freebsd-dev/sys/arm/ti/ti_sdma.c
Ian Lepore add35ed5b8 Follow r261352 by updating all drivers which are children of simplebus
to check the status property in their probe routines.

Simplebus used to only instantiate its children whose status="okay"
but that was improper behavior, fixed in r261352.  Now that it doesn't
check anymore and probes all its children; the children all have to
do the check because really only the children know how to properly
interpret their status property strings.

Right now all existing drivers only understand "okay" versus something-
that's-not-okay, so they all use the new ofw_bus_status_okay() helper.
2014-02-02 19:17:28 +00:00

1251 lines
31 KiB
C

/*-
* Copyright (c) 2011
* Ben Gray <ben.r.gray@gmail.com>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/interrupt.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/timetc.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <arm/ti/ti_cpuid.h>
#include <arm/ti/ti_prcm.h>
#include <arm/ti/ti_sdma.h>
#include <arm/ti/ti_sdmareg.h>
/**
* Kernel functions for using the DMA controller
*
*
* DMA TRANSFERS:
* A DMA transfer block consists of a number of frames (FN). Each frame
* consists of a number of elements, and each element can have a size of 8, 16,
* or 32 bits.
*
* OMAP44xx and newer chips support linked list (aka scatter gather) transfers,
* where a linked list of source/destination pairs can be placed in memory
* for the H/W to process. Earlier chips only allowed you to chain multiple
* channels together. However currently this linked list feature is not
* supported by the driver.
*
*/
/**
* Data structure per DMA channel.
*
*
*/
struct ti_sdma_channel {
/*
* The configuration registers for the given channel, these are modified
* by the set functions and only written to the actual registers when a
* transaction is started.
*/
uint32_t reg_csdp;
uint32_t reg_ccr;
uint32_t reg_cicr;
/* Set when one of the configuration registers above change */
uint32_t need_reg_write;
/* Callback function used when an interrupt is tripped on the given channel */
void (*callback)(unsigned int ch, uint32_t ch_status, void *data);
/* Callback data passed in the callback ... duh */
void* callback_data;
};
/**
* DMA driver context, allocated and stored globally, this driver is not
* intetned to ever be unloaded (see ti_sdma_sc).
*
*/
struct ti_sdma_softc {
device_t sc_dev;
struct resource* sc_irq_res;
struct resource* sc_mem_res;
/*
* I guess in theory we should have a mutex per DMA channel for register
* modifications. But since we know we are never going to be run on a SMP
* system, we can use just the single lock for all channels.
*/
struct mtx sc_mtx;
/* Stores the H/W revision read from the registers */
uint32_t sc_hw_rev;
/*
* Bits in the sc_active_channels data field indicate if the channel has
* been activated.
*/
uint32_t sc_active_channels;
struct ti_sdma_channel sc_channel[NUM_DMA_CHANNELS];
};
static struct ti_sdma_softc *ti_sdma_sc = NULL;
/**
* Macros for driver mutex locking
*/
#define TI_SDMA_LOCK(_sc) mtx_lock_spin(&(_sc)->sc_mtx)
#define TI_SDMA_UNLOCK(_sc) mtx_unlock_spin(&(_sc)->sc_mtx)
#define TI_SDMA_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->sc_dev), \
"ti_sdma", MTX_SPIN)
#define TI_SDMA_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define TI_SDMA_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define TI_SDMA_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
/**
* Function prototypes
*
*/
static void ti_sdma_intr(void *);
/**
* ti_sdma_read_4 - reads a 32-bit value from one of the DMA registers
* @sc: DMA device context
* @off: The offset of a register from the DMA register address range
*
*
* RETURNS:
* 32-bit value read from the register.
*/
static inline uint32_t
ti_sdma_read_4(struct ti_sdma_softc *sc, bus_size_t off)
{
return bus_read_4(sc->sc_mem_res, off);
}
/**
* ti_sdma_write_4 - writes a 32-bit value to one of the DMA registers
* @sc: DMA device context
* @off: The offset of a register from the DMA register address range
*
*
* RETURNS:
* 32-bit value read from the register.
*/
static inline void
ti_sdma_write_4(struct ti_sdma_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->sc_mem_res, off, val);
}
/**
* ti_sdma_is_omap3_rev - returns true if H/W is from OMAP3 series
* @sc: DMA device context
*
*/
static inline int
ti_sdma_is_omap3_rev(struct ti_sdma_softc *sc)
{
return (sc->sc_hw_rev == DMA4_OMAP3_REV);
}
/**
* ti_sdma_is_omap4_rev - returns true if H/W is from OMAP4 series
* @sc: DMA device context
*
*/
static inline int
ti_sdma_is_omap4_rev(struct ti_sdma_softc *sc)
{
return (sc->sc_hw_rev == DMA4_OMAP4_REV);
}
/**
* ti_sdma_intr - interrupt handler for all 4 DMA IRQs
* @arg: ignored
*
* Called when any of the four DMA IRQs are triggered.
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* nothing
*/
static void
ti_sdma_intr(void *arg)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
uint32_t intr;
uint32_t csr;
unsigned int ch, j;
struct ti_sdma_channel* channel;
TI_SDMA_LOCK(sc);
for (j = 0; j < NUM_DMA_IRQS; j++) {
/* Get the flag interrupts (enabled) */
intr = ti_sdma_read_4(sc, DMA4_IRQSTATUS_L(j));
intr &= ti_sdma_read_4(sc, DMA4_IRQENABLE_L(j));
if (intr == 0x00000000)
continue;
/* Loop through checking the status bits */
for (ch = 0; ch < NUM_DMA_CHANNELS; ch++) {
if (intr & (1 << ch)) {
channel = &sc->sc_channel[ch];
/* Read the CSR regsiter and verify we don't have a spurious IRQ */
csr = ti_sdma_read_4(sc, DMA4_CSR(ch));
if (csr == 0) {
device_printf(sc->sc_dev, "Spurious DMA IRQ for channel "
"%d\n", ch);
continue;
}
/* Sanity check this channel is active */
if ((sc->sc_active_channels & (1 << ch)) == 0) {
device_printf(sc->sc_dev, "IRQ %d for a non-activated "
"channel %d\n", j, ch);
continue;
}
/* Check the status error codes */
if (csr & DMA4_CSR_DROP)
device_printf(sc->sc_dev, "Synchronization event drop "
"occurred during the transfer on channel %u\n",
ch);
if (csr & DMA4_CSR_SECURE_ERR)
device_printf(sc->sc_dev, "Secure transaction error event "
"on channel %u\n", ch);
if (csr & DMA4_CSR_MISALIGNED_ADRS_ERR)
device_printf(sc->sc_dev, "Misaligned address error event "
"on channel %u\n", ch);
if (csr & DMA4_CSR_TRANS_ERR) {
device_printf(sc->sc_dev, "Transaction error event on "
"channel %u\n", ch);
/*
* Apparently according to linux code, there is an errata
* that says the channel is not disabled upon this error.
* They explicitly disable the channel here .. since I
* haven't seen the errata, I'm going to ignore for now.
*/
}
/* Clear the status flags for the IRQ */
ti_sdma_write_4(sc, DMA4_CSR(ch), DMA4_CSR_CLEAR_MASK);
ti_sdma_write_4(sc, DMA4_IRQSTATUS_L(j), (1 << ch));
/* Call the callback for the given channel */
if (channel->callback)
channel->callback(ch, csr, channel->callback_data);
}
}
}
TI_SDMA_UNLOCK(sc);
return;
}
/**
* ti_sdma_activate_channel - activates a DMA channel
* @ch: upon return contains the channel allocated
* @callback: a callback function to associate with the channel
* @data: optional data supplied when the callback is called
*
* Simply activates a channel be enabling and writing default values to the
* channel's register set. It doesn't start a transaction, just populates the
* internal data structures and sets defaults.
*
* Note this function doesn't enable interrupts, for that you need to call
* ti_sdma_enable_channel_irq(). If not using IRQ to detect the end of the
* transfer, you can use ti_sdma_status_poll() to detect a change in the
* status.
*
* A channel must be activated before any of the other DMA functions can be
* called on it.
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* 0 on success, otherwise an error code
*/
int
ti_sdma_activate_channel(unsigned int *ch,
void (*callback)(unsigned int ch, uint32_t status, void *data),
void *data)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
struct ti_sdma_channel *channel = NULL;
uint32_t addr;
unsigned int i;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
if (ch == NULL)
return (EINVAL);
TI_SDMA_LOCK(sc);
/* Check to see if all channels are in use */
if (sc->sc_active_channels == 0xffffffff) {
TI_SDMA_UNLOCK(sc);
return (ENOMEM);
}
/* Find the first non-active channel */
for (i = 0; i < NUM_DMA_CHANNELS; i++) {
if (!(sc->sc_active_channels & (0x1 << i))) {
sc->sc_active_channels |= (0x1 << i);
*ch = i;
break;
}
}
/* Get the channel struct and populate the fields */
channel = &sc->sc_channel[*ch];
channel->callback = callback;
channel->callback_data = data;
channel->need_reg_write = 1;
/* Set the default configuration for the DMA channel */
channel->reg_csdp = DMA4_CSDP_DATA_TYPE(0x2)
| DMA4_CSDP_SRC_BURST_MODE(0)
| DMA4_CSDP_DST_BURST_MODE(0)
| DMA4_CSDP_SRC_ENDIANISM(0)
| DMA4_CSDP_DST_ENDIANISM(0)
| DMA4_CSDP_WRITE_MODE(0)
| DMA4_CSDP_SRC_PACKED(0)
| DMA4_CSDP_DST_PACKED(0);
channel->reg_ccr = DMA4_CCR_DST_ADDRESS_MODE(1)
| DMA4_CCR_SRC_ADDRESS_MODE(1)
| DMA4_CCR_READ_PRIORITY(0)
| DMA4_CCR_WRITE_PRIORITY(0)
| DMA4_CCR_SYNC_TRIGGER(0)
| DMA4_CCR_FRAME_SYNC(0)
| DMA4_CCR_BLOCK_SYNC(0);
channel->reg_cicr = DMA4_CICR_TRANS_ERR_IE
| DMA4_CICR_SECURE_ERR_IE
| DMA4_CICR_SUPERVISOR_ERR_IE
| DMA4_CICR_MISALIGNED_ADRS_ERR_IE;
/* Clear all the channel registers, this should abort any transaction */
for (addr = DMA4_CCR(*ch); addr <= DMA4_COLOR(*ch); addr += 4)
ti_sdma_write_4(sc, addr, 0x00000000);
TI_SDMA_UNLOCK(sc);
return 0;
}
/**
* ti_sdma_deactivate_channel - deactivates a channel
* @ch: the channel to deactivate
*
*
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_deactivate_channel(unsigned int ch)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
unsigned int j;
unsigned int addr;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
/* First check if the channel is currently active */
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EBUSY);
}
/* Mark the channel as inactive */
sc->sc_active_channels &= ~(1 << ch);
/* Disable all DMA interrupts for the channel. */
ti_sdma_write_4(sc, DMA4_CICR(ch), 0);
/* Make sure the DMA transfer is stopped. */
ti_sdma_write_4(sc, DMA4_CCR(ch), 0);
/* Clear the CSR register and IRQ status register */
ti_sdma_write_4(sc, DMA4_CSR(ch), DMA4_CSR_CLEAR_MASK);
for (j = 0; j < NUM_DMA_IRQS; j++) {
ti_sdma_write_4(sc, DMA4_IRQSTATUS_L(j), (1 << ch));
}
/* Clear all the channel registers, this should abort any transaction */
for (addr = DMA4_CCR(ch); addr <= DMA4_COLOR(ch); addr += 4)
ti_sdma_write_4(sc, addr, 0x00000000);
TI_SDMA_UNLOCK(sc);
return 0;
}
/**
* ti_sdma_disable_channel_irq - disables IRQ's on the given channel
* @ch: the channel to disable IRQ's on
*
* Disable interupt generation for the given channel.
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_disable_channel_irq(unsigned int ch)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
uint32_t irq_enable;
unsigned int j;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
/* Disable all the individual error conditions */
sc->sc_channel[ch].reg_cicr = 0x0000;
ti_sdma_write_4(sc, DMA4_CICR(ch), 0x0000);
/* Disable the channel interrupt enable */
for (j = 0; j < NUM_DMA_IRQS; j++) {
irq_enable = ti_sdma_read_4(sc, DMA4_IRQENABLE_L(j));
irq_enable &= ~(1 << ch);
ti_sdma_write_4(sc, DMA4_IRQENABLE_L(j), irq_enable);
}
/* Indicate the registers need to be rewritten on the next transaction */
sc->sc_channel[ch].need_reg_write = 1;
TI_SDMA_UNLOCK(sc);
return (0);
}
/**
* ti_sdma_disable_channel_irq - enables IRQ's on the given channel
* @ch: the channel to enable IRQ's on
* @flags: bitmask of interrupt types to enable
*
* Flags can be a bitmask of the following options:
* DMA_IRQ_FLAG_DROP
* DMA_IRQ_FLAG_HALF_FRAME_COMPL
* DMA_IRQ_FLAG_FRAME_COMPL
* DMA_IRQ_FLAG_START_LAST_FRAME
* DMA_IRQ_FLAG_BLOCK_COMPL
* DMA_IRQ_FLAG_ENDOF_PKT
* DMA_IRQ_FLAG_DRAIN
*
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_enable_channel_irq(unsigned int ch, uint32_t flags)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
uint32_t irq_enable;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
/* Always enable the error interrupts if we have interrupts enabled */
flags |= DMA4_CICR_TRANS_ERR_IE | DMA4_CICR_SECURE_ERR_IE |
DMA4_CICR_SUPERVISOR_ERR_IE | DMA4_CICR_MISALIGNED_ADRS_ERR_IE;
sc->sc_channel[ch].reg_cicr = flags;
/* Write the values to the register */
ti_sdma_write_4(sc, DMA4_CICR(ch), flags);
/* Enable the channel interrupt enable */
irq_enable = ti_sdma_read_4(sc, DMA4_IRQENABLE_L(0));
irq_enable |= (1 << ch);
ti_sdma_write_4(sc, DMA4_IRQENABLE_L(0), irq_enable);
/* Indicate the registers need to be rewritten on the next transaction */
sc->sc_channel[ch].need_reg_write = 1;
TI_SDMA_UNLOCK(sc);
return (0);
}
/**
* ti_sdma_get_channel_status - returns the status of a given channel
* @ch: the channel number to get the status of
* @status: upon return will contain the status bitmask, see below for possible
* values.
*
* DMA_STATUS_DROP
* DMA_STATUS_HALF
* DMA_STATUS_FRAME
* DMA_STATUS_LAST
* DMA_STATUS_BLOCK
* DMA_STATUS_SYNC
* DMA_STATUS_PKT
* DMA_STATUS_TRANS_ERR
* DMA_STATUS_SECURE_ERR
* DMA_STATUS_SUPERVISOR_ERR
* DMA_STATUS_MISALIGNED_ADRS_ERR
* DMA_STATUS_DRAIN_END
*
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_get_channel_status(unsigned int ch, uint32_t *status)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
uint32_t csr;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
TI_SDMA_UNLOCK(sc);
csr = ti_sdma_read_4(sc, DMA4_CSR(ch));
if (status != NULL)
*status = csr;
return (0);
}
/**
* ti_sdma_start_xfer - starts a DMA transfer
* @ch: the channel number to set the endianess of
* @src_paddr: the source phsyical address
* @dst_paddr: the destination phsyical address
* @frmcnt: the number of frames per block
* @elmcnt: the number of elements in a frame, an element is either an 8, 16
* or 32-bit value as defined by ti_sdma_set_xfer_burst()
*
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_start_xfer(unsigned int ch, unsigned int src_paddr,
unsigned long dst_paddr,
unsigned int frmcnt, unsigned int elmcnt)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
struct ti_sdma_channel *channel;
uint32_t ccr;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
channel = &sc->sc_channel[ch];
/* a) Write the CSDP register */
ti_sdma_write_4(sc, DMA4_CSDP(ch),
channel->reg_csdp | DMA4_CSDP_WRITE_MODE(1));
/* b) Set the number of element per frame CEN[23:0] */
ti_sdma_write_4(sc, DMA4_CEN(ch), elmcnt);
/* c) Set the number of frame per block CFN[15:0] */
ti_sdma_write_4(sc, DMA4_CFN(ch), frmcnt);
/* d) Set the Source/dest start address index CSSA[31:0]/CDSA[31:0] */
ti_sdma_write_4(sc, DMA4_CSSA(ch), src_paddr);
ti_sdma_write_4(sc, DMA4_CDSA(ch), dst_paddr);
/* e) Write the CCR register */
ti_sdma_write_4(sc, DMA4_CCR(ch), channel->reg_ccr);
/* f) - Set the source element index increment CSEI[15:0] */
ti_sdma_write_4(sc, DMA4_CSE(ch), 0x0001);
/* - Set the source frame index increment CSFI[15:0] */
ti_sdma_write_4(sc, DMA4_CSF(ch), 0x0001);
/* - Set the destination element index increment CDEI[15:0]*/
ti_sdma_write_4(sc, DMA4_CDE(ch), 0x0001);
/* - Set the destination frame index increment CDFI[31:0] */
ti_sdma_write_4(sc, DMA4_CDF(ch), 0x0001);
/* Clear the status register */
ti_sdma_write_4(sc, DMA4_CSR(ch), 0x1FFE);
/* Write the start-bit and away we go */
ccr = ti_sdma_read_4(sc, DMA4_CCR(ch));
ccr |= (1 << 7);
ti_sdma_write_4(sc, DMA4_CCR(ch), ccr);
/* Clear the reg write flag */
channel->need_reg_write = 0;
TI_SDMA_UNLOCK(sc);
return (0);
}
/**
* ti_sdma_start_xfer_packet - starts a packet DMA transfer
* @ch: the channel number to use for the transfer
* @src_paddr: the source physical address
* @dst_paddr: the destination physical address
* @frmcnt: the number of frames to transfer
* @elmcnt: the number of elements in a frame, an element is either an 8, 16
* or 32-bit value as defined by ti_sdma_set_xfer_burst()
* @pktsize: the number of elements in each transfer packet
*
* The @frmcnt and @elmcnt define the overall number of bytes to transfer,
* typically @frmcnt is 1 and @elmcnt contains the total number of elements.
* @pktsize is the size of each individual packet, there might be multiple
* packets per transfer. i.e. for the following with element size of 32-bits
*
* frmcnt = 1, elmcnt = 512, pktsize = 128
*
* Total transfer bytes = 1 * 512 = 512 elements or 2048 bytes
* Packets transfered = 128 / 512 = 4
*
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_start_xfer_packet(unsigned int ch, unsigned int src_paddr,
unsigned long dst_paddr, unsigned int frmcnt,
unsigned int elmcnt, unsigned int pktsize)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
struct ti_sdma_channel *channel;
uint32_t ccr;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
channel = &sc->sc_channel[ch];
/* a) Write the CSDP register */
if (channel->need_reg_write)
ti_sdma_write_4(sc, DMA4_CSDP(ch),
channel->reg_csdp | DMA4_CSDP_WRITE_MODE(1));
/* b) Set the number of elements to transfer CEN[23:0] */
ti_sdma_write_4(sc, DMA4_CEN(ch), elmcnt);
/* c) Set the number of frames to transfer CFN[15:0] */
ti_sdma_write_4(sc, DMA4_CFN(ch), frmcnt);
/* d) Set the Source/dest start address index CSSA[31:0]/CDSA[31:0] */
ti_sdma_write_4(sc, DMA4_CSSA(ch), src_paddr);
ti_sdma_write_4(sc, DMA4_CDSA(ch), dst_paddr);
/* e) Write the CCR register */
ti_sdma_write_4(sc, DMA4_CCR(ch),
channel->reg_ccr | DMA4_CCR_PACKET_TRANS);
/* f) - Set the source element index increment CSEI[15:0] */
ti_sdma_write_4(sc, DMA4_CSE(ch), 0x0001);
/* - Set the packet size, this is dependent on the sync source */
if (channel->reg_ccr & DMA4_CCR_SEL_SRC_DST_SYNC(1))
ti_sdma_write_4(sc, DMA4_CSF(ch), pktsize);
else
ti_sdma_write_4(sc, DMA4_CDF(ch), pktsize);
/* - Set the destination frame index increment CDFI[31:0] */
ti_sdma_write_4(sc, DMA4_CDE(ch), 0x0001);
/* Clear the status register */
ti_sdma_write_4(sc, DMA4_CSR(ch), 0x1FFE);
/* Write the start-bit and away we go */
ccr = ti_sdma_read_4(sc, DMA4_CCR(ch));
ccr |= (1 << 7);
ti_sdma_write_4(sc, DMA4_CCR(ch), ccr);
/* Clear the reg write flag */
channel->need_reg_write = 0;
TI_SDMA_UNLOCK(sc);
return (0);
}
/**
* ti_sdma_stop_xfer - stops any currently active transfers
* @ch: the channel number to set the endianess of
*
* This function call is effectively a NOP if no transaction is in progress.
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_stop_xfer(unsigned int ch)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
unsigned int j;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
/* Disable all DMA interrupts for the channel. */
ti_sdma_write_4(sc, DMA4_CICR(ch), 0);
/* Make sure the DMA transfer is stopped. */
ti_sdma_write_4(sc, DMA4_CCR(ch), 0);
/* Clear the CSR register and IRQ status register */
ti_sdma_write_4(sc, DMA4_CSR(ch), DMA4_CSR_CLEAR_MASK);
for (j = 0; j < NUM_DMA_IRQS; j++) {
ti_sdma_write_4(sc, DMA4_IRQSTATUS_L(j), (1 << ch));
}
/* Configuration registers need to be re-written on the next xfer */
sc->sc_channel[ch].need_reg_write = 1;
TI_SDMA_UNLOCK(sc);
return (0);
}
/**
* ti_sdma_set_xfer_endianess - sets the endianess of subsequent transfers
* @ch: the channel number to set the endianess of
* @src: the source endianess (either DMA_ENDIAN_LITTLE or DMA_ENDIAN_BIG)
* @dst: the destination endianess (either DMA_ENDIAN_LITTLE or DMA_ENDIAN_BIG)
*
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_set_xfer_endianess(unsigned int ch, unsigned int src, unsigned int dst)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
sc->sc_channel[ch].reg_csdp &= ~DMA4_CSDP_SRC_ENDIANISM(1);
sc->sc_channel[ch].reg_csdp |= DMA4_CSDP_SRC_ENDIANISM(src);
sc->sc_channel[ch].reg_csdp &= ~DMA4_CSDP_DST_ENDIANISM(1);
sc->sc_channel[ch].reg_csdp |= DMA4_CSDP_DST_ENDIANISM(dst);
sc->sc_channel[ch].need_reg_write = 1;
TI_SDMA_UNLOCK(sc);
return 0;
}
/**
* ti_sdma_set_xfer_burst - sets the source and destination element size
* @ch: the channel number to set the burst settings of
* @src: the source endianess (either DMA_BURST_NONE, DMA_BURST_16, DMA_BURST_32
* or DMA_BURST_64)
* @dst: the destination endianess (either DMA_BURST_NONE, DMA_BURST_16,
* DMA_BURST_32 or DMA_BURST_64)
*
* This function sets the size of the elements for all subsequent transfers.
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_set_xfer_burst(unsigned int ch, unsigned int src, unsigned int dst)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
sc->sc_channel[ch].reg_csdp &= ~DMA4_CSDP_SRC_BURST_MODE(0x3);
sc->sc_channel[ch].reg_csdp |= DMA4_CSDP_SRC_BURST_MODE(src);
sc->sc_channel[ch].reg_csdp &= ~DMA4_CSDP_DST_BURST_MODE(0x3);
sc->sc_channel[ch].reg_csdp |= DMA4_CSDP_DST_BURST_MODE(dst);
sc->sc_channel[ch].need_reg_write = 1;
TI_SDMA_UNLOCK(sc);
return 0;
}
/**
* ti_sdma_set_xfer_data_type - driver attach function
* @ch: the channel number to set the endianess of
* @type: the xfer data type (either DMA_DATA_8BITS_SCALAR, DMA_DATA_16BITS_SCALAR
* or DMA_DATA_32BITS_SCALAR)
*
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_set_xfer_data_type(unsigned int ch, unsigned int type)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
sc->sc_channel[ch].reg_csdp &= ~DMA4_CSDP_DATA_TYPE(0x3);
sc->sc_channel[ch].reg_csdp |= DMA4_CSDP_DATA_TYPE(type);
sc->sc_channel[ch].need_reg_write = 1;
TI_SDMA_UNLOCK(sc);
return 0;
}
/**
* ti_sdma_set_callback - driver attach function
* @dev: dma device handle
*
*
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_set_callback(unsigned int ch,
void (*callback)(unsigned int ch, uint32_t status, void *data),
void *data)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
sc->sc_channel[ch].callback = callback;
sc->sc_channel[ch].callback_data = data;
sc->sc_channel[ch].need_reg_write = 1;
TI_SDMA_UNLOCK(sc);
return 0;
}
/**
* ti_sdma_sync_params - sets channel sync settings
* @ch: the channel number to set the sync on
* @trigger: the number of the sync trigger, this depends on what other H/W
* module is triggering/receiving the DMA transactions
* @mode: flags describing the sync mode to use, it may have one or more of
* the following bits set; TI_SDMA_SYNC_FRAME,
* TI_SDMA_SYNC_BLOCK, TI_SDMA_SYNC_TRIG_ON_SRC.
*
*
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_sync_params(unsigned int ch, unsigned int trigger, unsigned int mode)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
uint32_t ccr;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
ccr = sc->sc_channel[ch].reg_ccr;
ccr &= ~DMA4_CCR_SYNC_TRIGGER(0x7F);
ccr |= DMA4_CCR_SYNC_TRIGGER(trigger + 1);
if (mode & TI_SDMA_SYNC_FRAME)
ccr |= DMA4_CCR_FRAME_SYNC(1);
else
ccr &= ~DMA4_CCR_FRAME_SYNC(1);
if (mode & TI_SDMA_SYNC_BLOCK)
ccr |= DMA4_CCR_BLOCK_SYNC(1);
else
ccr &= ~DMA4_CCR_BLOCK_SYNC(1);
if (mode & TI_SDMA_SYNC_TRIG_ON_SRC)
ccr |= DMA4_CCR_SEL_SRC_DST_SYNC(1);
else
ccr &= ~DMA4_CCR_SEL_SRC_DST_SYNC(1);
sc->sc_channel[ch].reg_ccr = ccr;
sc->sc_channel[ch].need_reg_write = 1;
TI_SDMA_UNLOCK(sc);
return 0;
}
/**
* ti_sdma_set_addr_mode - driver attach function
* @ch: the channel number to set the endianess of
* @rd_mode: the xfer source addressing mode (either DMA_ADDR_CONSTANT,
* DMA_ADDR_POST_INCREMENT, DMA_ADDR_SINGLE_INDEX or
* DMA_ADDR_DOUBLE_INDEX)
* @wr_mode: the xfer destination addressing mode (either DMA_ADDR_CONSTANT,
* DMA_ADDR_POST_INCREMENT, DMA_ADDR_SINGLE_INDEX or
* DMA_ADDR_DOUBLE_INDEX)
*
*
* LOCKING:
* DMA registers protected by internal mutex
*
* RETURNS:
* EH_HANDLED or EH_NOT_HANDLED
*/
int
ti_sdma_set_addr_mode(unsigned int ch, unsigned int src_mode,
unsigned int dst_mode)
{
struct ti_sdma_softc *sc = ti_sdma_sc;
uint32_t ccr;
/* Sanity check */
if (sc == NULL)
return (ENOMEM);
TI_SDMA_LOCK(sc);
if ((sc->sc_active_channels & (1 << ch)) == 0) {
TI_SDMA_UNLOCK(sc);
return (EINVAL);
}
ccr = sc->sc_channel[ch].reg_ccr;
ccr &= ~DMA4_CCR_SRC_ADDRESS_MODE(0x3);
ccr |= DMA4_CCR_SRC_ADDRESS_MODE(src_mode);
ccr &= ~DMA4_CCR_DST_ADDRESS_MODE(0x3);
ccr |= DMA4_CCR_DST_ADDRESS_MODE(dst_mode);
sc->sc_channel[ch].reg_ccr = ccr;
sc->sc_channel[ch].need_reg_write = 1;
TI_SDMA_UNLOCK(sc);
return 0;
}
/**
* ti_sdma_probe - driver probe function
* @dev: dma device handle
*
*
*
* RETURNS:
* Always returns 0.
*/
static int
ti_sdma_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "ti,sdma"))
return (ENXIO);
device_set_desc(dev, "TI sDMA Controller");
return (0);
}
/**
* ti_sdma_attach - driver attach function
* @dev: dma device handle
*
* Initialises memory mapping/pointers to the DMA register set and requests
* IRQs. This is effectively the setup function for the driver.
*
* RETURNS:
* 0 on success or a negative error code failure.
*/
static int
ti_sdma_attach(device_t dev)
{
struct ti_sdma_softc *sc = device_get_softc(dev);
unsigned int timeout;
unsigned int i;
int rid;
void *ihl;
int err;
/* Setup the basics */
sc->sc_dev = dev;
/* No channels active at the moment */
sc->sc_active_channels = 0x00000000;
/* Mutex to protect the shared data structures */
TI_SDMA_LOCK_INIT(sc);
/* Get the memory resource for the register mapping */
rid = 0;
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
if (sc->sc_mem_res == NULL)
panic("%s: Cannot map registers", device_get_name(dev));
/* Enable the interface and functional clocks */
ti_prcm_clk_enable(SDMA_CLK);
/* Read the sDMA revision register and sanity check it's known */
sc->sc_hw_rev = ti_sdma_read_4(sc, DMA4_REVISION);
device_printf(dev, "sDMA revision %08x\n", sc->sc_hw_rev);
if (!ti_sdma_is_omap4_rev(sc) && !ti_sdma_is_omap3_rev(sc)) {
device_printf(sc->sc_dev, "error - unknown sDMA H/W revision\n");
return (EINVAL);
}
/* Disable all interrupts */
for (i = 0; i < NUM_DMA_IRQS; i++) {
ti_sdma_write_4(sc, DMA4_IRQENABLE_L(i), 0x00000000);
}
/* Soft-reset is only supported on pre-OMAP44xx devices */
if (ti_sdma_is_omap3_rev(sc)) {
/* Soft-reset */
ti_sdma_write_4(sc, DMA4_OCP_SYSCONFIG, 0x0002);
/* Set the timeout to 100ms*/
timeout = (hz < 10) ? 1 : ((100 * hz) / 1000);
/* Wait for DMA reset to complete */
while ((ti_sdma_read_4(sc, DMA4_SYSSTATUS) & 0x1) == 0x0) {
/* Sleep for a tick */
pause("DMARESET", 1);
if (timeout-- == 0) {
device_printf(sc->sc_dev, "sDMA reset operation timed out\n");
return (EINVAL);
}
}
}
/*
* Install interrupt handlers for the for possible interrupts. Any channel
* can trip one of the four IRQs
*/
rid = 0;
sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->sc_irq_res == NULL)
panic("Unable to setup the dma irq handler.\n");
err = bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, ti_sdma_intr, NULL, &ihl);
if (err)
panic("%s: Cannot register IRQ", device_get_name(dev));
/* Store the DMA structure globally ... this driver should never be unloaded */
ti_sdma_sc = sc;
return (0);
}
static device_method_t ti_sdma_methods[] = {
DEVMETHOD(device_probe, ti_sdma_probe),
DEVMETHOD(device_attach, ti_sdma_attach),
{0, 0},
};
static driver_t ti_sdma_driver = {
"ti_sdma",
ti_sdma_methods,
sizeof(struct ti_sdma_softc),
};
static devclass_t ti_sdma_devclass;
DRIVER_MODULE(ti_sdma, simplebus, ti_sdma_driver, ti_sdma_devclass, 0, 0);
MODULE_DEPEND(ti_sdma, ti_prcm, 1, 1, 1);