freebsd-dev/sys/dev/ice/ice_common.c
Eric Joyner 71d104536b ice(4): Introduce new driver for Intel E800 Ethernet controllers
The ice(4) driver is the driver for the Intel E8xx series Ethernet
controllers; currently with codenames Columbiaville and
Columbia Park.

These new controllers support 100G speeds, as well as introducing
more queues, better virtualization support, and more offload
capabilities. Future work will enable virtual functions (like
in ixl(4)) and the other functionality outlined above.

For full functionality, the kernel should be compiled with
"device ice_ddp" like in the amd64 NOTES file, and/or
ice_ddp_load="YES" should be added to /boot/loader.conf so that
the DDP package file included in this commit can be downloaded
to the adapter. Otherwise, the adapter will fall back to a single
queue mode with limited functionality.

A man page for this driver will be forthcoming.

MFC after:	1 month
Relnotes:	yes
Sponsored by:	Intel Corporation
Differential Revision:	https://reviews.freebsd.org/D21959
2020-05-26 23:35:10 +00:00

4896 lines
138 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause */
/* Copyright (c) 2020, Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*$FreeBSD$*/
#include "ice_common.h"
#include "ice_sched.h"
#include "ice_adminq_cmd.h"
#include "ice_flow.h"
#include "ice_switch.h"
#define ICE_PF_RESET_WAIT_COUNT 300
/**
* ice_set_mac_type - Sets MAC type
* @hw: pointer to the HW structure
*
* This function sets the MAC type of the adapter based on the
* vendor ID and device ID stored in the HW structure.
*/
enum ice_status ice_set_mac_type(struct ice_hw *hw)
{
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
if (hw->vendor_id != ICE_INTEL_VENDOR_ID)
return ICE_ERR_DEVICE_NOT_SUPPORTED;
switch (hw->device_id) {
case ICE_DEV_ID_E810C_BACKPLANE:
case ICE_DEV_ID_E810C_QSFP:
case ICE_DEV_ID_E810C_SFP:
case ICE_DEV_ID_E810_XXV_BACKPLANE:
case ICE_DEV_ID_E810_XXV_QSFP:
case ICE_DEV_ID_E810_XXV_SFP:
hw->mac_type = ICE_MAC_E810;
break;
case ICE_DEV_ID_E822C_10G_BASE_T:
case ICE_DEV_ID_E822C_BACKPLANE:
case ICE_DEV_ID_E822C_QSFP:
case ICE_DEV_ID_E822C_SFP:
case ICE_DEV_ID_E822C_SGMII:
case ICE_DEV_ID_E822L_10G_BASE_T:
case ICE_DEV_ID_E822L_BACKPLANE:
case ICE_DEV_ID_E822L_SFP:
case ICE_DEV_ID_E822L_SGMII:
case ICE_DEV_ID_E823L_10G_BASE_T:
case ICE_DEV_ID_E823L_1GBE:
case ICE_DEV_ID_E823L_BACKPLANE:
case ICE_DEV_ID_E823L_QSFP:
case ICE_DEV_ID_E823L_SFP:
hw->mac_type = ICE_MAC_GENERIC;
break;
default:
hw->mac_type = ICE_MAC_UNKNOWN;
break;
}
ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
return ICE_SUCCESS;
}
/**
* ice_clear_pf_cfg - Clear PF configuration
* @hw: pointer to the hardware structure
*
* Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
* configuration, flow director filters, etc.).
*/
enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_manage_mac_read - manage MAC address read command
* @hw: pointer to the HW struct
* @buf: a virtual buffer to hold the manage MAC read response
* @buf_size: Size of the virtual buffer
* @cd: pointer to command details structure or NULL
*
* This function is used to return per PF station MAC address (0x0107).
* NOTE: Upon successful completion of this command, MAC address information
* is returned in user specified buffer. Please interpret user specified
* buffer as "manage_mac_read" response.
* Response such as various MAC addresses are stored in HW struct (port.mac)
* ice_aq_discover_caps is expected to be called before this function is called.
*/
enum ice_status
ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_manage_mac_read_resp *resp;
struct ice_aqc_manage_mac_read *cmd;
struct ice_aq_desc desc;
enum ice_status status;
u16 flags;
u8 i;
cmd = &desc.params.mac_read;
if (buf_size < sizeof(*resp))
return ICE_ERR_BUF_TOO_SHORT;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (status)
return status;
resp = (struct ice_aqc_manage_mac_read_resp *)buf;
flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
return ICE_ERR_CFG;
}
/* A single port can report up to two (LAN and WoL) addresses */
for (i = 0; i < cmd->num_addr; i++)
if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
ice_memcpy(hw->port_info->mac.lan_addr,
resp[i].mac_addr, ETH_ALEN,
ICE_DMA_TO_NONDMA);
ice_memcpy(hw->port_info->mac.perm_addr,
resp[i].mac_addr,
ETH_ALEN, ICE_DMA_TO_NONDMA);
break;
}
return ICE_SUCCESS;
}
/**
* ice_aq_get_phy_caps - returns PHY capabilities
* @pi: port information structure
* @qual_mods: report qualified modules
* @report_mode: report mode capabilities
* @pcaps: structure for PHY capabilities to be filled
* @cd: pointer to command details structure or NULL
*
* Returns the various PHY capabilities supported on the Port (0x0600)
*/
enum ice_status
ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
struct ice_aqc_get_phy_caps_data *pcaps,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_phy_caps *cmd;
u16 pcaps_size = sizeof(*pcaps);
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.get_phy;
if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
if (qual_mods)
cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
cmd->param0 |= CPU_TO_LE16(report_mode);
status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
}
return status;
}
/**
* ice_aq_get_link_topo_handle - get link topology node return status
* @pi: port information structure
* @node_type: requested node type
* @cd: pointer to command details structure or NULL
*
* Get link topology node return status for specified node type (0x06E0)
*
* Node type cage can be used to determine if cage is present. If AQC
* returns error (ENOENT), then no cage present. If no cage present, then
* connection type is backplane or BASE-T.
*/
static enum ice_status
ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
struct ice_sq_cd *cd)
{
struct ice_aqc_get_link_topo *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.get_link_topo;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
ICE_AQC_LINK_TOPO_NODE_CTX_S);
/* set node type */
cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
}
/*
* ice_is_media_cage_present
* @pi: port information structure
*
* Returns true if media cage is present, else false. If no cage, then
* media type is backplane or BASE-T.
*/
static bool ice_is_media_cage_present(struct ice_port_info *pi)
{
/* Node type cage can be used to determine if cage is present. If AQC
* returns error (ENOENT), then no cage present. If no cage present then
* connection type is backplane or BASE-T.
*/
return !ice_aq_get_link_topo_handle(pi,
ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
NULL);
}
/**
* ice_get_media_type - Gets media type
* @pi: port information structure
*/
static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
{
struct ice_link_status *hw_link_info;
if (!pi)
return ICE_MEDIA_UNKNOWN;
hw_link_info = &pi->phy.link_info;
if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
/* If more than one media type is selected, report unknown */
return ICE_MEDIA_UNKNOWN;
if (hw_link_info->phy_type_low) {
switch (hw_link_info->phy_type_low) {
case ICE_PHY_TYPE_LOW_1000BASE_SX:
case ICE_PHY_TYPE_LOW_1000BASE_LX:
case ICE_PHY_TYPE_LOW_10GBASE_SR:
case ICE_PHY_TYPE_LOW_10GBASE_LR:
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
case ICE_PHY_TYPE_LOW_25GBASE_SR:
case ICE_PHY_TYPE_LOW_25GBASE_LR:
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
case ICE_PHY_TYPE_LOW_50GBASE_SR:
case ICE_PHY_TYPE_LOW_50GBASE_FR:
case ICE_PHY_TYPE_LOW_50GBASE_LR:
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
case ICE_PHY_TYPE_LOW_100GBASE_DR:
return ICE_MEDIA_FIBER;
case ICE_PHY_TYPE_LOW_100BASE_TX:
case ICE_PHY_TYPE_LOW_1000BASE_T:
case ICE_PHY_TYPE_LOW_2500BASE_T:
case ICE_PHY_TYPE_LOW_5GBASE_T:
case ICE_PHY_TYPE_LOW_10GBASE_T:
case ICE_PHY_TYPE_LOW_25GBASE_T:
return ICE_MEDIA_BASET;
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
case ICE_PHY_TYPE_LOW_25GBASE_CR:
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
case ICE_PHY_TYPE_LOW_50GBASE_CP:
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
return ICE_MEDIA_DA;
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
case ICE_PHY_TYPE_LOW_40G_XLAUI:
case ICE_PHY_TYPE_LOW_50G_LAUI2:
case ICE_PHY_TYPE_LOW_50G_AUI2:
case ICE_PHY_TYPE_LOW_50G_AUI1:
case ICE_PHY_TYPE_LOW_100G_AUI4:
case ICE_PHY_TYPE_LOW_100G_CAUI4:
if (ice_is_media_cage_present(pi))
return ICE_MEDIA_DA;
/* fall-through */
case ICE_PHY_TYPE_LOW_1000BASE_KX:
case ICE_PHY_TYPE_LOW_2500BASE_KX:
case ICE_PHY_TYPE_LOW_2500BASE_X:
case ICE_PHY_TYPE_LOW_5GBASE_KR:
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
case ICE_PHY_TYPE_LOW_25GBASE_KR:
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
return ICE_MEDIA_BACKPLANE;
}
} else {
switch (hw_link_info->phy_type_high) {
case ICE_PHY_TYPE_HIGH_100G_AUI2:
if (ice_is_media_cage_present(pi))
return ICE_MEDIA_DA;
/* fall-through */
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
return ICE_MEDIA_BACKPLANE;
}
}
return ICE_MEDIA_UNKNOWN;
}
/**
* ice_aq_get_link_info
* @pi: port information structure
* @ena_lse: enable/disable LinkStatusEvent reporting
* @link: pointer to link status structure - optional
* @cd: pointer to command details structure or NULL
*
* Get Link Status (0x607). Returns the link status of the adapter.
*/
enum ice_status
ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
struct ice_link_status *link, struct ice_sq_cd *cd)
{
struct ice_aqc_get_link_status_data link_data = { 0 };
struct ice_aqc_get_link_status *resp;
struct ice_link_status *li_old, *li;
enum ice_media_type *hw_media_type;
struct ice_fc_info *hw_fc_info;
bool tx_pause, rx_pause;
struct ice_aq_desc desc;
enum ice_status status;
struct ice_hw *hw;
u16 cmd_flags;
if (!pi)
return ICE_ERR_PARAM;
hw = pi->hw;
li_old = &pi->phy.link_info_old;
hw_media_type = &pi->phy.media_type;
li = &pi->phy.link_info;
hw_fc_info = &pi->fc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
resp = &desc.params.get_link_status;
resp->cmd_flags = CPU_TO_LE16(cmd_flags);
resp->lport_num = pi->lport;
status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
if (status != ICE_SUCCESS)
return status;
/* save off old link status information */
*li_old = *li;
/* update current link status information */
li->link_speed = LE16_TO_CPU(link_data.link_speed);
li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
*hw_media_type = ice_get_media_type(pi);
li->link_info = link_data.link_info;
li->an_info = link_data.an_info;
li->ext_info = link_data.ext_info;
li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
li->topo_media_conflict = link_data.topo_media_conflict;
li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
ICE_AQ_CFG_PACING_TYPE_M);
/* update fc info */
tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
if (tx_pause && rx_pause)
hw_fc_info->current_mode = ICE_FC_FULL;
else if (tx_pause)
hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
else if (rx_pause)
hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
else
hw_fc_info->current_mode = ICE_FC_NONE;
li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
ice_debug(hw, ICE_DBG_LINK, "link_speed = 0x%x\n", li->link_speed);
ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
(unsigned long long)li->phy_type_low);
ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
(unsigned long long)li->phy_type_high);
ice_debug(hw, ICE_DBG_LINK, "media_type = 0x%x\n", *hw_media_type);
ice_debug(hw, ICE_DBG_LINK, "link_info = 0x%x\n", li->link_info);
ice_debug(hw, ICE_DBG_LINK, "an_info = 0x%x\n", li->an_info);
ice_debug(hw, ICE_DBG_LINK, "ext_info = 0x%x\n", li->ext_info);
ice_debug(hw, ICE_DBG_LINK, "lse_ena = 0x%x\n", li->lse_ena);
ice_debug(hw, ICE_DBG_LINK, "max_frame = 0x%x\n", li->max_frame_size);
ice_debug(hw, ICE_DBG_LINK, "pacing = 0x%x\n", li->pacing);
/* save link status information */
if (link)
*link = *li;
/* flag cleared so calling functions don't call AQ again */
pi->phy.get_link_info = false;
return ICE_SUCCESS;
}
/**
* ice_aq_set_mac_cfg
* @hw: pointer to the HW struct
* @max_frame_size: Maximum Frame Size to be supported
* @cd: pointer to command details structure or NULL
*
* Set MAC configuration (0x0603)
*/
enum ice_status
ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
{
u16 fc_threshold_val, tx_timer_val;
struct ice_aqc_set_mac_cfg *cmd;
struct ice_aq_desc desc;
u32 reg_val;
cmd = &desc.params.set_mac_cfg;
if (max_frame_size == 0)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
/* We read back the transmit timer and fc threshold value of
* LFC. Thus, we will use index =
* PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
*
* Also, because we are opearating on transmit timer and fc
* threshold of LFC, we don't turn on any bit in tx_tmr_priority
*/
#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
/* Retrieve the transmit timer */
reg_val = rd32(hw,
PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
tx_timer_val = reg_val &
PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
/* Retrieve the fc threshold */
reg_val = rd32(hw,
PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
fc_threshold_val = reg_val & MAKEMASK(0xFFFF, 0);
cmd->fc_refresh_threshold = CPU_TO_LE16(fc_threshold_val);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_init_fltr_mgmt_struct - initializes filter management list and locks
* @hw: pointer to the HW struct
*/
static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
{
struct ice_switch_info *sw;
hw->switch_info = (struct ice_switch_info *)
ice_malloc(hw, sizeof(*hw->switch_info));
sw = hw->switch_info;
if (!sw)
return ICE_ERR_NO_MEMORY;
INIT_LIST_HEAD(&sw->vsi_list_map_head);
return ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
}
/**
* ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
* @hw: pointer to the HW struct
*/
static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
{
struct ice_switch_info *sw = hw->switch_info;
struct ice_vsi_list_map_info *v_pos_map;
struct ice_vsi_list_map_info *v_tmp_map;
struct ice_sw_recipe *recps;
u8 i;
LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
ice_vsi_list_map_info, list_entry) {
LIST_DEL(&v_pos_map->list_entry);
ice_free(hw, v_pos_map);
}
recps = hw->switch_info->recp_list;
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
recps[i].root_rid = i;
LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
&recps[i].rg_list, ice_recp_grp_entry,
l_entry) {
LIST_DEL(&rg_entry->l_entry);
ice_free(hw, rg_entry);
}
if (recps[i].adv_rule) {
struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
struct ice_adv_fltr_mgmt_list_entry *lst_itr;
ice_destroy_lock(&recps[i].filt_rule_lock);
LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
&recps[i].filt_rules,
ice_adv_fltr_mgmt_list_entry,
list_entry) {
LIST_DEL(&lst_itr->list_entry);
ice_free(hw, lst_itr->lkups);
ice_free(hw, lst_itr);
}
} else {
struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
ice_destroy_lock(&recps[i].filt_rule_lock);
LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
&recps[i].filt_rules,
ice_fltr_mgmt_list_entry,
list_entry) {
LIST_DEL(&lst_itr->list_entry);
ice_free(hw, lst_itr);
}
}
if (recps[i].root_buf)
ice_free(hw, recps[i].root_buf);
}
ice_rm_all_sw_replay_rule_info(hw);
ice_free(hw, sw->recp_list);
ice_free(hw, sw);
}
/**
* ice_get_itr_intrl_gran
* @hw: pointer to the HW struct
*
* Determines the ITR/INTRL granularities based on the maximum aggregate
* bandwidth according to the device's configuration during power-on.
*/
static void ice_get_itr_intrl_gran(struct ice_hw *hw)
{
u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
GL_PWR_MODE_CTL_CAR_MAX_BW_S;
switch (max_agg_bw) {
case ICE_MAX_AGG_BW_200G:
case ICE_MAX_AGG_BW_100G:
case ICE_MAX_AGG_BW_50G:
hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
break;
case ICE_MAX_AGG_BW_25G:
hw->itr_gran = ICE_ITR_GRAN_MAX_25;
hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
break;
}
}
/**
* ice_print_rollback_msg - print FW rollback message
* @hw: pointer to the hardware structure
*/
void ice_print_rollback_msg(struct ice_hw *hw)
{
char nvm_str[ICE_NVM_VER_LEN] = { 0 };
struct ice_nvm_info *nvm = &hw->nvm;
struct ice_orom_info *orom;
orom = &nvm->orom;
SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d",
nvm->major_ver, nvm->minor_ver, nvm->eetrack, orom->major,
orom->build, orom->patch);
ice_warn(hw,
"Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
}
/**
* ice_init_hw - main hardware initialization routine
* @hw: pointer to the hardware structure
*/
enum ice_status ice_init_hw(struct ice_hw *hw)
{
struct ice_aqc_get_phy_caps_data *pcaps;
enum ice_status status;
u16 mac_buf_len;
void *mac_buf;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
/* Set MAC type based on DeviceID */
status = ice_set_mac_type(hw);
if (status)
return status;
hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
PF_FUNC_RID_FUNCTION_NUMBER_M) >>
PF_FUNC_RID_FUNCTION_NUMBER_S;
status = ice_reset(hw, ICE_RESET_PFR);
if (status)
return status;
ice_get_itr_intrl_gran(hw);
status = ice_create_all_ctrlq(hw);
if (status)
goto err_unroll_cqinit;
status = ice_init_nvm(hw);
if (status)
goto err_unroll_cqinit;
if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
ice_print_rollback_msg(hw);
status = ice_clear_pf_cfg(hw);
if (status)
goto err_unroll_cqinit;
ice_clear_pxe_mode(hw);
status = ice_get_caps(hw);
if (status)
goto err_unroll_cqinit;
hw->port_info = (struct ice_port_info *)
ice_malloc(hw, sizeof(*hw->port_info));
if (!hw->port_info) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_cqinit;
}
/* set the back pointer to HW */
hw->port_info->hw = hw;
/* Initialize port_info struct with switch configuration data */
status = ice_get_initial_sw_cfg(hw);
if (status)
goto err_unroll_alloc;
hw->evb_veb = true;
/* Query the allocated resources for Tx scheduler */
status = ice_sched_query_res_alloc(hw);
if (status) {
ice_debug(hw, ICE_DBG_SCHED,
"Failed to get scheduler allocated resources\n");
goto err_unroll_alloc;
}
ice_sched_get_psm_clk_freq(hw);
/* Initialize port_info struct with scheduler data */
status = ice_sched_init_port(hw->port_info);
if (status)
goto err_unroll_sched;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_sched;
}
/* Initialize port_info struct with PHY capabilities */
status = ice_aq_get_phy_caps(hw->port_info, false,
ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
ice_free(hw, pcaps);
if (status)
goto err_unroll_sched;
/* Initialize port_info struct with link information */
status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
if (status)
goto err_unroll_sched;
/* need a valid SW entry point to build a Tx tree */
if (!hw->sw_entry_point_layer) {
ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
status = ICE_ERR_CFG;
goto err_unroll_sched;
}
INIT_LIST_HEAD(&hw->agg_list);
/* Initialize max burst size */
if (!hw->max_burst_size)
ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
status = ice_init_fltr_mgmt_struct(hw);
if (status)
goto err_unroll_sched;
/* Get MAC information */
/* A single port can report up to two (LAN and WoL) addresses */
mac_buf = ice_calloc(hw, 2,
sizeof(struct ice_aqc_manage_mac_read_resp));
mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
if (!mac_buf) {
status = ICE_ERR_NO_MEMORY;
goto err_unroll_fltr_mgmt_struct;
}
status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
ice_free(hw, mac_buf);
if (status)
goto err_unroll_fltr_mgmt_struct;
status = ice_init_hw_tbls(hw);
if (status)
goto err_unroll_fltr_mgmt_struct;
ice_init_lock(&hw->tnl_lock);
return ICE_SUCCESS;
err_unroll_fltr_mgmt_struct:
ice_cleanup_fltr_mgmt_struct(hw);
err_unroll_sched:
ice_sched_cleanup_all(hw);
err_unroll_alloc:
ice_free(hw, hw->port_info);
hw->port_info = NULL;
err_unroll_cqinit:
ice_destroy_all_ctrlq(hw);
return status;
}
/**
* ice_deinit_hw - unroll initialization operations done by ice_init_hw
* @hw: pointer to the hardware structure
*
* This should be called only during nominal operation, not as a result of
* ice_init_hw() failing since ice_init_hw() will take care of unrolling
* applicable initializations if it fails for any reason.
*/
void ice_deinit_hw(struct ice_hw *hw)
{
ice_cleanup_fltr_mgmt_struct(hw);
ice_sched_cleanup_all(hw);
ice_sched_clear_agg(hw);
ice_free_seg(hw);
ice_free_hw_tbls(hw);
ice_destroy_lock(&hw->tnl_lock);
if (hw->port_info) {
ice_free(hw, hw->port_info);
hw->port_info = NULL;
}
ice_destroy_all_ctrlq(hw);
/* Clear VSI contexts if not already cleared */
ice_clear_all_vsi_ctx(hw);
}
/**
* ice_check_reset - Check to see if a global reset is complete
* @hw: pointer to the hardware structure
*/
enum ice_status ice_check_reset(struct ice_hw *hw)
{
u32 cnt, reg = 0, grst_delay, uld_mask;
/* Poll for Device Active state in case a recent CORER, GLOBR,
* or EMPR has occurred. The grst delay value is in 100ms units.
* Add 1sec for outstanding AQ commands that can take a long time.
*/
grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
GLGEN_RSTCTL_GRSTDEL_S) + 10;
for (cnt = 0; cnt < grst_delay; cnt++) {
ice_msec_delay(100, true);
reg = rd32(hw, GLGEN_RSTAT);
if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
break;
}
if (cnt == grst_delay) {
ice_debug(hw, ICE_DBG_INIT,
"Global reset polling failed to complete.\n");
return ICE_ERR_RESET_FAILED;
}
#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
GLNVM_ULD_PCIER_DONE_1_M |\
GLNVM_ULD_CORER_DONE_M |\
GLNVM_ULD_GLOBR_DONE_M |\
GLNVM_ULD_POR_DONE_M |\
GLNVM_ULD_POR_DONE_1_M |\
GLNVM_ULD_PCIER_DONE_2_M)
uld_mask = ICE_RESET_DONE_MASK;
/* Device is Active; check Global Reset processes are done */
for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
reg = rd32(hw, GLNVM_ULD) & uld_mask;
if (reg == uld_mask) {
ice_debug(hw, ICE_DBG_INIT,
"Global reset processes done. %d\n", cnt);
break;
}
ice_msec_delay(10, true);
}
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
ice_debug(hw, ICE_DBG_INIT,
"Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
reg);
return ICE_ERR_RESET_FAILED;
}
return ICE_SUCCESS;
}
/**
* ice_pf_reset - Reset the PF
* @hw: pointer to the hardware structure
*
* If a global reset has been triggered, this function checks
* for its completion and then issues the PF reset
*/
static enum ice_status ice_pf_reset(struct ice_hw *hw)
{
u32 cnt, reg;
/* If at function entry a global reset was already in progress, i.e.
* state is not 'device active' or any of the reset done bits are not
* set in GLNVM_ULD, there is no need for a PF Reset; poll until the
* global reset is done.
*/
if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
(rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
/* poll on global reset currently in progress until done */
if (ice_check_reset(hw))
return ICE_ERR_RESET_FAILED;
return ICE_SUCCESS;
}
/* Reset the PF */
reg = rd32(hw, PFGEN_CTRL);
wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
reg = rd32(hw, PFGEN_CTRL);
if (!(reg & PFGEN_CTRL_PFSWR_M))
break;
ice_msec_delay(1, true);
}
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
ice_debug(hw, ICE_DBG_INIT,
"PF reset polling failed to complete.\n");
return ICE_ERR_RESET_FAILED;
}
return ICE_SUCCESS;
}
/**
* ice_reset - Perform different types of reset
* @hw: pointer to the hardware structure
* @req: reset request
*
* This function triggers a reset as specified by the req parameter.
*
* Note:
* If anything other than a PF reset is triggered, PXE mode is restored.
* This has to be cleared using ice_clear_pxe_mode again, once the AQ
* interface has been restored in the rebuild flow.
*/
enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
{
u32 val = 0;
switch (req) {
case ICE_RESET_PFR:
return ice_pf_reset(hw);
case ICE_RESET_CORER:
ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
val = GLGEN_RTRIG_CORER_M;
break;
case ICE_RESET_GLOBR:
ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
val = GLGEN_RTRIG_GLOBR_M;
break;
default:
return ICE_ERR_PARAM;
}
val |= rd32(hw, GLGEN_RTRIG);
wr32(hw, GLGEN_RTRIG, val);
ice_flush(hw);
/* wait for the FW to be ready */
return ice_check_reset(hw);
}
/**
* ice_copy_rxq_ctx_to_hw
* @hw: pointer to the hardware structure
* @ice_rxq_ctx: pointer to the rxq context
* @rxq_index: the index of the Rx queue
*
* Copies rxq context from dense structure to HW register space
*/
static enum ice_status
ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
{
u8 i;
if (!ice_rxq_ctx)
return ICE_ERR_BAD_PTR;
if (rxq_index > QRX_CTRL_MAX_INDEX)
return ICE_ERR_PARAM;
/* Copy each dword separately to HW */
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
wr32(hw, QRX_CONTEXT(i, rxq_index),
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
}
return ICE_SUCCESS;
}
/* LAN Rx Queue Context */
static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
{ 0 }
};
/**
* ice_write_rxq_ctx
* @hw: pointer to the hardware structure
* @rlan_ctx: pointer to the rxq context
* @rxq_index: the index of the Rx queue
*
* Converts rxq context from sparse to dense structure and then writes
* it to HW register space and enables the hardware to prefetch descriptors
* instead of only fetching them on demand
*/
enum ice_status
ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
u32 rxq_index)
{
u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
if (!rlan_ctx)
return ICE_ERR_BAD_PTR;
rlan_ctx->prefena = 1;
ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
}
/**
* ice_clear_rxq_ctx
* @hw: pointer to the hardware structure
* @rxq_index: the index of the Rx queue to clear
*
* Clears rxq context in HW register space
*/
enum ice_status ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
{
u8 i;
if (rxq_index > QRX_CTRL_MAX_INDEX)
return ICE_ERR_PARAM;
/* Clear each dword register separately */
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
return ICE_SUCCESS;
}
/* LAN Tx Queue Context */
const struct ice_ctx_ele ice_tlan_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
{ 0 }
};
/**
* ice_copy_tx_cmpltnq_ctx_to_hw
* @hw: pointer to the hardware structure
* @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
* @tx_cmpltnq_index: the index of the completion queue
*
* Copies Tx completion queue context from dense structure to HW register space
*/
static enum ice_status
ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
u32 tx_cmpltnq_index)
{
u8 i;
if (!ice_tx_cmpltnq_ctx)
return ICE_ERR_BAD_PTR;
if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
return ICE_ERR_PARAM;
/* Copy each dword separately to HW */
for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
*((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
*((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
}
return ICE_SUCCESS;
}
/* LAN Tx Completion Queue Context */
static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base, 57, 0),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len, 18, 64),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation, 1, 96),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr, 22, 97),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num, 3, 128),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num, 10, 131),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type, 2, 141),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr, 1, 160),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid, 8, 161),
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache, 512, 192),
{ 0 }
};
/**
* ice_write_tx_cmpltnq_ctx
* @hw: pointer to the hardware structure
* @tx_cmpltnq_ctx: pointer to the completion queue context
* @tx_cmpltnq_index: the index of the completion queue
*
* Converts completion queue context from sparse to dense structure and then
* writes it to HW register space
*/
enum ice_status
ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
u32 tx_cmpltnq_index)
{
u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
ice_set_ctx((u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
}
/**
* ice_clear_tx_cmpltnq_ctx
* @hw: pointer to the hardware structure
* @tx_cmpltnq_index: the index of the completion queue to clear
*
* Clears Tx completion queue context in HW register space
*/
enum ice_status
ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
{
u8 i;
if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
return ICE_ERR_PARAM;
/* Clear each dword register separately */
for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
return ICE_SUCCESS;
}
/**
* ice_copy_tx_drbell_q_ctx_to_hw
* @hw: pointer to the hardware structure
* @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
* @tx_drbell_q_index: the index of the doorbell queue
*
* Copies doorbell queue context from dense structure to HW register space
*/
static enum ice_status
ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
u32 tx_drbell_q_index)
{
u8 i;
if (!ice_tx_drbell_q_ctx)
return ICE_ERR_BAD_PTR;
if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
return ICE_ERR_PARAM;
/* Copy each dword separately to HW */
for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
*((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
*((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
}
return ICE_SUCCESS;
}
/* LAN Tx Doorbell Queue Context info */
static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
/* Field Width LSB */
ICE_CTX_STORE(ice_tx_drbell_q_ctx, base, 57, 0),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len, 13, 64),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num, 3, 80),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num, 8, 84),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type, 2, 94),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid, 8, 96),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd, 1, 104),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr, 1, 108),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en, 1, 112),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head, 13, 128),
ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail, 13, 144),
{ 0 }
};
/**
* ice_write_tx_drbell_q_ctx
* @hw: pointer to the hardware structure
* @tx_drbell_q_ctx: pointer to the doorbell queue context
* @tx_drbell_q_index: the index of the doorbell queue
*
* Converts doorbell queue context from sparse to dense structure and then
* writes it to HW register space
*/
enum ice_status
ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
u32 tx_drbell_q_index)
{
u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
ice_set_ctx((u8 *)tx_drbell_q_ctx, ctx_buf, ice_tx_drbell_q_ctx_info);
return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
}
/**
* ice_clear_tx_drbell_q_ctx
* @hw: pointer to the hardware structure
* @tx_drbell_q_index: the index of the doorbell queue to clear
*
* Clears doorbell queue context in HW register space
*/
enum ice_status
ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
{
u8 i;
if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
return ICE_ERR_PARAM;
/* Clear each dword register separately */
for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
return ICE_SUCCESS;
}
/* FW Admin Queue command wrappers */
/**
* ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
* @hw: pointer to the HW struct
* @desc: descriptor describing the command
* @buf: buffer to use for indirect commands (NULL for direct commands)
* @buf_size: size of buffer for indirect commands (0 for direct commands)
* @cd: pointer to command details structure
*
* Helper function to send FW Admin Queue commands to the FW Admin Queue.
*/
enum ice_status
ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
u16 buf_size, struct ice_sq_cd *cd)
{
return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
}
/**
* ice_aq_get_fw_ver
* @hw: pointer to the HW struct
* @cd: pointer to command details structure or NULL
*
* Get the firmware version (0x0001) from the admin queue commands
*/
enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
{
struct ice_aqc_get_ver *resp;
struct ice_aq_desc desc;
enum ice_status status;
resp = &desc.params.get_ver;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
if (!status) {
hw->fw_branch = resp->fw_branch;
hw->fw_maj_ver = resp->fw_major;
hw->fw_min_ver = resp->fw_minor;
hw->fw_patch = resp->fw_patch;
hw->fw_build = LE32_TO_CPU(resp->fw_build);
hw->api_branch = resp->api_branch;
hw->api_maj_ver = resp->api_major;
hw->api_min_ver = resp->api_minor;
hw->api_patch = resp->api_patch;
}
return status;
}
/**
* ice_aq_send_driver_ver
* @hw: pointer to the HW struct
* @dv: driver's major, minor version
* @cd: pointer to command details structure or NULL
*
* Send the driver version (0x0002) to the firmware
*/
enum ice_status
ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
struct ice_sq_cd *cd)
{
struct ice_aqc_driver_ver *cmd;
struct ice_aq_desc desc;
u16 len;
cmd = &desc.params.driver_ver;
if (!dv)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
cmd->major_ver = dv->major_ver;
cmd->minor_ver = dv->minor_ver;
cmd->build_ver = dv->build_ver;
cmd->subbuild_ver = dv->subbuild_ver;
len = 0;
while (len < sizeof(dv->driver_string) &&
IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
len++;
return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
}
/**
* ice_aq_q_shutdown
* @hw: pointer to the HW struct
* @unloading: is the driver unloading itself
*
* Tell the Firmware that we're shutting down the AdminQ and whether
* or not the driver is unloading as well (0x0003).
*/
enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
{
struct ice_aqc_q_shutdown *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.q_shutdown;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
if (unloading)
cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_aq_req_res
* @hw: pointer to the HW struct
* @res: resource ID
* @access: access type
* @sdp_number: resource number
* @timeout: the maximum time in ms that the driver may hold the resource
* @cd: pointer to command details structure or NULL
*
* Requests common resource using the admin queue commands (0x0008).
* When attempting to acquire the Global Config Lock, the driver can
* learn of three states:
* 1) ICE_SUCCESS - acquired lock, and can perform download package
* 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
* 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
* successfully downloaded the package; the driver does
* not have to download the package and can continue
* loading
*
* Note that if the caller is in an acquire lock, perform action, release lock
* phase of operation, it is possible that the FW may detect a timeout and issue
* a CORER. In this case, the driver will receive a CORER interrupt and will
* have to determine its cause. The calling thread that is handling this flow
* will likely get an error propagated back to it indicating the Download
* Package, Update Package or the Release Resource AQ commands timed out.
*/
static enum ice_status
ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
struct ice_sq_cd *cd)
{
struct ice_aqc_req_res *cmd_resp;
struct ice_aq_desc desc;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd_resp = &desc.params.res_owner;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
cmd_resp->res_id = CPU_TO_LE16(res);
cmd_resp->access_type = CPU_TO_LE16(access);
cmd_resp->res_number = CPU_TO_LE32(sdp_number);
cmd_resp->timeout = CPU_TO_LE32(*timeout);
*timeout = 0;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
/* The completion specifies the maximum time in ms that the driver
* may hold the resource in the Timeout field.
*/
/* Global config lock response utilizes an additional status field.
*
* If the Global config lock resource is held by some other driver, the
* command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
* and the timeout field indicates the maximum time the current owner
* of the resource has to free it.
*/
if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
*timeout = LE32_TO_CPU(cmd_resp->timeout);
return ICE_SUCCESS;
} else if (LE16_TO_CPU(cmd_resp->status) ==
ICE_AQ_RES_GLBL_IN_PROG) {
*timeout = LE32_TO_CPU(cmd_resp->timeout);
return ICE_ERR_AQ_ERROR;
} else if (LE16_TO_CPU(cmd_resp->status) ==
ICE_AQ_RES_GLBL_DONE) {
return ICE_ERR_AQ_NO_WORK;
}
/* invalid FW response, force a timeout immediately */
*timeout = 0;
return ICE_ERR_AQ_ERROR;
}
/* If the resource is held by some other driver, the command completes
* with a busy return value and the timeout field indicates the maximum
* time the current owner of the resource has to free it.
*/
if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
*timeout = LE32_TO_CPU(cmd_resp->timeout);
return status;
}
/**
* ice_aq_release_res
* @hw: pointer to the HW struct
* @res: resource ID
* @sdp_number: resource number
* @cd: pointer to command details structure or NULL
*
* release common resource using the admin queue commands (0x0009)
*/
static enum ice_status
ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
struct ice_sq_cd *cd)
{
struct ice_aqc_req_res *cmd;
struct ice_aq_desc desc;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.res_owner;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
cmd->res_id = CPU_TO_LE16(res);
cmd->res_number = CPU_TO_LE32(sdp_number);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_acquire_res
* @hw: pointer to the HW structure
* @res: resource ID
* @access: access type (read or write)
* @timeout: timeout in milliseconds
*
* This function will attempt to acquire the ownership of a resource.
*/
enum ice_status
ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
enum ice_aq_res_access_type access, u32 timeout)
{
#define ICE_RES_POLLING_DELAY_MS 10
u32 delay = ICE_RES_POLLING_DELAY_MS;
u32 time_left = timeout;
enum ice_status status;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
* previously acquired the resource and performed any necessary updates;
* in this case the caller does not obtain the resource and has no
* further work to do.
*/
if (status == ICE_ERR_AQ_NO_WORK)
goto ice_acquire_res_exit;
if (status)
ice_debug(hw, ICE_DBG_RES,
"resource %d acquire type %d failed.\n", res, access);
/* If necessary, poll until the current lock owner timeouts */
timeout = time_left;
while (status && timeout && time_left) {
ice_msec_delay(delay, true);
timeout = (timeout > delay) ? timeout - delay : 0;
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
if (status == ICE_ERR_AQ_NO_WORK)
/* lock free, but no work to do */
break;
if (!status)
/* lock acquired */
break;
}
if (status && status != ICE_ERR_AQ_NO_WORK)
ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
ice_acquire_res_exit:
if (status == ICE_ERR_AQ_NO_WORK) {
if (access == ICE_RES_WRITE)
ice_debug(hw, ICE_DBG_RES,
"resource indicates no work to do.\n");
else
ice_debug(hw, ICE_DBG_RES,
"Warning: ICE_ERR_AQ_NO_WORK not expected\n");
}
return status;
}
/**
* ice_release_res
* @hw: pointer to the HW structure
* @res: resource ID
*
* This function will release a resource using the proper Admin Command.
*/
void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
{
enum ice_status status;
u32 total_delay = 0;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
status = ice_aq_release_res(hw, res, 0, NULL);
/* there are some rare cases when trying to release the resource
* results in an admin queue timeout, so handle them correctly
*/
while ((status == ICE_ERR_AQ_TIMEOUT) &&
(total_delay < hw->adminq.sq_cmd_timeout)) {
ice_msec_delay(1, true);
status = ice_aq_release_res(hw, res, 0, NULL);
total_delay++;
}
}
/**
* ice_aq_alloc_free_res - command to allocate/free resources
* @hw: pointer to the HW struct
* @num_entries: number of resource entries in buffer
* @buf: Indirect buffer to hold data parameters and response
* @buf_size: size of buffer for indirect commands
* @opc: pass in the command opcode
* @cd: pointer to command details structure or NULL
*
* Helper function to allocate/free resources using the admin queue commands
*/
enum ice_status
ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
struct ice_aqc_alloc_free_res_cmd *cmd;
struct ice_aq_desc desc;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.sw_res_ctrl;
if (!buf)
return ICE_ERR_PARAM;
if (buf_size < (num_entries * sizeof(buf->elem[0])))
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
cmd->num_entries = CPU_TO_LE16(num_entries);
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
}
/**
* ice_alloc_hw_res - allocate resource
* @hw: pointer to the HW struct
* @type: type of resource
* @num: number of resources to allocate
* @btm: allocate from bottom
* @res: pointer to array that will receive the resources
*/
enum ice_status
ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
{
struct ice_aqc_alloc_free_res_elem *buf;
enum ice_status status;
u16 buf_len;
buf_len = ice_struct_size(buf, elem, num - 1);
buf = (struct ice_aqc_alloc_free_res_elem *)
ice_malloc(hw, buf_len);
if (!buf)
return ICE_ERR_NO_MEMORY;
/* Prepare buffer to allocate resource. */
buf->num_elems = CPU_TO_LE16(num);
buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
if (btm)
buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
ice_aqc_opc_alloc_res, NULL);
if (status)
goto ice_alloc_res_exit;
ice_memcpy(res, buf->elem, sizeof(buf->elem) * num,
ICE_NONDMA_TO_NONDMA);
ice_alloc_res_exit:
ice_free(hw, buf);
return status;
}
/**
* ice_free_hw_res - free allocated HW resource
* @hw: pointer to the HW struct
* @type: type of resource to free
* @num: number of resources
* @res: pointer to array that contains the resources to free
*/
enum ice_status
ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
{
struct ice_aqc_alloc_free_res_elem *buf;
enum ice_status status;
u16 buf_len;
buf_len = ice_struct_size(buf, elem, num - 1);
buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
if (!buf)
return ICE_ERR_NO_MEMORY;
/* Prepare buffer to free resource. */
buf->num_elems = CPU_TO_LE16(num);
buf->res_type = CPU_TO_LE16(type);
ice_memcpy(buf->elem, res, sizeof(buf->elem) * num,
ICE_NONDMA_TO_NONDMA);
status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
ice_aqc_opc_free_res, NULL);
if (status)
ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
ice_free(hw, buf);
return status;
}
/**
* ice_get_num_per_func - determine number of resources per PF
* @hw: pointer to the HW structure
* @max: value to be evenly split between each PF
*
* Determine the number of valid functions by going through the bitmap returned
* from parsing capabilities and use this to calculate the number of resources
* per PF based on the max value passed in.
*/
static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
{
u8 funcs;
#define ICE_CAPS_VALID_FUNCS_M 0xFF
funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
ICE_CAPS_VALID_FUNCS_M);
if (!funcs)
return 0;
return max / funcs;
}
/**
* ice_print_led_caps - print LED capabilities
* @hw: pointer to the ice_hw instance
* @caps: pointer to common caps instance
* @prefix: string to prefix when printing
* @debug: set to indicate debug print
*/
static void
ice_print_led_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
char const *prefix, bool debug)
{
u8 i;
if (debug)
ice_debug(hw, ICE_DBG_INIT, "%s: led_pin_num = %d\n", prefix,
caps->led_pin_num);
else
ice_info(hw, "%s: led_pin_num = %d\n", prefix,
caps->led_pin_num);
for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_LED; i++) {
if (!caps->led[i])
continue;
if (debug)
ice_debug(hw, ICE_DBG_INIT, "%s: led[%d] = %d\n",
prefix, i, caps->led[i]);
else
ice_info(hw, "%s: led[%d] = %d\n", prefix, i,
caps->led[i]);
}
}
/**
* ice_print_sdp_caps - print SDP capabilities
* @hw: pointer to the ice_hw instance
* @caps: pointer to common caps instance
* @prefix: string to prefix when printing
* @debug: set to indicate debug print
*/
static void
ice_print_sdp_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
char const *prefix, bool debug)
{
u8 i;
if (debug)
ice_debug(hw, ICE_DBG_INIT, "%s: sdp_pin_num = %d\n", prefix,
caps->sdp_pin_num);
else
ice_info(hw, "%s: sdp_pin_num = %d\n", prefix,
caps->sdp_pin_num);
for (i = 0; i < ICE_MAX_SUPPORTED_GPIO_SDP; i++) {
if (!caps->sdp[i])
continue;
if (debug)
ice_debug(hw, ICE_DBG_INIT, "%s: sdp[%d] = %d\n",
prefix, i, caps->sdp[i]);
else
ice_info(hw, "%s: sdp[%d] = %d\n", prefix,
i, caps->sdp[i]);
}
}
/**
* ice_parse_caps - parse function/device capabilities
* @hw: pointer to the HW struct
* @buf: pointer to a buffer containing function/device capability records
* @cap_count: number of capability records in the list
* @opc: type of capabilities list to parse
*
* Helper function to parse function(0x000a)/device(0x000b) capabilities list.
*/
static void
ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
enum ice_adminq_opc opc)
{
struct ice_aqc_list_caps_elem *cap_resp;
struct ice_hw_func_caps *func_p = NULL;
struct ice_hw_dev_caps *dev_p = NULL;
struct ice_hw_common_caps *caps;
char const *prefix;
u32 i;
if (!buf)
return;
cap_resp = (struct ice_aqc_list_caps_elem *)buf;
if (opc == ice_aqc_opc_list_dev_caps) {
dev_p = &hw->dev_caps;
caps = &dev_p->common_cap;
prefix = "dev cap";
} else if (opc == ice_aqc_opc_list_func_caps) {
func_p = &hw->func_caps;
caps = &func_p->common_cap;
prefix = "func cap";
} else {
ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
return;
}
for (i = 0; caps && i < cap_count; i++, cap_resp++) {
u32 logical_id = LE32_TO_CPU(cap_resp->logical_id);
u32 phys_id = LE32_TO_CPU(cap_resp->phys_id);
u32 number = LE32_TO_CPU(cap_resp->number);
u16 cap = LE16_TO_CPU(cap_resp->cap);
switch (cap) {
case ICE_AQC_CAPS_SWITCHING_MODE:
caps->switching_mode = number;
ice_debug(hw, ICE_DBG_INIT,
"%s: switching_mode = %d\n", prefix,
caps->switching_mode);
break;
case ICE_AQC_CAPS_MANAGEABILITY_MODE:
caps->mgmt_mode = number;
caps->mgmt_protocols_mctp = logical_id;
ice_debug(hw, ICE_DBG_INIT,
"%s: mgmt_mode = %d\n", prefix,
caps->mgmt_mode);
ice_debug(hw, ICE_DBG_INIT,
"%s: mgmt_protocols_mctp = %d\n", prefix,
caps->mgmt_protocols_mctp);
break;
case ICE_AQC_CAPS_OS2BMC:
caps->os2bmc = number;
ice_debug(hw, ICE_DBG_INIT,
"%s: os2bmc = %d\n", prefix, caps->os2bmc);
break;
case ICE_AQC_CAPS_VALID_FUNCTIONS:
caps->valid_functions = number;
ice_debug(hw, ICE_DBG_INIT,
"%s: valid_functions (bitmap) = %d\n", prefix,
caps->valid_functions);
/* store func count for resource management purposes */
if (dev_p)
dev_p->num_funcs = ice_hweight32(number);
break;
case ICE_AQC_CAPS_SRIOV:
caps->sr_iov_1_1 = (number == 1);
ice_debug(hw, ICE_DBG_INIT,
"%s: sr_iov_1_1 = %d\n", prefix,
caps->sr_iov_1_1);
break;
case ICE_AQC_CAPS_VF:
if (dev_p) {
dev_p->num_vfs_exposed = number;
ice_debug(hw, ICE_DBG_INIT,
"%s: num_vfs_exposed = %d\n", prefix,
dev_p->num_vfs_exposed);
} else if (func_p) {
func_p->num_allocd_vfs = number;
func_p->vf_base_id = logical_id;
ice_debug(hw, ICE_DBG_INIT,
"%s: num_allocd_vfs = %d\n", prefix,
func_p->num_allocd_vfs);
ice_debug(hw, ICE_DBG_INIT,
"%s: vf_base_id = %d\n", prefix,
func_p->vf_base_id);
}
break;
case ICE_AQC_CAPS_802_1QBG:
caps->evb_802_1_qbg = (number == 1);
ice_debug(hw, ICE_DBG_INIT,
"%s: evb_802_1_qbg = %d\n", prefix, number);
break;
case ICE_AQC_CAPS_802_1BR:
caps->evb_802_1_qbh = (number == 1);
ice_debug(hw, ICE_DBG_INIT,
"%s: evb_802_1_qbh = %d\n", prefix, number);
break;
case ICE_AQC_CAPS_VSI:
if (dev_p) {
dev_p->num_vsi_allocd_to_host = number;
ice_debug(hw, ICE_DBG_INIT,
"%s: num_vsi_allocd_to_host = %d\n",
prefix,
dev_p->num_vsi_allocd_to_host);
} else if (func_p) {
func_p->guar_num_vsi =
ice_get_num_per_func(hw, ICE_MAX_VSI);
ice_debug(hw, ICE_DBG_INIT,
"%s: guar_num_vsi (fw) = %d\n",
prefix, number);
ice_debug(hw, ICE_DBG_INIT,
"%s: guar_num_vsi = %d\n",
prefix, func_p->guar_num_vsi);
}
break;
case ICE_AQC_CAPS_DCB:
caps->dcb = (number == 1);
caps->active_tc_bitmap = logical_id;
caps->maxtc = phys_id;
ice_debug(hw, ICE_DBG_INIT,
"%s: dcb = %d\n", prefix, caps->dcb);
ice_debug(hw, ICE_DBG_INIT,
"%s: active_tc_bitmap = %d\n", prefix,
caps->active_tc_bitmap);
ice_debug(hw, ICE_DBG_INIT,
"%s: maxtc = %d\n", prefix, caps->maxtc);
break;
case ICE_AQC_CAPS_ISCSI:
caps->iscsi = (number == 1);
ice_debug(hw, ICE_DBG_INIT,
"%s: iscsi = %d\n", prefix, caps->iscsi);
break;
case ICE_AQC_CAPS_RSS:
caps->rss_table_size = number;
caps->rss_table_entry_width = logical_id;
ice_debug(hw, ICE_DBG_INIT,
"%s: rss_table_size = %d\n", prefix,
caps->rss_table_size);
ice_debug(hw, ICE_DBG_INIT,
"%s: rss_table_entry_width = %d\n", prefix,
caps->rss_table_entry_width);
break;
case ICE_AQC_CAPS_RXQS:
caps->num_rxq = number;
caps->rxq_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT,
"%s: num_rxq = %d\n", prefix,
caps->num_rxq);
ice_debug(hw, ICE_DBG_INIT,
"%s: rxq_first_id = %d\n", prefix,
caps->rxq_first_id);
break;
case ICE_AQC_CAPS_TXQS:
caps->num_txq = number;
caps->txq_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT,
"%s: num_txq = %d\n", prefix,
caps->num_txq);
ice_debug(hw, ICE_DBG_INIT,
"%s: txq_first_id = %d\n", prefix,
caps->txq_first_id);
break;
case ICE_AQC_CAPS_MSIX:
caps->num_msix_vectors = number;
caps->msix_vector_first_id = phys_id;
ice_debug(hw, ICE_DBG_INIT,
"%s: num_msix_vectors = %d\n", prefix,
caps->num_msix_vectors);
ice_debug(hw, ICE_DBG_INIT,
"%s: msix_vector_first_id = %d\n", prefix,
caps->msix_vector_first_id);
break;
case ICE_AQC_CAPS_NVM_VER:
break;
case ICE_AQC_CAPS_NVM_MGMT:
caps->nvm_unified_update =
(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
true : false;
ice_debug(hw, ICE_DBG_INIT,
"%s: nvm_unified_update = %d\n", prefix,
caps->nvm_unified_update);
break;
case ICE_AQC_CAPS_CEM:
caps->mgmt_cem = (number == 1);
ice_debug(hw, ICE_DBG_INIT,
"%s: mgmt_cem = %d\n", prefix,
caps->mgmt_cem);
break;
case ICE_AQC_CAPS_LED:
if (phys_id < ICE_MAX_SUPPORTED_GPIO_LED) {
caps->led[phys_id] = true;
caps->led_pin_num++;
}
break;
case ICE_AQC_CAPS_SDP:
if (phys_id < ICE_MAX_SUPPORTED_GPIO_SDP) {
caps->sdp[phys_id] = true;
caps->sdp_pin_num++;
}
break;
case ICE_AQC_CAPS_WR_CSR_PROT:
caps->wr_csr_prot = number;
caps->wr_csr_prot |= (u64)logical_id << 32;
ice_debug(hw, ICE_DBG_INIT,
"%s: wr_csr_prot = 0x%llX\n", prefix,
(unsigned long long)caps->wr_csr_prot);
break;
case ICE_AQC_CAPS_WOL_PROXY:
caps->num_wol_proxy_fltr = number;
caps->wol_proxy_vsi_seid = logical_id;
caps->apm_wol_support = !!(phys_id & ICE_WOL_SUPPORT_M);
caps->acpi_prog_mthd = !!(phys_id &
ICE_ACPI_PROG_MTHD_M);
caps->proxy_support = !!(phys_id & ICE_PROXY_SUPPORT_M);
ice_debug(hw, ICE_DBG_INIT,
"%s: num_wol_proxy_fltr = %d\n", prefix,
caps->num_wol_proxy_fltr);
ice_debug(hw, ICE_DBG_INIT,
"%s: wol_proxy_vsi_seid = %d\n", prefix,
caps->wol_proxy_vsi_seid);
break;
case ICE_AQC_CAPS_MAX_MTU:
caps->max_mtu = number;
ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
prefix, caps->max_mtu);
break;
default:
ice_debug(hw, ICE_DBG_INIT,
"%s: unknown capability[%d]: 0x%x\n", prefix,
i, cap);
break;
}
}
ice_print_led_caps(hw, caps, prefix, true);
ice_print_sdp_caps(hw, caps, prefix, true);
/* Re-calculate capabilities that are dependent on the number of
* physical ports; i.e. some features are not supported or function
* differently on devices with more than 4 ports.
*/
if (hw->dev_caps.num_funcs > 4) {
/* Max 4 TCs per port */
caps->maxtc = 4;
ice_debug(hw, ICE_DBG_INIT,
"%s: maxtc = %d (based on #ports)\n", prefix,
caps->maxtc);
}
}
/**
* ice_aq_discover_caps - query function/device capabilities
* @hw: pointer to the HW struct
* @buf: a virtual buffer to hold the capabilities
* @buf_size: Size of the virtual buffer
* @cap_count: cap count needed if AQ err==ENOMEM
* @opc: capabilities type to discover - pass in the command opcode
* @cd: pointer to command details structure or NULL
*
* Get the function(0x000a)/device(0x000b) capabilities description from
* the firmware.
*/
enum ice_status
ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
{
struct ice_aqc_list_caps *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.get_cap;
if (opc != ice_aqc_opc_list_func_caps &&
opc != ice_aqc_opc_list_dev_caps)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, opc);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status)
ice_parse_caps(hw, buf, LE32_TO_CPU(cmd->count), opc);
else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
*cap_count = LE32_TO_CPU(cmd->count);
return status;
}
/**
* ice_discover_caps - get info about the HW
* @hw: pointer to the hardware structure
* @opc: capabilities type to discover - pass in the command opcode
*/
static enum ice_status
ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
{
enum ice_status status;
u32 cap_count;
u16 cbuf_len;
u8 retries;
/* The driver doesn't know how many capabilities the device will return
* so the buffer size required isn't known ahead of time. The driver
* starts with cbuf_len and if this turns out to be insufficient, the
* device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
* The driver then allocates the buffer based on the count and retries
* the operation. So it follows that the retry count is 2.
*/
#define ICE_GET_CAP_BUF_COUNT 40
#define ICE_GET_CAP_RETRY_COUNT 2
cap_count = ICE_GET_CAP_BUF_COUNT;
retries = ICE_GET_CAP_RETRY_COUNT;
do {
void *cbuf;
cbuf_len = (u16)(cap_count *
sizeof(struct ice_aqc_list_caps_elem));
cbuf = ice_malloc(hw, cbuf_len);
if (!cbuf)
return ICE_ERR_NO_MEMORY;
status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
opc, NULL);
ice_free(hw, cbuf);
if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
break;
/* If ENOMEM is returned, try again with bigger buffer */
} while (--retries);
return status;
}
/**
* ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
* @hw: pointer to the hardware structure
*/
void ice_set_safe_mode_caps(struct ice_hw *hw)
{
struct ice_hw_func_caps *func_caps = &hw->func_caps;
struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
u32 valid_func, rxq_first_id, txq_first_id;
u32 msix_vector_first_id, max_mtu;
u32 num_funcs;
/* cache some func_caps values that should be restored after memset */
valid_func = func_caps->common_cap.valid_functions;
txq_first_id = func_caps->common_cap.txq_first_id;
rxq_first_id = func_caps->common_cap.rxq_first_id;
msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
max_mtu = func_caps->common_cap.max_mtu;
/* unset func capabilities */
memset(func_caps, 0, sizeof(*func_caps));
/* restore cached values */
func_caps->common_cap.valid_functions = valid_func;
func_caps->common_cap.txq_first_id = txq_first_id;
func_caps->common_cap.rxq_first_id = rxq_first_id;
func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
func_caps->common_cap.max_mtu = max_mtu;
/* one Tx and one Rx queue in safe mode */
func_caps->common_cap.num_rxq = 1;
func_caps->common_cap.num_txq = 1;
/* two MSIX vectors, one for traffic and one for misc causes */
func_caps->common_cap.num_msix_vectors = 2;
func_caps->guar_num_vsi = 1;
/* cache some dev_caps values that should be restored after memset */
valid_func = dev_caps->common_cap.valid_functions;
txq_first_id = dev_caps->common_cap.txq_first_id;
rxq_first_id = dev_caps->common_cap.rxq_first_id;
msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
max_mtu = dev_caps->common_cap.max_mtu;
num_funcs = dev_caps->num_funcs;
/* unset dev capabilities */
memset(dev_caps, 0, sizeof(*dev_caps));
/* restore cached values */
dev_caps->common_cap.valid_functions = valid_func;
dev_caps->common_cap.txq_first_id = txq_first_id;
dev_caps->common_cap.rxq_first_id = rxq_first_id;
dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
dev_caps->common_cap.max_mtu = max_mtu;
dev_caps->num_funcs = num_funcs;
/* one Tx and one Rx queue per function in safe mode */
dev_caps->common_cap.num_rxq = num_funcs;
dev_caps->common_cap.num_txq = num_funcs;
/* two MSIX vectors per function */
dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
}
/**
* ice_get_caps - get info about the HW
* @hw: pointer to the hardware structure
*/
enum ice_status ice_get_caps(struct ice_hw *hw)
{
enum ice_status status;
status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
if (!status)
status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
return status;
}
/**
* ice_aq_manage_mac_write - manage MAC address write command
* @hw: pointer to the HW struct
* @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
* @flags: flags to control write behavior
* @cd: pointer to command details structure or NULL
*
* This function is used to write MAC address to the NVM (0x0108).
*/
enum ice_status
ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
struct ice_sq_cd *cd)
{
struct ice_aqc_manage_mac_write *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.mac_write;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
cmd->flags = flags;
ice_memcpy(cmd->mac_addr, mac_addr, ETH_ALEN, ICE_NONDMA_TO_DMA);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_clear_pxe_mode
* @hw: pointer to the HW struct
*
* Tell the firmware that the driver is taking over from PXE (0x0110).
*/
static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/**
* ice_clear_pxe_mode - clear pxe operations mode
* @hw: pointer to the HW struct
*
* Make sure all PXE mode settings are cleared, including things
* like descriptor fetch/write-back mode.
*/
void ice_clear_pxe_mode(struct ice_hw *hw)
{
if (ice_check_sq_alive(hw, &hw->adminq))
ice_aq_clear_pxe_mode(hw);
}
/**
* ice_aq_set_port_params - set physical port parameters.
* @pi: pointer to the port info struct
* @bad_frame_vsi: defines the VSI to which bad frames are forwarded
* @save_bad_pac: if set packets with errors are forwarded to the bad frames VSI
* @pad_short_pac: if set transmit packets smaller than 60 bytes are padded
* @double_vlan: if set double VLAN is enabled
* @cd: pointer to command details structure or NULL
*
* Set Physical port parameters (0x0203)
*/
enum ice_status
ice_aq_set_port_params(struct ice_port_info *pi, u16 bad_frame_vsi,
bool save_bad_pac, bool pad_short_pac, bool double_vlan,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_port_params *cmd;
struct ice_hw *hw = pi->hw;
struct ice_aq_desc desc;
u16 cmd_flags = 0;
cmd = &desc.params.set_port_params;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
cmd->bad_frame_vsi = CPU_TO_LE16(bad_frame_vsi);
if (save_bad_pac)
cmd_flags |= ICE_AQC_SET_P_PARAMS_SAVE_BAD_PACKETS;
if (pad_short_pac)
cmd_flags |= ICE_AQC_SET_P_PARAMS_PAD_SHORT_PACKETS;
if (double_vlan)
cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
cmd->cmd_flags = CPU_TO_LE16(cmd_flags);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_get_link_speed_based_on_phy_type - returns link speed
* @phy_type_low: lower part of phy_type
* @phy_type_high: higher part of phy_type
*
* This helper function will convert an entry in PHY type structure
* [phy_type_low, phy_type_high] to its corresponding link speed.
* Note: In the structure of [phy_type_low, phy_type_high], there should
* be one bit set, as this function will convert one PHY type to its
* speed.
* If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
* If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
*/
static u16
ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
{
u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
switch (phy_type_low) {
case ICE_PHY_TYPE_LOW_100BASE_TX:
case ICE_PHY_TYPE_LOW_100M_SGMII:
speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
break;
case ICE_PHY_TYPE_LOW_1000BASE_T:
case ICE_PHY_TYPE_LOW_1000BASE_SX:
case ICE_PHY_TYPE_LOW_1000BASE_LX:
case ICE_PHY_TYPE_LOW_1000BASE_KX:
case ICE_PHY_TYPE_LOW_1G_SGMII:
speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
break;
case ICE_PHY_TYPE_LOW_2500BASE_T:
case ICE_PHY_TYPE_LOW_2500BASE_X:
case ICE_PHY_TYPE_LOW_2500BASE_KX:
speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
break;
case ICE_PHY_TYPE_LOW_5GBASE_T:
case ICE_PHY_TYPE_LOW_5GBASE_KR:
speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
break;
case ICE_PHY_TYPE_LOW_10GBASE_T:
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
case ICE_PHY_TYPE_LOW_10GBASE_SR:
case ICE_PHY_TYPE_LOW_10GBASE_LR:
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
break;
case ICE_PHY_TYPE_LOW_25GBASE_T:
case ICE_PHY_TYPE_LOW_25GBASE_CR:
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
case ICE_PHY_TYPE_LOW_25GBASE_SR:
case ICE_PHY_TYPE_LOW_25GBASE_LR:
case ICE_PHY_TYPE_LOW_25GBASE_KR:
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
break;
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
case ICE_PHY_TYPE_LOW_40G_XLAUI:
speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
break;
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_LAUI2:
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI2:
case ICE_PHY_TYPE_LOW_50GBASE_CP:
case ICE_PHY_TYPE_LOW_50GBASE_SR:
case ICE_PHY_TYPE_LOW_50GBASE_FR:
case ICE_PHY_TYPE_LOW_50GBASE_LR:
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
case ICE_PHY_TYPE_LOW_50G_AUI1:
speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
break;
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_CAUI4:
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
case ICE_PHY_TYPE_LOW_100G_AUI4:
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
case ICE_PHY_TYPE_LOW_100GBASE_DR:
speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
break;
default:
speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
break;
}
switch (phy_type_high) {
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
case ICE_PHY_TYPE_HIGH_100G_AUI2:
speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
break;
default:
speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
break;
}
if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
return ICE_AQ_LINK_SPEED_UNKNOWN;
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
return ICE_AQ_LINK_SPEED_UNKNOWN;
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
return speed_phy_type_low;
else
return speed_phy_type_high;
}
/**
* ice_update_phy_type
* @phy_type_low: pointer to the lower part of phy_type
* @phy_type_high: pointer to the higher part of phy_type
* @link_speeds_bitmap: targeted link speeds bitmap
*
* Note: For the link_speeds_bitmap structure, you can check it at
* [ice_aqc_get_link_status->link_speed]. Caller can pass in
* link_speeds_bitmap include multiple speeds.
*
* Each entry in this [phy_type_low, phy_type_high] structure will
* present a certain link speed. This helper function will turn on bits
* in [phy_type_low, phy_type_high] structure based on the value of
* link_speeds_bitmap input parameter.
*/
void
ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
u16 link_speeds_bitmap)
{
u64 pt_high;
u64 pt_low;
int index;
u16 speed;
/* We first check with low part of phy_type */
for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
pt_low = BIT_ULL(index);
speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
if (link_speeds_bitmap & speed)
*phy_type_low |= BIT_ULL(index);
}
/* We then check with high part of phy_type */
for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
pt_high = BIT_ULL(index);
speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
if (link_speeds_bitmap & speed)
*phy_type_high |= BIT_ULL(index);
}
}
/**
* ice_aq_set_phy_cfg
* @hw: pointer to the HW struct
* @pi: port info structure of the interested logical port
* @cfg: structure with PHY configuration data to be set
* @cd: pointer to command details structure or NULL
*
* Set the various PHY configuration parameters supported on the Port.
* One or more of the Set PHY config parameters may be ignored in an MFP
* mode as the PF may not have the privilege to set some of the PHY Config
* parameters. This status will be indicated by the command response (0x0601).
*/
enum ice_status
ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
enum ice_status status;
if (!cfg)
return ICE_ERR_PARAM;
/* Ensure that only valid bits of cfg->caps can be turned on. */
if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
ice_debug(hw, ICE_DBG_PHY,
"Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
cfg->caps);
cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
}
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
desc.params.set_phy.lport_num = pi->lport;
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
(unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
(unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
ice_debug(hw, ICE_DBG_LINK, "caps = 0x%x\n", cfg->caps);
ice_debug(hw, ICE_DBG_LINK, "low_power_ctrl_an = 0x%x\n",
cfg->low_power_ctrl_an);
ice_debug(hw, ICE_DBG_LINK, "eee_cap = 0x%x\n", cfg->eee_cap);
ice_debug(hw, ICE_DBG_LINK, "eeer_value = 0x%x\n", cfg->eeer_value);
ice_debug(hw, ICE_DBG_LINK, "link_fec_opt = 0x%x\n", cfg->link_fec_opt);
status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
if (!status)
pi->phy.curr_user_phy_cfg = *cfg;
return status;
}
/**
* ice_update_link_info - update status of the HW network link
* @pi: port info structure of the interested logical port
*/
enum ice_status ice_update_link_info(struct ice_port_info *pi)
{
struct ice_link_status *li;
enum ice_status status;
if (!pi)
return ICE_ERR_PARAM;
li = &pi->phy.link_info;
status = ice_aq_get_link_info(pi, true, NULL, NULL);
if (status)
return status;
if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
struct ice_aqc_get_phy_caps_data *pcaps;
struct ice_hw *hw;
hw = pi->hw;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
pcaps, NULL);
if (status == ICE_SUCCESS)
ice_memcpy(li->module_type, &pcaps->module_type,
sizeof(li->module_type),
ICE_NONDMA_TO_NONDMA);
ice_free(hw, pcaps);
}
return status;
}
/**
* ice_cache_phy_user_req
* @pi: port information structure
* @cache_data: PHY logging data
* @cache_mode: PHY logging mode
*
* Log the user request on (FC, FEC, SPEED) for later user.
*/
static void
ice_cache_phy_user_req(struct ice_port_info *pi,
struct ice_phy_cache_mode_data cache_data,
enum ice_phy_cache_mode cache_mode)
{
if (!pi)
return;
switch (cache_mode) {
case ICE_FC_MODE:
pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
break;
case ICE_SPEED_MODE:
pi->phy.curr_user_speed_req =
cache_data.data.curr_user_speed_req;
break;
case ICE_FEC_MODE:
pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
break;
default:
break;
}
}
/**
* ice_caps_to_fc_mode
* @caps: PHY capabilities
*
* Convert PHY FC capabilities to ice FC mode
*/
enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
{
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
return ICE_FC_FULL;
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
return ICE_FC_TX_PAUSE;
if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
return ICE_FC_RX_PAUSE;
return ICE_FC_NONE;
}
/**
* ice_caps_to_fec_mode
* @caps: PHY capabilities
* @fec_options: Link FEC options
*
* Convert PHY FEC capabilities to ice FEC mode
*/
enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
{
if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
return ICE_FEC_AUTO;
if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
ICE_AQC_PHY_FEC_25G_KR_REQ))
return ICE_FEC_BASER;
if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
ICE_AQC_PHY_FEC_25G_RS_544_REQ |
ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
return ICE_FEC_RS;
return ICE_FEC_NONE;
}
/**
* ice_set_fc
* @pi: port information structure
* @aq_failures: pointer to status code, specific to ice_set_fc routine
* @ena_auto_link_update: enable automatic link update
*
* Set the requested flow control mode.
*/
enum ice_status
ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
{
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
struct ice_phy_cache_mode_data cache_data;
struct ice_aqc_get_phy_caps_data *pcaps;
enum ice_status status;
u8 pause_mask = 0x0;
struct ice_hw *hw;
if (!pi || !aq_failures)
return ICE_ERR_PARAM;
hw = pi->hw;
*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
/* Cache user FC request */
cache_data.data.curr_user_fc_req = pi->fc.req_mode;
ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps)
return ICE_ERR_NO_MEMORY;
switch (pi->fc.req_mode) {
case ICE_FC_AUTO:
/* Query the value of FC that both the NIC and attached media
* can do.
*/
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
pcaps, NULL);
if (status) {
*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
goto out;
}
pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE;
pause_mask |= pcaps->caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE;
break;
case ICE_FC_FULL:
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
break;
case ICE_FC_RX_PAUSE:
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
break;
case ICE_FC_TX_PAUSE:
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
break;
default:
break;
}
/* Get the current PHY config */
ice_memset(pcaps, 0, sizeof(*pcaps), ICE_NONDMA_MEM);
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
NULL);
if (status) {
*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
goto out;
}
ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
/* clear the old pause settings */
cfg.caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
ICE_AQC_PHY_EN_RX_LINK_PAUSE);
/* set the new capabilities */
cfg.caps |= pause_mask;
/* If the capabilities have changed, then set the new config */
if (cfg.caps != pcaps->caps) {
int retry_count, retry_max = 10;
/* Auto restart link so settings take effect */
if (ena_auto_link_update)
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
if (status) {
*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
goto out;
}
/* Update the link info
* It sometimes takes a really long time for link to
* come back from the atomic reset. Thus, we wait a
* little bit.
*/
for (retry_count = 0; retry_count < retry_max; retry_count++) {
status = ice_update_link_info(pi);
if (status == ICE_SUCCESS)
break;
ice_msec_delay(100, true);
}
if (status)
*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
}
out:
ice_free(hw, pcaps);
return status;
}
/**
* ice_phy_caps_equals_cfg
* @phy_caps: PHY capabilities
* @phy_cfg: PHY configuration
*
* Helper function to determine if PHY capabilities matches PHY
* configuration
*/
bool
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
struct ice_aqc_set_phy_cfg_data *phy_cfg)
{
u8 caps_mask, cfg_mask;
if (!phy_caps || !phy_cfg)
return false;
/* These bits are not common between capabilities and configuration.
* Do not use them to determine equality.
*/
caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
ICE_AQC_PHY_EN_MOD_QUAL);
cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
phy_caps->phy_type_high != phy_cfg->phy_type_high ||
((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
phy_caps->eee_cap != phy_cfg->eee_cap ||
phy_caps->eeer_value != phy_cfg->eeer_value ||
phy_caps->link_fec_options != phy_cfg->link_fec_opt)
return false;
return true;
}
/**
* ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
* @pi: port information structure
* @caps: PHY ability structure to copy date from
* @cfg: PHY configuration structure to copy data to
*
* Helper function to copy AQC PHY get ability data to PHY set configuration
* data structure
*/
void
ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
struct ice_aqc_get_phy_caps_data *caps,
struct ice_aqc_set_phy_cfg_data *cfg)
{
if (!pi || !caps || !cfg)
return;
ice_memset(cfg, 0, sizeof(*cfg), ICE_NONDMA_MEM);
cfg->phy_type_low = caps->phy_type_low;
cfg->phy_type_high = caps->phy_type_high;
cfg->caps = caps->caps;
cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
cfg->eee_cap = caps->eee_cap;
cfg->eeer_value = caps->eeer_value;
cfg->link_fec_opt = caps->link_fec_options;
cfg->module_compliance_enforcement =
caps->module_compliance_enforcement;
if (ice_fw_supports_link_override(pi->hw)) {
struct ice_link_default_override_tlv tlv;
if (ice_get_link_default_override(&tlv, pi))
return;
if (tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE)
cfg->module_compliance_enforcement |=
ICE_LINK_OVERRIDE_STRICT_MODE;
}
}
/**
* ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
* @pi: port information structure
* @cfg: PHY configuration data to set FEC mode
* @fec: FEC mode to configure
*/
enum ice_status
ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
enum ice_fec_mode fec)
{
struct ice_aqc_get_phy_caps_data *pcaps;
enum ice_status status = ICE_SUCCESS;
struct ice_hw *hw;
if (!pi || !cfg)
return ICE_ERR_BAD_PTR;
hw = pi->hw;
pcaps = (struct ice_aqc_get_phy_caps_data *)
ice_malloc(hw, sizeof(*pcaps));
if (!pcaps)
return ICE_ERR_NO_MEMORY;
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
NULL);
if (status)
goto out;
switch (fec) {
case ICE_FEC_BASER:
/* Clear RS bits, and AND BASE-R ability
* bits and OR request bits.
*/
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
ICE_AQC_PHY_FEC_25G_KR_REQ;
break;
case ICE_FEC_RS:
/* Clear BASE-R bits, and AND RS ability
* bits and OR request bits.
*/
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
ICE_AQC_PHY_FEC_25G_RS_544_REQ;
break;
case ICE_FEC_NONE:
/* Clear all FEC option bits. */
cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
break;
case ICE_FEC_AUTO:
/* AND auto FEC bit, and all caps bits. */
cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
cfg->link_fec_opt |= pcaps->link_fec_options;
break;
default:
status = ICE_ERR_PARAM;
break;
}
if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(pi->hw)) {
struct ice_link_default_override_tlv tlv;
if (ice_get_link_default_override(&tlv, pi))
goto out;
if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
(tlv.options & ICE_LINK_OVERRIDE_EN))
cfg->link_fec_opt = tlv.fec_options;
}
out:
ice_free(hw, pcaps);
return status;
}
/**
* ice_get_link_status - get status of the HW network link
* @pi: port information structure
* @link_up: pointer to bool (true/false = linkup/linkdown)
*
* Variable link_up is true if link is up, false if link is down.
* The variable link_up is invalid if status is non zero. As a
* result of this call, link status reporting becomes enabled
*/
enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
{
struct ice_phy_info *phy_info;
enum ice_status status = ICE_SUCCESS;
if (!pi || !link_up)
return ICE_ERR_PARAM;
phy_info = &pi->phy;
if (phy_info->get_link_info) {
status = ice_update_link_info(pi);
if (status)
ice_debug(pi->hw, ICE_DBG_LINK,
"get link status error, status = %d\n",
status);
}
*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
return status;
}
/**
* ice_aq_set_link_restart_an
* @pi: pointer to the port information structure
* @ena_link: if true: enable link, if false: disable link
* @cd: pointer to command details structure or NULL
*
* Sets up the link and restarts the Auto-Negotiation over the link.
*/
enum ice_status
ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
struct ice_sq_cd *cd)
{
struct ice_aqc_restart_an *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.restart_an;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
cmd->lport_num = pi->lport;
if (ena_link)
cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
else
cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_event_mask
* @hw: pointer to the HW struct
* @port_num: port number of the physical function
* @mask: event mask to be set
* @cd: pointer to command details structure or NULL
*
* Set event mask (0x0613)
*/
enum ice_status
ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_event_mask *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_event_mask;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
cmd->lport_num = port_num;
cmd->event_mask = CPU_TO_LE16(mask);
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_mac_loopback
* @hw: pointer to the HW struct
* @ena_lpbk: Enable or Disable loopback
* @cd: pointer to command details structure or NULL
*
* Enable/disable loopback on a given port
*/
enum ice_status
ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
{
struct ice_aqc_set_mac_lb *cmd;
struct ice_aq_desc desc;
cmd = &desc.params.set_mac_lb;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
if (ena_lpbk)
cmd->lb_mode = ICE_AQ_MAC_LB_EN;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_set_port_id_led
* @pi: pointer to the port information
* @is_orig_mode: is this LED set to original mode (by the net-list)
* @cd: pointer to command details structure or NULL
*
* Set LED value for the given port (0x06e9)
*/
enum ice_status
ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
struct ice_sq_cd *cd)
{
struct ice_aqc_set_port_id_led *cmd;
struct ice_hw *hw = pi->hw;
struct ice_aq_desc desc;
cmd = &desc.params.set_port_id_led;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
if (is_orig_mode)
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
else
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_aq_sff_eeprom
* @hw: pointer to the HW struct
* @lport: bits [7:0] = logical port, bit [8] = logical port valid
* @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
* @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
* @page: QSFP page
* @set_page: set or ignore the page
* @data: pointer to data buffer to be read/written to the I2C device.
* @length: 1-16 for read, 1 for write.
* @write: 0 read, 1 for write.
* @cd: pointer to command details structure or NULL
*
* Read/Write SFF EEPROM (0x06EE)
*/
enum ice_status
ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
bool write, struct ice_sq_cd *cd)
{
struct ice_aqc_sff_eeprom *cmd;
struct ice_aq_desc desc;
enum ice_status status;
if (!data || (mem_addr & 0xff00))
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
cmd = &desc.params.read_write_sff_param;
desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
cmd->lport_num = (u8)(lport & 0xff);
cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
ICE_AQC_SFF_I2CBUS_7BIT_M) |
((set_page <<
ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
ICE_AQC_SFF_SET_EEPROM_PAGE_M));
cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
if (write)
cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
status = ice_aq_send_cmd(hw, &desc, data, length, cd);
return status;
}
/**
* __ice_aq_get_set_rss_lut
* @hw: pointer to the hardware structure
* @vsi_id: VSI FW index
* @lut_type: LUT table type
* @lut: pointer to the LUT buffer provided by the caller
* @lut_size: size of the LUT buffer
* @glob_lut_idx: global LUT index
* @set: set true to set the table, false to get the table
*
* Internal function to get (0x0B05) or set (0x0B03) RSS look up table
*/
static enum ice_status
__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
u16 lut_size, u8 glob_lut_idx, bool set)
{
struct ice_aqc_get_set_rss_lut *cmd_resp;
struct ice_aq_desc desc;
enum ice_status status;
u16 flags = 0;
cmd_resp = &desc.params.get_set_rss_lut;
if (set) {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
} else {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
}
cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
ICE_AQC_GSET_RSS_LUT_VSI_VALID);
switch (lut_type) {
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
break;
default:
status = ICE_ERR_PARAM;
goto ice_aq_get_set_rss_lut_exit;
}
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
if (!set)
goto ice_aq_get_set_rss_lut_send;
} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
if (!set)
goto ice_aq_get_set_rss_lut_send;
} else {
goto ice_aq_get_set_rss_lut_send;
}
/* LUT size is only valid for Global and PF table types */
switch (lut_size) {
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128_FLAG <<
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
break;
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
break;
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
break;
}
/* fall-through */
default:
status = ICE_ERR_PARAM;
goto ice_aq_get_set_rss_lut_exit;
}
ice_aq_get_set_rss_lut_send:
cmd_resp->flags = CPU_TO_LE16(flags);
status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
ice_aq_get_set_rss_lut_exit:
return status;
}
/**
* ice_aq_get_rss_lut
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @lut_type: LUT table type
* @lut: pointer to the LUT buffer provided by the caller
* @lut_size: size of the LUT buffer
*
* get the RSS lookup table, PF or VSI type
*/
enum ice_status
ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
u8 *lut, u16 lut_size)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
lut_type, lut, lut_size, 0, false);
}
/**
* ice_aq_set_rss_lut
* @hw: pointer to the hardware structure
* @vsi_handle: software VSI handle
* @lut_type: LUT table type
* @lut: pointer to the LUT buffer provided by the caller
* @lut_size: size of the LUT buffer
*
* set the RSS lookup table, PF or VSI type
*/
enum ice_status
ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
u8 *lut, u16 lut_size)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
lut_type, lut, lut_size, 0, true);
}
/**
* __ice_aq_get_set_rss_key
* @hw: pointer to the HW struct
* @vsi_id: VSI FW index
* @key: pointer to key info struct
* @set: set true to set the key, false to get the key
*
* get (0x0B04) or set (0x0B02) the RSS key per VSI
*/
static enum
ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
struct ice_aqc_get_set_rss_keys *key,
bool set)
{
struct ice_aqc_get_set_rss_key *cmd_resp;
u16 key_size = sizeof(*key);
struct ice_aq_desc desc;
cmd_resp = &desc.params.get_set_rss_key;
if (set) {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
} else {
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
}
cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
ICE_AQC_GSET_RSS_KEY_VSI_VALID);
return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
}
/**
* ice_aq_get_rss_key
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
* @key: pointer to key info struct
*
* get the RSS key per VSI
*/
enum ice_status
ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
struct ice_aqc_get_set_rss_keys *key)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
key, false);
}
/**
* ice_aq_set_rss_key
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
* @keys: pointer to key info struct
*
* set the RSS key per VSI
*/
enum ice_status
ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
struct ice_aqc_get_set_rss_keys *keys)
{
if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
return ICE_ERR_PARAM;
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
keys, true);
}
/**
* ice_aq_add_lan_txq
* @hw: pointer to the hardware structure
* @num_qgrps: Number of added queue groups
* @qg_list: list of queue groups to be added
* @buf_size: size of buffer for indirect command
* @cd: pointer to command details structure or NULL
*
* Add Tx LAN queue (0x0C30)
*
* NOTE:
* Prior to calling add Tx LAN queue:
* Initialize the following as part of the Tx queue context:
* Completion queue ID if the queue uses Completion queue, Quanta profile,
* Cache profile and Packet shaper profile.
*
* After add Tx LAN queue AQ command is completed:
* Interrupts should be associated with specific queues,
* Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
* flow.
*/
enum ice_status
ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
struct ice_sq_cd *cd)
{
u16 i, sum_header_size, sum_q_size = 0;
struct ice_aqc_add_tx_qgrp *list;
struct ice_aqc_add_txqs *cmd;
struct ice_aq_desc desc;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.add_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
if (!qg_list)
return ICE_ERR_PARAM;
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
return ICE_ERR_PARAM;
sum_header_size = num_qgrps *
(sizeof(*qg_list) - sizeof(*qg_list->txqs));
list = qg_list;
for (i = 0; i < num_qgrps; i++) {
struct ice_aqc_add_txqs_perq *q = list->txqs;
sum_q_size += list->num_txqs * sizeof(*q);
list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
}
if (buf_size != (sum_header_size + sum_q_size))
return ICE_ERR_PARAM;
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
cmd->num_qgrps = num_qgrps;
return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
}
/**
* ice_aq_dis_lan_txq
* @hw: pointer to the hardware structure
* @num_qgrps: number of groups in the list
* @qg_list: the list of groups to disable
* @buf_size: the total size of the qg_list buffer in bytes
* @rst_src: if called due to reset, specifies the reset source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL
*
* Disable LAN Tx queue (0x0C31)
*/
static enum ice_status
ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
enum ice_disq_rst_src rst_src, u16 vmvf_num,
struct ice_sq_cd *cd)
{
struct ice_aqc_dis_txqs *cmd;
struct ice_aq_desc desc;
enum ice_status status;
u16 i, sz = 0;
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
cmd = &desc.params.dis_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
/* qg_list can be NULL only in VM/VF reset flow */
if (!qg_list && !rst_src)
return ICE_ERR_PARAM;
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
return ICE_ERR_PARAM;
cmd->num_entries = num_qgrps;
cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
ICE_AQC_Q_DIS_TIMEOUT_M);
switch (rst_src) {
case ICE_VM_RESET:
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
cmd->vmvf_and_timeout |=
CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
break;
case ICE_VF_RESET:
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
/* In this case, FW expects vmvf_num to be absolute VF ID */
cmd->vmvf_and_timeout |=
CPU_TO_LE16((vmvf_num + hw->func_caps.vf_base_id) &
ICE_AQC_Q_DIS_VMVF_NUM_M);
break;
case ICE_NO_RESET:
default:
break;
}
/* flush pipe on time out */
cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
/* If no queue group info, we are in a reset flow. Issue the AQ */
if (!qg_list)
goto do_aq;
/* set RD bit to indicate that command buffer is provided by the driver
* and it needs to be read by the firmware
*/
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
for (i = 0; i < num_qgrps; ++i) {
/* Calculate the size taken up by the queue IDs in this group */
sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
/* Add the size of the group header */
sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
/* If the num of queues is even, add 2 bytes of padding */
if ((qg_list[i].num_qs % 2) == 0)
sz += 2;
}
if (buf_size != sz)
return ICE_ERR_PARAM;
do_aq:
status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
if (status) {
if (!qg_list)
ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
vmvf_num, hw->adminq.sq_last_status);
else
ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
LE16_TO_CPU(qg_list[0].q_id[0]),
hw->adminq.sq_last_status);
}
return status;
}
/**
* ice_aq_move_recfg_lan_txq
* @hw: pointer to the hardware structure
* @num_qs: number of queues to move/reconfigure
* @is_move: true if this operation involves node movement
* @is_tc_change: true if this operation involves a TC change
* @subseq_call: true if this operation is a subsequent call
* @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
* @timeout: timeout in units of 100 usec (valid values 0-50)
* @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
* @buf: struct containing src/dest TEID and per-queue info
* @buf_size: size of buffer for indirect command
* @txqs_moved: out param, number of queues successfully moved
* @cd: pointer to command details structure or NULL
*
* Move / Reconfigure Tx LAN queues (0x0C32)
*/
enum ice_status
ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
bool is_tc_change, bool subseq_call, bool flush_pipe,
u8 timeout, u32 *blocked_cgds,
struct ice_aqc_move_txqs_data *buf, u16 buf_size,
u8 *txqs_moved, struct ice_sq_cd *cd)
{
struct ice_aqc_move_txqs *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.move_txqs;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
#define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
return ICE_ERR_PARAM;
if (is_tc_change && !flush_pipe && !blocked_cgds)
return ICE_ERR_PARAM;
if (!is_move && !is_tc_change)
return ICE_ERR_PARAM;
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
if (is_move)
cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
if (is_tc_change)
cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
if (subseq_call)
cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
if (flush_pipe)
cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
cmd->num_qs = num_qs;
cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
ICE_AQC_Q_CMD_TIMEOUT_M);
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
if (!status && txqs_moved)
*txqs_moved = cmd->num_qs;
if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
is_tc_change && !flush_pipe)
*blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
return status;
}
/* End of FW Admin Queue command wrappers */
/**
* ice_write_byte - write a byte to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u8 src_byte, dest_byte, mask;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = (u8)(BIT(ce_info->width) - 1);
src_byte = *from;
src_byte &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_byte <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
dest_byte &= ~mask; /* get the bits not changing */
dest_byte |= src_byte; /* add in the new bits */
/* put it all back */
ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
}
/**
* ice_write_word - write a word to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u16 src_word, mask;
__le16 dest_word;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = BIT(ce_info->width) - 1;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_word = *(u16 *)from;
src_word &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_word <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_DMA_TO_NONDMA);
dest_word &= ~(CPU_TO_LE16(mask)); /* get the bits not changing */
dest_word |= CPU_TO_LE16(src_word); /* add in the new bits */
/* put it all back */
ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
}
/**
* ice_write_dword - write a dword to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u32 src_dword, mask;
__le32 dest_dword;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 32 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 5 bits so the shift will do nothing
*/
if (ce_info->width < 32)
mask = BIT(ce_info->width) - 1;
else
mask = (u32)~0;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_dword = *(u32 *)from;
src_dword &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_dword <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_DMA_TO_NONDMA);
dest_dword &= ~(CPU_TO_LE32(mask)); /* get the bits not changing */
dest_dword |= CPU_TO_LE32(src_dword); /* add in the new bits */
/* put it all back */
ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
}
/**
* ice_write_qword - write a qword to a packed context structure
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
u64 src_qword, mask;
__le64 dest_qword;
u8 *from, *dest;
u16 shift_width;
/* copy from the next struct field */
from = src_ctx + ce_info->offset;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 64 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 6 bits so the shift will do nothing
*/
if (ce_info->width < 64)
mask = BIT_ULL(ce_info->width) - 1;
else
mask = (u64)~0;
/* don't swizzle the bits until after the mask because the mask bits
* will be in a different bit position on big endian machines
*/
src_qword = *(u64 *)from;
src_qword &= mask;
/* shift to correct alignment */
mask <<= shift_width;
src_qword <<= shift_width;
/* get the current bits from the target bit string */
dest = dest_ctx + (ce_info->lsb / 8);
ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_DMA_TO_NONDMA);
dest_qword &= ~(CPU_TO_LE64(mask)); /* get the bits not changing */
dest_qword |= CPU_TO_LE64(src_qword); /* add in the new bits */
/* put it all back */
ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
}
/**
* ice_set_ctx - set context bits in packed structure
* @src_ctx: pointer to a generic non-packed context structure
* @dest_ctx: pointer to memory for the packed structure
* @ce_info: a description of the structure to be transformed
*/
enum ice_status
ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
{
int f;
for (f = 0; ce_info[f].width; f++) {
/* We have to deal with each element of the FW response
* using the correct size so that we are correct regardless
* of the endianness of the machine.
*/
switch (ce_info[f].size_of) {
case sizeof(u8):
ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u16):
ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u32):
ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
break;
case sizeof(u64):
ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
break;
default:
return ICE_ERR_INVAL_SIZE;
}
}
return ICE_SUCCESS;
}
/**
* ice_read_byte - read context byte into struct
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_read_byte(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
{
u8 dest_byte, mask;
u8 *src, *target;
u16 shift_width;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = (u8)(BIT(ce_info->width) - 1);
/* shift to correct alignment */
mask <<= shift_width;
/* get the current bits from the src bit string */
src = src_ctx + (ce_info->lsb / 8);
ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
dest_byte &= ~(mask);
dest_byte >>= shift_width;
/* get the address from the struct field */
target = dest_ctx + ce_info->offset;
/* put it back in the struct */
ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
}
/**
* ice_read_word - read context word into struct
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_read_word(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
{
u16 dest_word, mask;
u8 *src, *target;
__le16 src_word;
u16 shift_width;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
mask = BIT(ce_info->width) - 1;
/* shift to correct alignment */
mask <<= shift_width;
/* get the current bits from the src bit string */
src = src_ctx + (ce_info->lsb / 8);
ice_memcpy(&src_word, src, sizeof(src_word), ICE_DMA_TO_NONDMA);
/* the data in the memory is stored as little endian so mask it
* correctly
*/
src_word &= ~(CPU_TO_LE16(mask));
/* get the data back into host order before shifting */
dest_word = LE16_TO_CPU(src_word);
dest_word >>= shift_width;
/* get the address from the struct field */
target = dest_ctx + ce_info->offset;
/* put it back in the struct */
ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
}
/**
* ice_read_dword - read context dword into struct
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_read_dword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
{
u32 dest_dword, mask;
__le32 src_dword;
u8 *src, *target;
u16 shift_width;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 32 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 5 bits so the shift will do nothing
*/
if (ce_info->width < 32)
mask = BIT(ce_info->width) - 1;
else
mask = (u32)~0;
/* shift to correct alignment */
mask <<= shift_width;
/* get the current bits from the src bit string */
src = src_ctx + (ce_info->lsb / 8);
ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_DMA_TO_NONDMA);
/* the data in the memory is stored as little endian so mask it
* correctly
*/
src_dword &= ~(CPU_TO_LE32(mask));
/* get the data back into host order before shifting */
dest_dword = LE32_TO_CPU(src_dword);
dest_dword >>= shift_width;
/* get the address from the struct field */
target = dest_ctx + ce_info->offset;
/* put it back in the struct */
ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
}
/**
* ice_read_qword - read context qword into struct
* @src_ctx: the context structure to read from
* @dest_ctx: the context to be written to
* @ce_info: a description of the struct to be filled
*/
static void
ice_read_qword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
{
u64 dest_qword, mask;
__le64 src_qword;
u8 *src, *target;
u16 shift_width;
/* prepare the bits and mask */
shift_width = ce_info->lsb % 8;
/* if the field width is exactly 64 on an x86 machine, then the shift
* operation will not work because the SHL instructions count is masked
* to 6 bits so the shift will do nothing
*/
if (ce_info->width < 64)
mask = BIT_ULL(ce_info->width) - 1;
else
mask = (u64)~0;
/* shift to correct alignment */
mask <<= shift_width;
/* get the current bits from the src bit string */
src = src_ctx + (ce_info->lsb / 8);
ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_DMA_TO_NONDMA);
/* the data in the memory is stored as little endian so mask it
* correctly
*/
src_qword &= ~(CPU_TO_LE64(mask));
/* get the data back into host order before shifting */
dest_qword = LE64_TO_CPU(src_qword);
dest_qword >>= shift_width;
/* get the address from the struct field */
target = dest_ctx + ce_info->offset;
/* put it back in the struct */
ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
}
/**
* ice_get_ctx - extract context bits from a packed structure
* @src_ctx: pointer to a generic packed context structure
* @dest_ctx: pointer to a generic non-packed context structure
* @ce_info: a description of the structure to be read from
*/
enum ice_status
ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
{
int f;
for (f = 0; ce_info[f].width; f++) {
switch (ce_info[f].size_of) {
case 1:
ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
break;
case 2:
ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
break;
case 4:
ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
break;
case 8:
ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
break;
default:
/* nothing to do, just keep going */
break;
}
}
return ICE_SUCCESS;
}
/**
* ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
* @hw: pointer to the HW struct
* @vsi_handle: software VSI handle
* @tc: TC number
* @q_handle: software queue handle
*/
struct ice_q_ctx *
ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
{
struct ice_vsi_ctx *vsi;
struct ice_q_ctx *q_ctx;
vsi = ice_get_vsi_ctx(hw, vsi_handle);
if (!vsi)
return NULL;
if (q_handle >= vsi->num_lan_q_entries[tc])
return NULL;
if (!vsi->lan_q_ctx[tc])
return NULL;
q_ctx = vsi->lan_q_ctx[tc];
return &q_ctx[q_handle];
}
/**
* ice_ena_vsi_txq
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @q_handle: software queue handle
* @num_qgrps: Number of added queue groups
* @buf: list of queue groups to be added
* @buf_size: size of buffer for indirect command
* @cd: pointer to command details structure or NULL
*
* This function adds one LAN queue
*/
enum ice_status
ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
struct ice_sq_cd *cd)
{
struct ice_aqc_txsched_elem_data node = { 0 };
struct ice_sched_node *parent;
struct ice_q_ctx *q_ctx;
enum ice_status status;
struct ice_hw *hw;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
if (num_qgrps > 1 || buf->num_txqs > 1)
return ICE_ERR_MAX_LIMIT;
hw = pi->hw;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
ice_acquire_lock(&pi->sched_lock);
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
if (!q_ctx) {
ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
q_handle);
status = ICE_ERR_PARAM;
goto ena_txq_exit;
}
/* find a parent node */
parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
ICE_SCHED_NODE_OWNER_LAN);
if (!parent) {
status = ICE_ERR_PARAM;
goto ena_txq_exit;
}
buf->parent_teid = parent->info.node_teid;
node.parent_teid = parent->info.node_teid;
/* Mark that the values in the "generic" section as valid. The default
* value in the "generic" section is zero. This means that :
* - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
* - 0 priority among siblings, indicated by Bit 1-3.
* - WFQ, indicated by Bit 4.
* - 0 Adjustment value is used in PSM credit update flow, indicated by
* Bit 5-6.
* - Bit 7 is reserved.
* Without setting the generic section as valid in valid_sections, the
* Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
*/
buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
/* add the LAN queue */
status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
if (status != ICE_SUCCESS) {
ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
LE16_TO_CPU(buf->txqs[0].txq_id),
hw->adminq.sq_last_status);
goto ena_txq_exit;
}
node.node_teid = buf->txqs[0].q_teid;
node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
q_ctx->q_handle = q_handle;
q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
/* add a leaf node into scheduler tree queue layer */
status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
if (!status)
status = ice_sched_replay_q_bw(pi, q_ctx);
ena_txq_exit:
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_dis_vsi_txq
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc: TC number
* @num_queues: number of queues
* @q_handles: pointer to software queue handle array
* @q_ids: pointer to the q_id array
* @q_teids: pointer to queue node teids
* @rst_src: if called due to reset, specifies the reset source
* @vmvf_num: the relative VM or VF number that is undergoing the reset
* @cd: pointer to command details structure or NULL
*
* This function removes queues and their corresponding nodes in SW DB
*/
enum ice_status
ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
u16 *q_handles, u16 *q_ids, u32 *q_teids,
enum ice_disq_rst_src rst_src, u16 vmvf_num,
struct ice_sq_cd *cd)
{
enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
struct ice_aqc_dis_txq_item qg_list;
struct ice_q_ctx *q_ctx;
u16 i;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
if (!num_queues) {
/* if queue is disabled already yet the disable queue command
* has to be sent to complete the VF reset, then call
* ice_aq_dis_lan_txq without any queue information
*/
if (rst_src)
return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src,
vmvf_num, NULL);
return ICE_ERR_CFG;
}
ice_acquire_lock(&pi->sched_lock);
for (i = 0; i < num_queues; i++) {
struct ice_sched_node *node;
node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
if (!node)
continue;
q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]);
if (!q_ctx) {
ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
q_handles[i]);
continue;
}
if (q_ctx->q_handle != q_handles[i]) {
ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
q_ctx->q_handle, q_handles[i]);
continue;
}
qg_list.parent_teid = node->info.parent_teid;
qg_list.num_qs = 1;
qg_list.q_id[0] = CPU_TO_LE16(q_ids[i]);
status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
sizeof(qg_list), rst_src, vmvf_num,
cd);
if (status != ICE_SUCCESS)
break;
ice_free_sched_node(pi, node);
q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
}
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_vsi_qs - configure the new/existing VSI queues
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap
* @maxqs: max queues array per TC
* @owner: LAN or RDMA
*
* This function adds/updates the VSI queues per TC.
*/
static enum ice_status
ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
u16 *maxqs, u8 owner)
{
enum ice_status status = ICE_SUCCESS;
u8 i;
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
return ICE_ERR_CFG;
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
return ICE_ERR_PARAM;
ice_acquire_lock(&pi->sched_lock);
ice_for_each_traffic_class(i) {
/* configuration is possible only if TC node is present */
if (!ice_sched_get_tc_node(pi, i))
continue;
status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
ice_is_tc_ena(tc_bitmap, i));
if (status)
break;
}
ice_release_lock(&pi->sched_lock);
return status;
}
/**
* ice_cfg_vsi_lan - configure VSI LAN queues
* @pi: port information structure
* @vsi_handle: software VSI handle
* @tc_bitmap: TC bitmap
* @max_lanqs: max LAN queues array per TC
*
* This function adds/updates the VSI LAN queues per TC.
*/
enum ice_status
ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
u16 *max_lanqs)
{
return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
ICE_SCHED_NODE_OWNER_LAN);
}
/**
* ice_replay_pre_init - replay pre initialization
* @hw: pointer to the HW struct
*
* Initializes required config data for VSI, FD, ACL, and RSS before replay.
*/
static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
{
struct ice_switch_info *sw = hw->switch_info;
u8 i;
/* Delete old entries from replay filter list head if there is any */
ice_rm_all_sw_replay_rule_info(hw);
/* In start of replay, move entries into replay_rules list, it
* will allow adding rules entries back to filt_rules list,
* which is operational list.
*/
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
&sw->recp_list[i].filt_replay_rules);
ice_sched_replay_agg_vsi_preinit(hw);
return ice_sched_replay_tc_node_bw(hw->port_info);
}
/**
* ice_replay_vsi - replay VSI configuration
* @hw: pointer to the HW struct
* @vsi_handle: driver VSI handle
*
* Restore all VSI configuration after reset. It is required to call this
* function with main VSI first.
*/
enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
{
enum ice_status status;
if (!ice_is_vsi_valid(hw, vsi_handle))
return ICE_ERR_PARAM;
/* Replay pre-initialization if there is any */
if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
status = ice_replay_pre_init(hw);
if (status)
return status;
}
/* Replay per VSI all RSS configurations */
status = ice_replay_rss_cfg(hw, vsi_handle);
if (status)
return status;
/* Replay per VSI all filters */
status = ice_replay_vsi_all_fltr(hw, vsi_handle);
if (!status)
status = ice_replay_vsi_agg(hw, vsi_handle);
return status;
}
/**
* ice_replay_post - post replay configuration cleanup
* @hw: pointer to the HW struct
*
* Post replay cleanup.
*/
void ice_replay_post(struct ice_hw *hw)
{
/* Delete old entries from replay filter list head */
ice_rm_all_sw_replay_rule_info(hw);
ice_sched_replay_agg(hw);
}
/**
* ice_stat_update40 - read 40 bit stat from the chip and update stat values
* @hw: ptr to the hardware info
* @reg: offset of 64 bit HW register to read from
* @prev_stat_loaded: bool to specify if previous stats are loaded
* @prev_stat: ptr to previous loaded stat value
* @cur_stat: ptr to current stat value
*/
void
ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
u64 *prev_stat, u64 *cur_stat)
{
u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
/* device stats are not reset at PFR, they likely will not be zeroed
* when the driver starts. Thus, save the value from the first read
* without adding to the statistic value so that we report stats which
* count up from zero.
*/
if (!prev_stat_loaded) {
*prev_stat = new_data;
return;
}
/* Calculate the difference between the new and old values, and then
* add it to the software stat value.
*/
if (new_data >= *prev_stat)
*cur_stat += new_data - *prev_stat;
else
/* to manage the potential roll-over */
*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
/* Update the previously stored value to prepare for next read */
*prev_stat = new_data;
}
/**
* ice_stat_update32 - read 32 bit stat from the chip and update stat values
* @hw: ptr to the hardware info
* @reg: offset of HW register to read from
* @prev_stat_loaded: bool to specify if previous stats are loaded
* @prev_stat: ptr to previous loaded stat value
* @cur_stat: ptr to current stat value
*/
void
ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
u64 *prev_stat, u64 *cur_stat)
{
u32 new_data;
new_data = rd32(hw, reg);
/* device stats are not reset at PFR, they likely will not be zeroed
* when the driver starts. Thus, save the value from the first read
* without adding to the statistic value so that we report stats which
* count up from zero.
*/
if (!prev_stat_loaded) {
*prev_stat = new_data;
return;
}
/* Calculate the difference between the new and old values, and then
* add it to the software stat value.
*/
if (new_data >= *prev_stat)
*cur_stat += new_data - *prev_stat;
else
/* to manage the potential roll-over */
*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
/* Update the previously stored value to prepare for next read */
*prev_stat = new_data;
}
/**
* ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
* @hw: ptr to the hardware info
* @vsi_handle: VSI handle
* @prev_stat_loaded: bool to specify if the previous stat values are loaded
* @cur_stats: ptr to current stats structure
*
* The GLV_REPC statistic register actually tracks two 16bit statistics, and
* thus cannot be read using the normal ice_stat_update32 function.
*
* Read the GLV_REPC register associated with the given VSI, and update the
* rx_no_desc and rx_error values in the ice_eth_stats structure.
*
* Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
* cleared each time it's read.
*
* Note that the GLV_RDPC register also counts the causes that would trigger
* GLV_REPC. However, it does not give the finer grained detail about why the
* packets are being dropped. The GLV_REPC values can be used to distinguish
* whether Rx packets are dropped due to errors or due to no available
* descriptors.
*/
void
ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
struct ice_eth_stats *cur_stats)
{
u16 vsi_num, no_desc, error_cnt;
u32 repc;
if (!ice_is_vsi_valid(hw, vsi_handle))
return;
vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
/* If we haven't loaded stats yet, just clear the current value */
if (!prev_stat_loaded) {
wr32(hw, GLV_REPC(vsi_num), 0);
return;
}
repc = rd32(hw, GLV_REPC(vsi_num));
no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
/* Clear the count by writing to the stats register */
wr32(hw, GLV_REPC(vsi_num), 0);
cur_stats->rx_no_desc += no_desc;
cur_stats->rx_errors += error_cnt;
}
/**
* ice_aq_alternate_write
* @hw: pointer to the hardware structure
* @reg_addr0: address of first dword to be written
* @reg_val0: value to be written under 'reg_addr0'
* @reg_addr1: address of second dword to be written
* @reg_val1: value to be written under 'reg_addr1'
*
* Write one or two dwords to alternate structure. Fields are indicated
* by 'reg_addr0' and 'reg_addr1' register numbers.
*/
enum ice_status
ice_aq_alternate_write(struct ice_hw *hw, u32 reg_addr0, u32 reg_val0,
u32 reg_addr1, u32 reg_val1)
{
struct ice_aqc_read_write_alt_direct *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.read_write_alt_direct;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_alt_direct);
cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
cmd->dword0_value = CPU_TO_LE32(reg_val0);
cmd->dword1_value = CPU_TO_LE32(reg_val1);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
return status;
}
/**
* ice_aq_alternate_read
* @hw: pointer to the hardware structure
* @reg_addr0: address of first dword to be read
* @reg_val0: pointer for data read from 'reg_addr0'
* @reg_addr1: address of second dword to be read
* @reg_val1: pointer for data read from 'reg_addr1'
*
* Read one or two dwords from alternate structure. Fields are indicated
* by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer
* is not passed then only register at 'reg_addr0' is read.
*/
enum ice_status
ice_aq_alternate_read(struct ice_hw *hw, u32 reg_addr0, u32 *reg_val0,
u32 reg_addr1, u32 *reg_val1)
{
struct ice_aqc_read_write_alt_direct *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.read_write_alt_direct;
if (!reg_val0)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_alt_direct);
cmd->dword0_addr = CPU_TO_LE32(reg_addr0);
cmd->dword1_addr = CPU_TO_LE32(reg_addr1);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (status == ICE_SUCCESS) {
*reg_val0 = LE32_TO_CPU(cmd->dword0_value);
if (reg_val1)
*reg_val1 = LE32_TO_CPU(cmd->dword1_value);
}
return status;
}
/**
* ice_aq_alternate_write_done
* @hw: pointer to the HW structure.
* @bios_mode: indicates whether the command is executed by UEFI or legacy BIOS
* @reset_needed: indicates the SW should trigger GLOBAL reset
*
* Indicates to the FW that alternate structures have been changed.
*/
enum ice_status
ice_aq_alternate_write_done(struct ice_hw *hw, u8 bios_mode, bool *reset_needed)
{
struct ice_aqc_done_alt_write *cmd;
struct ice_aq_desc desc;
enum ice_status status;
cmd = &desc.params.done_alt_write;
if (!reset_needed)
return ICE_ERR_PARAM;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_done_alt_write);
cmd->flags = bios_mode;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (!status)
*reset_needed = (LE16_TO_CPU(cmd->flags) &
ICE_AQC_RESP_RESET_NEEDED) != 0;
return status;
}
/**
* ice_aq_alternate_clear
* @hw: pointer to the HW structure.
*
* Clear the alternate structures of the port from which the function
* is called.
*/
enum ice_status ice_aq_alternate_clear(struct ice_hw *hw)
{
struct ice_aq_desc desc;
enum ice_status status;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_port_alt_write);
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
return status;
}
/**
* ice_sched_query_elem - query element information from HW
* @hw: pointer to the HW struct
* @node_teid: node TEID to be queried
* @buf: buffer to element information
*
* This function queries HW element information
*/
enum ice_status
ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
struct ice_aqc_get_elem *buf)
{
u16 buf_size, num_elem_ret = 0;
enum ice_status status;
buf_size = sizeof(*buf);
ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
buf->generic[0].node_teid = CPU_TO_LE32(node_teid);
status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
NULL);
if (status != ICE_SUCCESS || num_elem_ret != 1)
ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
return status;
}
/**
* ice_get_fw_mode - returns FW mode
* @hw: pointer to the HW struct
*/
enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
{
#define ICE_FW_MODE_DBG_M BIT(0)
#define ICE_FW_MODE_REC_M BIT(1)
#define ICE_FW_MODE_ROLLBACK_M BIT(2)
u32 fw_mode;
/* check the current FW mode */
fw_mode = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
if (fw_mode & ICE_FW_MODE_DBG_M)
return ICE_FW_MODE_DBG;
else if (fw_mode & ICE_FW_MODE_REC_M)
return ICE_FW_MODE_REC;
else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
return ICE_FW_MODE_ROLLBACK;
else
return ICE_FW_MODE_NORMAL;
}
/**
* ice_cfg_get_cur_lldp_persist_status
* @hw: pointer to the HW struct
* @lldp_status: return value of LLDP persistent status
*
* Get the current status of LLDP persistent
*/
enum ice_status
ice_get_cur_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
{
struct ice_port_info *pi = hw->port_info;
enum ice_status ret;
__le32 raw_data;
u32 data, mask;
if (!lldp_status)
return ICE_ERR_BAD_PTR;
ret = ice_acquire_nvm(hw, ICE_RES_READ);
if (ret)
return ret;
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LLDP_PRESERVED_MOD_ID,
ICE_AQC_NVM_CUR_LLDP_PERSIST_RD_OFFSET,
ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data,
false, true, NULL);
if (!ret) {
data = LE32_TO_CPU(raw_data);
mask = ICE_AQC_NVM_LLDP_STATUS_M <<
(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
data = data & mask;
*lldp_status = data >>
(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
}
ice_release_nvm(hw);
return ret;
}
/**
* ice_get_dflt_lldp_persist_status
* @hw: pointer to the HW struct
* @lldp_status: return value of LLDP persistent status
*
* Get the default status of LLDP persistent
*/
enum ice_status
ice_get_dflt_lldp_persist_status(struct ice_hw *hw, u32 *lldp_status)
{
struct ice_port_info *pi = hw->port_info;
u32 data, mask, loc_data, loc_data_tmp;
enum ice_status ret;
__le16 loc_raw_data;
__le32 raw_data;
if (!lldp_status)
return ICE_ERR_BAD_PTR;
ret = ice_acquire_nvm(hw, ICE_RES_READ);
if (ret)
return ret;
/* Read the offset of EMP_SR_PTR */
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
ICE_AQC_NVM_EMP_SR_PTR_OFFSET,
ICE_AQC_NVM_EMP_SR_PTR_RD_LEN,
&loc_raw_data, false, true, NULL);
if (ret)
goto exit;
loc_data = LE16_TO_CPU(loc_raw_data);
if (loc_data & ICE_AQC_NVM_EMP_SR_PTR_TYPE_M) {
loc_data &= ICE_AQC_NVM_EMP_SR_PTR_M;
loc_data *= ICE_AQC_NVM_SECTOR_UNIT;
} else {
loc_data *= ICE_AQC_NVM_WORD_UNIT;
}
/* Read the offset of LLDP configuration pointer */
loc_data += ICE_AQC_NVM_LLDP_CFG_PTR_OFFSET;
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
ICE_AQC_NVM_LLDP_CFG_PTR_RD_LEN, &loc_raw_data,
false, true, NULL);
if (ret)
goto exit;
loc_data_tmp = LE16_TO_CPU(loc_raw_data);
loc_data_tmp *= ICE_AQC_NVM_WORD_UNIT;
loc_data += loc_data_tmp;
/* We need to skip LLDP configuration section length (2 bytes)*/
loc_data += ICE_AQC_NVM_LLDP_CFG_HEADER_LEN;
/* Read the LLDP Default Configure */
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT, loc_data,
ICE_AQC_NVM_LLDP_STATUS_RD_LEN, &raw_data, false,
true, NULL);
if (!ret) {
data = LE32_TO_CPU(raw_data);
mask = ICE_AQC_NVM_LLDP_STATUS_M <<
(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
data = data & mask;
*lldp_status = data >>
(ICE_AQC_NVM_LLDP_STATUS_M_LEN * pi->lport);
}
exit:
ice_release_nvm(hw);
return ret;
}
/**
* ice_get_netlist_ver_info
* @hw: pointer to the HW struct
*
* Get the netlist version information
*/
enum ice_status
ice_get_netlist_ver_info(struct ice_hw *hw)
{
struct ice_netlist_ver_info *ver = &hw->netlist_ver;
enum ice_status ret;
u32 id_blk_start;
__le16 raw_data;
u16 data, i;
u16 *buff;
ret = ice_acquire_nvm(hw, ICE_RES_READ);
if (ret)
return ret;
buff = (u16 *)ice_calloc(hw, ICE_AQC_NVM_NETLIST_ID_BLK_LEN,
sizeof(*buff));
if (!buff) {
ret = ICE_ERR_NO_MEMORY;
goto exit_no_mem;
}
/* read module length */
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN_OFFSET * 2,
ICE_AQC_NVM_LINK_TOPO_NETLIST_LEN, &raw_data,
false, false, NULL);
if (ret)
goto exit_error;
data = LE16_TO_CPU(raw_data);
/* exit if length is = 0 */
if (!data)
goto exit_error;
/* read node count */
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
ICE_AQC_NVM_NETLIST_NODE_COUNT_OFFSET * 2,
ICE_AQC_NVM_NETLIST_NODE_COUNT_LEN, &raw_data,
false, false, NULL);
if (ret)
goto exit_error;
data = LE16_TO_CPU(raw_data);
/* netlist ID block starts from offset 4 + node count * 2 */
id_blk_start = ICE_AQC_NVM_NETLIST_ID_BLK_START_OFFSET + data * 2;
/* read the entire netlist ID block */
ret = ice_aq_read_nvm(hw, ICE_AQC_NVM_LINK_TOPO_NETLIST_MOD_ID,
id_blk_start * 2,
ICE_AQC_NVM_NETLIST_ID_BLK_LEN * 2, buff, false,
false, NULL);
if (ret)
goto exit_error;
for (i = 0; i < ICE_AQC_NVM_NETLIST_ID_BLK_LEN; i++)
buff[i] = LE16_TO_CPU(((_FORCE_ __le16 *)buff)[i]);
ver->major = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16) |
buff[ICE_AQC_NVM_NETLIST_ID_BLK_MAJOR_VER_LOW];
ver->minor = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16) |
buff[ICE_AQC_NVM_NETLIST_ID_BLK_MINOR_VER_LOW];
ver->type = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_HIGH] << 16) |
buff[ICE_AQC_NVM_NETLIST_ID_BLK_TYPE_LOW];
ver->rev = (buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_HIGH] << 16) |
buff[ICE_AQC_NVM_NETLIST_ID_BLK_REV_LOW];
ver->cust_ver = buff[ICE_AQC_NVM_NETLIST_ID_BLK_CUST_VER];
/* Read the left most 4 bytes of SHA */
ver->hash = buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 15] << 16 |
buff[ICE_AQC_NVM_NETLIST_ID_BLK_SHA_HASH + 14];
exit_error:
ice_free(hw, buff);
exit_no_mem:
ice_release_nvm(hw);
return ret;
}
/**
* ice_fw_supports_link_override
* @hw: pointer to the hardware structure
*
* Checks if the firmware supports link override
*/
bool ice_fw_supports_link_override(struct ice_hw *hw)
{
if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
return true;
if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
return true;
} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
return true;
}
return false;
}
/**
* ice_get_link_default_override
* @ldo: pointer to the link default override struct
* @pi: pointer to the port info struct
*
* Gets the link default override for a port
*/
enum ice_status
ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
struct ice_port_info *pi)
{
u16 i, tlv, tlv_len, tlv_start, buf, offset;
struct ice_hw *hw = pi->hw;
enum ice_status status;
status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
if (status) {
ice_debug(hw, ICE_DBG_INIT,
"Failed to read link override TLV.\n");
return status;
}
/* Each port has its own config; calculate for our port */
tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
/* link options first */
status = ice_read_sr_word(hw, tlv_start, &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT,
"Failed to read override link options.\n");
return status;
}
ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
ICE_LINK_OVERRIDE_PHY_CFG_S;
/* link PHY config */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
status = ice_read_sr_word(hw, offset, &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT,
"Failed to read override phy config.\n");
return status;
}
ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
/* PHY types low */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
status = ice_read_sr_word(hw, (offset + i), &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT,
"Failed to read override link options.\n");
return status;
}
/* shift 16 bits at a time to fill 64 bits */
ldo->phy_type_low |= ((u64)buf << (i * 16));
}
/* PHY types high */
offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
status = ice_read_sr_word(hw, (offset + i), &buf);
if (status) {
ice_debug(hw, ICE_DBG_INIT,
"Failed to read override link options.\n");
return status;
}
/* shift 16 bits at a time to fill 64 bits */
ldo->phy_type_high |= ((u64)buf << (i * 16));
}
return status;
}