a076e2060c
The calculation of Maxmem was skipping the last phys_avail segment, because of a wrong stop condition. This was detected when using QEMU/PowerNV with Radix MMU and low memory (2G). In this case opal_pci would allocate a DMA window that was too small to cover all physical memory, resulting in reading all zeroes from disk when using memory that was not inside the allocated window. Reviewed by: jhibbits Sponsored by: Instituto de Pesquisas Eldorado (eldorado.org.br) Differential Revision: https://reviews.freebsd.org/D33449 MFC after: 2 weeks
4327 lines
109 KiB
C
4327 lines
109 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2008-2015 Nathan Whitehorn
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Manages physical address maps.
|
|
*
|
|
* Since the information managed by this module is also stored by the
|
|
* logical address mapping module, this module may throw away valid virtual
|
|
* to physical mappings at almost any time. However, invalidations of
|
|
* mappings must be done as requested.
|
|
*
|
|
* In order to cope with hardware architectures which make virtual to
|
|
* physical map invalidates expensive, this module may delay invalidate
|
|
* reduced protection operations until such time as they are actually
|
|
* necessary. This module is given full information as to which processors
|
|
* are currently using which maps, and to when physical maps must be made
|
|
* correct.
|
|
*/
|
|
|
|
#include "opt_kstack_pages.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/cpuset.h>
|
|
#include <sys/kerneldump.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/reboot.h>
|
|
|
|
#include <sys/kdb.h>
|
|
|
|
#include <dev/ofw/openfirm.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_phys.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_extern.h>
|
|
#include <vm/vm_pageout.h>
|
|
#include <vm/vm_dumpset.h>
|
|
#include <vm/vm_reserv.h>
|
|
#include <vm/uma.h>
|
|
|
|
#include <machine/_inttypes.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/ifunc.h>
|
|
#include <machine/platform.h>
|
|
#include <machine/frame.h>
|
|
#include <machine/md_var.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/bat.h>
|
|
#include <machine/hid.h>
|
|
#include <machine/pte.h>
|
|
#include <machine/sr.h>
|
|
#include <machine/trap.h>
|
|
#include <machine/mmuvar.h>
|
|
|
|
#include "mmu_oea64.h"
|
|
|
|
void moea64_release_vsid(uint64_t vsid);
|
|
uintptr_t moea64_get_unique_vsid(void);
|
|
|
|
#define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR)
|
|
#define ENABLE_TRANS(msr) mtmsr(msr)
|
|
|
|
#define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4))
|
|
#define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff)
|
|
#define VSID_HASH_MASK 0x0000007fffffffffULL
|
|
|
|
/*
|
|
* Locking semantics:
|
|
*
|
|
* There are two locks of interest: the page locks and the pmap locks, which
|
|
* protect their individual PVO lists and are locked in that order. The contents
|
|
* of all PVO entries are protected by the locks of their respective pmaps.
|
|
* The pmap of any PVO is guaranteed not to change so long as the PVO is linked
|
|
* into any list.
|
|
*
|
|
*/
|
|
|
|
#define PV_LOCK_COUNT PA_LOCK_COUNT
|
|
static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
|
|
|
|
/*
|
|
* Cheap NUMA-izing of the pv locks, to reduce contention across domains.
|
|
* NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
|
|
* index at (N << 45).
|
|
*/
|
|
#ifdef __powerpc64__
|
|
#define PV_LOCK_IDX(pa) ((pa_index(pa) * (((pa) >> 45) + 1)) % PV_LOCK_COUNT)
|
|
#else
|
|
#define PV_LOCK_IDX(pa) (pa_index(pa) % PV_LOCK_COUNT)
|
|
#endif
|
|
#define PV_LOCKPTR(pa) ((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
|
|
#define PV_LOCK(pa) mtx_lock(PV_LOCKPTR(pa))
|
|
#define PV_UNLOCK(pa) mtx_unlock(PV_LOCKPTR(pa))
|
|
#define PV_LOCKASSERT(pa) mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
|
|
#define PV_PAGE_LOCK(m) PV_LOCK(VM_PAGE_TO_PHYS(m))
|
|
#define PV_PAGE_UNLOCK(m) PV_UNLOCK(VM_PAGE_TO_PHYS(m))
|
|
#define PV_PAGE_LOCKASSERT(m) PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
|
|
|
|
/* Superpage PV lock */
|
|
|
|
#define PV_LOCK_SIZE (1<<PDRSHIFT)
|
|
|
|
static __always_inline void
|
|
moea64_sp_pv_lock(vm_paddr_t pa)
|
|
{
|
|
vm_paddr_t pa_end;
|
|
|
|
/* Note: breaking when pa_end is reached to avoid overflows */
|
|
pa_end = pa + (HPT_SP_SIZE - PV_LOCK_SIZE);
|
|
for (;;) {
|
|
mtx_lock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
|
|
if (pa == pa_end)
|
|
break;
|
|
pa += PV_LOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
static __always_inline void
|
|
moea64_sp_pv_unlock(vm_paddr_t pa)
|
|
{
|
|
vm_paddr_t pa_end;
|
|
|
|
/* Note: breaking when pa_end is reached to avoid overflows */
|
|
pa_end = pa;
|
|
pa += HPT_SP_SIZE - PV_LOCK_SIZE;
|
|
for (;;) {
|
|
mtx_unlock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
|
|
if (pa == pa_end)
|
|
break;
|
|
pa -= PV_LOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
#define SP_PV_LOCK_ALIGNED(pa) moea64_sp_pv_lock(pa)
|
|
#define SP_PV_UNLOCK_ALIGNED(pa) moea64_sp_pv_unlock(pa)
|
|
#define SP_PV_LOCK(pa) moea64_sp_pv_lock((pa) & ~HPT_SP_MASK)
|
|
#define SP_PV_UNLOCK(pa) moea64_sp_pv_unlock((pa) & ~HPT_SP_MASK)
|
|
#define SP_PV_PAGE_LOCK(m) SP_PV_LOCK(VM_PAGE_TO_PHYS(m))
|
|
#define SP_PV_PAGE_UNLOCK(m) SP_PV_UNLOCK(VM_PAGE_TO_PHYS(m))
|
|
|
|
struct ofw_map {
|
|
cell_t om_va;
|
|
cell_t om_len;
|
|
uint64_t om_pa;
|
|
cell_t om_mode;
|
|
};
|
|
|
|
extern unsigned char _etext[];
|
|
extern unsigned char _end[];
|
|
|
|
extern void *slbtrap, *slbtrapend;
|
|
|
|
/*
|
|
* Map of physical memory regions.
|
|
*/
|
|
static struct mem_region *regions;
|
|
static struct mem_region *pregions;
|
|
static struct numa_mem_region *numa_pregions;
|
|
static u_int phys_avail_count;
|
|
static int regions_sz, pregions_sz, numapregions_sz;
|
|
|
|
extern void bs_remap_earlyboot(void);
|
|
|
|
/*
|
|
* Lock for the SLB tables.
|
|
*/
|
|
struct mtx moea64_slb_mutex;
|
|
|
|
/*
|
|
* PTEG data.
|
|
*/
|
|
u_long moea64_pteg_count;
|
|
u_long moea64_pteg_mask;
|
|
|
|
/*
|
|
* PVO data.
|
|
*/
|
|
|
|
uma_zone_t moea64_pvo_zone; /* zone for pvo entries */
|
|
|
|
static struct pvo_entry *moea64_bpvo_pool;
|
|
static int moea64_bpvo_pool_index = 0;
|
|
static int moea64_bpvo_pool_size = 0;
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
|
|
&moea64_bpvo_pool_index, 0, "");
|
|
|
|
#define BPVO_POOL_SIZE 327680 /* Sensible historical default value */
|
|
#define BPVO_POOL_EXPANSION_FACTOR 3
|
|
#define VSID_NBPW (sizeof(u_int32_t) * 8)
|
|
#ifdef __powerpc64__
|
|
#define NVSIDS (NPMAPS * 16)
|
|
#define VSID_HASHMASK 0xffffffffUL
|
|
#else
|
|
#define NVSIDS NPMAPS
|
|
#define VSID_HASHMASK 0xfffffUL
|
|
#endif
|
|
static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
|
|
|
|
static boolean_t moea64_initialized = FALSE;
|
|
|
|
#ifdef MOEA64_STATS
|
|
/*
|
|
* Statistics.
|
|
*/
|
|
u_int moea64_pte_valid = 0;
|
|
u_int moea64_pte_overflow = 0;
|
|
u_int moea64_pvo_entries = 0;
|
|
u_int moea64_pvo_enter_calls = 0;
|
|
u_int moea64_pvo_remove_calls = 0;
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
|
|
&moea64_pte_valid, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
|
|
&moea64_pte_overflow, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
|
|
&moea64_pvo_entries, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
|
|
&moea64_pvo_enter_calls, 0, "");
|
|
SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
|
|
&moea64_pvo_remove_calls, 0, "");
|
|
#endif
|
|
|
|
vm_offset_t moea64_scratchpage_va[2];
|
|
struct pvo_entry *moea64_scratchpage_pvo[2];
|
|
struct mtx moea64_scratchpage_mtx;
|
|
|
|
uint64_t moea64_large_page_mask = 0;
|
|
uint64_t moea64_large_page_size = 0;
|
|
int moea64_large_page_shift = 0;
|
|
bool moea64_has_lp_4k_16m = false;
|
|
|
|
/*
|
|
* PVO calls.
|
|
*/
|
|
static int moea64_pvo_enter(struct pvo_entry *pvo,
|
|
struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
|
|
static void moea64_pvo_remove_from_pmap(struct pvo_entry *pvo);
|
|
static void moea64_pvo_remove_from_page(struct pvo_entry *pvo);
|
|
static void moea64_pvo_remove_from_page_locked(
|
|
struct pvo_entry *pvo, vm_page_t m);
|
|
static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
|
|
|
|
/*
|
|
* Utility routines.
|
|
*/
|
|
static boolean_t moea64_query_bit(vm_page_t, uint64_t);
|
|
static u_int moea64_clear_bit(vm_page_t, uint64_t);
|
|
static void moea64_kremove(vm_offset_t);
|
|
static void moea64_syncicache(pmap_t pmap, vm_offset_t va,
|
|
vm_paddr_t pa, vm_size_t sz);
|
|
static void moea64_pmap_init_qpages(void);
|
|
static void moea64_remove_locked(pmap_t, vm_offset_t,
|
|
vm_offset_t, struct pvo_dlist *);
|
|
|
|
/*
|
|
* Superpages data and routines.
|
|
*/
|
|
|
|
/*
|
|
* PVO flags (in vaddr) that must match for promotion to succeed.
|
|
* Note that protection bits are checked separately, as they reside in
|
|
* another field.
|
|
*/
|
|
#define PVO_FLAGS_PROMOTE (PVO_WIRED | PVO_MANAGED | PVO_PTEGIDX_VALID)
|
|
|
|
#define PVO_IS_SP(pvo) (((pvo)->pvo_vaddr & PVO_LARGE) && \
|
|
(pvo)->pvo_pmap != kernel_pmap)
|
|
|
|
/* Get physical address from PVO. */
|
|
#define PVO_PADDR(pvo) moea64_pvo_paddr(pvo)
|
|
|
|
/* MD page flag indicating that the page is a superpage. */
|
|
#define MDPG_ATTR_SP 0x40000000
|
|
|
|
SYSCTL_DECL(_vm_pmap);
|
|
|
|
static SYSCTL_NODE(_vm_pmap, OID_AUTO, sp, CTLFLAG_RD, 0,
|
|
"SP page mapping counters");
|
|
|
|
static u_long sp_demotions;
|
|
SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, demotions, CTLFLAG_RD,
|
|
&sp_demotions, 0, "SP page demotions");
|
|
|
|
static u_long sp_mappings;
|
|
SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, mappings, CTLFLAG_RD,
|
|
&sp_mappings, 0, "SP page mappings");
|
|
|
|
static u_long sp_p_failures;
|
|
SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_failures, CTLFLAG_RD,
|
|
&sp_p_failures, 0, "SP page promotion failures");
|
|
|
|
static u_long sp_p_fail_pa;
|
|
SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_pa, CTLFLAG_RD,
|
|
&sp_p_fail_pa, 0, "SP page promotion failure: PAs don't match");
|
|
|
|
static u_long sp_p_fail_flags;
|
|
SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_flags, CTLFLAG_RD,
|
|
&sp_p_fail_flags, 0, "SP page promotion failure: page flags don't match");
|
|
|
|
static u_long sp_p_fail_prot;
|
|
SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_prot, CTLFLAG_RD,
|
|
&sp_p_fail_prot, 0,
|
|
"SP page promotion failure: page protections don't match");
|
|
|
|
static u_long sp_p_fail_wimg;
|
|
SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_wimg, CTLFLAG_RD,
|
|
&sp_p_fail_wimg, 0, "SP page promotion failure: WIMG bits don't match");
|
|
|
|
static u_long sp_promotions;
|
|
SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, promotions, CTLFLAG_RD,
|
|
&sp_promotions, 0, "SP page promotions");
|
|
|
|
static bool moea64_ps_enabled(pmap_t);
|
|
static void moea64_align_superpage(vm_object_t, vm_ooffset_t,
|
|
vm_offset_t *, vm_size_t);
|
|
|
|
static int moea64_sp_enter(pmap_t pmap, vm_offset_t va,
|
|
vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind);
|
|
static struct pvo_entry *moea64_sp_remove(struct pvo_entry *sp,
|
|
struct pvo_dlist *tofree);
|
|
|
|
static void moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m);
|
|
static void moea64_sp_demote_aligned(struct pvo_entry *sp);
|
|
static void moea64_sp_demote(struct pvo_entry *pvo);
|
|
|
|
static struct pvo_entry *moea64_sp_unwire(struct pvo_entry *sp);
|
|
static struct pvo_entry *moea64_sp_protect(struct pvo_entry *sp,
|
|
vm_prot_t prot);
|
|
|
|
static int64_t moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit);
|
|
static int64_t moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m,
|
|
uint64_t ptebit);
|
|
|
|
static __inline bool moea64_sp_pvo_in_range(struct pvo_entry *pvo,
|
|
vm_offset_t sva, vm_offset_t eva);
|
|
|
|
/*
|
|
* Kernel MMU interface
|
|
*/
|
|
void moea64_clear_modify(vm_page_t);
|
|
void moea64_copy_page(vm_page_t, vm_page_t);
|
|
void moea64_copy_page_dmap(vm_page_t, vm_page_t);
|
|
void moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
|
|
vm_page_t *mb, vm_offset_t b_offset, int xfersize);
|
|
void moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
|
|
vm_page_t *mb, vm_offset_t b_offset, int xfersize);
|
|
int moea64_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
|
|
u_int flags, int8_t psind);
|
|
void moea64_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
|
|
vm_prot_t);
|
|
void moea64_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
|
|
vm_paddr_t moea64_extract(pmap_t, vm_offset_t);
|
|
vm_page_t moea64_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
|
|
void moea64_init(void);
|
|
boolean_t moea64_is_modified(vm_page_t);
|
|
boolean_t moea64_is_prefaultable(pmap_t, vm_offset_t);
|
|
boolean_t moea64_is_referenced(vm_page_t);
|
|
int moea64_ts_referenced(vm_page_t);
|
|
vm_offset_t moea64_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
|
|
boolean_t moea64_page_exists_quick(pmap_t, vm_page_t);
|
|
void moea64_page_init(vm_page_t);
|
|
int moea64_page_wired_mappings(vm_page_t);
|
|
int moea64_pinit(pmap_t);
|
|
void moea64_pinit0(pmap_t);
|
|
void moea64_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
|
|
void moea64_qenter(vm_offset_t, vm_page_t *, int);
|
|
void moea64_qremove(vm_offset_t, int);
|
|
void moea64_release(pmap_t);
|
|
void moea64_remove(pmap_t, vm_offset_t, vm_offset_t);
|
|
void moea64_remove_pages(pmap_t);
|
|
void moea64_remove_all(vm_page_t);
|
|
void moea64_remove_write(vm_page_t);
|
|
void moea64_unwire(pmap_t, vm_offset_t, vm_offset_t);
|
|
void moea64_zero_page(vm_page_t);
|
|
void moea64_zero_page_dmap(vm_page_t);
|
|
void moea64_zero_page_area(vm_page_t, int, int);
|
|
void moea64_activate(struct thread *);
|
|
void moea64_deactivate(struct thread *);
|
|
void *moea64_mapdev(vm_paddr_t, vm_size_t);
|
|
void *moea64_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
|
|
void moea64_unmapdev(vm_offset_t, vm_size_t);
|
|
vm_paddr_t moea64_kextract(vm_offset_t);
|
|
void moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma);
|
|
void moea64_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
|
|
void moea64_kenter(vm_offset_t, vm_paddr_t);
|
|
boolean_t moea64_dev_direct_mapped(vm_paddr_t, vm_size_t);
|
|
static void moea64_sync_icache(pmap_t, vm_offset_t, vm_size_t);
|
|
void moea64_dumpsys_map(vm_paddr_t pa, size_t sz,
|
|
void **va);
|
|
void moea64_scan_init(void);
|
|
vm_offset_t moea64_quick_enter_page(vm_page_t m);
|
|
vm_offset_t moea64_quick_enter_page_dmap(vm_page_t m);
|
|
void moea64_quick_remove_page(vm_offset_t addr);
|
|
boolean_t moea64_page_is_mapped(vm_page_t m);
|
|
static int moea64_map_user_ptr(pmap_t pm,
|
|
volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
|
|
static int moea64_decode_kernel_ptr(vm_offset_t addr,
|
|
int *is_user, vm_offset_t *decoded_addr);
|
|
static size_t moea64_scan_pmap(struct bitset *dump_bitset);
|
|
static void *moea64_dump_pmap_init(unsigned blkpgs);
|
|
#ifdef __powerpc64__
|
|
static void moea64_page_array_startup(long);
|
|
#endif
|
|
static int moea64_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
|
|
|
|
static struct pmap_funcs moea64_methods = {
|
|
.clear_modify = moea64_clear_modify,
|
|
.copy_page = moea64_copy_page,
|
|
.copy_pages = moea64_copy_pages,
|
|
.enter = moea64_enter,
|
|
.enter_object = moea64_enter_object,
|
|
.enter_quick = moea64_enter_quick,
|
|
.extract = moea64_extract,
|
|
.extract_and_hold = moea64_extract_and_hold,
|
|
.init = moea64_init,
|
|
.is_modified = moea64_is_modified,
|
|
.is_prefaultable = moea64_is_prefaultable,
|
|
.is_referenced = moea64_is_referenced,
|
|
.ts_referenced = moea64_ts_referenced,
|
|
.map = moea64_map,
|
|
.mincore = moea64_mincore,
|
|
.page_exists_quick = moea64_page_exists_quick,
|
|
.page_init = moea64_page_init,
|
|
.page_wired_mappings = moea64_page_wired_mappings,
|
|
.pinit = moea64_pinit,
|
|
.pinit0 = moea64_pinit0,
|
|
.protect = moea64_protect,
|
|
.qenter = moea64_qenter,
|
|
.qremove = moea64_qremove,
|
|
.release = moea64_release,
|
|
.remove = moea64_remove,
|
|
.remove_pages = moea64_remove_pages,
|
|
.remove_all = moea64_remove_all,
|
|
.remove_write = moea64_remove_write,
|
|
.sync_icache = moea64_sync_icache,
|
|
.unwire = moea64_unwire,
|
|
.zero_page = moea64_zero_page,
|
|
.zero_page_area = moea64_zero_page_area,
|
|
.activate = moea64_activate,
|
|
.deactivate = moea64_deactivate,
|
|
.page_set_memattr = moea64_page_set_memattr,
|
|
.quick_enter_page = moea64_quick_enter_page,
|
|
.quick_remove_page = moea64_quick_remove_page,
|
|
.page_is_mapped = moea64_page_is_mapped,
|
|
#ifdef __powerpc64__
|
|
.page_array_startup = moea64_page_array_startup,
|
|
#endif
|
|
.ps_enabled = moea64_ps_enabled,
|
|
.align_superpage = moea64_align_superpage,
|
|
|
|
/* Internal interfaces */
|
|
.mapdev = moea64_mapdev,
|
|
.mapdev_attr = moea64_mapdev_attr,
|
|
.unmapdev = moea64_unmapdev,
|
|
.kextract = moea64_kextract,
|
|
.kenter = moea64_kenter,
|
|
.kenter_attr = moea64_kenter_attr,
|
|
.dev_direct_mapped = moea64_dev_direct_mapped,
|
|
.dumpsys_pa_init = moea64_scan_init,
|
|
.dumpsys_scan_pmap = moea64_scan_pmap,
|
|
.dumpsys_dump_pmap_init = moea64_dump_pmap_init,
|
|
.dumpsys_map_chunk = moea64_dumpsys_map,
|
|
.map_user_ptr = moea64_map_user_ptr,
|
|
.decode_kernel_ptr = moea64_decode_kernel_ptr,
|
|
};
|
|
|
|
MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods);
|
|
|
|
/*
|
|
* Get physical address from PVO.
|
|
*
|
|
* For superpages, the lower bits are not stored on pvo_pte.pa and must be
|
|
* obtained from VA.
|
|
*/
|
|
static __always_inline vm_paddr_t
|
|
moea64_pvo_paddr(struct pvo_entry *pvo)
|
|
{
|
|
vm_paddr_t pa;
|
|
|
|
pa = (pvo)->pvo_pte.pa & LPTE_RPGN;
|
|
|
|
if (PVO_IS_SP(pvo)) {
|
|
pa &= ~HPT_SP_MASK; /* This is needed to clear LPTE_LP bits. */
|
|
pa |= PVO_VADDR(pvo) & HPT_SP_MASK;
|
|
}
|
|
return (pa);
|
|
}
|
|
|
|
static struct pvo_head *
|
|
vm_page_to_pvoh(vm_page_t m)
|
|
{
|
|
|
|
mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
|
|
return (&m->md.mdpg_pvoh);
|
|
}
|
|
|
|
static struct pvo_entry *
|
|
alloc_pvo_entry(int bootstrap)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
|
|
if (!moea64_initialized || bootstrap) {
|
|
if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
|
|
panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd."
|
|
"Try setting machdep.moea64_bpvo_pool_size tunable",
|
|
__func__, moea64_bpvo_pool_index,
|
|
moea64_bpvo_pool_size,
|
|
moea64_bpvo_pool_size * sizeof(struct pvo_entry));
|
|
}
|
|
pvo = &moea64_bpvo_pool[
|
|
atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
|
|
bzero(pvo, sizeof(*pvo));
|
|
pvo->pvo_vaddr = PVO_BOOTSTRAP;
|
|
} else
|
|
pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
|
|
|
|
return (pvo);
|
|
}
|
|
|
|
static void
|
|
init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
|
|
{
|
|
uint64_t vsid;
|
|
uint64_t hash;
|
|
int shift;
|
|
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
|
|
pvo->pvo_pmap = pmap;
|
|
va &= ~ADDR_POFF;
|
|
pvo->pvo_vaddr |= va;
|
|
vsid = va_to_vsid(pmap, va);
|
|
pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
|
|
| (vsid << 16);
|
|
|
|
if (pmap == kernel_pmap && (pvo->pvo_vaddr & PVO_LARGE) != 0)
|
|
shift = moea64_large_page_shift;
|
|
else
|
|
shift = ADDR_PIDX_SHFT;
|
|
hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
|
|
pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
|
|
}
|
|
|
|
static void
|
|
free_pvo_entry(struct pvo_entry *pvo)
|
|
{
|
|
|
|
if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
|
|
uma_zfree(moea64_pvo_zone, pvo);
|
|
}
|
|
|
|
void
|
|
moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
|
|
{
|
|
|
|
lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo);
|
|
lpte->pte_hi |= LPTE_VALID;
|
|
|
|
if (pvo->pvo_vaddr & PVO_LARGE)
|
|
lpte->pte_hi |= LPTE_BIG;
|
|
if (pvo->pvo_vaddr & PVO_WIRED)
|
|
lpte->pte_hi |= LPTE_WIRED;
|
|
if (pvo->pvo_vaddr & PVO_HID)
|
|
lpte->pte_hi |= LPTE_HID;
|
|
|
|
lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
|
|
if (pvo->pvo_pte.prot & VM_PROT_WRITE)
|
|
lpte->pte_lo |= LPTE_BW;
|
|
else
|
|
lpte->pte_lo |= LPTE_BR;
|
|
|
|
if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
|
|
lpte->pte_lo |= LPTE_NOEXEC;
|
|
}
|
|
|
|
static __inline uint64_t
|
|
moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
|
|
{
|
|
uint64_t pte_lo;
|
|
int i;
|
|
|
|
if (ma != VM_MEMATTR_DEFAULT) {
|
|
switch (ma) {
|
|
case VM_MEMATTR_UNCACHEABLE:
|
|
return (LPTE_I | LPTE_G);
|
|
case VM_MEMATTR_CACHEABLE:
|
|
return (LPTE_M);
|
|
case VM_MEMATTR_WRITE_COMBINING:
|
|
case VM_MEMATTR_WRITE_BACK:
|
|
case VM_MEMATTR_PREFETCHABLE:
|
|
return (LPTE_I);
|
|
case VM_MEMATTR_WRITE_THROUGH:
|
|
return (LPTE_W | LPTE_M);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Assume the page is cache inhibited and access is guarded unless
|
|
* it's in our available memory array.
|
|
*/
|
|
pte_lo = LPTE_I | LPTE_G;
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
if ((pa >= pregions[i].mr_start) &&
|
|
(pa < (pregions[i].mr_start + pregions[i].mr_size))) {
|
|
pte_lo &= ~(LPTE_I | LPTE_G);
|
|
pte_lo |= LPTE_M;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return pte_lo;
|
|
}
|
|
|
|
/*
|
|
* Quick sort callout for comparing memory regions.
|
|
*/
|
|
static int om_cmp(const void *a, const void *b);
|
|
|
|
static int
|
|
om_cmp(const void *a, const void *b)
|
|
{
|
|
const struct ofw_map *mapa;
|
|
const struct ofw_map *mapb;
|
|
|
|
mapa = a;
|
|
mapb = b;
|
|
if (mapa->om_pa < mapb->om_pa)
|
|
return (-1);
|
|
else if (mapa->om_pa > mapb->om_pa)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
moea64_add_ofw_mappings(phandle_t mmu, size_t sz)
|
|
{
|
|
struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
|
|
pcell_t acells, trans_cells[sz/sizeof(cell_t)];
|
|
struct pvo_entry *pvo;
|
|
register_t msr;
|
|
vm_offset_t off;
|
|
vm_paddr_t pa_base;
|
|
int i, j;
|
|
|
|
bzero(translations, sz);
|
|
OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
|
|
sizeof(acells));
|
|
if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
|
|
panic("moea64_bootstrap: can't get ofw translations");
|
|
|
|
CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
|
|
sz /= sizeof(cell_t);
|
|
for (i = 0, j = 0; i < sz; j++) {
|
|
translations[j].om_va = trans_cells[i++];
|
|
translations[j].om_len = trans_cells[i++];
|
|
translations[j].om_pa = trans_cells[i++];
|
|
if (acells == 2) {
|
|
translations[j].om_pa <<= 32;
|
|
translations[j].om_pa |= trans_cells[i++];
|
|
}
|
|
translations[j].om_mode = trans_cells[i++];
|
|
}
|
|
KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
|
|
i, sz));
|
|
|
|
sz = j;
|
|
qsort(translations, sz, sizeof (*translations), om_cmp);
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
pa_base = translations[i].om_pa;
|
|
#ifndef __powerpc64__
|
|
if ((translations[i].om_pa >> 32) != 0)
|
|
panic("OFW translations above 32-bit boundary!");
|
|
#endif
|
|
|
|
if (pa_base % PAGE_SIZE)
|
|
panic("OFW translation not page-aligned (phys)!");
|
|
if (translations[i].om_va % PAGE_SIZE)
|
|
panic("OFW translation not page-aligned (virt)!");
|
|
|
|
CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
|
|
pa_base, translations[i].om_va, translations[i].om_len);
|
|
|
|
/* Now enter the pages for this mapping */
|
|
|
|
DISABLE_TRANS(msr);
|
|
for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
|
|
/* If this address is direct-mapped, skip remapping */
|
|
if (hw_direct_map &&
|
|
translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
|
|
moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
|
|
== LPTE_M)
|
|
continue;
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
pvo = moea64_pvo_find_va(kernel_pmap,
|
|
translations[i].om_va + off);
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
if (pvo != NULL)
|
|
continue;
|
|
|
|
moea64_kenter(translations[i].om_va + off,
|
|
pa_base + off);
|
|
}
|
|
ENABLE_TRANS(msr);
|
|
}
|
|
}
|
|
|
|
#ifdef __powerpc64__
|
|
static void
|
|
moea64_probe_large_page(void)
|
|
{
|
|
uint16_t pvr = mfpvr() >> 16;
|
|
|
|
switch (pvr) {
|
|
case IBM970:
|
|
case IBM970FX:
|
|
case IBM970MP:
|
|
powerpc_sync(); isync();
|
|
mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
|
|
powerpc_sync(); isync();
|
|
|
|
/* FALLTHROUGH */
|
|
default:
|
|
if (moea64_large_page_size == 0) {
|
|
moea64_large_page_size = 0x1000000; /* 16 MB */
|
|
moea64_large_page_shift = 24;
|
|
}
|
|
}
|
|
|
|
moea64_large_page_mask = moea64_large_page_size - 1;
|
|
}
|
|
|
|
static void
|
|
moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
|
|
{
|
|
struct slb *cache;
|
|
struct slb entry;
|
|
uint64_t esid, slbe;
|
|
uint64_t i;
|
|
|
|
cache = PCPU_GET(aim.slb);
|
|
esid = va >> ADDR_SR_SHFT;
|
|
slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
if (cache[i].slbe == (slbe | i))
|
|
return;
|
|
}
|
|
|
|
entry.slbe = slbe;
|
|
entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
|
|
if (large)
|
|
entry.slbv |= SLBV_L;
|
|
|
|
slb_insert_kernel(entry.slbe, entry.slbv);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
moea64_kenter_large(vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
uint64_t pte_lo;
|
|
int error;
|
|
|
|
pte_lo = LPTE_M;
|
|
pte_lo |= attr;
|
|
|
|
pvo = alloc_pvo_entry(bootstrap);
|
|
pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
|
|
init_pvo_entry(pvo, kernel_pmap, va);
|
|
|
|
pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
|
|
VM_PROT_EXECUTE;
|
|
pvo->pvo_pte.pa = pa | pte_lo;
|
|
error = moea64_pvo_enter(pvo, NULL, NULL);
|
|
if (error != 0)
|
|
panic("Error %d inserting large page\n", error);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
moea64_setup_direct_map(vm_offset_t kernelstart,
|
|
vm_offset_t kernelend)
|
|
{
|
|
register_t msr;
|
|
vm_paddr_t pa, pkernelstart, pkernelend;
|
|
vm_offset_t size, off;
|
|
uint64_t pte_lo;
|
|
int i;
|
|
|
|
if (moea64_large_page_size == 0)
|
|
hw_direct_map = 0;
|
|
|
|
DISABLE_TRANS(msr);
|
|
if (hw_direct_map) {
|
|
PMAP_LOCK(kernel_pmap);
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
|
|
pregions[i].mr_size; pa += moea64_large_page_size) {
|
|
pte_lo = LPTE_M;
|
|
if (pa & moea64_large_page_mask) {
|
|
pa &= moea64_large_page_mask;
|
|
pte_lo |= LPTE_G;
|
|
}
|
|
if (pa + moea64_large_page_size >
|
|
pregions[i].mr_start + pregions[i].mr_size)
|
|
pte_lo |= LPTE_G;
|
|
|
|
moea64_kenter_large(PHYS_TO_DMAP(pa), pa, pte_lo, 1);
|
|
}
|
|
}
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
}
|
|
|
|
/*
|
|
* Make sure the kernel and BPVO pool stay mapped on systems either
|
|
* without a direct map or on which the kernel is not already executing
|
|
* out of the direct-mapped region.
|
|
*/
|
|
if (kernelstart < DMAP_BASE_ADDRESS) {
|
|
/*
|
|
* For pre-dmap execution, we need to use identity mapping
|
|
* because we will be operating with the mmu on but in the
|
|
* wrong address configuration until we __restartkernel().
|
|
*/
|
|
for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
|
|
pa += PAGE_SIZE)
|
|
moea64_kenter(pa, pa);
|
|
} else if (!hw_direct_map) {
|
|
pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
|
|
pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
|
|
for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
|
|
pa += PAGE_SIZE)
|
|
moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
|
|
}
|
|
|
|
if (!hw_direct_map) {
|
|
size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
|
|
off = (vm_offset_t)(moea64_bpvo_pool);
|
|
for (pa = off; pa < off + size; pa += PAGE_SIZE)
|
|
moea64_kenter(pa, pa);
|
|
|
|
/* Map exception vectors */
|
|
for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
|
|
moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
|
|
}
|
|
ENABLE_TRANS(msr);
|
|
|
|
/*
|
|
* Allow user to override unmapped_buf_allowed for testing.
|
|
* XXXKIB Only direct map implementation was tested.
|
|
*/
|
|
if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
|
|
&unmapped_buf_allowed))
|
|
unmapped_buf_allowed = hw_direct_map;
|
|
}
|
|
|
|
/* Quick sort callout for comparing physical addresses. */
|
|
static int
|
|
pa_cmp(const void *a, const void *b)
|
|
{
|
|
const vm_paddr_t *pa = a, *pb = b;
|
|
|
|
if (*pa < *pb)
|
|
return (-1);
|
|
else if (*pa > *pb)
|
|
return (1);
|
|
else
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
moea64_early_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
|
|
{
|
|
int i, j;
|
|
vm_size_t physsz, hwphyssz;
|
|
vm_paddr_t kernelphysstart, kernelphysend;
|
|
int rm_pavail;
|
|
|
|
/* Level 0 reservations consist of 4096 pages (16MB superpage). */
|
|
vm_level_0_order = 12;
|
|
|
|
#ifndef __powerpc64__
|
|
/* We don't have a direct map since there is no BAT */
|
|
hw_direct_map = 0;
|
|
|
|
/* Make sure battable is zero, since we have no BAT */
|
|
for (i = 0; i < 16; i++) {
|
|
battable[i].batu = 0;
|
|
battable[i].batl = 0;
|
|
}
|
|
#else
|
|
/* Install trap handlers for SLBs */
|
|
bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
|
|
bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
|
|
__syncicache((void *)EXC_DSE, 0x80);
|
|
__syncicache((void *)EXC_ISE, 0x80);
|
|
#endif
|
|
|
|
kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
|
|
kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
|
|
|
|
/* Get physical memory regions from firmware */
|
|
mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz);
|
|
CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
|
|
|
|
if (PHYS_AVAIL_ENTRIES < regions_sz)
|
|
panic("moea64_bootstrap: phys_avail too small");
|
|
|
|
phys_avail_count = 0;
|
|
physsz = 0;
|
|
hwphyssz = 0;
|
|
TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
|
|
for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
|
|
CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
|
|
regions[i].mr_start, regions[i].mr_start +
|
|
regions[i].mr_size, regions[i].mr_size);
|
|
if (hwphyssz != 0 &&
|
|
(physsz + regions[i].mr_size) >= hwphyssz) {
|
|
if (physsz < hwphyssz) {
|
|
phys_avail[j] = regions[i].mr_start;
|
|
phys_avail[j + 1] = regions[i].mr_start +
|
|
hwphyssz - physsz;
|
|
physsz = hwphyssz;
|
|
phys_avail_count++;
|
|
dump_avail[j] = phys_avail[j];
|
|
dump_avail[j + 1] = phys_avail[j + 1];
|
|
}
|
|
break;
|
|
}
|
|
phys_avail[j] = regions[i].mr_start;
|
|
phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
|
|
phys_avail_count++;
|
|
physsz += regions[i].mr_size;
|
|
dump_avail[j] = phys_avail[j];
|
|
dump_avail[j + 1] = phys_avail[j + 1];
|
|
}
|
|
|
|
/* Check for overlap with the kernel and exception vectors */
|
|
rm_pavail = 0;
|
|
for (j = 0; j < 2*phys_avail_count; j+=2) {
|
|
if (phys_avail[j] < EXC_LAST)
|
|
phys_avail[j] += EXC_LAST;
|
|
|
|
if (phys_avail[j] >= kernelphysstart &&
|
|
phys_avail[j+1] <= kernelphysend) {
|
|
phys_avail[j] = phys_avail[j+1] = ~0;
|
|
rm_pavail++;
|
|
continue;
|
|
}
|
|
|
|
if (kernelphysstart >= phys_avail[j] &&
|
|
kernelphysstart < phys_avail[j+1]) {
|
|
if (kernelphysend < phys_avail[j+1]) {
|
|
phys_avail[2*phys_avail_count] =
|
|
(kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
|
|
phys_avail[2*phys_avail_count + 1] =
|
|
phys_avail[j+1];
|
|
phys_avail_count++;
|
|
}
|
|
|
|
phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
|
|
}
|
|
|
|
if (kernelphysend >= phys_avail[j] &&
|
|
kernelphysend < phys_avail[j+1]) {
|
|
if (kernelphysstart > phys_avail[j]) {
|
|
phys_avail[2*phys_avail_count] = phys_avail[j];
|
|
phys_avail[2*phys_avail_count + 1] =
|
|
kernelphysstart & ~PAGE_MASK;
|
|
phys_avail_count++;
|
|
}
|
|
|
|
phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
|
|
PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/* Remove physical available regions marked for removal (~0) */
|
|
if (rm_pavail) {
|
|
qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
|
|
pa_cmp);
|
|
phys_avail_count -= rm_pavail;
|
|
for (i = 2*phys_avail_count;
|
|
i < 2*(phys_avail_count + rm_pavail); i+=2)
|
|
phys_avail[i] = phys_avail[i+1] = 0;
|
|
}
|
|
|
|
physmem = btoc(physsz);
|
|
|
|
#ifdef PTEGCOUNT
|
|
moea64_pteg_count = PTEGCOUNT;
|
|
#else
|
|
moea64_pteg_count = 0x1000;
|
|
|
|
while (moea64_pteg_count < physmem)
|
|
moea64_pteg_count <<= 1;
|
|
|
|
moea64_pteg_count >>= 1;
|
|
#endif /* PTEGCOUNT */
|
|
}
|
|
|
|
void
|
|
moea64_mid_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Set PTEG mask
|
|
*/
|
|
moea64_pteg_mask = moea64_pteg_count - 1;
|
|
|
|
/*
|
|
* Initialize SLB table lock and page locks
|
|
*/
|
|
mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
|
|
for (i = 0; i < PV_LOCK_COUNT; i++)
|
|
mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
|
|
|
|
/*
|
|
* Initialise the bootstrap pvo pool.
|
|
*/
|
|
TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
|
|
if (moea64_bpvo_pool_size == 0) {
|
|
if (!hw_direct_map)
|
|
moea64_bpvo_pool_size = ((ptoa((uintmax_t)physmem) * sizeof(struct vm_page)) /
|
|
(PAGE_SIZE * PAGE_SIZE)) * BPVO_POOL_EXPANSION_FACTOR;
|
|
else
|
|
moea64_bpvo_pool_size = BPVO_POOL_SIZE;
|
|
}
|
|
|
|
if (boothowto & RB_VERBOSE) {
|
|
printf("mmu_oea64: bpvo pool entries = %d, bpvo pool size = %zu MB\n",
|
|
moea64_bpvo_pool_size,
|
|
moea64_bpvo_pool_size*sizeof(struct pvo_entry) / 1048576);
|
|
}
|
|
|
|
moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
|
|
moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
|
|
moea64_bpvo_pool_index = 0;
|
|
|
|
/* Place at address usable through the direct map */
|
|
if (hw_direct_map)
|
|
moea64_bpvo_pool = (struct pvo_entry *)
|
|
PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
|
|
|
|
/*
|
|
* Make sure kernel vsid is allocated as well as VSID 0.
|
|
*/
|
|
#ifndef __powerpc64__
|
|
moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
|
|
|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
|
|
moea64_vsid_bitmap[0] |= 1;
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the kernel pmap (which is statically allocated).
|
|
*/
|
|
#ifdef __powerpc64__
|
|
for (i = 0; i < 64; i++) {
|
|
pcpup->pc_aim.slb[i].slbv = 0;
|
|
pcpup->pc_aim.slb[i].slbe = 0;
|
|
}
|
|
#else
|
|
for (i = 0; i < 16; i++)
|
|
kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
|
|
#endif
|
|
|
|
kernel_pmap->pmap_phys = kernel_pmap;
|
|
CPU_FILL(&kernel_pmap->pm_active);
|
|
RB_INIT(&kernel_pmap->pmap_pvo);
|
|
|
|
PMAP_LOCK_INIT(kernel_pmap);
|
|
|
|
/*
|
|
* Now map in all the other buffers we allocated earlier
|
|
*/
|
|
|
|
moea64_setup_direct_map(kernelstart, kernelend);
|
|
}
|
|
|
|
void
|
|
moea64_late_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
|
|
{
|
|
ihandle_t mmui;
|
|
phandle_t chosen;
|
|
phandle_t mmu;
|
|
ssize_t sz;
|
|
int i;
|
|
vm_offset_t pa, va;
|
|
void *dpcpu;
|
|
|
|
/*
|
|
* Set up the Open Firmware pmap and add its mappings if not in real
|
|
* mode.
|
|
*/
|
|
|
|
chosen = OF_finddevice("/chosen");
|
|
if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
|
|
mmu = OF_instance_to_package(mmui);
|
|
if (mmu == -1 ||
|
|
(sz = OF_getproplen(mmu, "translations")) == -1)
|
|
sz = 0;
|
|
if (sz > 6144 /* tmpstksz - 2 KB headroom */)
|
|
panic("moea64_bootstrap: too many ofw translations");
|
|
|
|
if (sz > 0)
|
|
moea64_add_ofw_mappings(mmu, sz);
|
|
}
|
|
|
|
/*
|
|
* Calculate the last available physical address.
|
|
*/
|
|
Maxmem = 0;
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2)
|
|
Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
|
|
|
|
/*
|
|
* Initialize MMU.
|
|
*/
|
|
pmap_cpu_bootstrap(0);
|
|
mtmsr(mfmsr() | PSL_DR | PSL_IR);
|
|
pmap_bootstrapped++;
|
|
|
|
/*
|
|
* Set the start and end of kva.
|
|
*/
|
|
virtual_avail = VM_MIN_KERNEL_ADDRESS;
|
|
virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
|
|
|
|
/*
|
|
* Map the entire KVA range into the SLB. We must not fault there.
|
|
*/
|
|
#ifdef __powerpc64__
|
|
for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
|
|
moea64_bootstrap_slb_prefault(va, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Remap any early IO mappings (console framebuffer, etc.)
|
|
*/
|
|
bs_remap_earlyboot();
|
|
|
|
/*
|
|
* Figure out how far we can extend virtual_end into segment 16
|
|
* without running into existing mappings. Segment 16 is guaranteed
|
|
* to contain neither RAM nor devices (at least on Apple hardware),
|
|
* but will generally contain some OFW mappings we should not
|
|
* step on.
|
|
*/
|
|
|
|
#ifndef __powerpc64__ /* KVA is in high memory on PPC64 */
|
|
PMAP_LOCK(kernel_pmap);
|
|
while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
|
|
moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
|
|
virtual_end += PAGE_SIZE;
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
#endif
|
|
|
|
/*
|
|
* Allocate a kernel stack with a guard page for thread0 and map it
|
|
* into the kernel page map.
|
|
*/
|
|
pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
|
|
va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
|
|
virtual_avail = va + kstack_pages * PAGE_SIZE;
|
|
CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
|
|
thread0.td_kstack = va;
|
|
thread0.td_kstack_pages = kstack_pages;
|
|
for (i = 0; i < kstack_pages; i++) {
|
|
moea64_kenter(va, pa);
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Allocate virtual address space for the message buffer.
|
|
*/
|
|
pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
|
|
msgbufp = (struct msgbuf *)virtual_avail;
|
|
va = virtual_avail;
|
|
virtual_avail += round_page(msgbufsize);
|
|
while (va < virtual_avail) {
|
|
moea64_kenter(va, pa);
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Allocate virtual address space for the dynamic percpu area.
|
|
*/
|
|
pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
|
|
dpcpu = (void *)virtual_avail;
|
|
va = virtual_avail;
|
|
virtual_avail += DPCPU_SIZE;
|
|
while (va < virtual_avail) {
|
|
moea64_kenter(va, pa);
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
dpcpu_init(dpcpu, curcpu);
|
|
|
|
crashdumpmap = (caddr_t)virtual_avail;
|
|
virtual_avail += MAXDUMPPGS * PAGE_SIZE;
|
|
|
|
/*
|
|
* Allocate some things for page zeroing. We put this directly
|
|
* in the page table and use MOEA64_PTE_REPLACE to avoid any
|
|
* of the PVO book-keeping or other parts of the VM system
|
|
* from even knowing that this hack exists.
|
|
*/
|
|
|
|
if (!hw_direct_map) {
|
|
mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
|
|
MTX_DEF);
|
|
for (i = 0; i < 2; i++) {
|
|
moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
|
|
virtual_end -= PAGE_SIZE;
|
|
|
|
moea64_kenter(moea64_scratchpage_va[i], 0);
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
|
|
kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
}
|
|
}
|
|
|
|
numa_mem_regions(&numa_pregions, &numapregions_sz);
|
|
}
|
|
|
|
static void
|
|
moea64_pmap_init_qpages(void)
|
|
{
|
|
struct pcpu *pc;
|
|
int i;
|
|
|
|
if (hw_direct_map)
|
|
return;
|
|
|
|
CPU_FOREACH(i) {
|
|
pc = pcpu_find(i);
|
|
pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
|
|
if (pc->pc_qmap_addr == 0)
|
|
panic("pmap_init_qpages: unable to allocate KVA");
|
|
PMAP_LOCK(kernel_pmap);
|
|
pc->pc_aim.qmap_pvo =
|
|
moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
|
|
}
|
|
}
|
|
|
|
SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
|
|
|
|
/*
|
|
* Activate a user pmap. This mostly involves setting some non-CPU
|
|
* state.
|
|
*/
|
|
void
|
|
moea64_activate(struct thread *td)
|
|
{
|
|
pmap_t pm;
|
|
|
|
pm = &td->td_proc->p_vmspace->vm_pmap;
|
|
CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
|
|
|
|
#ifdef __powerpc64__
|
|
PCPU_SET(aim.userslb, pm->pm_slb);
|
|
__asm __volatile("slbmte %0, %1; isync" ::
|
|
"r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
|
|
#else
|
|
PCPU_SET(curpmap, pm->pmap_phys);
|
|
mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
moea64_deactivate(struct thread *td)
|
|
{
|
|
pmap_t pm;
|
|
|
|
__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
|
|
|
|
pm = &td->td_proc->p_vmspace->vm_pmap;
|
|
CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
|
|
#ifdef __powerpc64__
|
|
PCPU_SET(aim.userslb, NULL);
|
|
#else
|
|
PCPU_SET(curpmap, NULL);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
moea64_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
struct pvo_entry key, *pvo;
|
|
vm_page_t m;
|
|
int64_t refchg;
|
|
|
|
key.pvo_vaddr = sva;
|
|
PMAP_LOCK(pm);
|
|
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
|
|
pvo != NULL && PVO_VADDR(pvo) < eva;
|
|
pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
|
|
if (PVO_IS_SP(pvo)) {
|
|
if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
|
|
pvo = moea64_sp_unwire(pvo);
|
|
continue;
|
|
} else {
|
|
CTR1(KTR_PMAP, "%s: demote before unwire",
|
|
__func__);
|
|
moea64_sp_demote(pvo);
|
|
}
|
|
}
|
|
|
|
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
|
|
panic("moea64_unwire: pvo %p is missing PVO_WIRED",
|
|
pvo);
|
|
pvo->pvo_vaddr &= ~PVO_WIRED;
|
|
refchg = moea64_pte_replace(pvo, 0 /* No invalidation */);
|
|
if ((pvo->pvo_vaddr & PVO_MANAGED) &&
|
|
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
|
|
if (refchg < 0)
|
|
refchg = LPTE_CHG;
|
|
m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
|
|
|
|
refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
|
|
if (refchg & LPTE_CHG)
|
|
vm_page_dirty(m);
|
|
if (refchg & LPTE_REF)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
}
|
|
pm->pm_stats.wired_count--;
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
static int
|
|
moea64_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa;
|
|
vm_page_t m;
|
|
int val;
|
|
bool managed;
|
|
|
|
PMAP_LOCK(pmap);
|
|
|
|
pvo = moea64_pvo_find_va(pmap, addr);
|
|
if (pvo != NULL) {
|
|
pa = PVO_PADDR(pvo);
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED;
|
|
if (PVO_IS_SP(pvo))
|
|
val = MINCORE_INCORE | MINCORE_PSIND(1);
|
|
else
|
|
val = MINCORE_INCORE;
|
|
} else {
|
|
PMAP_UNLOCK(pmap);
|
|
return (0);
|
|
}
|
|
|
|
PMAP_UNLOCK(pmap);
|
|
|
|
if (m == NULL)
|
|
return (0);
|
|
|
|
if (managed) {
|
|
if (moea64_is_modified(m))
|
|
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
|
|
|
|
if (moea64_is_referenced(m))
|
|
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
|
|
}
|
|
|
|
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
|
|
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
|
|
managed) {
|
|
*pap = pa;
|
|
}
|
|
|
|
return (val);
|
|
}
|
|
|
|
/*
|
|
* This goes through and sets the physical address of our
|
|
* special scratch PTE to the PA we want to zero or copy. Because
|
|
* of locking issues (this can get called in pvo_enter() by
|
|
* the UMA allocator), we can't use most other utility functions here
|
|
*/
|
|
|
|
static __inline
|
|
void moea64_set_scratchpage_pa(int which, vm_paddr_t pa)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
|
|
KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
|
|
mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
|
|
|
|
pvo = moea64_scratchpage_pvo[which];
|
|
PMAP_LOCK(pvo->pvo_pmap);
|
|
pvo->pvo_pte.pa =
|
|
moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
|
|
moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
|
|
PMAP_UNLOCK(pvo->pvo_pmap);
|
|
isync();
|
|
}
|
|
|
|
void
|
|
moea64_copy_page(vm_page_t msrc, vm_page_t mdst)
|
|
{
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
|
|
moea64_set_scratchpage_pa(0, VM_PAGE_TO_PHYS(msrc));
|
|
moea64_set_scratchpage_pa(1, VM_PAGE_TO_PHYS(mdst));
|
|
|
|
bcopy((void *)moea64_scratchpage_va[0],
|
|
(void *)moea64_scratchpage_va[1], PAGE_SIZE);
|
|
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
|
|
void
|
|
moea64_copy_page_dmap(vm_page_t msrc, vm_page_t mdst)
|
|
{
|
|
vm_offset_t dst;
|
|
vm_offset_t src;
|
|
|
|
dst = VM_PAGE_TO_PHYS(mdst);
|
|
src = VM_PAGE_TO_PHYS(msrc);
|
|
|
|
bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
|
|
PAGE_SIZE);
|
|
}
|
|
|
|
inline void
|
|
moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
|
|
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
|
|
{
|
|
void *a_cp, *b_cp;
|
|
vm_offset_t a_pg_offset, b_pg_offset;
|
|
int cnt;
|
|
|
|
while (xfersize > 0) {
|
|
a_pg_offset = a_offset & PAGE_MASK;
|
|
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
|
|
a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
|
|
VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
|
|
a_pg_offset;
|
|
b_pg_offset = b_offset & PAGE_MASK;
|
|
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
|
|
b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
|
|
VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
|
|
b_pg_offset;
|
|
bcopy(a_cp, b_cp, cnt);
|
|
a_offset += cnt;
|
|
b_offset += cnt;
|
|
xfersize -= cnt;
|
|
}
|
|
}
|
|
|
|
void
|
|
moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
|
|
vm_page_t *mb, vm_offset_t b_offset, int xfersize)
|
|
{
|
|
void *a_cp, *b_cp;
|
|
vm_offset_t a_pg_offset, b_pg_offset;
|
|
int cnt;
|
|
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
while (xfersize > 0) {
|
|
a_pg_offset = a_offset & PAGE_MASK;
|
|
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
|
|
moea64_set_scratchpage_pa(0,
|
|
VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
|
|
a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
|
|
b_pg_offset = b_offset & PAGE_MASK;
|
|
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
|
|
moea64_set_scratchpage_pa(1,
|
|
VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
|
|
b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
|
|
bcopy(a_cp, b_cp, cnt);
|
|
a_offset += cnt;
|
|
b_offset += cnt;
|
|
xfersize -= cnt;
|
|
}
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
|
|
void
|
|
moea64_zero_page_area(vm_page_t m, int off, int size)
|
|
{
|
|
vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
|
|
|
|
if (size + off > PAGE_SIZE)
|
|
panic("moea64_zero_page: size + off > PAGE_SIZE");
|
|
|
|
if (hw_direct_map) {
|
|
bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
|
|
} else {
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
moea64_set_scratchpage_pa(0, pa);
|
|
bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Zero a page of physical memory by temporarily mapping it
|
|
*/
|
|
void
|
|
moea64_zero_page(vm_page_t m)
|
|
{
|
|
vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
|
|
vm_offset_t va, off;
|
|
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
|
|
moea64_set_scratchpage_pa(0, pa);
|
|
va = moea64_scratchpage_va[0];
|
|
|
|
for (off = 0; off < PAGE_SIZE; off += cacheline_size)
|
|
__asm __volatile("dcbz 0,%0" :: "r"(va + off));
|
|
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
|
|
void
|
|
moea64_zero_page_dmap(vm_page_t m)
|
|
{
|
|
vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
|
|
vm_offset_t va, off;
|
|
|
|
va = PHYS_TO_DMAP(pa);
|
|
for (off = 0; off < PAGE_SIZE; off += cacheline_size)
|
|
__asm __volatile("dcbz 0,%0" :: "r"(va + off));
|
|
}
|
|
|
|
vm_offset_t
|
|
moea64_quick_enter_page(vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
|
|
|
|
/*
|
|
* MOEA64_PTE_REPLACE does some locking, so we can't just grab
|
|
* a critical section and access the PCPU data like on i386.
|
|
* Instead, pin the thread and grab the PCPU lock to prevent
|
|
* a preempting thread from using the same PCPU data.
|
|
*/
|
|
sched_pin();
|
|
|
|
mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
|
|
pvo = PCPU_GET(aim.qmap_pvo);
|
|
|
|
mtx_lock(PCPU_PTR(aim.qmap_lock));
|
|
pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
|
|
(uint64_t)pa;
|
|
moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
|
|
isync();
|
|
|
|
return (PCPU_GET(qmap_addr));
|
|
}
|
|
|
|
vm_offset_t
|
|
moea64_quick_enter_page_dmap(vm_page_t m)
|
|
{
|
|
|
|
return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)));
|
|
}
|
|
|
|
void
|
|
moea64_quick_remove_page(vm_offset_t addr)
|
|
{
|
|
|
|
mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
|
|
KASSERT(PCPU_GET(qmap_addr) == addr,
|
|
("moea64_quick_remove_page: invalid address"));
|
|
mtx_unlock(PCPU_PTR(aim.qmap_lock));
|
|
sched_unpin();
|
|
}
|
|
|
|
boolean_t
|
|
moea64_page_is_mapped(vm_page_t m)
|
|
{
|
|
return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
|
|
}
|
|
|
|
/*
|
|
* Map the given physical page at the specified virtual address in the
|
|
* target pmap with the protection requested. If specified the page
|
|
* will be wired down.
|
|
*/
|
|
|
|
int
|
|
moea64_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot, u_int flags, int8_t psind)
|
|
{
|
|
struct pvo_entry *pvo, *oldpvo, *tpvo;
|
|
struct pvo_head *pvo_head;
|
|
uint64_t pte_lo;
|
|
int error;
|
|
vm_paddr_t pa;
|
|
|
|
if ((m->oflags & VPO_UNMANAGED) == 0) {
|
|
if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
|
|
VM_PAGE_OBJECT_BUSY_ASSERT(m);
|
|
else
|
|
VM_OBJECT_ASSERT_LOCKED(m->object);
|
|
}
|
|
|
|
if (psind > 0)
|
|
return (moea64_sp_enter(pmap, va, m, prot, flags, psind));
|
|
|
|
pvo = alloc_pvo_entry(0);
|
|
if (pvo == NULL)
|
|
return (KERN_RESOURCE_SHORTAGE);
|
|
pvo->pvo_pmap = NULL; /* to be filled in later */
|
|
pvo->pvo_pte.prot = prot;
|
|
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
pte_lo = moea64_calc_wimg(pa, pmap_page_get_memattr(m));
|
|
pvo->pvo_pte.pa = pa | pte_lo;
|
|
|
|
if ((flags & PMAP_ENTER_WIRED) != 0)
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
|
|
if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
|
|
pvo_head = NULL;
|
|
} else {
|
|
pvo_head = &m->md.mdpg_pvoh;
|
|
pvo->pvo_vaddr |= PVO_MANAGED;
|
|
}
|
|
|
|
PV_LOCK(pa);
|
|
PMAP_LOCK(pmap);
|
|
if (pvo->pvo_pmap == NULL)
|
|
init_pvo_entry(pvo, pmap, va);
|
|
|
|
if (moea64_ps_enabled(pmap) &&
|
|
(tpvo = moea64_pvo_find_va(pmap, va & ~HPT_SP_MASK)) != NULL &&
|
|
PVO_IS_SP(tpvo)) {
|
|
/* Demote SP before entering a regular page */
|
|
CTR2(KTR_PMAP, "%s: demote before enter: va=%#jx",
|
|
__func__, (uintmax_t)va);
|
|
moea64_sp_demote_aligned(tpvo);
|
|
}
|
|
|
|
if (prot & VM_PROT_WRITE)
|
|
if (pmap_bootstrapped &&
|
|
(m->oflags & VPO_UNMANAGED) == 0)
|
|
vm_page_aflag_set(m, PGA_WRITEABLE);
|
|
|
|
error = moea64_pvo_enter(pvo, pvo_head, &oldpvo);
|
|
if (error == EEXIST) {
|
|
if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
|
|
oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
|
|
oldpvo->pvo_pte.prot == prot) {
|
|
/* Identical mapping already exists */
|
|
error = 0;
|
|
|
|
/* If not in page table, reinsert it */
|
|
if (moea64_pte_synch(oldpvo) < 0) {
|
|
STAT_MOEA64(moea64_pte_overflow--);
|
|
moea64_pte_insert(oldpvo);
|
|
}
|
|
|
|
/* Then just clean up and go home */
|
|
PMAP_UNLOCK(pmap);
|
|
PV_UNLOCK(pa);
|
|
free_pvo_entry(pvo);
|
|
pvo = NULL;
|
|
goto out;
|
|
} else {
|
|
/* Otherwise, need to kill it first */
|
|
KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
|
|
"mapping does not match new mapping"));
|
|
moea64_pvo_remove_from_pmap(oldpvo);
|
|
moea64_pvo_enter(pvo, pvo_head, NULL);
|
|
}
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
PV_UNLOCK(pa);
|
|
|
|
/* Free any dead pages */
|
|
if (error == EEXIST) {
|
|
moea64_pvo_remove_from_page(oldpvo);
|
|
free_pvo_entry(oldpvo);
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* Flush the page from the instruction cache if this page is
|
|
* mapped executable and cacheable.
|
|
*/
|
|
if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 &&
|
|
(pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
|
|
vm_page_aflag_set(m, PGA_EXECUTABLE);
|
|
moea64_syncicache(pmap, va, pa, PAGE_SIZE);
|
|
}
|
|
|
|
#if VM_NRESERVLEVEL > 0
|
|
/*
|
|
* Try to promote pages.
|
|
*
|
|
* If the VA of the entered page is not aligned with its PA,
|
|
* don't try page promotion as it is not possible.
|
|
* This reduces the number of promotion failures dramatically.
|
|
*/
|
|
if (moea64_ps_enabled(pmap) && pmap != kernel_pmap && pvo != NULL &&
|
|
(pvo->pvo_vaddr & PVO_MANAGED) != 0 &&
|
|
(va & HPT_SP_MASK) == (pa & HPT_SP_MASK) &&
|
|
(m->flags & PG_FICTITIOUS) == 0 &&
|
|
vm_reserv_level_iffullpop(m) == 0)
|
|
moea64_sp_promote(pmap, va, m);
|
|
#endif
|
|
|
|
return (KERN_SUCCESS);
|
|
}
|
|
|
|
static void
|
|
moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
|
|
vm_size_t sz)
|
|
{
|
|
|
|
/*
|
|
* This is much trickier than on older systems because
|
|
* we can't sync the icache on physical addresses directly
|
|
* without a direct map. Instead we check a couple of cases
|
|
* where the memory is already mapped in and, failing that,
|
|
* use the same trick we use for page zeroing to create
|
|
* a temporary mapping for this physical address.
|
|
*/
|
|
|
|
if (!pmap_bootstrapped) {
|
|
/*
|
|
* If PMAP is not bootstrapped, we are likely to be
|
|
* in real mode.
|
|
*/
|
|
__syncicache((void *)(uintptr_t)pa, sz);
|
|
} else if (pmap == kernel_pmap) {
|
|
__syncicache((void *)va, sz);
|
|
} else if (hw_direct_map) {
|
|
__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
|
|
} else {
|
|
/* Use the scratch page to set up a temp mapping */
|
|
|
|
mtx_lock(&moea64_scratchpage_mtx);
|
|
|
|
moea64_set_scratchpage_pa(1, pa & ~ADDR_POFF);
|
|
__syncicache((void *)(moea64_scratchpage_va[1] +
|
|
(va & ADDR_POFF)), sz);
|
|
|
|
mtx_unlock(&moea64_scratchpage_mtx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Maps a sequence of resident pages belonging to the same object.
|
|
* The sequence begins with the given page m_start. This page is
|
|
* mapped at the given virtual address start. Each subsequent page is
|
|
* mapped at a virtual address that is offset from start by the same
|
|
* amount as the page is offset from m_start within the object. The
|
|
* last page in the sequence is the page with the largest offset from
|
|
* m_start that can be mapped at a virtual address less than the given
|
|
* virtual address end. Not every virtual page between start and end
|
|
* is mapped; only those for which a resident page exists with the
|
|
* corresponding offset from m_start are mapped.
|
|
*/
|
|
void
|
|
moea64_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
|
|
vm_page_t m_start, vm_prot_t prot)
|
|
{
|
|
vm_page_t m;
|
|
vm_pindex_t diff, psize;
|
|
vm_offset_t va;
|
|
int8_t psind;
|
|
|
|
VM_OBJECT_ASSERT_LOCKED(m_start->object);
|
|
|
|
psize = atop(end - start);
|
|
m = m_start;
|
|
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
|
|
va = start + ptoa(diff);
|
|
if ((va & HPT_SP_MASK) == 0 && va + HPT_SP_SIZE <= end &&
|
|
m->psind == 1 && moea64_ps_enabled(pm))
|
|
psind = 1;
|
|
else
|
|
psind = 0;
|
|
moea64_enter(pm, va, m, prot &
|
|
(VM_PROT_READ | VM_PROT_EXECUTE),
|
|
PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, psind);
|
|
if (psind == 1)
|
|
m = &m[HPT_SP_SIZE / PAGE_SIZE - 1];
|
|
m = TAILQ_NEXT(m, listq);
|
|
}
|
|
}
|
|
|
|
void
|
|
moea64_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot)
|
|
{
|
|
|
|
moea64_enter(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
|
|
PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
|
|
}
|
|
|
|
vm_paddr_t
|
|
moea64_extract(pmap_t pm, vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa;
|
|
|
|
PMAP_LOCK(pm);
|
|
pvo = moea64_pvo_find_va(pm, va);
|
|
if (pvo == NULL)
|
|
pa = 0;
|
|
else
|
|
pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
|
|
PMAP_UNLOCK(pm);
|
|
|
|
return (pa);
|
|
}
|
|
|
|
/*
|
|
* Atomically extract and hold the physical page with the given
|
|
* pmap and virtual address pair if that mapping permits the given
|
|
* protection.
|
|
*/
|
|
vm_page_t
|
|
moea64_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_page_t m;
|
|
|
|
m = NULL;
|
|
PMAP_LOCK(pmap);
|
|
pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
|
|
if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
|
|
m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
|
|
if (!vm_page_wire_mapped(m))
|
|
m = NULL;
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
return (m);
|
|
}
|
|
|
|
static void *
|
|
moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
|
|
uint8_t *flags, int wait)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_offset_t va;
|
|
vm_page_t m;
|
|
int needed_lock;
|
|
|
|
/*
|
|
* This entire routine is a horrible hack to avoid bothering kmem
|
|
* for new KVA addresses. Because this can get called from inside
|
|
* kmem allocation routines, calling kmem for a new address here
|
|
* can lead to multiply locking non-recursive mutexes.
|
|
*/
|
|
|
|
*flags = UMA_SLAB_PRIV;
|
|
needed_lock = !PMAP_LOCKED(kernel_pmap);
|
|
|
|
m = vm_page_alloc_noobj_domain(domain, malloc2vm_flags(wait) |
|
|
VM_ALLOC_WIRED);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
va = VM_PAGE_TO_PHYS(m);
|
|
|
|
pvo = alloc_pvo_entry(1 /* bootstrap */);
|
|
|
|
pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
|
|
pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
|
|
|
|
if (needed_lock)
|
|
PMAP_LOCK(kernel_pmap);
|
|
|
|
init_pvo_entry(pvo, kernel_pmap, va);
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
|
|
moea64_pvo_enter(pvo, NULL, NULL);
|
|
|
|
if (needed_lock)
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
|
|
return (void *)va;
|
|
}
|
|
|
|
extern int elf32_nxstack;
|
|
|
|
void
|
|
moea64_init()
|
|
{
|
|
|
|
CTR0(KTR_PMAP, "moea64_init");
|
|
|
|
moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
|
|
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
|
|
UMA_ZONE_VM | UMA_ZONE_NOFREE);
|
|
|
|
/*
|
|
* Are large page mappings enabled?
|
|
*
|
|
* While HPT superpages are not better tested, leave it disabled by
|
|
* default.
|
|
*/
|
|
superpages_enabled = 0;
|
|
TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
|
|
if (superpages_enabled) {
|
|
KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
|
|
("moea64_init: can't assign to pagesizes[1]"));
|
|
|
|
if (moea64_large_page_size == 0) {
|
|
printf("mmu_oea64: HW does not support large pages. "
|
|
"Disabling superpages...\n");
|
|
superpages_enabled = 0;
|
|
} else if (!moea64_has_lp_4k_16m) {
|
|
printf("mmu_oea64: "
|
|
"HW does not support mixed 4KB/16MB page sizes. "
|
|
"Disabling superpages...\n");
|
|
superpages_enabled = 0;
|
|
} else
|
|
pagesizes[1] = HPT_SP_SIZE;
|
|
}
|
|
|
|
if (!hw_direct_map) {
|
|
uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
|
|
}
|
|
|
|
#ifdef COMPAT_FREEBSD32
|
|
elf32_nxstack = 1;
|
|
#endif
|
|
|
|
moea64_initialized = TRUE;
|
|
}
|
|
|
|
boolean_t
|
|
moea64_is_referenced(vm_page_t m)
|
|
{
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_is_referenced: page %p is not managed", m));
|
|
|
|
return (moea64_query_bit(m, LPTE_REF));
|
|
}
|
|
|
|
boolean_t
|
|
moea64_is_modified(vm_page_t m)
|
|
{
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_is_modified: page %p is not managed", m));
|
|
|
|
/*
|
|
* If the page is not busied then this check is racy.
|
|
*/
|
|
if (!pmap_page_is_write_mapped(m))
|
|
return (FALSE);
|
|
|
|
return (moea64_query_bit(m, LPTE_CHG));
|
|
}
|
|
|
|
boolean_t
|
|
moea64_is_prefaultable(pmap_t pmap, vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
boolean_t rv = TRUE;
|
|
|
|
PMAP_LOCK(pmap);
|
|
pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
|
|
if (pvo != NULL)
|
|
rv = FALSE;
|
|
PMAP_UNLOCK(pmap);
|
|
return (rv);
|
|
}
|
|
|
|
void
|
|
moea64_clear_modify(vm_page_t m)
|
|
{
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_clear_modify: page %p is not managed", m));
|
|
vm_page_assert_busied(m);
|
|
|
|
if (!pmap_page_is_write_mapped(m))
|
|
return;
|
|
moea64_clear_bit(m, LPTE_CHG);
|
|
}
|
|
|
|
/*
|
|
* Clear the write and modified bits in each of the given page's mappings.
|
|
*/
|
|
void
|
|
moea64_remove_write(vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int64_t refchg, ret;
|
|
pmap_t pmap;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_remove_write: page %p is not managed", m));
|
|
vm_page_assert_busied(m);
|
|
|
|
if (!pmap_page_is_write_mapped(m))
|
|
return;
|
|
|
|
powerpc_sync();
|
|
PV_PAGE_LOCK(m);
|
|
refchg = 0;
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
if (!(pvo->pvo_vaddr & PVO_DEAD) &&
|
|
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
|
|
if (PVO_IS_SP(pvo)) {
|
|
CTR1(KTR_PMAP, "%s: demote before remwr",
|
|
__func__);
|
|
moea64_sp_demote(pvo);
|
|
}
|
|
pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
|
|
ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
|
|
if (ret < 0)
|
|
ret = LPTE_CHG;
|
|
refchg |= ret;
|
|
if (pvo->pvo_pmap == kernel_pmap)
|
|
isync();
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
|
|
vm_page_dirty(m);
|
|
vm_page_aflag_clear(m, PGA_WRITEABLE);
|
|
PV_PAGE_UNLOCK(m);
|
|
}
|
|
|
|
/*
|
|
* moea64_ts_referenced:
|
|
*
|
|
* Return a count of reference bits for a page, clearing those bits.
|
|
* It is not necessary for every reference bit to be cleared, but it
|
|
* is necessary that 0 only be returned when there are truly no
|
|
* reference bits set.
|
|
*
|
|
* XXX: The exact number of bits to check and clear is a matter that
|
|
* should be tested and standardized at some point in the future for
|
|
* optimal aging of shared pages.
|
|
*/
|
|
int
|
|
moea64_ts_referenced(vm_page_t m)
|
|
{
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_ts_referenced: page %p is not managed", m));
|
|
return (moea64_clear_bit(m, LPTE_REF));
|
|
}
|
|
|
|
/*
|
|
* Modify the WIMG settings of all mappings for a page.
|
|
*/
|
|
void
|
|
moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int64_t refchg;
|
|
pmap_t pmap;
|
|
uint64_t lo;
|
|
|
|
CTR3(KTR_PMAP, "%s: pa=%#jx, ma=%#x",
|
|
__func__, (uintmax_t)VM_PAGE_TO_PHYS(m), ma);
|
|
|
|
if ((m->oflags & VPO_UNMANAGED) != 0) {
|
|
m->md.mdpg_cache_attrs = ma;
|
|
return;
|
|
}
|
|
|
|
lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
|
|
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
if (!(pvo->pvo_vaddr & PVO_DEAD)) {
|
|
if (PVO_IS_SP(pvo)) {
|
|
CTR1(KTR_PMAP,
|
|
"%s: demote before set_memattr", __func__);
|
|
moea64_sp_demote(pvo);
|
|
}
|
|
pvo->pvo_pte.pa &= ~LPTE_WIMG;
|
|
pvo->pvo_pte.pa |= lo;
|
|
refchg = moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
|
|
if (refchg < 0)
|
|
refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
|
|
LPTE_CHG : 0;
|
|
if ((pvo->pvo_vaddr & PVO_MANAGED) &&
|
|
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
|
|
refchg |=
|
|
atomic_readandclear_32(&m->md.mdpg_attrs);
|
|
if (refchg & LPTE_CHG)
|
|
vm_page_dirty(m);
|
|
if (refchg & LPTE_REF)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
}
|
|
if (pvo->pvo_pmap == kernel_pmap)
|
|
isync();
|
|
}
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
m->md.mdpg_cache_attrs = ma;
|
|
PV_PAGE_UNLOCK(m);
|
|
}
|
|
|
|
/*
|
|
* Map a wired page into kernel virtual address space.
|
|
*/
|
|
void
|
|
moea64_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
|
|
{
|
|
int error;
|
|
struct pvo_entry *pvo, *oldpvo;
|
|
|
|
do {
|
|
pvo = alloc_pvo_entry(0);
|
|
if (pvo == NULL)
|
|
vm_wait(NULL);
|
|
} while (pvo == NULL);
|
|
pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
|
|
pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
oldpvo = moea64_pvo_find_va(kernel_pmap, va);
|
|
if (oldpvo != NULL)
|
|
moea64_pvo_remove_from_pmap(oldpvo);
|
|
init_pvo_entry(pvo, kernel_pmap, va);
|
|
error = moea64_pvo_enter(pvo, NULL, NULL);
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
|
|
/* Free any dead pages */
|
|
if (oldpvo != NULL) {
|
|
moea64_pvo_remove_from_page(oldpvo);
|
|
free_pvo_entry(oldpvo);
|
|
}
|
|
|
|
if (error != 0)
|
|
panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
|
|
(uintmax_t)pa, error);
|
|
}
|
|
|
|
void
|
|
moea64_kenter(vm_offset_t va, vm_paddr_t pa)
|
|
{
|
|
|
|
moea64_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
|
|
}
|
|
|
|
/*
|
|
* Extract the physical page address associated with the given kernel virtual
|
|
* address.
|
|
*/
|
|
vm_paddr_t
|
|
moea64_kextract(vm_offset_t va)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa;
|
|
|
|
/*
|
|
* Shortcut the direct-mapped case when applicable. We never put
|
|
* anything but 1:1 (or 62-bit aliased) mappings below
|
|
* VM_MIN_KERNEL_ADDRESS.
|
|
*/
|
|
if (va < VM_MIN_KERNEL_ADDRESS)
|
|
return (va & ~DMAP_BASE_ADDRESS);
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
pvo = moea64_pvo_find_va(kernel_pmap, va);
|
|
KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
|
|
va));
|
|
pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
return (pa);
|
|
}
|
|
|
|
/*
|
|
* Remove a wired page from kernel virtual address space.
|
|
*/
|
|
void
|
|
moea64_kremove(vm_offset_t va)
|
|
{
|
|
moea64_remove(kernel_pmap, va, va + PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Provide a kernel pointer corresponding to a given userland pointer.
|
|
* The returned pointer is valid until the next time this function is
|
|
* called in this thread. This is used internally in copyin/copyout.
|
|
*/
|
|
static int
|
|
moea64_map_user_ptr(pmap_t pm, volatile const void *uaddr,
|
|
void **kaddr, size_t ulen, size_t *klen)
|
|
{
|
|
size_t l;
|
|
#ifdef __powerpc64__
|
|
struct slb *slb;
|
|
#endif
|
|
register_t slbv;
|
|
|
|
*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
|
|
l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
|
|
if (l > ulen)
|
|
l = ulen;
|
|
if (klen)
|
|
*klen = l;
|
|
else if (l != ulen)
|
|
return (EFAULT);
|
|
|
|
#ifdef __powerpc64__
|
|
/* Try lockless look-up first */
|
|
slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
|
|
|
|
if (slb == NULL) {
|
|
/* If it isn't there, we need to pre-fault the VSID */
|
|
PMAP_LOCK(pm);
|
|
slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
|
|
PMAP_UNLOCK(pm);
|
|
} else {
|
|
slbv = slb->slbv;
|
|
}
|
|
|
|
/* Mark segment no-execute */
|
|
slbv |= SLBV_N;
|
|
#else
|
|
slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
|
|
|
|
/* Mark segment no-execute */
|
|
slbv |= SR_N;
|
|
#endif
|
|
|
|
/* If we have already set this VSID, we can just return */
|
|
if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
|
|
return (0);
|
|
|
|
__asm __volatile("isync");
|
|
curthread->td_pcb->pcb_cpu.aim.usr_segm =
|
|
(uintptr_t)uaddr >> ADDR_SR_SHFT;
|
|
curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
|
|
#ifdef __powerpc64__
|
|
__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
|
|
"r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
|
|
#else
|
|
__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Figure out where a given kernel pointer (usually in a fault) points
|
|
* to from the VM's perspective, potentially remapping into userland's
|
|
* address space.
|
|
*/
|
|
static int
|
|
moea64_decode_kernel_ptr(vm_offset_t addr, int *is_user,
|
|
vm_offset_t *decoded_addr)
|
|
{
|
|
vm_offset_t user_sr;
|
|
|
|
if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
|
|
user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
|
|
addr &= ADDR_PIDX | ADDR_POFF;
|
|
addr |= user_sr << ADDR_SR_SHFT;
|
|
*decoded_addr = addr;
|
|
*is_user = 1;
|
|
} else {
|
|
*decoded_addr = addr;
|
|
*is_user = 0;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Map a range of physical addresses into kernel virtual address space.
|
|
*
|
|
* The value passed in *virt is a suggested virtual address for the mapping.
|
|
* Architectures which can support a direct-mapped physical to virtual region
|
|
* can return the appropriate address within that region, leaving '*virt'
|
|
* unchanged. Other architectures should map the pages starting at '*virt' and
|
|
* update '*virt' with the first usable address after the mapped region.
|
|
*/
|
|
vm_offset_t
|
|
moea64_map(vm_offset_t *virt, vm_paddr_t pa_start,
|
|
vm_paddr_t pa_end, int prot)
|
|
{
|
|
vm_offset_t sva, va;
|
|
|
|
if (hw_direct_map) {
|
|
/*
|
|
* Check if every page in the region is covered by the direct
|
|
* map. The direct map covers all of physical memory. Use
|
|
* moea64_calc_wimg() as a shortcut to see if the page is in
|
|
* physical memory as a way to see if the direct map covers it.
|
|
*/
|
|
for (va = pa_start; va < pa_end; va += PAGE_SIZE)
|
|
if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
|
|
break;
|
|
if (va == pa_end)
|
|
return (PHYS_TO_DMAP(pa_start));
|
|
}
|
|
sva = *virt;
|
|
va = sva;
|
|
/* XXX respect prot argument */
|
|
for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
|
|
moea64_kenter(va, pa_start);
|
|
*virt = va;
|
|
|
|
return (sva);
|
|
}
|
|
|
|
/*
|
|
* Returns true if the pmap's pv is one of the first
|
|
* 16 pvs linked to from this page. This count may
|
|
* be changed upwards or downwards in the future; it
|
|
* is only necessary that true be returned for a small
|
|
* subset of pmaps for proper page aging.
|
|
*/
|
|
boolean_t
|
|
moea64_page_exists_quick(pmap_t pmap, vm_page_t m)
|
|
{
|
|
int loops;
|
|
struct pvo_entry *pvo;
|
|
boolean_t rv;
|
|
|
|
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
|
|
("moea64_page_exists_quick: page %p is not managed", m));
|
|
loops = 0;
|
|
rv = FALSE;
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
|
|
rv = TRUE;
|
|
break;
|
|
}
|
|
if (++loops >= 16)
|
|
break;
|
|
}
|
|
PV_PAGE_UNLOCK(m);
|
|
return (rv);
|
|
}
|
|
|
|
void
|
|
moea64_page_init(vm_page_t m)
|
|
{
|
|
|
|
m->md.mdpg_attrs = 0;
|
|
m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
|
|
LIST_INIT(&m->md.mdpg_pvoh);
|
|
}
|
|
|
|
/*
|
|
* Return the number of managed mappings to the given physical page
|
|
* that are wired.
|
|
*/
|
|
int
|
|
moea64_page_wired_mappings(vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int count;
|
|
|
|
count = 0;
|
|
if ((m->oflags & VPO_UNMANAGED) != 0)
|
|
return (count);
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
|
|
if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
|
|
count++;
|
|
PV_PAGE_UNLOCK(m);
|
|
return (count);
|
|
}
|
|
|
|
static uintptr_t moea64_vsidcontext;
|
|
|
|
uintptr_t
|
|
moea64_get_unique_vsid(void) {
|
|
u_int entropy;
|
|
register_t hash;
|
|
uint32_t mask;
|
|
int i;
|
|
|
|
entropy = 0;
|
|
__asm __volatile("mftb %0" : "=r"(entropy));
|
|
|
|
mtx_lock(&moea64_slb_mutex);
|
|
for (i = 0; i < NVSIDS; i += VSID_NBPW) {
|
|
u_int n;
|
|
|
|
/*
|
|
* Create a new value by mutiplying by a prime and adding in
|
|
* entropy from the timebase register. This is to make the
|
|
* VSID more random so that the PT hash function collides
|
|
* less often. (Note that the prime casues gcc to do shifts
|
|
* instead of a multiply.)
|
|
*/
|
|
moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
|
|
hash = moea64_vsidcontext & (NVSIDS - 1);
|
|
if (hash == 0) /* 0 is special, avoid it */
|
|
continue;
|
|
n = hash >> 5;
|
|
mask = 1 << (hash & (VSID_NBPW - 1));
|
|
hash = (moea64_vsidcontext & VSID_HASHMASK);
|
|
if (moea64_vsid_bitmap[n] & mask) { /* collision? */
|
|
/* anything free in this bucket? */
|
|
if (moea64_vsid_bitmap[n] == 0xffffffff) {
|
|
entropy = (moea64_vsidcontext >> 20);
|
|
continue;
|
|
}
|
|
i = ffs(~moea64_vsid_bitmap[n]) - 1;
|
|
mask = 1 << i;
|
|
hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
|
|
hash |= i;
|
|
}
|
|
if (hash == VSID_VRMA) /* also special, avoid this too */
|
|
continue;
|
|
KASSERT(!(moea64_vsid_bitmap[n] & mask),
|
|
("Allocating in-use VSID %#zx\n", hash));
|
|
moea64_vsid_bitmap[n] |= mask;
|
|
mtx_unlock(&moea64_slb_mutex);
|
|
return (hash);
|
|
}
|
|
|
|
mtx_unlock(&moea64_slb_mutex);
|
|
panic("%s: out of segments",__func__);
|
|
}
|
|
|
|
#ifdef __powerpc64__
|
|
int
|
|
moea64_pinit(pmap_t pmap)
|
|
{
|
|
|
|
RB_INIT(&pmap->pmap_pvo);
|
|
|
|
pmap->pm_slb_tree_root = slb_alloc_tree();
|
|
pmap->pm_slb = slb_alloc_user_cache();
|
|
pmap->pm_slb_len = 0;
|
|
|
|
return (1);
|
|
}
|
|
#else
|
|
int
|
|
moea64_pinit(pmap_t pmap)
|
|
{
|
|
int i;
|
|
uint32_t hash;
|
|
|
|
RB_INIT(&pmap->pmap_pvo);
|
|
|
|
if (pmap_bootstrapped)
|
|
pmap->pmap_phys = (pmap_t)moea64_kextract((vm_offset_t)pmap);
|
|
else
|
|
pmap->pmap_phys = pmap;
|
|
|
|
/*
|
|
* Allocate some segment registers for this pmap.
|
|
*/
|
|
hash = moea64_get_unique_vsid();
|
|
|
|
for (i = 0; i < 16; i++)
|
|
pmap->pm_sr[i] = VSID_MAKE(i, hash);
|
|
|
|
KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
|
|
|
|
return (1);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the pmap associated with process 0.
|
|
*/
|
|
void
|
|
moea64_pinit0(pmap_t pm)
|
|
{
|
|
|
|
PMAP_LOCK_INIT(pm);
|
|
moea64_pinit(pm);
|
|
bzero(&pm->pm_stats, sizeof(pm->pm_stats));
|
|
}
|
|
|
|
/*
|
|
* Set the physical protection on the specified range of this map as requested.
|
|
*/
|
|
static void
|
|
moea64_pvo_protect( pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
|
|
{
|
|
struct vm_page *pg;
|
|
vm_prot_t oldprot;
|
|
int32_t refchg;
|
|
|
|
PMAP_LOCK_ASSERT(pm, MA_OWNED);
|
|
|
|
/*
|
|
* Change the protection of the page.
|
|
*/
|
|
oldprot = pvo->pvo_pte.prot;
|
|
pvo->pvo_pte.prot = prot;
|
|
pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
|
|
|
|
/*
|
|
* If the PVO is in the page table, update mapping
|
|
*/
|
|
refchg = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
|
|
if (refchg < 0)
|
|
refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
|
|
|
|
if (pm != kernel_pmap && pg != NULL &&
|
|
(pg->a.flags & PGA_EXECUTABLE) == 0 &&
|
|
(pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
|
|
if ((pg->oflags & VPO_UNMANAGED) == 0)
|
|
vm_page_aflag_set(pg, PGA_EXECUTABLE);
|
|
moea64_syncicache(pm, PVO_VADDR(pvo),
|
|
PVO_PADDR(pvo), PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Update vm about the REF/CHG bits if the page is managed and we have
|
|
* removed write access.
|
|
*/
|
|
if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
|
|
(oldprot & VM_PROT_WRITE)) {
|
|
refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
|
|
if (refchg & LPTE_CHG)
|
|
vm_page_dirty(pg);
|
|
if (refchg & LPTE_REF)
|
|
vm_page_aflag_set(pg, PGA_REFERENCED);
|
|
}
|
|
}
|
|
|
|
void
|
|
moea64_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
|
|
vm_prot_t prot)
|
|
{
|
|
struct pvo_entry *pvo, key;
|
|
|
|
CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
|
|
sva, eva, prot);
|
|
|
|
KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
|
|
("moea64_protect: non current pmap"));
|
|
|
|
if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
|
|
moea64_remove(pm, sva, eva);
|
|
return;
|
|
}
|
|
|
|
PMAP_LOCK(pm);
|
|
key.pvo_vaddr = sva;
|
|
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
|
|
pvo != NULL && PVO_VADDR(pvo) < eva;
|
|
pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
|
|
if (PVO_IS_SP(pvo)) {
|
|
if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
|
|
pvo = moea64_sp_protect(pvo, prot);
|
|
continue;
|
|
} else {
|
|
CTR1(KTR_PMAP, "%s: demote before protect",
|
|
__func__);
|
|
moea64_sp_demote(pvo);
|
|
}
|
|
}
|
|
moea64_pvo_protect(pm, pvo, prot);
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
/*
|
|
* Map a list of wired pages into kernel virtual address space. This is
|
|
* intended for temporary mappings which do not need page modification or
|
|
* references recorded. Existing mappings in the region are overwritten.
|
|
*/
|
|
void
|
|
moea64_qenter(vm_offset_t va, vm_page_t *m, int count)
|
|
{
|
|
while (count-- > 0) {
|
|
moea64_kenter(va, VM_PAGE_TO_PHYS(*m));
|
|
va += PAGE_SIZE;
|
|
m++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove page mappings from kernel virtual address space. Intended for
|
|
* temporary mappings entered by moea64_qenter.
|
|
*/
|
|
void
|
|
moea64_qremove(vm_offset_t va, int count)
|
|
{
|
|
while (count-- > 0) {
|
|
moea64_kremove(va);
|
|
va += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
void
|
|
moea64_release_vsid(uint64_t vsid)
|
|
{
|
|
int idx, mask;
|
|
|
|
mtx_lock(&moea64_slb_mutex);
|
|
idx = vsid & (NVSIDS-1);
|
|
mask = 1 << (idx % VSID_NBPW);
|
|
idx /= VSID_NBPW;
|
|
KASSERT(moea64_vsid_bitmap[idx] & mask,
|
|
("Freeing unallocated VSID %#jx", vsid));
|
|
moea64_vsid_bitmap[idx] &= ~mask;
|
|
mtx_unlock(&moea64_slb_mutex);
|
|
}
|
|
|
|
void
|
|
moea64_release(pmap_t pmap)
|
|
{
|
|
|
|
/*
|
|
* Free segment registers' VSIDs
|
|
*/
|
|
#ifdef __powerpc64__
|
|
slb_free_tree(pmap);
|
|
slb_free_user_cache(pmap->pm_slb);
|
|
#else
|
|
KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
|
|
|
|
moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Remove all pages mapped by the specified pmap
|
|
*/
|
|
void
|
|
moea64_remove_pages(pmap_t pm)
|
|
{
|
|
struct pvo_entry *pvo, *tpvo;
|
|
struct pvo_dlist tofree;
|
|
|
|
SLIST_INIT(&tofree);
|
|
|
|
PMAP_LOCK(pm);
|
|
RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
|
|
if (pvo->pvo_vaddr & PVO_WIRED)
|
|
continue;
|
|
|
|
/*
|
|
* For locking reasons, remove this from the page table and
|
|
* pmap, but save delinking from the vm_page for a second
|
|
* pass
|
|
*/
|
|
moea64_pvo_remove_from_pmap(pvo);
|
|
SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
|
|
while (!SLIST_EMPTY(&tofree)) {
|
|
pvo = SLIST_FIRST(&tofree);
|
|
SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
|
|
moea64_pvo_remove_from_page(pvo);
|
|
free_pvo_entry(pvo);
|
|
}
|
|
}
|
|
|
|
static void
|
|
moea64_remove_locked(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
|
|
struct pvo_dlist *tofree)
|
|
{
|
|
struct pvo_entry *pvo, *tpvo, key;
|
|
|
|
PMAP_LOCK_ASSERT(pm, MA_OWNED);
|
|
|
|
key.pvo_vaddr = sva;
|
|
for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
|
|
pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
|
|
if (PVO_IS_SP(pvo)) {
|
|
if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
|
|
tpvo = moea64_sp_remove(pvo, tofree);
|
|
continue;
|
|
} else {
|
|
CTR1(KTR_PMAP, "%s: demote before remove",
|
|
__func__);
|
|
moea64_sp_demote(pvo);
|
|
}
|
|
}
|
|
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
|
|
|
|
/*
|
|
* For locking reasons, remove this from the page table and
|
|
* pmap, but save delinking from the vm_page for a second
|
|
* pass
|
|
*/
|
|
moea64_pvo_remove_from_pmap(pvo);
|
|
SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove the given range of addresses from the specified map.
|
|
*/
|
|
void
|
|
moea64_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
struct pvo_dlist tofree;
|
|
|
|
/*
|
|
* Perform an unsynchronized read. This is, however, safe.
|
|
*/
|
|
if (pm->pm_stats.resident_count == 0)
|
|
return;
|
|
|
|
SLIST_INIT(&tofree);
|
|
PMAP_LOCK(pm);
|
|
moea64_remove_locked(pm, sva, eva, &tofree);
|
|
PMAP_UNLOCK(pm);
|
|
|
|
while (!SLIST_EMPTY(&tofree)) {
|
|
pvo = SLIST_FIRST(&tofree);
|
|
SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
|
|
moea64_pvo_remove_from_page(pvo);
|
|
free_pvo_entry(pvo);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
|
|
* will reflect changes in pte's back to the vm_page.
|
|
*/
|
|
void
|
|
moea64_remove_all(vm_page_t m)
|
|
{
|
|
struct pvo_entry *pvo, *next_pvo;
|
|
struct pvo_head freequeue;
|
|
int wasdead;
|
|
pmap_t pmap;
|
|
|
|
LIST_INIT(&freequeue);
|
|
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
wasdead = (pvo->pvo_vaddr & PVO_DEAD);
|
|
if (!wasdead) {
|
|
if (PVO_IS_SP(pvo)) {
|
|
CTR1(KTR_PMAP, "%s: demote before remove_all",
|
|
__func__);
|
|
moea64_sp_demote(pvo);
|
|
}
|
|
moea64_pvo_remove_from_pmap(pvo);
|
|
}
|
|
moea64_pvo_remove_from_page_locked(pvo, m);
|
|
if (!wasdead)
|
|
LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
|
|
PMAP_UNLOCK(pmap);
|
|
|
|
}
|
|
KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
|
|
KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable"));
|
|
PV_PAGE_UNLOCK(m);
|
|
|
|
/* Clean up UMA allocations */
|
|
LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
|
|
free_pvo_entry(pvo);
|
|
}
|
|
|
|
/*
|
|
* Allocate a physical page of memory directly from the phys_avail map.
|
|
* Can only be called from moea64_bootstrap before avail start and end are
|
|
* calculated.
|
|
*/
|
|
vm_offset_t
|
|
moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
|
|
{
|
|
vm_offset_t s, e;
|
|
int i, j;
|
|
|
|
size = round_page(size);
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
if (align != 0)
|
|
s = roundup2(phys_avail[i], align);
|
|
else
|
|
s = phys_avail[i];
|
|
e = s + size;
|
|
|
|
if (s < phys_avail[i] || e > phys_avail[i + 1])
|
|
continue;
|
|
|
|
if (s + size > platform_real_maxaddr())
|
|
continue;
|
|
|
|
if (s == phys_avail[i]) {
|
|
phys_avail[i] += size;
|
|
} else if (e == phys_avail[i + 1]) {
|
|
phys_avail[i + 1] -= size;
|
|
} else {
|
|
for (j = phys_avail_count * 2; j > i; j -= 2) {
|
|
phys_avail[j] = phys_avail[j - 2];
|
|
phys_avail[j + 1] = phys_avail[j - 1];
|
|
}
|
|
|
|
phys_avail[i + 3] = phys_avail[i + 1];
|
|
phys_avail[i + 1] = s;
|
|
phys_avail[i + 2] = e;
|
|
phys_avail_count++;
|
|
}
|
|
|
|
return (s);
|
|
}
|
|
panic("moea64_bootstrap_alloc: could not allocate memory");
|
|
}
|
|
|
|
static int
|
|
moea64_pvo_enter(struct pvo_entry *pvo, struct pvo_head *pvo_head,
|
|
struct pvo_entry **oldpvop)
|
|
{
|
|
struct pvo_entry *old_pvo;
|
|
int err;
|
|
|
|
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
|
|
|
|
STAT_MOEA64(moea64_pvo_enter_calls++);
|
|
|
|
/*
|
|
* Add to pmap list
|
|
*/
|
|
old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
|
|
|
|
if (old_pvo != NULL) {
|
|
if (oldpvop != NULL)
|
|
*oldpvop = old_pvo;
|
|
return (EEXIST);
|
|
}
|
|
|
|
if (pvo_head != NULL) {
|
|
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
|
|
}
|
|
|
|
if (pvo->pvo_vaddr & PVO_WIRED)
|
|
pvo->pvo_pmap->pm_stats.wired_count++;
|
|
pvo->pvo_pmap->pm_stats.resident_count++;
|
|
|
|
/*
|
|
* Insert it into the hardware page table
|
|
*/
|
|
err = moea64_pte_insert(pvo);
|
|
if (err != 0) {
|
|
panic("moea64_pvo_enter: overflow");
|
|
}
|
|
|
|
STAT_MOEA64(moea64_pvo_entries++);
|
|
|
|
if (pvo->pvo_pmap == kernel_pmap)
|
|
isync();
|
|
|
|
#ifdef __powerpc64__
|
|
/*
|
|
* Make sure all our bootstrap mappings are in the SLB as soon
|
|
* as virtual memory is switched on.
|
|
*/
|
|
if (!pmap_bootstrapped)
|
|
moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
|
|
pvo->pvo_vaddr & PVO_LARGE);
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
moea64_pvo_remove_from_pmap(struct pvo_entry *pvo)
|
|
{
|
|
struct vm_page *pg;
|
|
int32_t refchg;
|
|
|
|
KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
|
|
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
|
|
KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
|
|
|
|
/*
|
|
* If there is an active pte entry, we need to deactivate it
|
|
*/
|
|
refchg = moea64_pte_unset(pvo);
|
|
if (refchg < 0) {
|
|
/*
|
|
* If it was evicted from the page table, be pessimistic and
|
|
* dirty the page.
|
|
*/
|
|
if (pvo->pvo_pte.prot & VM_PROT_WRITE)
|
|
refchg = LPTE_CHG;
|
|
else
|
|
refchg = 0;
|
|
}
|
|
|
|
/*
|
|
* Update our statistics.
|
|
*/
|
|
pvo->pvo_pmap->pm_stats.resident_count--;
|
|
if (pvo->pvo_vaddr & PVO_WIRED)
|
|
pvo->pvo_pmap->pm_stats.wired_count--;
|
|
|
|
/*
|
|
* Remove this PVO from the pmap list.
|
|
*/
|
|
RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
|
|
|
|
/*
|
|
* Mark this for the next sweep
|
|
*/
|
|
pvo->pvo_vaddr |= PVO_DEAD;
|
|
|
|
/* Send RC bits to VM */
|
|
if ((pvo->pvo_vaddr & PVO_MANAGED) &&
|
|
(pvo->pvo_pte.prot & VM_PROT_WRITE)) {
|
|
pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
|
|
if (pg != NULL) {
|
|
refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
|
|
if (refchg & LPTE_CHG)
|
|
vm_page_dirty(pg);
|
|
if (refchg & LPTE_REF)
|
|
vm_page_aflag_set(pg, PGA_REFERENCED);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
moea64_pvo_remove_from_page_locked(struct pvo_entry *pvo,
|
|
vm_page_t m)
|
|
{
|
|
|
|
KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
|
|
|
|
/* Use NULL pmaps as a sentinel for races in page deletion */
|
|
if (pvo->pvo_pmap == NULL)
|
|
return;
|
|
pvo->pvo_pmap = NULL;
|
|
|
|
/*
|
|
* Update vm about page writeability/executability if managed
|
|
*/
|
|
PV_LOCKASSERT(PVO_PADDR(pvo));
|
|
if (pvo->pvo_vaddr & PVO_MANAGED) {
|
|
if (m != NULL) {
|
|
LIST_REMOVE(pvo, pvo_vlink);
|
|
if (LIST_EMPTY(vm_page_to_pvoh(m)))
|
|
vm_page_aflag_clear(m,
|
|
PGA_WRITEABLE | PGA_EXECUTABLE);
|
|
}
|
|
}
|
|
|
|
STAT_MOEA64(moea64_pvo_entries--);
|
|
STAT_MOEA64(moea64_pvo_remove_calls++);
|
|
}
|
|
|
|
static void
|
|
moea64_pvo_remove_from_page(struct pvo_entry *pvo)
|
|
{
|
|
vm_page_t pg = NULL;
|
|
|
|
if (pvo->pvo_vaddr & PVO_MANAGED)
|
|
pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
|
|
|
|
PV_LOCK(PVO_PADDR(pvo));
|
|
moea64_pvo_remove_from_page_locked(pvo, pg);
|
|
PV_UNLOCK(PVO_PADDR(pvo));
|
|
}
|
|
|
|
static struct pvo_entry *
|
|
moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
|
|
{
|
|
struct pvo_entry key;
|
|
|
|
PMAP_LOCK_ASSERT(pm, MA_OWNED);
|
|
|
|
key.pvo_vaddr = va & ~ADDR_POFF;
|
|
return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
|
|
}
|
|
|
|
static boolean_t
|
|
moea64_query_bit(vm_page_t m, uint64_t ptebit)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
int64_t ret;
|
|
boolean_t rv;
|
|
vm_page_t sp;
|
|
|
|
/*
|
|
* See if this bit is stored in the page already.
|
|
*
|
|
* For superpages, the bit is stored in the first vm page.
|
|
*/
|
|
if ((m->md.mdpg_attrs & ptebit) != 0 ||
|
|
((sp = PHYS_TO_VM_PAGE(VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK)) != NULL &&
|
|
(sp->md.mdpg_attrs & (ptebit | MDPG_ATTR_SP)) ==
|
|
(ptebit | MDPG_ATTR_SP)))
|
|
return (TRUE);
|
|
|
|
/*
|
|
* Examine each PTE. Sync so that any pending REF/CHG bits are
|
|
* flushed to the PTEs.
|
|
*/
|
|
rv = FALSE;
|
|
powerpc_sync();
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
if (PVO_IS_SP(pvo)) {
|
|
ret = moea64_sp_query(pvo, ptebit);
|
|
/*
|
|
* If SP was not demoted, check its REF/CHG bits here.
|
|
*/
|
|
if (ret != -1) {
|
|
if ((ret & ptebit) != 0) {
|
|
rv = TRUE;
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
/* else, fallthrough */
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
/*
|
|
* See if this pvo has a valid PTE. if so, fetch the
|
|
* REF/CHG bits from the valid PTE. If the appropriate
|
|
* ptebit is set, return success.
|
|
*/
|
|
PMAP_LOCK(pvo->pvo_pmap);
|
|
if (!(pvo->pvo_vaddr & PVO_DEAD))
|
|
ret = moea64_pte_synch(pvo);
|
|
PMAP_UNLOCK(pvo->pvo_pmap);
|
|
|
|
if (ret > 0) {
|
|
atomic_set_32(&m->md.mdpg_attrs,
|
|
ret & (LPTE_CHG | LPTE_REF));
|
|
if (ret & ptebit) {
|
|
rv = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
PV_PAGE_UNLOCK(m);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
static u_int
|
|
moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
|
|
{
|
|
u_int count;
|
|
struct pvo_entry *pvo;
|
|
int64_t ret;
|
|
|
|
/*
|
|
* Sync so that any pending REF/CHG bits are flushed to the PTEs (so
|
|
* we can reset the right ones).
|
|
*/
|
|
powerpc_sync();
|
|
|
|
/*
|
|
* For each pvo entry, clear the pte's ptebit.
|
|
*/
|
|
count = 0;
|
|
PV_PAGE_LOCK(m);
|
|
LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
|
|
if (PVO_IS_SP(pvo)) {
|
|
if ((ret = moea64_sp_clear(pvo, m, ptebit)) != -1) {
|
|
count += ret;
|
|
continue;
|
|
}
|
|
}
|
|
ret = 0;
|
|
|
|
PMAP_LOCK(pvo->pvo_pmap);
|
|
if (!(pvo->pvo_vaddr & PVO_DEAD))
|
|
ret = moea64_pte_clear(pvo, ptebit);
|
|
PMAP_UNLOCK(pvo->pvo_pmap);
|
|
|
|
if (ret > 0 && (ret & ptebit))
|
|
count++;
|
|
}
|
|
atomic_clear_32(&m->md.mdpg_attrs, ptebit);
|
|
PV_PAGE_UNLOCK(m);
|
|
|
|
return (count);
|
|
}
|
|
|
|
boolean_t
|
|
moea64_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
|
|
{
|
|
struct pvo_entry *pvo, key;
|
|
vm_offset_t ppa;
|
|
int error = 0;
|
|
|
|
if (hw_direct_map && mem_valid(pa, size) == 0)
|
|
return (0);
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
ppa = pa & ~ADDR_POFF;
|
|
key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
|
|
for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
|
|
ppa < pa + size; ppa += PAGE_SIZE,
|
|
pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
|
|
if (pvo == NULL || PVO_PADDR(pvo) != ppa) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
}
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Map a set of physical memory pages into the kernel virtual
|
|
* address space. Return a pointer to where it is mapped. This
|
|
* routine is intended to be used for mapping device memory,
|
|
* NOT real memory.
|
|
*/
|
|
void *
|
|
moea64_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
|
|
{
|
|
vm_offset_t va, tmpva, ppa, offset;
|
|
|
|
ppa = trunc_page(pa);
|
|
offset = pa & PAGE_MASK;
|
|
size = roundup2(offset + size, PAGE_SIZE);
|
|
|
|
va = kva_alloc(size);
|
|
|
|
if (!va)
|
|
panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
|
|
|
|
for (tmpva = va; size > 0;) {
|
|
moea64_kenter_attr(tmpva, ppa, ma);
|
|
size -= PAGE_SIZE;
|
|
tmpva += PAGE_SIZE;
|
|
ppa += PAGE_SIZE;
|
|
}
|
|
|
|
return ((void *)(va + offset));
|
|
}
|
|
|
|
void *
|
|
moea64_mapdev(vm_paddr_t pa, vm_size_t size)
|
|
{
|
|
|
|
return moea64_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT);
|
|
}
|
|
|
|
void
|
|
moea64_unmapdev(vm_offset_t va, vm_size_t size)
|
|
{
|
|
vm_offset_t base, offset;
|
|
|
|
base = trunc_page(va);
|
|
offset = va & PAGE_MASK;
|
|
size = roundup2(offset + size, PAGE_SIZE);
|
|
|
|
moea64_qremove(base, atop(size));
|
|
kva_free(base, size);
|
|
}
|
|
|
|
void
|
|
moea64_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_offset_t lim;
|
|
vm_paddr_t pa;
|
|
vm_size_t len;
|
|
|
|
if (__predict_false(pm == NULL))
|
|
pm = &curthread->td_proc->p_vmspace->vm_pmap;
|
|
|
|
PMAP_LOCK(pm);
|
|
while (sz > 0) {
|
|
lim = round_page(va+1);
|
|
len = MIN(lim - va, sz);
|
|
pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
|
|
if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
|
|
pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
|
|
moea64_syncicache(pm, va, pa, len);
|
|
}
|
|
va += len;
|
|
sz -= len;
|
|
}
|
|
PMAP_UNLOCK(pm);
|
|
}
|
|
|
|
void
|
|
moea64_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
|
|
{
|
|
|
|
*va = (void *)(uintptr_t)pa;
|
|
}
|
|
|
|
extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
|
|
|
|
void
|
|
moea64_scan_init()
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_offset_t va;
|
|
int i;
|
|
|
|
if (!do_minidump) {
|
|
/* Initialize phys. segments for dumpsys(). */
|
|
memset(&dump_map, 0, sizeof(dump_map));
|
|
mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz);
|
|
for (i = 0; i < pregions_sz; i++) {
|
|
dump_map[i].pa_start = pregions[i].mr_start;
|
|
dump_map[i].pa_size = pregions[i].mr_size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Virtual segments for minidumps: */
|
|
memset(&dump_map, 0, sizeof(dump_map));
|
|
|
|
/* 1st: kernel .data and .bss. */
|
|
dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
|
|
dump_map[0].pa_size = round_page((uintptr_t)_end) -
|
|
dump_map[0].pa_start;
|
|
|
|
/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
|
|
dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
|
|
dump_map[1].pa_size = round_page(msgbufp->msg_size);
|
|
|
|
/* 3rd: kernel VM. */
|
|
va = dump_map[1].pa_start + dump_map[1].pa_size;
|
|
/* Find start of next chunk (from va). */
|
|
while (va < virtual_end) {
|
|
/* Don't dump the buffer cache. */
|
|
if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
|
|
va = kmi.buffer_eva;
|
|
continue;
|
|
}
|
|
pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
|
|
if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
|
|
break;
|
|
va += PAGE_SIZE;
|
|
}
|
|
if (va < virtual_end) {
|
|
dump_map[2].pa_start = va;
|
|
va += PAGE_SIZE;
|
|
/* Find last page in chunk. */
|
|
while (va < virtual_end) {
|
|
/* Don't run into the buffer cache. */
|
|
if (va == kmi.buffer_sva)
|
|
break;
|
|
pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
|
|
if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
|
|
break;
|
|
va += PAGE_SIZE;
|
|
}
|
|
dump_map[2].pa_size = va - dump_map[2].pa_start;
|
|
}
|
|
}
|
|
|
|
#ifdef __powerpc64__
|
|
|
|
static size_t
|
|
moea64_scan_pmap(struct bitset *dump_bitset)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_paddr_t pa, pa_end;
|
|
vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
|
|
uint64_t lpsize;
|
|
|
|
lpsize = moea64_large_page_size;
|
|
kstart = trunc_page((vm_offset_t)_etext);
|
|
kend = round_page((vm_offset_t)_end);
|
|
kstart_lp = kstart & ~moea64_large_page_mask;
|
|
kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
|
|
|
|
CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
|
|
"kstart_lp=0x%016lx, kend_lp=0x%016lx",
|
|
kstart, kend, kstart_lp, kend_lp);
|
|
|
|
PMAP_LOCK(kernel_pmap);
|
|
RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
|
|
va = pvo->pvo_vaddr;
|
|
|
|
if (va & PVO_DEAD)
|
|
continue;
|
|
|
|
/* Skip DMAP (except kernel area) */
|
|
if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
|
|
if (va & PVO_LARGE) {
|
|
pgva = va & ~moea64_large_page_mask;
|
|
if (pgva < kstart_lp || pgva >= kend_lp)
|
|
continue;
|
|
} else {
|
|
pgva = trunc_page(va);
|
|
if (pgva < kstart || pgva >= kend)
|
|
continue;
|
|
}
|
|
}
|
|
|
|
pa = PVO_PADDR(pvo);
|
|
|
|
if (va & PVO_LARGE) {
|
|
pa_end = pa + lpsize;
|
|
for (; pa < pa_end; pa += PAGE_SIZE) {
|
|
if (vm_phys_is_dumpable(pa))
|
|
vm_page_dump_add(dump_bitset, pa);
|
|
}
|
|
} else {
|
|
if (vm_phys_is_dumpable(pa))
|
|
vm_page_dump_add(dump_bitset, pa);
|
|
}
|
|
}
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
|
|
return (sizeof(struct lpte) * moea64_pteg_count * 8);
|
|
}
|
|
|
|
static struct dump_context dump_ctx;
|
|
|
|
static void *
|
|
moea64_dump_pmap_init(unsigned blkpgs)
|
|
{
|
|
dump_ctx.ptex = 0;
|
|
dump_ctx.ptex_end = moea64_pteg_count * 8;
|
|
dump_ctx.blksz = blkpgs * PAGE_SIZE;
|
|
return (&dump_ctx);
|
|
}
|
|
|
|
#else
|
|
|
|
static size_t
|
|
moea64_scan_pmap(struct bitset *dump_bitset __unused)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static void *
|
|
moea64_dump_pmap_init(unsigned blkpgs)
|
|
{
|
|
return (NULL);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef __powerpc64__
|
|
static void
|
|
moea64_map_range(vm_offset_t va, vm_paddr_t pa, vm_size_t npages)
|
|
{
|
|
|
|
for (; npages > 0; --npages) {
|
|
if (moea64_large_page_size != 0 &&
|
|
(pa & moea64_large_page_mask) == 0 &&
|
|
(va & moea64_large_page_mask) == 0 &&
|
|
npages >= (moea64_large_page_size >> PAGE_SHIFT)) {
|
|
PMAP_LOCK(kernel_pmap);
|
|
moea64_kenter_large(va, pa, 0, 0);
|
|
PMAP_UNLOCK(kernel_pmap);
|
|
pa += moea64_large_page_size;
|
|
va += moea64_large_page_size;
|
|
npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1;
|
|
} else {
|
|
moea64_kenter(va, pa);
|
|
pa += PAGE_SIZE;
|
|
va += PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
moea64_page_array_startup(long pages)
|
|
{
|
|
long dom_pages[MAXMEMDOM];
|
|
vm_paddr_t pa;
|
|
vm_offset_t va, vm_page_base;
|
|
vm_size_t needed, size;
|
|
long page;
|
|
int domain;
|
|
int i;
|
|
|
|
vm_page_base = 0xd000000000000000ULL;
|
|
|
|
/* Short-circuit single-domain systems. */
|
|
if (vm_ndomains == 1) {
|
|
size = round_page(pages * sizeof(struct vm_page));
|
|
pa = vm_phys_early_alloc(0, size);
|
|
vm_page_base = moea64_map(&vm_page_base,
|
|
pa, pa + size, VM_PROT_READ | VM_PROT_WRITE);
|
|
vm_page_array_size = pages;
|
|
vm_page_array = (vm_page_t)vm_page_base;
|
|
return;
|
|
}
|
|
|
|
page = 0;
|
|
for (i = 0; i < MAXMEMDOM; i++)
|
|
dom_pages[i] = 0;
|
|
|
|
/* Now get the number of pages required per domain. */
|
|
for (i = 0; i < vm_phys_nsegs; i++) {
|
|
domain = vm_phys_segs[i].domain;
|
|
KASSERT(domain < MAXMEMDOM,
|
|
("Invalid vm_phys_segs NUMA domain %d!\n", domain));
|
|
/* Get size of vm_page_array needed for this segment. */
|
|
size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start);
|
|
dom_pages[domain] += size;
|
|
}
|
|
|
|
for (i = 0; phys_avail[i + 1] != 0; i+= 2) {
|
|
domain = vm_phys_domain(phys_avail[i]);
|
|
KASSERT(domain < MAXMEMDOM,
|
|
("Invalid phys_avail NUMA domain %d!\n", domain));
|
|
size = btoc(phys_avail[i + 1] - phys_avail[i]);
|
|
dom_pages[domain] += size;
|
|
}
|
|
|
|
/*
|
|
* Map in chunks that can get us all 16MB pages. There will be some
|
|
* overlap between domains, but that's acceptable for now.
|
|
*/
|
|
vm_page_array_size = 0;
|
|
va = vm_page_base;
|
|
for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) {
|
|
if (dom_pages[i] == 0)
|
|
continue;
|
|
size = ulmin(pages - vm_page_array_size, dom_pages[i]);
|
|
size = round_page(size * sizeof(struct vm_page));
|
|
needed = size;
|
|
size = roundup2(size, moea64_large_page_size);
|
|
pa = vm_phys_early_alloc(i, size);
|
|
vm_page_array_size += size / sizeof(struct vm_page);
|
|
moea64_map_range(va, pa, size >> PAGE_SHIFT);
|
|
/* Scoot up domain 0, to reduce the domain page overlap. */
|
|
if (i == 0)
|
|
vm_page_base += size - needed;
|
|
va += size;
|
|
}
|
|
vm_page_array = (vm_page_t)vm_page_base;
|
|
vm_page_array_size = pages;
|
|
}
|
|
#endif
|
|
|
|
static int64_t
|
|
moea64_null_method(void)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
static int64_t moea64_pte_replace_default(struct pvo_entry *pvo, int flags)
|
|
{
|
|
int64_t refchg;
|
|
|
|
refchg = moea64_pte_unset(pvo);
|
|
moea64_pte_insert(pvo);
|
|
|
|
return (refchg);
|
|
}
|
|
|
|
struct moea64_funcs *moea64_ops;
|
|
|
|
#define DEFINE_OEA64_IFUNC(ret, func, args, def) \
|
|
DEFINE_IFUNC(, ret, moea64_##func, args) { \
|
|
moea64_##func##_t f; \
|
|
if (moea64_ops == NULL) \
|
|
return ((moea64_##func##_t)def); \
|
|
f = moea64_ops->func; \
|
|
return (f != NULL ? f : (moea64_##func##_t)def);\
|
|
}
|
|
|
|
void
|
|
moea64_install(void)
|
|
{
|
|
#ifdef __powerpc64__
|
|
if (hw_direct_map == -1) {
|
|
moea64_probe_large_page();
|
|
|
|
/* Use a direct map if we have large page support */
|
|
if (moea64_large_page_size > 0)
|
|
hw_direct_map = 1;
|
|
else
|
|
hw_direct_map = 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Default to non-DMAP, and switch over to DMAP functions once we know
|
|
* we have DMAP.
|
|
*/
|
|
if (hw_direct_map) {
|
|
moea64_methods.quick_enter_page = moea64_quick_enter_page_dmap;
|
|
moea64_methods.quick_remove_page = NULL;
|
|
moea64_methods.copy_page = moea64_copy_page_dmap;
|
|
moea64_methods.zero_page = moea64_zero_page_dmap;
|
|
moea64_methods.copy_pages = moea64_copy_pages_dmap;
|
|
}
|
|
}
|
|
|
|
DEFINE_OEA64_IFUNC(int64_t, pte_replace, (struct pvo_entry *, int),
|
|
moea64_pte_replace_default)
|
|
DEFINE_OEA64_IFUNC(int64_t, pte_insert, (struct pvo_entry *), moea64_null_method)
|
|
DEFINE_OEA64_IFUNC(int64_t, pte_unset, (struct pvo_entry *), moea64_null_method)
|
|
DEFINE_OEA64_IFUNC(int64_t, pte_clear, (struct pvo_entry *, uint64_t),
|
|
moea64_null_method)
|
|
DEFINE_OEA64_IFUNC(int64_t, pte_synch, (struct pvo_entry *), moea64_null_method)
|
|
DEFINE_OEA64_IFUNC(int64_t, pte_insert_sp, (struct pvo_entry *), moea64_null_method)
|
|
DEFINE_OEA64_IFUNC(int64_t, pte_unset_sp, (struct pvo_entry *), moea64_null_method)
|
|
DEFINE_OEA64_IFUNC(int64_t, pte_replace_sp, (struct pvo_entry *), moea64_null_method)
|
|
|
|
/* Superpage functions */
|
|
|
|
/* MMU interface */
|
|
|
|
static bool
|
|
moea64_ps_enabled(pmap_t pmap)
|
|
{
|
|
return (superpages_enabled);
|
|
}
|
|
|
|
static void
|
|
moea64_align_superpage(vm_object_t object, vm_ooffset_t offset,
|
|
vm_offset_t *addr, vm_size_t size)
|
|
{
|
|
vm_offset_t sp_offset;
|
|
|
|
if (size < HPT_SP_SIZE)
|
|
return;
|
|
|
|
CTR4(KTR_PMAP, "%s: offs=%#jx, addr=%p, size=%#jx",
|
|
__func__, (uintmax_t)offset, addr, (uintmax_t)size);
|
|
|
|
if (object != NULL && (object->flags & OBJ_COLORED) != 0)
|
|
offset += ptoa(object->pg_color);
|
|
sp_offset = offset & HPT_SP_MASK;
|
|
if (size - ((HPT_SP_SIZE - sp_offset) & HPT_SP_MASK) < HPT_SP_SIZE ||
|
|
(*addr & HPT_SP_MASK) == sp_offset)
|
|
return;
|
|
if ((*addr & HPT_SP_MASK) < sp_offset)
|
|
*addr = (*addr & ~HPT_SP_MASK) + sp_offset;
|
|
else
|
|
*addr = ((*addr + HPT_SP_MASK) & ~HPT_SP_MASK) + sp_offset;
|
|
}
|
|
|
|
/* Helpers */
|
|
|
|
static __inline void
|
|
moea64_pvo_cleanup(struct pvo_dlist *tofree)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
|
|
/* clean up */
|
|
while (!SLIST_EMPTY(tofree)) {
|
|
pvo = SLIST_FIRST(tofree);
|
|
SLIST_REMOVE_HEAD(tofree, pvo_dlink);
|
|
if (pvo->pvo_vaddr & PVO_DEAD)
|
|
moea64_pvo_remove_from_page(pvo);
|
|
free_pvo_entry(pvo);
|
|
}
|
|
}
|
|
|
|
static __inline uint16_t
|
|
pvo_to_vmpage_flags(struct pvo_entry *pvo)
|
|
{
|
|
uint16_t flags;
|
|
|
|
flags = 0;
|
|
if ((pvo->pvo_pte.prot & VM_PROT_WRITE) != 0)
|
|
flags |= PGA_WRITEABLE;
|
|
if ((pvo->pvo_pte.prot & VM_PROT_EXECUTE) != 0)
|
|
flags |= PGA_EXECUTABLE;
|
|
|
|
return (flags);
|
|
}
|
|
|
|
/*
|
|
* Check if the given pvo and its superpage are in sva-eva range.
|
|
*/
|
|
static __inline bool
|
|
moea64_sp_pvo_in_range(struct pvo_entry *pvo, vm_offset_t sva, vm_offset_t eva)
|
|
{
|
|
vm_offset_t spva;
|
|
|
|
spva = PVO_VADDR(pvo) & ~HPT_SP_MASK;
|
|
if (spva >= sva && spva + HPT_SP_SIZE <= eva) {
|
|
/*
|
|
* Because this function is intended to be called from loops
|
|
* that iterate over ordered pvo entries, if the condition
|
|
* above is true then the pvo must be the first of its
|
|
* superpage.
|
|
*/
|
|
KASSERT(PVO_VADDR(pvo) == spva,
|
|
("%s: unexpected unaligned superpage pvo", __func__));
|
|
return (true);
|
|
}
|
|
return (false);
|
|
}
|
|
|
|
/*
|
|
* Update vm about the REF/CHG bits if the superpage is managed and
|
|
* has (or had) write access.
|
|
*/
|
|
static void
|
|
moea64_sp_refchg_process(struct pvo_entry *sp, vm_page_t m,
|
|
int64_t sp_refchg, vm_prot_t prot)
|
|
{
|
|
vm_page_t m_end;
|
|
int64_t refchg;
|
|
|
|
if ((sp->pvo_vaddr & PVO_MANAGED) != 0 && (prot & VM_PROT_WRITE) != 0) {
|
|
for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) {
|
|
refchg = sp_refchg |
|
|
atomic_readandclear_32(&m->md.mdpg_attrs);
|
|
if (refchg & LPTE_CHG)
|
|
vm_page_dirty(m);
|
|
if (refchg & LPTE_REF)
|
|
vm_page_aflag_set(m, PGA_REFERENCED);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Superpage ops */
|
|
|
|
static int
|
|
moea64_sp_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
|
|
vm_prot_t prot, u_int flags, int8_t psind)
|
|
{
|
|
struct pvo_entry *pvo, **pvos;
|
|
struct pvo_head *pvo_head;
|
|
vm_offset_t sva;
|
|
vm_page_t sm;
|
|
vm_paddr_t pa, spa;
|
|
bool sync;
|
|
struct pvo_dlist tofree;
|
|
int error, i;
|
|
uint16_t aflags;
|
|
|
|
KASSERT((va & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned",
|
|
__func__, (uintmax_t)va));
|
|
KASSERT(psind == 1, ("%s: invalid psind: %d", __func__, psind));
|
|
KASSERT(m->psind == 1, ("%s: invalid m->psind: %d",
|
|
__func__, m->psind));
|
|
KASSERT(pmap != kernel_pmap,
|
|
("%s: function called with kernel pmap", __func__));
|
|
|
|
CTR5(KTR_PMAP, "%s: va=%#jx, pa=%#jx, prot=%#x, flags=%#x, psind=1",
|
|
__func__, (uintmax_t)va, (uintmax_t)VM_PAGE_TO_PHYS(m),
|
|
prot, flags);
|
|
|
|
SLIST_INIT(&tofree);
|
|
|
|
sva = va;
|
|
sm = m;
|
|
spa = pa = VM_PAGE_TO_PHYS(sm);
|
|
|
|
/* Try to allocate all PVOs first, to make failure handling easier. */
|
|
pvos = malloc(HPT_SP_PAGES * sizeof(struct pvo_entry *), M_TEMP,
|
|
M_NOWAIT);
|
|
if (pvos == NULL) {
|
|
CTR1(KTR_PMAP, "%s: failed to alloc pvo array", __func__);
|
|
return (KERN_RESOURCE_SHORTAGE);
|
|
}
|
|
|
|
for (i = 0; i < HPT_SP_PAGES; i++) {
|
|
pvos[i] = alloc_pvo_entry(0);
|
|
if (pvos[i] == NULL) {
|
|
CTR1(KTR_PMAP, "%s: failed to alloc pvo", __func__);
|
|
for (i = i - 1; i >= 0; i--)
|
|
free_pvo_entry(pvos[i]);
|
|
free(pvos, M_TEMP);
|
|
return (KERN_RESOURCE_SHORTAGE);
|
|
}
|
|
}
|
|
|
|
SP_PV_LOCK_ALIGNED(spa);
|
|
PMAP_LOCK(pmap);
|
|
|
|
/* Note: moea64_remove_locked() also clears cached REF/CHG bits. */
|
|
moea64_remove_locked(pmap, va, va + HPT_SP_SIZE, &tofree);
|
|
|
|
/* Enter pages */
|
|
for (i = 0; i < HPT_SP_PAGES;
|
|
i++, va += PAGE_SIZE, pa += PAGE_SIZE, m++) {
|
|
pvo = pvos[i];
|
|
|
|
pvo->pvo_pte.prot = prot;
|
|
pvo->pvo_pte.pa = (pa & ~HPT_SP_MASK) | LPTE_LP_4K_16M |
|
|
moea64_calc_wimg(pa, pmap_page_get_memattr(m));
|
|
|
|
if ((flags & PMAP_ENTER_WIRED) != 0)
|
|
pvo->pvo_vaddr |= PVO_WIRED;
|
|
pvo->pvo_vaddr |= PVO_LARGE;
|
|
|
|
if ((m->oflags & VPO_UNMANAGED) != 0)
|
|
pvo_head = NULL;
|
|
else {
|
|
pvo_head = &m->md.mdpg_pvoh;
|
|
pvo->pvo_vaddr |= PVO_MANAGED;
|
|
}
|
|
|
|
init_pvo_entry(pvo, pmap, va);
|
|
|
|
error = moea64_pvo_enter(pvo, pvo_head, NULL);
|
|
/*
|
|
* All superpage PVOs were previously removed, so no errors
|
|
* should occur while inserting the new ones.
|
|
*/
|
|
KASSERT(error == 0, ("%s: unexpected error "
|
|
"when inserting superpage PVO: %d",
|
|
__func__, error));
|
|
}
|
|
|
|
PMAP_UNLOCK(pmap);
|
|
SP_PV_UNLOCK_ALIGNED(spa);
|
|
|
|
sync = (sm->a.flags & PGA_EXECUTABLE) == 0;
|
|
/* Note: moea64_pvo_cleanup() also clears page prot. flags. */
|
|
moea64_pvo_cleanup(&tofree);
|
|
pvo = pvos[0];
|
|
|
|
/* Set vm page flags */
|
|
aflags = pvo_to_vmpage_flags(pvo);
|
|
if (aflags != 0)
|
|
for (m = sm; m < &sm[HPT_SP_PAGES]; m++)
|
|
vm_page_aflag_set(m, aflags);
|
|
|
|
/*
|
|
* Flush the page from the instruction cache if this page is
|
|
* mapped executable and cacheable.
|
|
*/
|
|
if (sync && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
|
|
moea64_syncicache(pmap, sva, spa, HPT_SP_SIZE);
|
|
|
|
atomic_add_long(&sp_mappings, 1);
|
|
CTR3(KTR_PMAP, "%s: SP success for va %#jx in pmap %p",
|
|
__func__, (uintmax_t)sva, pmap);
|
|
|
|
free(pvos, M_TEMP);
|
|
return (KERN_SUCCESS);
|
|
}
|
|
|
|
static void
|
|
moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m)
|
|
{
|
|
struct pvo_entry *first, *pvo;
|
|
vm_paddr_t pa, pa_end;
|
|
vm_offset_t sva, va_end;
|
|
int64_t sp_refchg;
|
|
|
|
/* This CTR may generate a lot of output. */
|
|
/* CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)va); */
|
|
|
|
va &= ~HPT_SP_MASK;
|
|
sva = va;
|
|
/* Get superpage */
|
|
pa = VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK;
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
|
|
PMAP_LOCK(pmap);
|
|
|
|
/*
|
|
* Check if all pages meet promotion criteria.
|
|
*
|
|
* XXX In some cases the loop below may be executed for each or most
|
|
* of the entered pages of a superpage, which can be expensive
|
|
* (although it was not profiled) and need some optimization.
|
|
*
|
|
* Some cases where this seems to happen are:
|
|
* - When a superpage is first entered read-only and later becomes
|
|
* read-write.
|
|
* - When some of the superpage's virtual addresses map to previously
|
|
* wired/cached pages while others map to pages allocated from a
|
|
* different physical address range. A common scenario where this
|
|
* happens is when mmap'ing a file that is already present in FS
|
|
* block cache and doesn't fill a superpage.
|
|
*/
|
|
first = pvo = moea64_pvo_find_va(pmap, sva);
|
|
for (pa_end = pa + HPT_SP_SIZE;
|
|
pa < pa_end; pa += PAGE_SIZE, va += PAGE_SIZE) {
|
|
if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
|
|
CTR3(KTR_PMAP,
|
|
"%s: NULL or dead PVO: pmap=%p, va=%#jx",
|
|
__func__, pmap, (uintmax_t)va);
|
|
goto error;
|
|
}
|
|
if (PVO_PADDR(pvo) != pa) {
|
|
CTR5(KTR_PMAP, "%s: PAs don't match: "
|
|
"pmap=%p, va=%#jx, pvo_pa=%#jx, exp_pa=%#jx",
|
|
__func__, pmap, (uintmax_t)va,
|
|
(uintmax_t)PVO_PADDR(pvo), (uintmax_t)pa);
|
|
atomic_add_long(&sp_p_fail_pa, 1);
|
|
goto error;
|
|
}
|
|
if ((first->pvo_vaddr & PVO_FLAGS_PROMOTE) !=
|
|
(pvo->pvo_vaddr & PVO_FLAGS_PROMOTE)) {
|
|
CTR5(KTR_PMAP, "%s: PVO flags don't match: "
|
|
"pmap=%p, va=%#jx, pvo_flags=%#jx, exp_flags=%#jx",
|
|
__func__, pmap, (uintmax_t)va,
|
|
(uintmax_t)(pvo->pvo_vaddr & PVO_FLAGS_PROMOTE),
|
|
(uintmax_t)(first->pvo_vaddr & PVO_FLAGS_PROMOTE));
|
|
atomic_add_long(&sp_p_fail_flags, 1);
|
|
goto error;
|
|
}
|
|
if (first->pvo_pte.prot != pvo->pvo_pte.prot) {
|
|
CTR5(KTR_PMAP, "%s: PVO protections don't match: "
|
|
"pmap=%p, va=%#jx, pvo_prot=%#x, exp_prot=%#x",
|
|
__func__, pmap, (uintmax_t)va,
|
|
pvo->pvo_pte.prot, first->pvo_pte.prot);
|
|
atomic_add_long(&sp_p_fail_prot, 1);
|
|
goto error;
|
|
}
|
|
if ((first->pvo_pte.pa & LPTE_WIMG) !=
|
|
(pvo->pvo_pte.pa & LPTE_WIMG)) {
|
|
CTR5(KTR_PMAP, "%s: WIMG bits don't match: "
|
|
"pmap=%p, va=%#jx, pvo_wimg=%#jx, exp_wimg=%#jx",
|
|
__func__, pmap, (uintmax_t)va,
|
|
(uintmax_t)(pvo->pvo_pte.pa & LPTE_WIMG),
|
|
(uintmax_t)(first->pvo_pte.pa & LPTE_WIMG));
|
|
atomic_add_long(&sp_p_fail_wimg, 1);
|
|
goto error;
|
|
}
|
|
|
|
pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo);
|
|
}
|
|
|
|
/* All OK, promote. */
|
|
|
|
/*
|
|
* Handle superpage REF/CHG bits. If REF or CHG is set in
|
|
* any page, then it must be set in the superpage.
|
|
*
|
|
* Instead of querying each page, we take advantage of two facts:
|
|
* 1- If a page is being promoted, it was referenced.
|
|
* 2- If promoted pages are writable, they were modified.
|
|
*/
|
|
sp_refchg = LPTE_REF |
|
|
((first->pvo_pte.prot & VM_PROT_WRITE) != 0 ? LPTE_CHG : 0);
|
|
|
|
/* Promote pages */
|
|
|
|
for (pvo = first, va_end = PVO_VADDR(pvo) + HPT_SP_SIZE;
|
|
pvo != NULL && PVO_VADDR(pvo) < va_end;
|
|
pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
|
|
pvo->pvo_pte.pa &= ADDR_POFF | ~HPT_SP_MASK;
|
|
pvo->pvo_pte.pa |= LPTE_LP_4K_16M;
|
|
pvo->pvo_vaddr |= PVO_LARGE;
|
|
}
|
|
moea64_pte_replace_sp(first);
|
|
|
|
/* Send REF/CHG bits to VM */
|
|
moea64_sp_refchg_process(first, m, sp_refchg, first->pvo_pte.prot);
|
|
|
|
/* Use first page to cache REF/CHG bits */
|
|
atomic_set_32(&m->md.mdpg_attrs, sp_refchg | MDPG_ATTR_SP);
|
|
|
|
PMAP_UNLOCK(pmap);
|
|
|
|
atomic_add_long(&sp_mappings, 1);
|
|
atomic_add_long(&sp_promotions, 1);
|
|
CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
|
|
__func__, (uintmax_t)sva, pmap);
|
|
return;
|
|
|
|
error:
|
|
atomic_add_long(&sp_p_failures, 1);
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
static void
|
|
moea64_sp_demote_aligned(struct pvo_entry *sp)
|
|
{
|
|
struct pvo_entry *pvo;
|
|
vm_offset_t va, va_end;
|
|
vm_paddr_t pa;
|
|
vm_page_t m;
|
|
pmap_t pmap;
|
|
int64_t refchg;
|
|
|
|
CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
|
|
|
|
pmap = sp->pvo_pmap;
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
|
|
pvo = sp;
|
|
|
|
/* Demote pages */
|
|
|
|
va = PVO_VADDR(pvo);
|
|
pa = PVO_PADDR(pvo);
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
|
|
for (pvo = sp, va_end = va + HPT_SP_SIZE;
|
|
pvo != NULL && PVO_VADDR(pvo) < va_end;
|
|
pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo),
|
|
va += PAGE_SIZE, pa += PAGE_SIZE) {
|
|
KASSERT(pvo && PVO_VADDR(pvo) == va,
|
|
("%s: missing PVO for va %#jx", __func__, (uintmax_t)va));
|
|
|
|
pvo->pvo_vaddr &= ~PVO_LARGE;
|
|
pvo->pvo_pte.pa &= ~LPTE_RPGN;
|
|
pvo->pvo_pte.pa |= pa;
|
|
|
|
}
|
|
refchg = moea64_pte_replace_sp(sp);
|
|
|
|
/*
|
|
* Clear SP flag
|
|
*
|
|
* XXX It is possible that another pmap has this page mapped as
|
|
* part of a superpage, but as the SP flag is used only for
|
|
* caching SP REF/CHG bits, that will be queried if not set
|
|
* in cache, it should be ok to clear it here.
|
|
*/
|
|
atomic_clear_32(&m->md.mdpg_attrs, MDPG_ATTR_SP);
|
|
|
|
/*
|
|
* Handle superpage REF/CHG bits. A bit set in the superpage
|
|
* means all pages should consider it set.
|
|
*/
|
|
moea64_sp_refchg_process(sp, m, refchg, sp->pvo_pte.prot);
|
|
|
|
atomic_add_long(&sp_demotions, 1);
|
|
CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
|
|
__func__, (uintmax_t)PVO_VADDR(sp), pmap);
|
|
}
|
|
|
|
static void
|
|
moea64_sp_demote(struct pvo_entry *pvo)
|
|
{
|
|
PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
|
|
|
|
if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
|
|
pvo = moea64_pvo_find_va(pvo->pvo_pmap,
|
|
PVO_VADDR(pvo) & ~HPT_SP_MASK);
|
|
KASSERT(pvo != NULL, ("%s: missing PVO for va %#jx",
|
|
__func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
|
|
}
|
|
moea64_sp_demote_aligned(pvo);
|
|
}
|
|
|
|
static struct pvo_entry *
|
|
moea64_sp_unwire(struct pvo_entry *sp)
|
|
{
|
|
struct pvo_entry *pvo, *prev;
|
|
vm_offset_t eva;
|
|
pmap_t pm;
|
|
int64_t ret, refchg;
|
|
|
|
CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
|
|
|
|
pm = sp->pvo_pmap;
|
|
PMAP_LOCK_ASSERT(pm, MA_OWNED);
|
|
|
|
eva = PVO_VADDR(sp) + HPT_SP_SIZE;
|
|
refchg = 0;
|
|
for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
|
|
prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
|
|
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
|
|
panic("%s: pvo %p is missing PVO_WIRED",
|
|
__func__, pvo);
|
|
pvo->pvo_vaddr &= ~PVO_WIRED;
|
|
|
|
ret = moea64_pte_replace(pvo, 0 /* No invalidation */);
|
|
if (ret < 0)
|
|
refchg |= LPTE_CHG;
|
|
else
|
|
refchg |= ret;
|
|
|
|
pm->pm_stats.wired_count--;
|
|
}
|
|
|
|
/* Send REF/CHG bits to VM */
|
|
moea64_sp_refchg_process(sp, PHYS_TO_VM_PAGE(PVO_PADDR(sp)),
|
|
refchg, sp->pvo_pte.prot);
|
|
|
|
return (prev);
|
|
}
|
|
|
|
static struct pvo_entry *
|
|
moea64_sp_protect(struct pvo_entry *sp, vm_prot_t prot)
|
|
{
|
|
struct pvo_entry *pvo, *prev;
|
|
vm_offset_t eva;
|
|
pmap_t pm;
|
|
vm_page_t m, m_end;
|
|
int64_t ret, refchg;
|
|
vm_prot_t oldprot;
|
|
|
|
CTR3(KTR_PMAP, "%s: va=%#jx, prot=%x",
|
|
__func__, (uintmax_t)PVO_VADDR(sp), prot);
|
|
|
|
pm = sp->pvo_pmap;
|
|
PMAP_LOCK_ASSERT(pm, MA_OWNED);
|
|
|
|
oldprot = sp->pvo_pte.prot;
|
|
m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
|
|
KASSERT(m != NULL, ("%s: missing vm page for pa %#jx",
|
|
__func__, (uintmax_t)PVO_PADDR(sp)));
|
|
eva = PVO_VADDR(sp) + HPT_SP_SIZE;
|
|
refchg = 0;
|
|
|
|
for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
|
|
prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
|
|
pvo->pvo_pte.prot = prot;
|
|
/*
|
|
* If the PVO is in the page table, update mapping
|
|
*/
|
|
ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
|
|
if (ret < 0)
|
|
refchg |= LPTE_CHG;
|
|
else
|
|
refchg |= ret;
|
|
}
|
|
|
|
/* Send REF/CHG bits to VM */
|
|
moea64_sp_refchg_process(sp, m, refchg, oldprot);
|
|
|
|
/* Handle pages that became executable */
|
|
if ((m->a.flags & PGA_EXECUTABLE) == 0 &&
|
|
(sp->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
|
|
if ((m->oflags & VPO_UNMANAGED) == 0)
|
|
for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++)
|
|
vm_page_aflag_set(m, PGA_EXECUTABLE);
|
|
moea64_syncicache(pm, PVO_VADDR(sp), PVO_PADDR(sp),
|
|
HPT_SP_SIZE);
|
|
}
|
|
|
|
return (prev);
|
|
}
|
|
|
|
static struct pvo_entry *
|
|
moea64_sp_remove(struct pvo_entry *sp, struct pvo_dlist *tofree)
|
|
{
|
|
struct pvo_entry *pvo, *tpvo;
|
|
vm_offset_t eva;
|
|
pmap_t pm;
|
|
|
|
CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
|
|
|
|
pm = sp->pvo_pmap;
|
|
PMAP_LOCK_ASSERT(pm, MA_OWNED);
|
|
|
|
eva = PVO_VADDR(sp) + HPT_SP_SIZE;
|
|
for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
|
|
tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
|
|
|
|
/*
|
|
* For locking reasons, remove this from the page table and
|
|
* pmap, but save delinking from the vm_page for a second
|
|
* pass
|
|
*/
|
|
moea64_pvo_remove_from_pmap(pvo);
|
|
SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
|
|
}
|
|
|
|
/*
|
|
* Clear SP bit
|
|
*
|
|
* XXX See comment in moea64_sp_demote_aligned() for why it's
|
|
* ok to always clear the SP bit on remove/demote.
|
|
*/
|
|
atomic_clear_32(&PHYS_TO_VM_PAGE(PVO_PADDR(sp))->md.mdpg_attrs,
|
|
MDPG_ATTR_SP);
|
|
|
|
return (tpvo);
|
|
}
|
|
|
|
static int64_t
|
|
moea64_sp_query_locked(struct pvo_entry *pvo, uint64_t ptebit)
|
|
{
|
|
int64_t refchg, ret;
|
|
vm_offset_t eva;
|
|
vm_page_t m;
|
|
pmap_t pmap;
|
|
struct pvo_entry *sp;
|
|
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
|
|
|
|
/* Get first SP PVO */
|
|
if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
|
|
sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
|
|
KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
|
|
__func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
|
|
} else
|
|
sp = pvo;
|
|
eva = PVO_VADDR(sp) + HPT_SP_SIZE;
|
|
|
|
refchg = 0;
|
|
for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
|
|
pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
|
|
ret = moea64_pte_synch(pvo);
|
|
if (ret > 0) {
|
|
refchg |= ret & (LPTE_CHG | LPTE_REF);
|
|
if ((refchg & ptebit) != 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Save results */
|
|
if (refchg != 0) {
|
|
m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
|
|
atomic_set_32(&m->md.mdpg_attrs, refchg | MDPG_ATTR_SP);
|
|
}
|
|
|
|
return (refchg);
|
|
}
|
|
|
|
static int64_t
|
|
moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit)
|
|
{
|
|
int64_t refchg;
|
|
pmap_t pmap;
|
|
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
|
|
/*
|
|
* Check if SP was demoted/removed before pmap lock was acquired.
|
|
*/
|
|
if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
|
|
CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
|
|
__func__, (uintmax_t)PVO_PADDR(pvo));
|
|
PMAP_UNLOCK(pmap);
|
|
return (-1);
|
|
}
|
|
|
|
refchg = moea64_sp_query_locked(pvo, ptebit);
|
|
PMAP_UNLOCK(pmap);
|
|
|
|
CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
|
|
__func__, (uintmax_t)PVO_VADDR(pvo),
|
|
(uintmax_t)PVO_PADDR(pvo), (uintmax_t)refchg);
|
|
|
|
return (refchg);
|
|
}
|
|
|
|
static int64_t
|
|
moea64_sp_pvo_clear(struct pvo_entry *pvo, uint64_t ptebit)
|
|
{
|
|
int64_t refchg, ret;
|
|
pmap_t pmap;
|
|
struct pvo_entry *sp;
|
|
vm_offset_t eva;
|
|
vm_page_t m;
|
|
|
|
pmap = pvo->pvo_pmap;
|
|
PMAP_LOCK(pmap);
|
|
|
|
/*
|
|
* Check if SP was demoted/removed before pmap lock was acquired.
|
|
*/
|
|
if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
|
|
CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
|
|
__func__, (uintmax_t)PVO_PADDR(pvo));
|
|
PMAP_UNLOCK(pmap);
|
|
return (-1);
|
|
}
|
|
|
|
/* Get first SP PVO */
|
|
if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
|
|
sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
|
|
KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
|
|
__func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
|
|
} else
|
|
sp = pvo;
|
|
eva = PVO_VADDR(sp) + HPT_SP_SIZE;
|
|
|
|
refchg = 0;
|
|
for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
|
|
pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
|
|
ret = moea64_pte_clear(pvo, ptebit);
|
|
if (ret > 0)
|
|
refchg |= ret & (LPTE_CHG | LPTE_REF);
|
|
}
|
|
|
|
m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
|
|
atomic_clear_32(&m->md.mdpg_attrs, ptebit);
|
|
PMAP_UNLOCK(pmap);
|
|
|
|
CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
|
|
__func__, (uintmax_t)PVO_VADDR(sp),
|
|
(uintmax_t)PVO_PADDR(sp), (uintmax_t)refchg);
|
|
|
|
return (refchg);
|
|
}
|
|
|
|
static int64_t
|
|
moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, uint64_t ptebit)
|
|
{
|
|
int64_t count, ret;
|
|
pmap_t pmap;
|
|
|
|
count = 0;
|
|
pmap = pvo->pvo_pmap;
|
|
|
|
/*
|
|
* Since this reference bit is shared by 4096 4KB pages, it
|
|
* should not be cleared every time it is tested. Apply a
|
|
* simple "hash" function on the physical page number, the
|
|
* virtual superpage number, and the pmap address to select
|
|
* one 4KB page out of the 4096 on which testing the
|
|
* reference bit will result in clearing that reference bit.
|
|
* This function is designed to avoid the selection of the
|
|
* same 4KB page for every 16MB page mapping.
|
|
*
|
|
* Always leave the reference bit of a wired mapping set, as
|
|
* the current state of its reference bit won't affect page
|
|
* replacement.
|
|
*/
|
|
if (ptebit == LPTE_REF && (((VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) ^
|
|
(PVO_VADDR(pvo) >> HPT_SP_SHIFT) ^ (uintptr_t)pmap) &
|
|
(HPT_SP_PAGES - 1)) == 0 && (pvo->pvo_vaddr & PVO_WIRED) == 0) {
|
|
if ((ret = moea64_sp_pvo_clear(pvo, ptebit)) == -1)
|
|
return (-1);
|
|
|
|
if ((ret & ptebit) != 0)
|
|
count++;
|
|
|
|
/*
|
|
* If this page was not selected by the hash function, then assume
|
|
* its REF bit was set.
|
|
*/
|
|
} else if (ptebit == LPTE_REF) {
|
|
count++;
|
|
|
|
/*
|
|
* To clear the CHG bit of a single SP page, first it must be demoted.
|
|
* But if no CHG bit is set, no bit clear and thus no SP demotion is
|
|
* needed.
|
|
*/
|
|
} else {
|
|
CTR4(KTR_PMAP, "%s: ptebit=%#jx, va=%#jx, pa=%#jx",
|
|
__func__, (uintmax_t)ptebit, (uintmax_t)PVO_VADDR(pvo),
|
|
(uintmax_t)PVO_PADDR(pvo));
|
|
|
|
PMAP_LOCK(pmap);
|
|
|
|
/*
|
|
* Make sure SP wasn't demoted/removed before pmap lock
|
|
* was acquired.
|
|
*/
|
|
if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
|
|
CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
|
|
__func__, (uintmax_t)PVO_PADDR(pvo));
|
|
PMAP_UNLOCK(pmap);
|
|
return (-1);
|
|
}
|
|
|
|
ret = moea64_sp_query_locked(pvo, ptebit);
|
|
if ((ret & ptebit) != 0)
|
|
count++;
|
|
else {
|
|
PMAP_UNLOCK(pmap);
|
|
return (0);
|
|
}
|
|
|
|
moea64_sp_demote(pvo);
|
|
moea64_pte_clear(pvo, ptebit);
|
|
|
|
/*
|
|
* Write protect the mapping to a single page so that a
|
|
* subsequent write access may repromote.
|
|
*/
|
|
if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
|
|
moea64_pvo_protect(pmap, pvo,
|
|
pvo->pvo_pte.prot & ~VM_PROT_WRITE);
|
|
|
|
PMAP_UNLOCK(pmap);
|
|
}
|
|
|
|
return (count);
|
|
}
|