1),
RUM_DEV(DLINK2, WUA1340),
RUM_DEV(DLINK2, DWA111),
RUM_DEV(DLINK2, DWA110),
RUM_DEV(GIGABYTE, GNWB01GS),
RUM_DEV(GIGABYTE, GNWI05GS),
RUM_DEV(GIGASET, RT2573),
RUM_DEV(GOODWAY, RT2573),
RUM_DEV(GUILLEMOT, HWGUSB254LB),
RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
RUM_DEV(HUAWEI3COM, WUB320G),
RUM_DEV(MELCO, G54HP),
RUM_DEV(MELCO, SG54HP),
RUM_DEV(MELCO, WLIUCG),
RUM_DEV(MELCO, WLRUCG),
RUM_DEV(MELCO, WLRUCGAOSS),
RUM_DEV(MSI, RT2573_1),
RUM_DEV(MSI, RT2573_2),
RUM_DEV(MSI, RT2573_3),
RUM_DEV(MSI, RT2573_4),
RUM_DEV(NOVATECH, RT2573),
RUM_DEV(PLANEX2, GWUS54HP),
RUM_DEV(PLANEX2, GWUS54MINI2),
RUM_DEV(PLANEX2, GWUSMM),
RUM_DEV(QCOM, RT2573),
RUM_DEV(QCOM, RT2573_2),
RUM_DEV(QCOM, RT2573_3),
RUM_DEV(RALINK, RT2573),
RUM_DEV(RALINK, RT2573_2),
RUM_DEV(RALINK, RT2671),
RUM_DEV(SITECOMEU, WL113R2),
RUM_DEV(SITECOMEU, WL172),
RUM_DEV(SPARKLAN, RT2573),
RUM_DEV(SURECOM, RT2573),
#undef RUM_DEV
};
static device_probe_t rum_match;
static device_attach_t rum_attach;
static device_detach_t rum_detach;
static usb_callback_t rum_bulk_read_callback;
static usb_callback_t rum_bulk_write_callback;
static usb_error_t rum_do_request(struct rum_softc *sc,
struct usb_device_request *req, void *data);
static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
const char name[IFNAMSIZ], int unit, int opmode,
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN]);
static void rum_vap_delete(struct ieee80211vap *);
static void rum_tx_free(struct rum_tx_data *, int);
static void rum_setup_tx_list(struct rum_softc *);
static void rum_unsetup_tx_list(struct rum_softc *);
static int rum_newstate(struct ieee80211vap *,
enum ieee80211_state, int);
static void rum_setup_tx_desc(struct rum_softc *,
struct rum_tx_desc *, uint32_t, uint16_t, int,
int);
static int rum_tx_mgt(struct rum_softc *, struct mbuf *,
struct ieee80211_node *);
static int rum_tx_raw(struct rum_softc *, struct mbuf *,
struct ieee80211_node *,
const struct ieee80211_bpf_params *);
static int rum_tx_data(struct rum_softc *, struct mbuf *,
struct ieee80211_node *);
static void rum_start(struct ifnet *);
static int rum_ioctl(struct ifnet *, u_long, caddr_t);
static void rum_eeprom_read(struct rum_softc *, uint16_t, void *,
int);
static uint32_t rum_read(struct rum_softc *, uint16_t);
static void rum_read_multi(struct rum_softc *, uint16_t, void *,
int);
static usb_error_t rum_write(struct rum_softc *, uint16_t, uint32_t);
static usb_error_t rum_write_multi(struct rum_softc *, uint16_t, void *,
size_t);
static void rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
static uint8_t rum_bbp_read(struct rum_softc *, uint8_t);
static void rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
static void rum_select_antenna(struct rum_softc *);
static void rum_enable_mrr(struct rum_softc *);
static void rum_set_txpreamble(struct rum_softc *);
static void rum_set_basicrates(struct rum_softc *);
static void rum_select_band(struct rum_softc *,
struct ieee80211_channel *);
static void rum_set_chan(struct rum_softc *,
struct ieee80211_channel *);
static void rum_enable_tsf_sync(struct rum_softc *);
static void rum_enable_tsf(struct rum_softc *);
static void rum_update_slot(struct ifnet *);
static void rum_set_bssid(struct rum_softc *, const uint8_t *);
static void rum_set_macaddr(struct rum_softc *, const uint8_t *);
static void rum_update_mcast(struct ifnet *);
static void rum_update_promisc(struct ifnet *);
static void rum_setpromisc(struct rum_softc *);
static const char *rum_get_rf(int);
static void rum_read_eeprom(struct rum_softc *);
static int rum_bbp_init(struct rum_softc *);
static void rum_init_locked(struct rum_softc *);
static void rum_init(void *);
static void rum_stop(struct rum_softc *);
static void rum_load_microcode(struct rum_softc *, const uint8_t *,
size_t);
static void rum_prepare_beacon(struct rum_softc *,
struct ieee80211vap *);
static int rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static void rum_scan_start(struct ieee80211com *);
static void rum_scan_end(struct ieee80211com *);
static void rum_set_channel(struct ieee80211com *);
static int rum_get_rssi(struct rum_softc *, uint8_t);
static void rum_ratectl_start(struct rum_softc *,
struct ieee80211_node *);
static void rum_ratectl_timeout(void *);
static void rum_ratectl_task(void *, int);
static int rum_pause(struct rum_softc *, int);
static const struct {
uint32_t reg;
uint32_t val;
} rum_def_mac[] = {
{ RT2573_TXRX_CSR0, 0x025fb032 },
{ RT2573_TXRX_CSR1, 0x9eaa9eaf },
{ RT2573_TXRX_CSR2, 0x8a8b8c8d },
{ RT2573_TXRX_CSR3, 0x00858687 },
{ RT2573_TXRX_CSR7, 0x2e31353b },
{ RT2573_TXRX_CSR8, 0x2a2a2a2c },
{ RT2573_TXRX_CSR15, 0x0000000f },
{ RT2573_MAC_CSR6, 0x00000fff },
{ RT2573_MAC_CSR8, 0x016c030a },
{ RT2573_MAC_CSR10, 0x00000718 },
{ RT2573_MAC_CSR12, 0x00000004 },
{ RT2573_MAC_CSR13, 0x00007f00 },
{ RT2573_SEC_CSR0, 0x00000000 },
{ RT2573_SEC_CSR1, 0x00000000 },
{ RT2573_SEC_CSR5, 0x00000000 },
{ RT2573_PHY_CSR1, 0x000023b0 },
{ RT2573_PHY_CSR5, 0x00040a06 },
{ RT2573_PHY_CSR6, 0x00080606 },
{ RT2573_PHY_CSR7, 0x00000408 },
{ RT2573_AIFSN_CSR, 0x00002273 },
{ RT2573_CWMIN_CSR, 0x00002344 },
{ RT2573_CWMAX_CSR, 0x000034aa }
};
static const struct {
uint8_t reg;
uint8_t val;
} rum_def_bbp[] = {
{ 3, 0x80 },
{ 15, 0x30 },
{ 17, 0x20 },
{ 21, 0xc8 },
{ 22, 0x38 },
{ 23, 0x06 },
{ 24, 0xfe },
{ 25, 0x0a },
{ 26, 0x0d },
{ 32, 0x0b },
{ 34, 0x12 },
{ 37, 0x07 },
{ 39, 0xf8 },
{ 41, 0x60 },
{ 53, 0x10 },
{ 54, 0x18 },
{ 60, 0x10 },
{ 61, 0x04 },
{ 62, 0x04 },
{ 75, 0xfe },
{ 86, 0xfe },
{ 88, 0xfe },
{ 90, 0x0f },
{ 99, 0x00 },
{ 102, 0x16 },
{ 107, 0x04 }
};
static const struct rfprog {
uint8_t chan;
uint32_t r1, r2, r3, r4;
} rum_rf5226[] = {
{ 1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
{ 2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
{ 3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
{ 4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
{ 5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
{ 6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
{ 7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
{ 8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
{ 9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
{ 10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
{ 11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
{ 12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
{ 13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
{ 14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
{ 34, 0x00b03, 0x20266, 0x36014, 0x30282 },
{ 38, 0x00b03, 0x20267, 0x36014, 0x30284 },
{ 42, 0x00b03, 0x20268, 0x36014, 0x30286 },
{ 46, 0x00b03, 0x20269, 0x36014, 0x30288 },
{ 36, 0x00b03, 0x00266, 0x26014, 0x30288 },
{ 40, 0x00b03, 0x00268, 0x26014, 0x30280 },
{ 44, 0x00b03, 0x00269, 0x26014, 0x30282 },
{ 48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
{ 52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
{ 56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
{ 60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
{ 64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
{ 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
{ 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
{ 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
{ 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
{ 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
{ 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
{ 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
{ 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
{ 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
{ 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
{ 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
{ 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
{ 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
{ 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
{ 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
{ 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
}, rum_rf5225[] = {
{ 1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
{ 2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
{ 3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
{ 4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
{ 5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
{ 6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
{ 7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
{ 8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
{ 9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
{ 10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
{ 11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
{ 12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
{ 13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
{ 14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
{ 34, 0x00b33, 0x01266, 0x26014, 0x30282 },
{ 38, 0x00b33, 0x01267, 0x26014, 0x30284 },
{ 42, 0x00b33, 0x01268, 0x26014, 0x30286 },
{ 46, 0x00b33, 0x01269, 0x26014, 0x30288 },
{ 36, 0x00b33, 0x01266, 0x26014, 0x30288 },
{ 40, 0x00b33, 0x01268, 0x26014, 0x30280 },
{ 44, 0x00b33, 0x01269, 0x26014, 0x30282 },
{ 48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
{ 52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
{ 56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
{ 60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
{ 64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
{ 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
{ 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
{ 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
{ 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
{ 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
{ 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
{ 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
{ 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
{ 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
{ 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
{ 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
{ 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
{ 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
{ 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
{ 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
{ 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
};
static const struct usb_config rum_config[RUM_N_TRANSFER] = {
[RUM_BULK_WR] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = rum_bulk_write_callback,
.timeout = 5000, /* ms */
},
[RUM_BULK_RD] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = rum_bulk_read_callback,
},
};
static int
rum_match(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != 0)
return (ENXIO);
if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
}
static int
rum_attach(device_t self)
{
struct usb_attach_arg *uaa = device_get_ivars(self);
struct rum_softc *sc = device_get_softc(self);
struct ieee80211com *ic;
struct ifnet *ifp;
uint8_t iface_index, bands;
uint32_t tmp;
int error, ntries;
device_set_usb_desc(self);
sc->sc_udev = uaa->device;
sc->sc_dev = self;
mtx_init(&sc->sc_mtx, device_get_nameunit(self),
MTX_NETWORK_LOCK, MTX_DEF);
iface_index = RT2573_IFACE_INDEX;
error = usbd_transfer_setup(uaa->device, &iface_index,
sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_mtx);
if (error) {
device_printf(self, "could not allocate USB transfers, "
"err=%s\n", usbd_errstr(error));
goto detach;
}
RUM_LOCK(sc);
/* retrieve RT2573 rev. no */
for (ntries = 0; ntries < 100; ntries++) {
if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
break;
if (rum_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
RUM_UNLOCK(sc);
goto detach;
}
/* retrieve MAC address and various other things from EEPROM */
rum_read_eeprom(sc);
device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
tmp, rum_get_rf(sc->rf_rev));
rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
RUM_UNLOCK(sc);
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not if_alloc()\n");
goto detach;
}
ic = ifp->if_l2com;
ifp->if_softc = sc;
if_initname(ifp, "rum", device_get_unit(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = rum_init;
ifp->if_ioctl = rum_ioctl;
ifp->if_start = rum_start;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode supported */
| IEEE80211_C_IBSS /* IBSS mode supported */
| IEEE80211_C_MONITOR /* monitor mode supported */
| IEEE80211_C_HOSTAP /* HostAp mode supported */
| IEEE80211_C_TXPMGT /* tx power management */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_BGSCAN /* bg scanning supported */
| IEEE80211_C_WPA /* 802.11i */
;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226)
setbit(&bands, IEEE80211_MODE_11A);
ieee80211_init_channels(ic, NULL, &bands);
ieee80211_ifattach(ic, sc->sc_bssid);
ic->ic_update_promisc = rum_update_promisc;
ic->ic_raw_xmit = rum_raw_xmit;
ic->ic_scan_start = rum_scan_start;
ic->ic_scan_end = rum_scan_end;
ic->ic_set_channel = rum_set_channel;
ic->ic_vap_create = rum_vap_create;
ic->ic_vap_delete = rum_vap_delete;
ic->ic_update_mcast = rum_update_mcast;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
RT2573_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
RT2573_RX_RADIOTAP_PRESENT);
if (bootverbose)
ieee80211_announce(ic);
return (0);
detach:
rum_detach(self);
return (ENXIO); /* failure */
}
static int
rum_detach(device_t self)
{
struct rum_softc *sc = device_get_softc(self);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic;
/* stop all USB transfers */
usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
/* free TX list, if any */
RUM_LOCK(sc);
rum_unsetup_tx_list(sc);
RUM_UNLOCK(sc);
if (ifp) {
ic = ifp->if_l2com;
ieee80211_ifdetach(ic);
if_free(ifp);
}
mtx_destroy(&sc->sc_mtx);
return (0);
}
static usb_error_t
rum_do_request(struct rum_softc *sc,
struct usb_device_request *req, void *data)
{
usb_error_t err;
int ntries = 10;
while (ntries--) {
err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx,
req, data, 0, NULL, 250 /* ms */);
if (err == 0)
break;
DPRINTFN(1, "Control request failed, %s (retrying)\n",
usbd_errstr(err));
if (rum_pause(sc, hz / 100))
break;
}
return (err);
}
static struct ieee80211vap *
rum_vap_create(struct ieee80211com *ic,
const char name[IFNAMSIZ], int unit, int opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct rum_softc *sc = ic->ic_ifp->if_softc;
struct rum_vap *rvp;
struct ieee80211vap *vap;
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
return NULL;
rvp = (struct rum_vap *) malloc(sizeof(struct rum_vap),
M_80211_VAP, M_NOWAIT | M_ZERO);
if (rvp == NULL)
return NULL;
vap = &rvp->vap;
/* enable s/w bmiss handling for sta mode */
ieee80211_vap_setup(ic, vap, name, unit, opmode,
flags | IEEE80211_CLONE_NOBEACONS, bssid, mac);
/* override state transition machine */
rvp->newstate = vap->iv_newstate;
vap->iv_newstate = rum_newstate;
usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_mtx, 0);
TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
ieee80211_ratectl_init(vap);
ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
ic->ic_opmode = opmode;
return vap;
}
static void
rum_vap_delete(struct ieee80211vap *vap)
{
struct rum_vap *rvp = RUM_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
usb_callout_drain(&rvp->ratectl_ch);
ieee80211_draintask(ic, &rvp->ratectl_task);
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
free(rvp, M_80211_VAP);
}
static void
rum_tx_free(struct rum_tx_data *data, int txerr)
{
struct rum_softc *sc = data->sc;
if (data->m != NULL) {
if (data->m->m_flags & M_TXCB)
ieee80211_process_callback(data->ni, data->m,
txerr ? ETIMEDOUT : 0);
m_freem(data->m);
data->m = NULL;
ieee80211_free_node(data->ni);
data->ni = NULL;
}
STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
sc->tx_nfree++;
}
static void
rum_setup_tx_list(struct rum_softc *sc)
{
struct rum_tx_data *data;
int i;
sc->tx_nfree = 0;
STAILQ_INIT(&sc->tx_q);
STAILQ_INIT(&sc->tx_free);
for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
data->sc = sc;
STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
sc->tx_nfree++;
}
}
static void
rum_unsetup_tx_list(struct rum_softc *sc)
{
struct rum_tx_data *data;
int i;
/* make sure any subsequent use of the queues will fail */
sc->tx_nfree = 0;
STAILQ_INIT(&sc->tx_q);
STAILQ_INIT(&sc->tx_free);
/* free up all node references and mbufs */
for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
data = &sc->tx_data[i];
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
}
static int
rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct rum_vap *rvp = RUM_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct rum_softc *sc = ic->ic_ifp->if_softc;
const struct ieee80211_txparam *tp;
enum ieee80211_state ostate;
struct ieee80211_node *ni;
uint32_t tmp;
ostate = vap->iv_state;
DPRINTF("%s -> %s\n",
ieee80211_state_name[ostate],
ieee80211_state_name[nstate]);
IEEE80211_UNLOCK(ic);
RUM_LOCK(sc);
usb_callout_stop(&rvp->ratectl_ch);
switch (nstate) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
tmp = rum_read(sc, RT2573_TXRX_CSR9);
rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
}
break;
case IEEE80211_S_RUN:
ni = ieee80211_ref_node(vap->iv_bss);
if (vap->iv_opmode != IEEE80211_M_MONITOR) {
rum_update_slot(ic->ic_ifp);
rum_enable_mrr(sc);
rum_set_txpreamble(sc);
rum_set_basicrates(sc);
IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
rum_set_bssid(sc, sc->sc_bssid);
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_IBSS)
rum_prepare_beacon(sc, vap);
if (vap->iv_opmode != IEEE80211_M_MONITOR)
rum_enable_tsf_sync(sc);
else
rum_enable_tsf(sc);
/* enable automatic rate adaptation */
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
rum_ratectl_start(sc, ni);
ieee80211_free_node(ni);
break;
default:
break;
}
RUM_UNLOCK(sc);
IEEE80211_LOCK(ic);
return (rvp->newstate(vap, nstate, arg));
}
static void
rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct rum_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211vap *vap;
struct rum_tx_data *data;
struct mbuf *m;
struct usb_page_cache *pc;
unsigned int len;
int actlen, sumlen;
usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
/* free resources */
data = usbd_xfer_get_priv(xfer);
rum_tx_free(data, 0);
usbd_xfer_set_priv(xfer, NULL);
ifp->if_opackets++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
data = STAILQ_FIRST(&sc->tx_q);
if (data) {
STAILQ_REMOVE_HEAD(&sc->tx_q, next);
m = data->m;
if (m->m_pkthdr.len > (MCLBYTES + RT2573_TX_DESC_SIZE)) {
DPRINTFN(0, "data overflow, %u bytes\n",
m->m_pkthdr.len);
m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
}
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
m->m_pkthdr.len);
vap = data->ni->ni_vap;
if (ieee80211_radiotap_active_vap(vap)) {
struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = data->rate;
tap->wt_antenna = sc->tx_ant;
ieee80211_radiotap_tx(vap, m);
}
/* align end on a 4-bytes boundary */
len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
if ((len % 64) == 0)
len += 4;
DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
m->m_pkthdr.len, len);
usbd_xfer_set_frame_len(xfer, 0, len);
usbd_xfer_set_priv(xfer, data);
usbd_transfer_submit(xfer);
}
RUM_UNLOCK(sc);
rum_start(ifp);
RUM_LOCK(sc);
break;
default: /* Error */
DPRINTFN(11, "transfer error, %s\n",
usbd_errstr(error));
ifp->if_oerrors++;
data = usbd_xfer_get_priv(xfer);
if (data != NULL) {
rum_tx_free(data, error);
usbd_xfer_set_priv(xfer, NULL);
}
if (error != USB_ERR_CANCELLED) {
if (error == USB_ERR_TIMEOUT)
device_printf(sc->sc_dev, "device timeout\n");
/*
* Try to clear stall first, also if other
* errors occur, hence clearing stall
* introduces a 50 ms delay:
*/
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
break;
}
}
static void
rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct rum_softc *sc = usbd_xfer_softc(xfer);
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_node *ni;
struct mbuf *m = NULL;
struct usb_page_cache *pc;
uint32_t flags;
uint8_t rssi = 0;
int len;
usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(15, "rx done, actlen=%d\n", len);
if (len < RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN) {
DPRINTF("%s: xfer too short %d\n",
device_get_nameunit(sc->sc_dev), len);
ifp->if_ierrors++;
goto tr_setup;
}
len -= RT2573_RX_DESC_SIZE;
pc = usbd_xfer_get_frame(xfer, 0);
usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
flags = le32toh(sc->sc_rx_desc.flags);
if (flags & RT2573_RX_CRC_ERROR) {
/*
* This should not happen since we did not
* request to receive those frames when we
* filled RUM_TXRX_CSR2:
*/
DPRINTFN(5, "PHY or CRC error\n");
ifp->if_ierrors++;
goto tr_setup;
}
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
DPRINTF("could not allocate mbuf\n");
ifp->if_ierrors++;
goto tr_setup;
}
usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
mtod(m, uint8_t *), len);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
if (ieee80211_radiotap_active(ic)) {
struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
/* XXX read tsf */
tap->wr_flags = 0;
tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
(flags & RT2573_RX_OFDM) ?
IEEE80211_T_OFDM : IEEE80211_T_CCK);
tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
tap->wr_antnoise = RT2573_NOISE_FLOOR;
tap->wr_antenna = sc->rx_ant;
}
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
/*
* At the end of a USB callback it is always safe to unlock
* the private mutex of a device! That is why we do the
* "ieee80211_input" here, and not some lines up!
*/
RUM_UNLOCK(sc);
if (m) {
ni = ieee80211_find_rxnode(ic,
mtod(m, struct ieee80211_frame_min *));
if (ni != NULL) {
(void) ieee80211_input(ni, m, rssi,
RT2573_NOISE_FLOOR);
ieee80211_free_node(ni);
} else
(void) ieee80211_input_all(ic, m, rssi,
RT2573_NOISE_FLOOR);
}
if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
!IFQ_IS_EMPTY(&ifp->if_snd))
rum_start(ifp);
RUM_LOCK(sc);
return;
default: /* Error */
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
return;
}
}
static uint8_t
rum_plcp_signal(int rate)
{
switch (rate) {
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* CCK rates (NB: not IEEE std, device-specific) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
}
return 0xff; /* XXX unsupported/unknown rate */
}
static void
rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
uint32_t flags, uint16_t xflags, int len, int rate)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint16_t plcp_length;
int remainder;
desc->flags = htole32(flags);
desc->flags |= htole32(RT2573_TX_VALID);
desc->flags |= htole32(len << 16);
desc->xflags = htole16(xflags);
desc->wme = htole16(RT2573_QID(0) | RT2573_AIFSN(2) |
RT2573_LOGCWMIN(4) | RT2573_LOGCWMAX(10));
/* setup PLCP fields */
desc->plcp_signal = rum_plcp_signal(rate);
desc->plcp_service = 4;
len += IEEE80211_CRC_LEN;
if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
desc->flags |= htole32(RT2573_TX_OFDM);
plcp_length = len & 0xfff;
desc->plcp_length_hi = plcp_length >> 6;
desc->plcp_length_lo = plcp_length & 0x3f;
} else {
plcp_length = (16 * len + rate - 1) / rate;
if (rate == 22) {
remainder = (16 * len) % 22;
if (remainder != 0 && remainder < 7)
desc->plcp_service |= RT2573_PLCP_LENGEXT;
}
desc->plcp_length_hi = plcp_length >> 8;
desc->plcp_length_lo = plcp_length & 0xff;
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
}
static int
rum_sendprot(struct rum_softc *sc,
const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
{
struct ieee80211com *ic = ni->ni_ic;
const struct ieee80211_frame *wh;
struct rum_tx_data *data;
struct mbuf *mprot;
int protrate, ackrate, pktlen, flags, isshort;
uint16_t dur;
RUM_LOCK_ASSERT(sc, MA_OWNED);
KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
("protection %d", prot));
wh = mtod(m, const struct ieee80211_frame *);
pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
+ ieee80211_ack_duration(ic->ic_rt, rate, isshort);
flags = RT2573_TX_MORE_FRAG;
if (prot == IEEE80211_PROT_RTSCTS) {
/* NB: CTS is the same size as an ACK */
dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
flags |= RT2573_TX_NEED_ACK;
mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
} else {
mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
}
if (mprot == NULL) {
/* XXX stat + msg */
return (ENOBUFS);
}
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
data->m = mprot;
data->ni = ieee80211_ref_node(ni);
data->rate = protrate;
rum_setup_tx_desc(sc, &data->desc, flags, 0, mprot->m_pkthdr.len, protrate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
return 0;
}
static int
rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct rum_tx_data *data;
struct ieee80211_frame *wh;
const struct ieee80211_txparam *tp;
struct ieee80211_key *k;
uint32_t flags = 0;
uint16_t dur;
RUM_LOCK_ASSERT(sc, MA_OWNED);
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
wh = mtod(m0, struct ieee80211_frame *);
}
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2573_TX_NEED_ACK;
dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate,
ic->ic_flags & IEEE80211_F_SHPREAMBLE);
*(uint16_t *)wh->i_dur = htole16(dur);
/* tell hardware to add timestamp for probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
flags |= RT2573_TX_TIMESTAMP;
}
data->m = m0;
data->ni = ni;
data->rate = tp->mgmtrate;
rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, tp->mgmtrate);
DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
return (0);
}
static int
rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct rum_tx_data *data;
uint32_t flags;
int rate, error;
RUM_LOCK_ASSERT(sc, MA_OWNED);
KASSERT(params != NULL, ("no raw xmit params"));
rate = params->ibp_rate0;
if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
m_freem(m0);
return EINVAL;
}
flags = 0;
if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
flags |= RT2573_TX_NEED_ACK;
if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
error = rum_sendprot(sc, m0, ni,
params->ibp_flags & IEEE80211_BPF_RTS ?
IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
rate);
if (error || sc->tx_nfree == 0) {
m_freem(m0);
return ENOBUFS;
}
flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
}
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
data->m = m0;
data->ni = ni;
data->rate = rate;
/* XXX need to setup descriptor ourself */
rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);
DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
m0->m_pkthdr.len, rate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
return 0;
}
static int
rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct rum_tx_data *data;
struct ieee80211_frame *wh;
const struct ieee80211_txparam *tp;
struct ieee80211_key *k;
uint32_t flags = 0;
uint16_t dur;
int error, rate;
RUM_LOCK_ASSERT(sc, MA_OWNED);
wh = mtod(m0, struct ieee80211_frame *);
tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
rate = tp->mcastrate;
else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
rate = tp->ucastrate;
else
rate = ni->ni_txrate;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
int prot = IEEE80211_PROT_NONE;
if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
prot = IEEE80211_PROT_RTSCTS;
else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
prot = ic->ic_protmode;
if (prot != IEEE80211_PROT_NONE) {
error = rum_sendprot(sc, m0, ni, prot, rate);
if (error || sc->tx_nfree == 0) {
m_freem(m0);
return ENOBUFS;
}
flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
}
}
data = STAILQ_FIRST(&sc->tx_free);
STAILQ_REMOVE_HEAD(&sc->tx_free, next);
sc->tx_nfree--;
data->m = m0;
data->ni = ni;
data->rate = rate;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RT2573_TX_NEED_ACK;
flags |= RT2573_TX_MORE_FRAG;
dur = ieee80211_ack_duration(ic->ic_rt, rate,
ic->ic_flags & IEEE80211_F_SHPREAMBLE);
*(uint16_t *)wh->i_dur = htole16(dur);
}
rum_setup_tx_desc(sc, &data->desc, flags, 0, m0->m_pkthdr.len, rate);
DPRINTFN(10, "sending frame len=%d rate=%d\n",
m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
return 0;
}
static void
rum_start(struct ifnet *ifp)
{
struct rum_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct mbuf *m;
RUM_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
RUM_UNLOCK(sc);
return;
}
for (;;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (sc->tx_nfree < RUM_TX_MINFREE) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
if (rum_tx_data(sc, m, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
RUM_UNLOCK(sc);
}
static int
rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct rum_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0, startall = 0;
switch (cmd) {
case SIOCSIFFLAGS:
RUM_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
rum_init_locked(sc);
startall = 1;
} else
rum_setpromisc(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rum_stop(sc);
}
RUM_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCGIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return error;
}
static void
rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
{
struct usb_device_request req;
usb_error_t error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2573_READ_EEPROM;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
error = rum_do_request(sc, &req, buf);
if (error != 0) {
device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
usbd_errstr(error));
}
}
static uint32_t
rum_read(struct rum_softc *sc, uint16_t reg)
{
uint32_t val;
rum_read_multi(sc, reg, &val, sizeof val);
return le32toh(val);
}
static void
rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
{
struct usb_device_request req;
usb_error_t error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2573_READ_MULTI_MAC;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
error = rum_do_request(sc, &req, buf);
if (error != 0) {
device_printf(sc->sc_dev,
"could not multi read MAC register: %s\n",
usbd_errstr(error));
}
}
static usb_error_t
rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
{
uint32_t tmp = htole32(val);
return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
}
static usb_error_t
rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
{
struct usb_device_request req;
usb_error_t error;
int offset;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2573_WRITE_MULTI_MAC;
USETW(req.wValue, 0);
/* write at most 64 bytes at a time */
for (offset = 0; offset < len; offset += 64) {
USETW(req.wIndex, reg + offset);
USETW(req.wLength, MIN(len - offset, 64));
error = rum_do_request(sc, &req, buf + offset);
if (error != 0) {
device_printf(sc->sc_dev,
"could not multi write MAC register: %s\n",
usbd_errstr(error));
return (error);
}
}
}
static void
rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries;
DPRINTFN(2, "reg=0x%08x\n", reg);
for (ntries = 0; ntries < 100; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
break;
if (rum_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to BBP\n");
return;
}
tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
rum_write(sc, RT2573_PHY_CSR3, tmp);
}
static uint8_t
rum_bbp_read(struct rum_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
DPRINTFN(2, "reg=0x%08x\n", reg);
for (ntries = 0; ntries < 100; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
break;
if (rum_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not read BBP\n");
return 0;
}
val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
rum_write(sc, RT2573_PHY_CSR3, val);
for (ntries = 0; ntries < 100; ntries++) {
val = rum_read(sc, RT2573_PHY_CSR3);
if (!(val & RT2573_BBP_BUSY))
return val & 0xff;
if (rum_pause(sc, hz / 100))
break;
}
device_printf(sc->sc_dev, "could not read BBP\n");
return 0;
}
static void
rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
break;
if (rum_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to RF\n");
return;
}
tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
(reg & 3);
rum_write(sc, RT2573_PHY_CSR4, tmp);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
}
static void
rum_select_antenna(struct rum_softc *sc)
{
uint8_t bbp4, bbp77;
uint32_t tmp;
bbp4 = rum_bbp_read(sc, 4);
bbp77 = rum_bbp_read(sc, 77);
/* TBD */
/* make sure Rx is disabled before switching antenna */
tmp = rum_read(sc, RT2573_TXRX_CSR0);
rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
rum_bbp_write(sc, 4, bbp4);
rum_bbp_write(sc, 77, bbp77);
rum_write(sc, RT2573_TXRX_CSR0, tmp);
}
/*
* Enable multi-rate retries for frames sent at OFDM rates.
* In 802.11b/g mode, allow fallback to CCK rates.
*/
static void
rum_enable_mrr(struct rum_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR4);
tmp &= ~RT2573_MRR_CCK_FALLBACK;
if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan))
tmp |= RT2573_MRR_CCK_FALLBACK;
tmp |= RT2573_MRR_ENABLED;
rum_write(sc, RT2573_TXRX_CSR4, tmp);
}
static void
rum_set_txpreamble(struct rum_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR4);
tmp &= ~RT2573_SHORT_PREAMBLE;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RT2573_SHORT_PREAMBLE;
rum_write(sc, RT2573_TXRX_CSR4, tmp);
}
static void
rum_set_basicrates(struct rum_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
/* update basic rate set */
if (ic->ic_curmode == IEEE80211_MODE_11B) {
/* 11b basic rates: 1, 2Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0x3);
} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
/* 11a basic rates: 6, 12, 24Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0x150);
} else {
/* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
rum_write(sc, RT2573_TXRX_CSR5, 0xf);
}
}
/*
* Reprogram MAC/BBP to switch to a new band. Values taken from the reference
* driver.
*/
static void
rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
{
uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
uint32_t tmp;
/* update all BBP registers that depend on the band */
bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10;
}
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
}
sc->bbp17 = bbp17;
rum_bbp_write(sc, 17, bbp17);
rum_bbp_write(sc, 96, bbp96);
rum_bbp_write(sc, 104, bbp104);
if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
(IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
rum_bbp_write(sc, 75, 0x80);
rum_bbp_write(sc, 86, 0x80);
rum_bbp_write(sc, 88, 0x80);
}
rum_bbp_write(sc, 35, bbp35);
rum_bbp_write(sc, 97, bbp97);
rum_bbp_write(sc, 98, bbp98);
tmp = rum_read(sc, RT2573_PHY_CSR0);
tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
if (IEEE80211_IS_CHAN_2GHZ(c))
tmp |= RT2573_PA_PE_2GHZ;
else
tmp |= RT2573_PA_PE_5GHZ;
rum_write(sc, RT2573_PHY_CSR0, tmp);
}
static void
rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
const struct rfprog *rfprog;
uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
int8_t power;
int i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
/* select the appropriate RF settings based on what EEPROM says */
rfprog = (sc->rf_rev == RT2573_RF_5225 ||
sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++);
power = sc->txpow[i];
if (power < 0) {
bbp94 += power;
power = 0;
} else if (power > 31) {
bbp94 += power - 31;
power = 31;
}
/*
* If we are switching from the 2GHz band to the 5GHz band or
* vice-versa, BBP registers need to be reprogrammed.
*/
if (c->ic_flags != ic->ic_curchan->ic_flags) {
rum_select_band(sc, c);
rum_select_antenna(sc);
}
ic->ic_curchan = c;
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
rum_pause(sc, hz / 100);
/* enable smart mode for MIMO-capable RFs */
bbp3 = rum_bbp_read(sc, 3);
bbp3 &= ~RT2573_SMART_MODE;
if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
bbp3 |= RT2573_SMART_MODE;
rum_bbp_write(sc, 3, bbp3);
if (bbp94 != RT2573_BBPR94_DEFAULT)
rum_bbp_write(sc, 94, bbp94);
/* give the chip some extra time to do the switchover */
rum_pause(sc, hz / 100);
}
/*
* Enable TSF synchronization and tell h/w to start sending beacons for IBSS
* and HostAP operating modes.
*/
static void
rum_enable_tsf_sync(struct rum_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint32_t tmp;
if (vap->iv_opmode != IEEE80211_M_STA) {
/*
* Change default 16ms TBTT adjustment to 8ms.
* Must be done before enabling beacon generation.
*/
rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
}
tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
/* set beacon interval (in 1/16ms unit) */
tmp |= vap->iv_bss->ni_intval * 16;
tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
if (vap->iv_opmode == IEEE80211_M_STA)
tmp |= RT2573_TSF_MODE(1);
else
tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
rum_write(sc, RT2573_TXRX_CSR9, tmp);
}
static void
rum_enable_tsf(struct rum_softc *sc)
{
rum_write(sc, RT2573_TXRX_CSR9,
(rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000) |
RT2573_TSF_TICKING | RT2573_TSF_MODE(2));
}
static void
rum_update_slot(struct ifnet *ifp)
{
struct rum_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
uint8_t slottime;
uint32_t tmp;
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
tmp = rum_read(sc, RT2573_MAC_CSR9);
tmp = (tmp & ~0xff) | slottime;
rum_write(sc, RT2573_MAC_CSR9, tmp);
DPRINTF("setting slot time to %uus\n", slottime);
}
static void
rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
{
uint32_t tmp;
tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
rum_write(sc, RT2573_MAC_CSR4, tmp);
tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
rum_write(sc, RT2573_MAC_CSR5, tmp);
}
static void
rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
{
uint32_t tmp;
tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
rum_write(sc, RT2573_MAC_CSR2, tmp);
tmp = addr[4] | addr[5] << 8 | 0xff << 16;
rum_write(sc, RT2573_MAC_CSR3, tmp);
}
static void
rum_setpromisc(struct rum_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
uint32_t tmp;
tmp = rum_read(sc, RT2573_TXRX_CSR0);
tmp &= ~RT2573_DROP_NOT_TO_ME;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2573_DROP_NOT_TO_ME;
rum_write(sc, RT2573_TXRX_CSR0, tmp);
DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
"entering" : "leaving");
}
static void
rum_update_promisc(struct ifnet *ifp)
{
struct rum_softc *sc = ifp->if_softc;
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
RUM_LOCK(sc);
rum_setpromisc(sc);
RUM_UNLOCK(sc);
}
static void
rum_update_mcast(struct ifnet *ifp)
{
static int warning_printed;
if (warning_printed == 0) {
if_printf(ifp, "need to implement %s\n", __func__);
warning_printed = 1;
}
}
static const char *
rum_get_rf(int rev)
{
switch (rev) {
case RT2573_RF_2527: return "RT2527 (MIMO XR)";
case RT2573_RF_2528: return "RT2528";
case RT2573_RF_5225: return "RT5225 (MIMO XR)";
case RT2573_RF_5226: return "RT5226";
default: return "unknown";
}
}
static void
rum_read_eeprom(struct rum_softc *sc)
{
uint16_t val;
#ifdef RUM_DEBUG
int i;
#endif
/* read MAC address */
rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_bssid, 6);
rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
val = le16toh(val);
sc->rf_rev = (val >> 11) & 0x1f;
sc->hw_radio = (val >> 10) & 0x1;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
DPRINTF("RF revision=%d\n", sc->rf_rev);
rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
val = le16toh(val);
sc->ext_5ghz_lna = (val >> 6) & 0x1;
sc->ext_2ghz_lna = (val >> 4) & 0x1;
DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
sc->ext_2ghz_lna, sc->ext_5ghz_lna);
rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
val = le16toh(val);
if ((val & 0xff) != 0xff)
sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */
/* Only [-10, 10] is valid */
if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
sc->rssi_2ghz_corr = 0;
rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
val = le16toh(val);
if ((val & 0xff) != 0xff)
sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */
/* Only [-10, 10] is valid */
if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
sc->rssi_5ghz_corr = 0;
if (sc->ext_2ghz_lna)
sc->rssi_2ghz_corr -= 14;
if (sc->ext_5ghz_lna)
sc->rssi_5ghz_corr -= 14;
DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
val = le16toh(val);
if ((val & 0xff) != 0xff)
sc->rffreq = val & 0xff;
DPRINTF("RF freq=%d\n", sc->rffreq);
/* read Tx power for all a/b/g channels */
rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
/* XXX default Tx power for 802.11a channels */
memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
#ifdef RUM_DEBUG
for (i = 0; i < 14; i++)
DPRINTF("Channel=%d Tx power=%d\n", i + 1, sc->txpow[i]);
#endif
/* read default values for BBP registers */
rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
#ifdef RUM_DEBUG
for (i = 0; i < 14; i++) {
if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
continue;
DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
sc->bbp_prom[i].val);
}
#endif
}
static int
rum_bbp_init(struct rum_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
int i, ntries;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
const uint8_t val = rum_bbp_read(sc, 0);
if (val != 0 && val != 0xff)
break;
if (rum_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for BBP\n");
return EIO;
}
/* initialize BBP registers to default values */
for (i = 0; i < N(rum_def_bbp); i++)
rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
/* write vendor-specific BBP values (from EEPROM) */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
continue;
rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
return 0;
#undef N
}
static void
rum_init_locked(struct rum_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp;
usb_error_t error;
int i, ntries;
RUM_LOCK_ASSERT(sc, MA_OWNED);
rum_stop(sc);
/* initialize MAC registers to default values */
for (i = 0; i < N(rum_def_mac); i++)
rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
/* set host ready */
rum_write(sc, RT2573_MAC_CSR1, 3);
rum_write(sc, RT2573_MAC_CSR1, 0);
/* wait for BBP/RF to wakeup */
for (ntries = 0; ntries < 100; ntries++) {
if (rum_read(sc, RT2573_MAC_CSR12) & 8)
break;
rum_write(sc, RT2573_MAC_CSR12, 4); /* force wakeup */
if (rum_pause(sc, hz / 100))
break;
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"timeout waiting for BBP/RF to wakeup\n");
goto fail;
}
if ((error = rum_bbp_init(sc)) != 0)
goto fail;
/* select default channel */
rum_select_band(sc, ic->ic_curchan);
rum_select_antenna(sc);
rum_set_chan(sc, ic->ic_curchan);
/* clear STA registers */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
rum_set_macaddr(sc, IF_LLADDR(ifp));
/* initialize ASIC */
rum_write(sc, RT2573_MAC_CSR1, 4);
/*
* Allocate Tx and Rx xfer queues.
*/
rum_setup_tx_list(sc);
/* update Rx filter */
tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
RT2573_DROP_ACKCTS;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
tmp |= RT2573_DROP_TODS;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2573_DROP_NOT_TO_ME;
}
rum_write(sc, RT2573_TXRX_CSR0, tmp);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
return;
fail: rum_stop(sc);
#undef N
}
static void
rum_init(void *priv)
{
struct rum_softc *sc = priv;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
RUM_LOCK(sc);
rum_init_locked(sc);
RUM_UNLOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ieee80211_start_all(ic); /* start all vap's */
}
static void
rum_stop(struct rum_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
uint32_t tmp;
RUM_LOCK_ASSERT(sc, MA_OWNED);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
RUM_UNLOCK(sc);
/*
* Drain the USB transfers, if not already drained:
*/
usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
RUM_LOCK(sc);
rum_unsetup_tx_list(sc);
/* disable Rx */
tmp = rum_read(sc, RT2573_TXRX_CSR0);
rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
/* reset ASIC */
rum_write(sc, RT2573_MAC_CSR1, 3);
rum_write(sc, RT2573_MAC_CSR1, 0);
}
static void
rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
{
struct usb_device_request req;
uint16_t reg = RT2573_MCU_CODE_BASE;
usb_error_t err;
/* copy firmware image into NIC */
for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
err = rum_write(sc, reg, UGETDW(ucode));
if (err) {
/* firmware already loaded ? */
device_printf(sc->sc_dev, "Firmware load "
"failure! (ignored)\n");
break;
}
}
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2573_MCU_CNTL;
USETW(req.wValue, RT2573_MCU_RUN);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
err = rum_do_request(sc, &req, NULL);
if (err != 0) {
device_printf(sc->sc_dev, "could not run firmware: %s\n",
usbd_errstr(err));
}
/* give the chip some time to boot */
rum_pause(sc, hz / 8);
}
static void
rum_prepare_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
const struct ieee80211_txparam *tp;
struct rum_tx_desc desc;
struct mbuf *m0;
if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC)
return;
m0 = ieee80211_beacon_alloc(vap->iv_bss, &RUM_VAP(vap)->bo);
if (m0 == NULL) {
return;
}
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
m0->m_pkthdr.len, tp->mgmtrate);
/* copy the first 24 bytes of Tx descriptor into NIC memory */
rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
/* copy beacon header and payload into NIC memory */
rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
m0->m_pkthdr.len);
m_freem(m0);
}
static int
rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ifnet *ifp = ni->ni_ic->ic_ifp;
struct rum_softc *sc = ifp->if_softc;
RUM_LOCK(sc);
/* prevent management frames from being sent if we're not ready */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
RUM_UNLOCK(sc);
m_freem(m);
ieee80211_free_node(ni);
return ENETDOWN;
}
if (sc->tx_nfree < RUM_TX_MINFREE) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
RUM_UNLOCK(sc);
m_freem(m);
ieee80211_free_node(ni);
return EIO;
}
ifp->if_opackets++;
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
if (rum_tx_mgt(sc, m, ni) != 0)
goto bad;
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
if (rum_tx_raw(sc, m, ni, params) != 0)
goto bad;
}
RUM_UNLOCK(sc);
return 0;
bad:
ifp->if_oerrors++;
RUM_UNLOCK(sc);
ieee80211_free_node(ni);
return EIO;
}
static void
rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211vap *vap = ni->ni_vap;
struct rum_vap *rvp = RUM_VAP(vap);
/* clear statistic registers (STA_CSR0 to STA_CSR5) */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
}
static void
rum_ratectl_timeout(void *arg)
{
struct rum_vap *rvp = arg;
struct ieee80211vap *vap = &rvp->vap;
struct ieee80211com *ic = vap->iv_ic;
ieee80211_runtask(ic, &rvp->ratectl_task);
}
static void
rum_ratectl_task(void *arg, int pending)
{
struct rum_vap *rvp = arg;
struct ieee80211vap *vap = &rvp->vap;
struct ieee80211com *ic = vap->iv_ic;
struct ifnet *ifp = ic->ic_ifp;
struct rum_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
int ok, fail;
int sum, retrycnt;
RUM_LOCK(sc);
/* read and clear statistic registers (STA_CSR0 to STA_CSR10) */
rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
ok = (le32toh(sc->sta[4]) >> 16) + /* TX ok w/o retry */
(le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ retry */
fail = (le32toh(sc->sta[5]) >> 16); /* TX retry-fail count */
sum = ok+fail;
retrycnt = (le32toh(sc->sta[5]) & 0xffff) + fail;
ni = ieee80211_ref_node(vap->iv_bss);
ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
(void) ieee80211_ratectl_rate(ni, NULL, 0);
ieee80211_free_node(ni);
ifp->if_oerrors += fail; /* count TX retry-fail as Tx errors */
usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
RUM_UNLOCK(sc);
}
static void
rum_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct rum_softc *sc = ifp->if_softc;
uint32_t tmp;
RUM_LOCK(sc);
/* abort TSF synchronization */
tmp = rum_read(sc, RT2573_TXRX_CSR9);
rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
rum_set_bssid(sc, ifp->if_broadcastaddr);
RUM_UNLOCK(sc);
}
static void
rum_scan_end(struct ieee80211com *ic)
{
struct rum_softc *sc = ic->ic_ifp->if_softc;
RUM_LOCK(sc);
rum_enable_tsf_sync(sc);
rum_set_bssid(sc, sc->sc_bssid);
RUM_UNLOCK(sc);
}
static void
rum_set_channel(struct ieee80211com *ic)
{
struct rum_softc *sc = ic->ic_ifp->if_softc;
RUM_LOCK(sc);
rum_set_chan(sc, ic->ic_curchan);
RUM_UNLOCK(sc);
}
static int
rum_get_rssi(struct rum_softc *sc, uint8_t raw)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
int lna, agc, rssi;
lna = (raw >> 5) & 0x3;
agc = raw & 0x1f;
if (lna == 0) {
/*
* No RSSI mapping
*
* NB: Since RSSI is relative to noise floor, -1 is
* adequate for caller to know error happened.
*/
return -1;
}
rssi = (2 * agc) - RT2573_NOISE_FLOOR;
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
rssi += sc->rssi_2ghz_corr;
if (lna == 1)
rssi -= 64;
else if (lna == 2)
rssi -= 74;
else if (lna == 3)
rssi -= 90;
} else {
rssi += sc->rssi_5ghz_corr;
if (!sc->ext_5ghz_lna && lna != 1)
rssi += 4;
if (lna == 1)
rssi -= 64;
else if (lna == 2)
rssi -= 86;
else if (lna == 3)
rssi -= 100;
}
return rssi;
}
static int
rum_pause(struct rum_softc *sc, int timeout)
{
usb_pause_mtx(&sc->sc_mtx, timeout);
return (0);
}
static device_method_t rum_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, rum_match),
DEVMETHOD(device_attach, rum_attach),
DEVMETHOD(device_detach, rum_detach),
{ 0, 0 }
};
static driver_t rum_driver = {
.name = "rum",
.methods = rum_methods,
.size = sizeof(struct rum_softc),
};
static devclass_t rum_devclass;
DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, 0);
MODULE_DEPEND(rum, wlan, 1, 1, 1);
MODULE_DEPEND(rum, usb, 1, 1, 1);
MODULE_VERSION(rum, 1);