freebsd-dev/sys/crypto/aesni/aesni_ghash.c
Ryan Libby d395fd0d46 aesni: quiet -Wcast-qual
Reviewed by:	delphij
Approved by:	markj (mentor)
Sponsored by:	Dell EMC Isilon
Differential Revision:	https://reviews.freebsd.org/D12021
2017-08-16 22:54:35 +00:00

809 lines
26 KiB
C

/*-
* Copyright (c) 2014 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by John-Mark Gurney under
* the sponsorship of the FreeBSD Foundation and
* Rubicon Communications, LLC (Netgate).
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*
* $FreeBSD$
*
*/
/*
* Figure 5, 8 and 12 are copied from the Intel white paper:
* Intel® Carry-Less Multiplication Instruction and its Usage for
* Computing the GCM Mode
*
* and as such are:
* Copyright © 2010 Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef _KERNEL
#include <crypto/aesni/aesni.h>
#include <crypto/aesni/aesni_os.h>
#else
#include <stdint.h>
#endif
#include <wmmintrin.h>
#include <emmintrin.h>
#include <smmintrin.h>
static inline int
m128icmp(__m128i a, __m128i b)
{
__m128i cmp;
cmp = _mm_cmpeq_epi32(a, b);
return _mm_movemask_epi8(cmp) == 0xffff;
}
#ifdef __i386__
static inline __m128i
_mm_insert_epi64(__m128i a, int64_t b, const int ndx)
{
if (!ndx) {
a = _mm_insert_epi32(a, b, 0);
a = _mm_insert_epi32(a, b >> 32, 1);
} else {
a = _mm_insert_epi32(a, b, 2);
a = _mm_insert_epi32(a, b >> 32, 3);
}
return a;
}
#endif
/* some code from carry-less-multiplication-instruction-in-gcm-mode-paper.pdf */
/* Figure 5. Code Sample - Performing Ghash Using Algorithms 1 and 5 (C) */
static void
gfmul(__m128i a, __m128i b, __m128i *res)
{
__m128i tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9;
tmp3 = _mm_clmulepi64_si128(a, b, 0x00);
tmp4 = _mm_clmulepi64_si128(a, b, 0x10);
tmp5 = _mm_clmulepi64_si128(a, b, 0x01);
tmp6 = _mm_clmulepi64_si128(a, b, 0x11);
tmp4 = _mm_xor_si128(tmp4, tmp5);
tmp5 = _mm_slli_si128(tmp4, 8);
tmp4 = _mm_srli_si128(tmp4, 8);
tmp3 = _mm_xor_si128(tmp3, tmp5);
tmp6 = _mm_xor_si128(tmp6, tmp4);
tmp7 = _mm_srli_epi32(tmp3, 31);
tmp8 = _mm_srli_epi32(tmp6, 31);
tmp3 = _mm_slli_epi32(tmp3, 1);
tmp6 = _mm_slli_epi32(tmp6, 1);
tmp9 = _mm_srli_si128(tmp7, 12);
tmp8 = _mm_slli_si128(tmp8, 4);
tmp7 = _mm_slli_si128(tmp7, 4);
tmp3 = _mm_or_si128(tmp3, tmp7);
tmp6 = _mm_or_si128(tmp6, tmp8);
tmp6 = _mm_or_si128(tmp6, tmp9);
tmp7 = _mm_slli_epi32(tmp3, 31);
tmp8 = _mm_slli_epi32(tmp3, 30);
tmp9 = _mm_slli_epi32(tmp3, 25);
tmp7 = _mm_xor_si128(tmp7, tmp8);
tmp7 = _mm_xor_si128(tmp7, tmp9);
tmp8 = _mm_srli_si128(tmp7, 4);
tmp7 = _mm_slli_si128(tmp7, 12);
tmp3 = _mm_xor_si128(tmp3, tmp7);
tmp2 = _mm_srli_epi32(tmp3, 1);
tmp4 = _mm_srli_epi32(tmp3, 2);
tmp5 = _mm_srli_epi32(tmp3, 7);
tmp2 = _mm_xor_si128(tmp2, tmp4);
tmp2 = _mm_xor_si128(tmp2, tmp5);
tmp2 = _mm_xor_si128(tmp2, tmp8);
tmp3 = _mm_xor_si128(tmp3, tmp2);
tmp6 = _mm_xor_si128(tmp6, tmp3);
*res = tmp6;
}
/*
* Figure 8. Code Sample - Performing Ghash Using an Aggregated Reduction
* Method */
static void
reduce4(__m128i H1, __m128i H2, __m128i H3, __m128i H4,
__m128i X1, __m128i X2, __m128i X3, __m128i X4, __m128i *res)
{
/*algorithm by Krzysztof Jankowski, Pierre Laurent - Intel*/
__m128i H1_X1_lo, H1_X1_hi, H2_X2_lo, H2_X2_hi, H3_X3_lo,
H3_X3_hi, H4_X4_lo, H4_X4_hi, lo, hi;
__m128i tmp0, tmp1, tmp2, tmp3;
__m128i tmp4, tmp5, tmp6, tmp7;
__m128i tmp8, tmp9;
H1_X1_lo = _mm_clmulepi64_si128(H1, X1, 0x00);
H2_X2_lo = _mm_clmulepi64_si128(H2, X2, 0x00);
H3_X3_lo = _mm_clmulepi64_si128(H3, X3, 0x00);
H4_X4_lo = _mm_clmulepi64_si128(H4, X4, 0x00);
lo = _mm_xor_si128(H1_X1_lo, H2_X2_lo);
lo = _mm_xor_si128(lo, H3_X3_lo);
lo = _mm_xor_si128(lo, H4_X4_lo);
H1_X1_hi = _mm_clmulepi64_si128(H1, X1, 0x11);
H2_X2_hi = _mm_clmulepi64_si128(H2, X2, 0x11);
H3_X3_hi = _mm_clmulepi64_si128(H3, X3, 0x11);
H4_X4_hi = _mm_clmulepi64_si128(H4, X4, 0x11);
hi = _mm_xor_si128(H1_X1_hi, H2_X2_hi);
hi = _mm_xor_si128(hi, H3_X3_hi);
hi = _mm_xor_si128(hi, H4_X4_hi);
tmp0 = _mm_shuffle_epi32(H1, 78);
tmp4 = _mm_shuffle_epi32(X1, 78);
tmp0 = _mm_xor_si128(tmp0, H1);
tmp4 = _mm_xor_si128(tmp4, X1);
tmp1 = _mm_shuffle_epi32(H2, 78);
tmp5 = _mm_shuffle_epi32(X2, 78);
tmp1 = _mm_xor_si128(tmp1, H2);
tmp5 = _mm_xor_si128(tmp5, X2);
tmp2 = _mm_shuffle_epi32(H3, 78);
tmp6 = _mm_shuffle_epi32(X3, 78);
tmp2 = _mm_xor_si128(tmp2, H3);
tmp6 = _mm_xor_si128(tmp6, X3);
tmp3 = _mm_shuffle_epi32(H4, 78);
tmp7 = _mm_shuffle_epi32(X4, 78);
tmp3 = _mm_xor_si128(tmp3, H4);
tmp7 = _mm_xor_si128(tmp7, X4);
tmp0 = _mm_clmulepi64_si128(tmp0, tmp4, 0x00);
tmp1 = _mm_clmulepi64_si128(tmp1, tmp5, 0x00);
tmp2 = _mm_clmulepi64_si128(tmp2, tmp6, 0x00);
tmp3 = _mm_clmulepi64_si128(tmp3, tmp7, 0x00);
tmp0 = _mm_xor_si128(tmp0, lo);
tmp0 = _mm_xor_si128(tmp0, hi);
tmp0 = _mm_xor_si128(tmp1, tmp0);
tmp0 = _mm_xor_si128(tmp2, tmp0);
tmp0 = _mm_xor_si128(tmp3, tmp0);
tmp4 = _mm_slli_si128(tmp0, 8);
tmp0 = _mm_srli_si128(tmp0, 8);
lo = _mm_xor_si128(tmp4, lo);
hi = _mm_xor_si128(tmp0, hi);
tmp3 = lo;
tmp6 = hi;
tmp7 = _mm_srli_epi32(tmp3, 31);
tmp8 = _mm_srli_epi32(tmp6, 31);
tmp3 = _mm_slli_epi32(tmp3, 1);
tmp6 = _mm_slli_epi32(tmp6, 1);
tmp9 = _mm_srli_si128(tmp7, 12);
tmp8 = _mm_slli_si128(tmp8, 4);
tmp7 = _mm_slli_si128(tmp7, 4);
tmp3 = _mm_or_si128(tmp3, tmp7);
tmp6 = _mm_or_si128(tmp6, tmp8);
tmp6 = _mm_or_si128(tmp6, tmp9);
tmp7 = _mm_slli_epi32(tmp3, 31);
tmp8 = _mm_slli_epi32(tmp3, 30);
tmp9 = _mm_slli_epi32(tmp3, 25);
tmp7 = _mm_xor_si128(tmp7, tmp8);
tmp7 = _mm_xor_si128(tmp7, tmp9);
tmp8 = _mm_srli_si128(tmp7, 4);
tmp7 = _mm_slli_si128(tmp7, 12);
tmp3 = _mm_xor_si128(tmp3, tmp7);
tmp2 = _mm_srli_epi32(tmp3, 1);
tmp4 = _mm_srli_epi32(tmp3, 2);
tmp5 = _mm_srli_epi32(tmp3, 7);
tmp2 = _mm_xor_si128(tmp2, tmp4);
tmp2 = _mm_xor_si128(tmp2, tmp5);
tmp2 = _mm_xor_si128(tmp2, tmp8);
tmp3 = _mm_xor_si128(tmp3, tmp2);
tmp6 = _mm_xor_si128(tmp6, tmp3);
*res = tmp6;
}
/*
* Figure 12. AES-GCM: Processing Four Blocks in Parallel with Aggregated
* Every Four Blocks
*/
/*
* per NIST SP-800-38D, 5.2.1.1, len(p) <= 2^39-256 (in bits), or
* 2^32-256*8*16 bytes.
*/
void
AES_GCM_encrypt(const unsigned char *in, unsigned char *out,
const unsigned char *addt, const unsigned char *ivec,
unsigned char *tag, uint32_t nbytes, uint32_t abytes, int ibytes,
const unsigned char *key, int nr)
{
int i, j ,k;
__m128i tmp1, tmp2, tmp3, tmp4;
__m128i tmp5, tmp6, tmp7, tmp8;
__m128i H, H2, H3, H4, Y, T;
const __m128i *KEY = (const __m128i *)key;
__m128i ctr1, ctr2, ctr3, ctr4;
__m128i ctr5, ctr6, ctr7, ctr8;
__m128i last_block = _mm_setzero_si128();
__m128i ONE = _mm_set_epi32(0, 1, 0, 0);
__m128i EIGHT = _mm_set_epi32(0, 8, 0, 0);
__m128i BSWAP_EPI64 = _mm_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,
7);
__m128i BSWAP_MASK = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15);
__m128i X = _mm_setzero_si128();
if (ibytes == 96/8) {
Y = _mm_loadu_si128((const __m128i *)ivec);
Y = _mm_insert_epi32(Y, 0x1000000, 3);
/*(Compute E[ZERO, KS] and E[Y0, KS] together*/
tmp1 = _mm_xor_si128(X, KEY[0]);
tmp2 = _mm_xor_si128(Y, KEY[0]);
for (j=1; j < nr-1; j+=2) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[nr-1]);
H = _mm_aesenclast_si128(tmp1, KEY[nr]);
T = _mm_aesenclast_si128(tmp2, KEY[nr]);
H = _mm_shuffle_epi8(H, BSWAP_MASK);
} else {
tmp1 = _mm_xor_si128(X, KEY[0]);
for (j=1; j <nr; j++)
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
H = _mm_aesenclast_si128(tmp1, KEY[nr]);
H = _mm_shuffle_epi8(H, BSWAP_MASK);
Y = _mm_setzero_si128();
for (i=0; i < ibytes/16; i++) {
tmp1 = _mm_loadu_si128(&((const __m128i *)ivec)[i]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
}
if (ibytes%16) {
for (j=0; j < ibytes%16; j++)
((unsigned char*)&last_block)[j] = ivec[i*16+j];
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
}
tmp1 = _mm_insert_epi64(tmp1, (uint64_t)ibytes*8, 0);
tmp1 = _mm_insert_epi64(tmp1, 0, 1);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
Y = _mm_shuffle_epi8(Y, BSWAP_MASK); /*Compute E(K, Y0)*/
tmp1 = _mm_xor_si128(Y, KEY[0]);
for (j=1; j < nr; j++)
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
T = _mm_aesenclast_si128(tmp1, KEY[nr]);
}
gfmul(H,H,&H2);
gfmul(H,H2,&H3);
gfmul(H,H3,&H4);
for (i=0; i<abytes/16/4; i++) {
tmp1 = _mm_loadu_si128(&((const __m128i *)addt)[i*4]);
tmp2 = _mm_loadu_si128(&((const __m128i *)addt)[i*4+1]);
tmp3 = _mm_loadu_si128(&((const __m128i *)addt)[i*4+2]);
tmp4 = _mm_loadu_si128(&((const __m128i *)addt)[i*4+3]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
tmp2 = _mm_shuffle_epi8(tmp2, BSWAP_MASK);
tmp3 = _mm_shuffle_epi8(tmp3, BSWAP_MASK);
tmp4 = _mm_shuffle_epi8(tmp4, BSWAP_MASK);
tmp1 = _mm_xor_si128(X, tmp1);
reduce4(H, H2, H3, H4, tmp4, tmp3, tmp2, tmp1, &X);
}
for (i=i*4; i<abytes/16; i++) {
tmp1 = _mm_loadu_si128(&((const __m128i *)addt)[i]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X = _mm_xor_si128(X,tmp1);
gfmul(X, H, &X);
}
if (abytes%16) {
last_block = _mm_setzero_si128();
for (j=0; j<abytes%16; j++)
((unsigned char*)&last_block)[j] = addt[i*16+j];
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X =_mm_xor_si128(X,tmp1);
gfmul(X,H,&X);
}
ctr1 = _mm_shuffle_epi8(Y, BSWAP_EPI64);
ctr1 = _mm_add_epi64(ctr1, ONE);
ctr2 = _mm_add_epi64(ctr1, ONE);
ctr3 = _mm_add_epi64(ctr2, ONE);
ctr4 = _mm_add_epi64(ctr3, ONE);
ctr5 = _mm_add_epi64(ctr4, ONE);
ctr6 = _mm_add_epi64(ctr5, ONE);
ctr7 = _mm_add_epi64(ctr6, ONE);
ctr8 = _mm_add_epi64(ctr7, ONE);
for (i=0; i<nbytes/16/8; i++) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
tmp2 = _mm_shuffle_epi8(ctr2, BSWAP_EPI64);
tmp3 = _mm_shuffle_epi8(ctr3, BSWAP_EPI64);
tmp4 = _mm_shuffle_epi8(ctr4, BSWAP_EPI64);
tmp5 = _mm_shuffle_epi8(ctr5, BSWAP_EPI64);
tmp6 = _mm_shuffle_epi8(ctr6, BSWAP_EPI64);
tmp7 = _mm_shuffle_epi8(ctr7, BSWAP_EPI64);
tmp8 = _mm_shuffle_epi8(ctr8, BSWAP_EPI64);
ctr1 = _mm_add_epi64(ctr1, EIGHT);
ctr2 = _mm_add_epi64(ctr2, EIGHT);
ctr3 = _mm_add_epi64(ctr3, EIGHT);
ctr4 = _mm_add_epi64(ctr4, EIGHT);
ctr5 = _mm_add_epi64(ctr5, EIGHT);
ctr6 = _mm_add_epi64(ctr6, EIGHT);
ctr7 = _mm_add_epi64(ctr7, EIGHT);
ctr8 = _mm_add_epi64(ctr8, EIGHT);
tmp1 =_mm_xor_si128(tmp1, KEY[0]);
tmp2 =_mm_xor_si128(tmp2, KEY[0]);
tmp3 =_mm_xor_si128(tmp3, KEY[0]);
tmp4 =_mm_xor_si128(tmp4, KEY[0]);
tmp5 =_mm_xor_si128(tmp5, KEY[0]);
tmp6 =_mm_xor_si128(tmp6, KEY[0]);
tmp7 =_mm_xor_si128(tmp7, KEY[0]);
tmp8 =_mm_xor_si128(tmp8, KEY[0]);
for (j=1; j<nr; j++) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j]);
tmp3 = _mm_aesenc_si128(tmp3, KEY[j]);
tmp4 = _mm_aesenc_si128(tmp4, KEY[j]);
tmp5 = _mm_aesenc_si128(tmp5, KEY[j]);
tmp6 = _mm_aesenc_si128(tmp6, KEY[j]);
tmp7 = _mm_aesenc_si128(tmp7, KEY[j]);
tmp8 = _mm_aesenc_si128(tmp8, KEY[j]);
}
tmp1 =_mm_aesenclast_si128(tmp1, KEY[nr]);
tmp2 =_mm_aesenclast_si128(tmp2, KEY[nr]);
tmp3 =_mm_aesenclast_si128(tmp3, KEY[nr]);
tmp4 =_mm_aesenclast_si128(tmp4, KEY[nr]);
tmp5 =_mm_aesenclast_si128(tmp5, KEY[nr]);
tmp6 =_mm_aesenclast_si128(tmp6, KEY[nr]);
tmp7 =_mm_aesenclast_si128(tmp7, KEY[nr]);
tmp8 =_mm_aesenclast_si128(tmp8, KEY[nr]);
tmp1 = _mm_xor_si128(tmp1,
_mm_loadu_si128(&((const __m128i *)in)[i*8+0]));
tmp2 = _mm_xor_si128(tmp2,
_mm_loadu_si128(&((const __m128i *)in)[i*8+1]));
tmp3 = _mm_xor_si128(tmp3,
_mm_loadu_si128(&((const __m128i *)in)[i*8+2]));
tmp4 = _mm_xor_si128(tmp4,
_mm_loadu_si128(&((const __m128i *)in)[i*8+3]));
tmp5 = _mm_xor_si128(tmp5,
_mm_loadu_si128(&((const __m128i *)in)[i*8+4]));
tmp6 = _mm_xor_si128(tmp6,
_mm_loadu_si128(&((const __m128i *)in)[i*8+5]));
tmp7 = _mm_xor_si128(tmp7,
_mm_loadu_si128(&((const __m128i *)in)[i*8+6]));
tmp8 = _mm_xor_si128(tmp8,
_mm_loadu_si128(&((const __m128i *)in)[i*8+7]));
_mm_storeu_si128(&((__m128i*)out)[i*8+0], tmp1);
_mm_storeu_si128(&((__m128i*)out)[i*8+1], tmp2);
_mm_storeu_si128(&((__m128i*)out)[i*8+2], tmp3);
_mm_storeu_si128(&((__m128i*)out)[i*8+3], tmp4);
_mm_storeu_si128(&((__m128i*)out)[i*8+4], tmp5);
_mm_storeu_si128(&((__m128i*)out)[i*8+5], tmp6);
_mm_storeu_si128(&((__m128i*)out)[i*8+6], tmp7);
_mm_storeu_si128(&((__m128i*)out)[i*8+7], tmp8);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
tmp2 = _mm_shuffle_epi8(tmp2, BSWAP_MASK);
tmp3 = _mm_shuffle_epi8(tmp3, BSWAP_MASK);
tmp4 = _mm_shuffle_epi8(tmp4, BSWAP_MASK);
tmp5 = _mm_shuffle_epi8(tmp5, BSWAP_MASK);
tmp6 = _mm_shuffle_epi8(tmp6, BSWAP_MASK);
tmp7 = _mm_shuffle_epi8(tmp7, BSWAP_MASK);
tmp8 = _mm_shuffle_epi8(tmp8, BSWAP_MASK);
tmp1 = _mm_xor_si128(X, tmp1);
reduce4(H, H2, H3, H4, tmp4, tmp3, tmp2, tmp1, &X);
tmp5 = _mm_xor_si128(X, tmp5);
reduce4(H, H2, H3, H4, tmp8, tmp7, tmp6, tmp5, &X);
}
for (k=i*8; k<nbytes/16; k++) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
ctr1 = _mm_add_epi64(ctr1, ONE);
tmp1 = _mm_xor_si128(tmp1, KEY[0]);
for (j=1; j<nr-1; j+=2) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]);
tmp1 = _mm_xor_si128(tmp1,
_mm_loadu_si128(&((const __m128i *)in)[k]));
_mm_storeu_si128(&((__m128i*)out)[k], tmp1);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X = _mm_xor_si128(X, tmp1);
gfmul(X,H,&X);
}
//If remains one incomplete block
if (nbytes%16) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
tmp1 = _mm_xor_si128(tmp1, KEY[0]);
for (j=1; j<nr-1; j+=2) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]);
tmp1 = _mm_xor_si128(tmp1,
_mm_loadu_si128(&((const __m128i *)in)[k]));
last_block = tmp1;
for (j=0; j<nbytes%16; j++)
out[k*16+j] = ((unsigned char*)&last_block)[j];
for ((void)j; j<16; j++)
((unsigned char*)&last_block)[j] = 0;
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X = _mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
}
tmp1 = _mm_insert_epi64(tmp1, (uint64_t)nbytes*8, 0);
tmp1 = _mm_insert_epi64(tmp1, (uint64_t)abytes*8, 1);
X = _mm_xor_si128(X, tmp1);
gfmul(X,H,&X);
X = _mm_shuffle_epi8(X, BSWAP_MASK);
T = _mm_xor_si128(X, T);
_mm_storeu_si128((__m128i*)tag, T);
}
/* My modification of _encrypt to be _decrypt */
int
AES_GCM_decrypt(const unsigned char *in, unsigned char *out,
const unsigned char *addt, const unsigned char *ivec,
const unsigned char *tag, uint32_t nbytes, uint32_t abytes, int ibytes,
const unsigned char *key, int nr)
{
int i, j ,k;
__m128i tmp1, tmp2, tmp3, tmp4;
__m128i tmp5, tmp6, tmp7, tmp8;
__m128i H, H2, H3, H4, Y, T;
const __m128i *KEY = (const __m128i *)key;
__m128i ctr1, ctr2, ctr3, ctr4;
__m128i ctr5, ctr6, ctr7, ctr8;
__m128i last_block = _mm_setzero_si128();
__m128i ONE = _mm_set_epi32(0, 1, 0, 0);
__m128i EIGHT = _mm_set_epi32(0, 8, 0, 0);
__m128i BSWAP_EPI64 = _mm_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,
7);
__m128i BSWAP_MASK = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
15);
__m128i X = _mm_setzero_si128();
if (ibytes == 96/8) {
Y = _mm_loadu_si128((const __m128i *)ivec);
Y = _mm_insert_epi32(Y, 0x1000000, 3);
/*(Compute E[ZERO, KS] and E[Y0, KS] together*/
tmp1 = _mm_xor_si128(X, KEY[0]);
tmp2 = _mm_xor_si128(Y, KEY[0]);
for (j=1; j < nr-1; j+=2) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[nr-1]);
H = _mm_aesenclast_si128(tmp1, KEY[nr]);
T = _mm_aesenclast_si128(tmp2, KEY[nr]);
H = _mm_shuffle_epi8(H, BSWAP_MASK);
} else {
tmp1 = _mm_xor_si128(X, KEY[0]);
for (j=1; j <nr; j++)
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
H = _mm_aesenclast_si128(tmp1, KEY[nr]);
H = _mm_shuffle_epi8(H, BSWAP_MASK);
Y = _mm_setzero_si128();
for (i=0; i < ibytes/16; i++) {
tmp1 = _mm_loadu_si128(&((const __m128i *)ivec)[i]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
}
if (ibytes%16) {
for (j=0; j < ibytes%16; j++)
((unsigned char*)&last_block)[j] = ivec[i*16+j];
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
}
tmp1 = _mm_insert_epi64(tmp1, (uint64_t)ibytes*8, 0);
tmp1 = _mm_insert_epi64(tmp1, 0, 1);
Y = _mm_xor_si128(Y, tmp1);
gfmul(Y, H, &Y);
Y = _mm_shuffle_epi8(Y, BSWAP_MASK); /*Compute E(K, Y0)*/
tmp1 = _mm_xor_si128(Y, KEY[0]);
for (j=1; j < nr; j++)
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
T = _mm_aesenclast_si128(tmp1, KEY[nr]);
}
gfmul(H,H,&H2);
gfmul(H,H2,&H3);
gfmul(H,H3,&H4);
for (i=0; i<abytes/16/4; i++) {
tmp1 = _mm_loadu_si128(&((const __m128i *)addt)[i*4]);
tmp2 = _mm_loadu_si128(&((const __m128i *)addt)[i*4+1]);
tmp3 = _mm_loadu_si128(&((const __m128i *)addt)[i*4+2]);
tmp4 = _mm_loadu_si128(&((const __m128i *)addt)[i*4+3]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
tmp2 = _mm_shuffle_epi8(tmp2, BSWAP_MASK);
tmp3 = _mm_shuffle_epi8(tmp3, BSWAP_MASK);
tmp4 = _mm_shuffle_epi8(tmp4, BSWAP_MASK);
tmp1 = _mm_xor_si128(X, tmp1);
reduce4(H, H2, H3, H4, tmp4, tmp3, tmp2, tmp1, &X);
}
for (i=i*4; i<abytes/16; i++) {
tmp1 = _mm_loadu_si128(&((const __m128i *)addt)[i]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X = _mm_xor_si128(X,tmp1);
gfmul(X, H, &X);
}
if (abytes%16) {
last_block = _mm_setzero_si128();
for (j=0; j<abytes%16; j++)
((unsigned char*)&last_block)[j] = addt[i*16+j];
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X =_mm_xor_si128(X,tmp1);
gfmul(X,H,&X);
}
/* This is where we validate the cipher text before decrypt */
for (i = 0; i<nbytes/16/4; i++) {
tmp1 = _mm_loadu_si128(&((const __m128i *)in)[i*4]);
tmp2 = _mm_loadu_si128(&((const __m128i *)in)[i*4+1]);
tmp3 = _mm_loadu_si128(&((const __m128i *)in)[i*4+2]);
tmp4 = _mm_loadu_si128(&((const __m128i *)in)[i*4+3]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
tmp2 = _mm_shuffle_epi8(tmp2, BSWAP_MASK);
tmp3 = _mm_shuffle_epi8(tmp3, BSWAP_MASK);
tmp4 = _mm_shuffle_epi8(tmp4, BSWAP_MASK);
tmp1 = _mm_xor_si128(X, tmp1);
reduce4(H, H2, H3, H4, tmp4, tmp3, tmp2, tmp1, &X);
}
for (i = i*4; i<nbytes/16; i++) {
tmp1 = _mm_loadu_si128(&((const __m128i *)in)[i]);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X = _mm_xor_si128(X, tmp1);
gfmul(X,H,&X);
}
if (nbytes%16) {
last_block = _mm_setzero_si128();
for (j=0; j<nbytes%16; j++)
((unsigned char*)&last_block)[j] = in[i*16+j];
tmp1 = last_block;
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
X = _mm_xor_si128(X, tmp1);
gfmul(X, H, &X);
}
tmp1 = _mm_insert_epi64(tmp1, (uint64_t)nbytes*8, 0);
tmp1 = _mm_insert_epi64(tmp1, (uint64_t)abytes*8, 1);
X = _mm_xor_si128(X, tmp1);
gfmul(X,H,&X);
X = _mm_shuffle_epi8(X, BSWAP_MASK);
T = _mm_xor_si128(X, T);
if (!m128icmp(T, _mm_loadu_si128((const __m128i*)tag)))
return 0; //in case the authentication failed
ctr1 = _mm_shuffle_epi8(Y, BSWAP_EPI64);
ctr1 = _mm_add_epi64(ctr1, ONE);
ctr2 = _mm_add_epi64(ctr1, ONE);
ctr3 = _mm_add_epi64(ctr2, ONE);
ctr4 = _mm_add_epi64(ctr3, ONE);
ctr5 = _mm_add_epi64(ctr4, ONE);
ctr6 = _mm_add_epi64(ctr5, ONE);
ctr7 = _mm_add_epi64(ctr6, ONE);
ctr8 = _mm_add_epi64(ctr7, ONE);
for (i=0; i<nbytes/16/8; i++) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
tmp2 = _mm_shuffle_epi8(ctr2, BSWAP_EPI64);
tmp3 = _mm_shuffle_epi8(ctr3, BSWAP_EPI64);
tmp4 = _mm_shuffle_epi8(ctr4, BSWAP_EPI64);
tmp5 = _mm_shuffle_epi8(ctr5, BSWAP_EPI64);
tmp6 = _mm_shuffle_epi8(ctr6, BSWAP_EPI64);
tmp7 = _mm_shuffle_epi8(ctr7, BSWAP_EPI64);
tmp8 = _mm_shuffle_epi8(ctr8, BSWAP_EPI64);
ctr1 = _mm_add_epi64(ctr1, EIGHT);
ctr2 = _mm_add_epi64(ctr2, EIGHT);
ctr3 = _mm_add_epi64(ctr3, EIGHT);
ctr4 = _mm_add_epi64(ctr4, EIGHT);
ctr5 = _mm_add_epi64(ctr5, EIGHT);
ctr6 = _mm_add_epi64(ctr6, EIGHT);
ctr7 = _mm_add_epi64(ctr7, EIGHT);
ctr8 = _mm_add_epi64(ctr8, EIGHT);
tmp1 =_mm_xor_si128(tmp1, KEY[0]);
tmp2 =_mm_xor_si128(tmp2, KEY[0]);
tmp3 =_mm_xor_si128(tmp3, KEY[0]);
tmp4 =_mm_xor_si128(tmp4, KEY[0]);
tmp5 =_mm_xor_si128(tmp5, KEY[0]);
tmp6 =_mm_xor_si128(tmp6, KEY[0]);
tmp7 =_mm_xor_si128(tmp7, KEY[0]);
tmp8 =_mm_xor_si128(tmp8, KEY[0]);
for (j=1; j<nr; j++) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp2 = _mm_aesenc_si128(tmp2, KEY[j]);
tmp3 = _mm_aesenc_si128(tmp3, KEY[j]);
tmp4 = _mm_aesenc_si128(tmp4, KEY[j]);
tmp5 = _mm_aesenc_si128(tmp5, KEY[j]);
tmp6 = _mm_aesenc_si128(tmp6, KEY[j]);
tmp7 = _mm_aesenc_si128(tmp7, KEY[j]);
tmp8 = _mm_aesenc_si128(tmp8, KEY[j]);
}
tmp1 =_mm_aesenclast_si128(tmp1, KEY[nr]);
tmp2 =_mm_aesenclast_si128(tmp2, KEY[nr]);
tmp3 =_mm_aesenclast_si128(tmp3, KEY[nr]);
tmp4 =_mm_aesenclast_si128(tmp4, KEY[nr]);
tmp5 =_mm_aesenclast_si128(tmp5, KEY[nr]);
tmp6 =_mm_aesenclast_si128(tmp6, KEY[nr]);
tmp7 =_mm_aesenclast_si128(tmp7, KEY[nr]);
tmp8 =_mm_aesenclast_si128(tmp8, KEY[nr]);
tmp1 = _mm_xor_si128(tmp1,
_mm_loadu_si128(&((const __m128i *)in)[i*8+0]));
tmp2 = _mm_xor_si128(tmp2,
_mm_loadu_si128(&((const __m128i *)in)[i*8+1]));
tmp3 = _mm_xor_si128(tmp3,
_mm_loadu_si128(&((const __m128i *)in)[i*8+2]));
tmp4 = _mm_xor_si128(tmp4,
_mm_loadu_si128(&((const __m128i *)in)[i*8+3]));
tmp5 = _mm_xor_si128(tmp5,
_mm_loadu_si128(&((const __m128i *)in)[i*8+4]));
tmp6 = _mm_xor_si128(tmp6,
_mm_loadu_si128(&((const __m128i *)in)[i*8+5]));
tmp7 = _mm_xor_si128(tmp7,
_mm_loadu_si128(&((const __m128i *)in)[i*8+6]));
tmp8 = _mm_xor_si128(tmp8,
_mm_loadu_si128(&((const __m128i *)in)[i*8+7]));
_mm_storeu_si128(&((__m128i*)out)[i*8+0], tmp1);
_mm_storeu_si128(&((__m128i*)out)[i*8+1], tmp2);
_mm_storeu_si128(&((__m128i*)out)[i*8+2], tmp3);
_mm_storeu_si128(&((__m128i*)out)[i*8+3], tmp4);
_mm_storeu_si128(&((__m128i*)out)[i*8+4], tmp5);
_mm_storeu_si128(&((__m128i*)out)[i*8+5], tmp6);
_mm_storeu_si128(&((__m128i*)out)[i*8+6], tmp7);
_mm_storeu_si128(&((__m128i*)out)[i*8+7], tmp8);
tmp1 = _mm_shuffle_epi8(tmp1, BSWAP_MASK);
tmp2 = _mm_shuffle_epi8(tmp2, BSWAP_MASK);
tmp3 = _mm_shuffle_epi8(tmp3, BSWAP_MASK);
tmp4 = _mm_shuffle_epi8(tmp4, BSWAP_MASK);
tmp5 = _mm_shuffle_epi8(tmp5, BSWAP_MASK);
tmp6 = _mm_shuffle_epi8(tmp6, BSWAP_MASK);
tmp7 = _mm_shuffle_epi8(tmp7, BSWAP_MASK);
tmp8 = _mm_shuffle_epi8(tmp8, BSWAP_MASK);
}
for (k=i*8; k<nbytes/16; k++) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
ctr1 = _mm_add_epi64(ctr1, ONE);
tmp1 = _mm_xor_si128(tmp1, KEY[0]);
for (j=1; j<nr-1; j+=2) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]);
tmp1 = _mm_xor_si128(tmp1,
_mm_loadu_si128(&((const __m128i *)in)[k]));
_mm_storeu_si128(&((__m128i*)out)[k], tmp1);
}
//If remains one incomplete block
if (nbytes%16) {
tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
tmp1 = _mm_xor_si128(tmp1, KEY[0]);
for (j=1; j<nr-1; j+=2) {
tmp1 = _mm_aesenc_si128(tmp1, KEY[j]);
tmp1 = _mm_aesenc_si128(tmp1, KEY[j+1]);
}
tmp1 = _mm_aesenc_si128(tmp1, KEY[nr-1]);
tmp1 = _mm_aesenclast_si128(tmp1, KEY[nr]);
tmp1 = _mm_xor_si128(tmp1,
_mm_loadu_si128(&((const __m128i *)in)[k]));
last_block = tmp1;
for (j=0; j<nbytes%16; j++)
out[k*16+j] = ((unsigned char*)&last_block)[j];
}
return 1; //when sucessfull returns 1
}