freebsd-dev/sys/alpha/tlsb/dwlpx.c
Matt Jacob f919331938 Do the same thing for TurboLaser that was done for Rawhide- make room
for secondary (bridged) PCI busses by making primary PCI instances
16 units apart.
2000-07-10 02:40:49 +00:00

975 lines
25 KiB
C

/*-
* Copyright (c) 1998 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Based very closely on NetBSD version-
*
* Copyright (c) 1997 by Matthew Jacob
* NASA AMES Research Center.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_simos.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/swiz.h>
#include <machine/intr.h>
#include <machine/intrcnt.h>
#include <machine/resource.h>
#include <machine/sgmap.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <alpha/tlsb/tlsbreg.h>
#include <alpha/tlsb/tlsbvar.h>
#include <alpha/tlsb/kftxxreg.h>
#include <alpha/tlsb/kftxxvar.h>
#include <alpha/tlsb/dwlpxreg.h>
#include <alpha/tlsb/dwlpxvar.h>
#include <alpha/pci/pcibus.h>
#include <pci/pcivar.h>
static devclass_t dwlpx_devclass;
static device_t dwlpxs[DWLPX_NIONODE][DWLPX_NHOSE];
#define KV(pa) ((void *)ALPHA_PHYS_TO_K0SEG(pa))
struct dwlpx_softc {
struct dwlpx_softc *next;
device_t dev; /* backpointer */
u_int64_t sysbase; /* shorthand */
vm_offset_t dmem_base; /* dense memory */
vm_offset_t smem_base; /* sparse memory */
vm_offset_t io_base; /* sparse i/o */
int bushose; /* our bus && hose */
u_int : 26,
nhpc : 2, /* how many HPCs */
dwlpb : 1, /* this is a DWLPB */
sgmapsz : 3; /* Scatter Gather map size */
};
static int dwlpx_probe(device_t dev);
static int dwlpx_attach(device_t dev);
static int dwlpx_setup_intr(device_t, device_t, struct resource *, int,
driver_intr_t *, void *, void **);
static int
dwlpx_teardown_intr(device_t, device_t, struct resource *, void *);
static driver_intr_t dwlpx_intr;
static device_method_t dwlpx_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, dwlpx_probe),
DEVMETHOD(device_attach, dwlpx_attach),
/* Bus interface */
DEVMETHOD(bus_setup_intr, dwlpx_setup_intr),
DEVMETHOD(bus_teardown_intr, dwlpx_teardown_intr),
DEVMETHOD(bus_alloc_resource, pci_alloc_resource),
DEVMETHOD(bus_release_resource, pci_release_resource),
DEVMETHOD(bus_activate_resource, pci_activate_resource),
DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource),
{ 0, 0 }
};
static driver_t dwlpx_driver = {
"dwlpx", dwlpx_methods, sizeof (struct dwlpx_softc)
};
static u_int32_t imaskcache[DWLPX_NIONODE][DWLPX_NHOSE][NHPC];
static void dwlpx_eintr(unsigned long);
/*
* Direct-mapped window: 2G at 2G
*/
#define DWLPx_DIRECT_MAPPED_BASE (2UL*1024UL*1024UL*1024UL)
#define DWLPx_DIRECT_MAPPED_SIZE (2UL*1024UL*1024UL*1024UL)
#define DWLPx_DIRECT_MAPPED_WMASK PCIA_WMASK_2G
/*
* SGMAP window A: 256M at 1.75G or 1G at 1G
*/
#define DWLPx_SG_MAPPED_SIZE(x) ((x) * PAGE_SIZE)
static void dwlpx_dma_init(struct dwlpx_softc *);
#define DWLPX_SOFTC(dev) (struct dwlpx_softc *) device_get_softc(dev)
static struct dwlpx_softc *dwlpx_root;
static alpha_chipset_inb_t dwlpx_inb;
static alpha_chipset_inw_t dwlpx_inw;
static alpha_chipset_inl_t dwlpx_inl;
static alpha_chipset_outb_t dwlpx_outb;
static alpha_chipset_outw_t dwlpx_outw;
static alpha_chipset_outl_t dwlpx_outl;
static alpha_chipset_readb_t dwlpx_readb;
static alpha_chipset_readw_t dwlpx_readw;
static alpha_chipset_readl_t dwlpx_readl;
static alpha_chipset_writeb_t dwlpx_writeb;
static alpha_chipset_writew_t dwlpx_writew;
static alpha_chipset_writel_t dwlpx_writel;
static alpha_chipset_maxdevs_t dwlpx_maxdevs;
static alpha_chipset_cfgreadb_t dwlpx_cfgreadb;
static alpha_chipset_cfgreadw_t dwlpx_cfgreadw;
static alpha_chipset_cfgreadl_t dwlpx_cfgreadl;
static alpha_chipset_cfgwriteb_t dwlpx_cfgwriteb;
static alpha_chipset_cfgwritew_t dwlpx_cfgwritew;
static alpha_chipset_cfgwritel_t dwlpx_cfgwritel;
static alpha_chipset_t dwlpx_chipset = {
dwlpx_inb,
dwlpx_inw,
dwlpx_inl,
dwlpx_outb,
dwlpx_outw,
dwlpx_outl,
dwlpx_readb,
dwlpx_readw,
dwlpx_readl,
dwlpx_writeb,
dwlpx_writew,
dwlpx_writel,
dwlpx_maxdevs,
dwlpx_cfgreadb,
dwlpx_cfgreadw,
dwlpx_cfgreadl,
dwlpx_cfgwriteb,
dwlpx_cfgwritew,
dwlpx_cfgwritel,
};
#define DWLPX_IONODE(port) ((port >> 29) & 0x7)
#define DWLPX_HOSE(port) ((port >> 27) & 0x3)
#define DWLPX_INST(port) dwlpxs[DWLPX_IONODE(port)][DWLPX_HOSE(port)]
#define DWLPX_ADDR(port) (port & 0x07ffffff)
static u_int8_t
dwlpx_inb(u_int32_t port)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(port));
return SPARSE_READ_BYTE(sc->io_base, DWLPX_ADDR(port));
}
static u_int16_t
dwlpx_inw(u_int32_t port)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(port));
return SPARSE_READ_WORD(sc->io_base, DWLPX_ADDR(port));
}
static u_int32_t
dwlpx_inl(u_int32_t port)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(port));
return SPARSE_READ_LONG(sc->io_base, DWLPX_ADDR(port));
}
static void
dwlpx_outb(u_int32_t port, u_int8_t data)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(port));
SPARSE_WRITE_BYTE(sc->io_base, DWLPX_ADDR(port), data);
alpha_mb();
}
static void
dwlpx_outw(u_int32_t port, u_int16_t data)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(port));
SPARSE_WRITE_WORD(sc->io_base, DWLPX_ADDR(port), data);
alpha_mb();
}
static void
dwlpx_outl(u_int32_t port, u_int32_t data)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(port));
SPARSE_WRITE_LONG(sc->io_base, DWLPX_ADDR(port), data);
alpha_mb();
}
static u_int8_t
dwlpx_readb(u_int32_t pa)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(pa));
return SPARSE_READ_BYTE(sc->smem_base, DWLPX_ADDR(pa));
}
static u_int16_t
dwlpx_readw(u_int32_t pa)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(pa));
return SPARSE_READ_WORD(sc->smem_base, DWLPX_ADDR(pa));
}
static u_int32_t
dwlpx_readl(u_int32_t pa)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(pa));
return SPARSE_READ_LONG(sc->smem_base, DWLPX_ADDR(pa));
}
static void
dwlpx_writeb(u_int32_t pa, u_int8_t data)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(pa));
SPARSE_WRITE_BYTE(sc->smem_base, DWLPX_ADDR(pa), data);
alpha_mb();
}
static void
dwlpx_writew(u_int32_t pa, u_int16_t data)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(pa));
SPARSE_WRITE_WORD(sc->smem_base, DWLPX_ADDR(pa), data);
alpha_mb();
}
static void
dwlpx_writel(u_int32_t pa, u_int32_t data)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(DWLPX_INST(pa));
SPARSE_WRITE_LONG(sc->smem_base, DWLPX_ADDR(pa), data);
alpha_mb();
}
static int
dwlpx_maxdevs(u_int b)
{
return (DWLPX_MAXDEV);
}
static u_int32_t dwlpx_cfgread(u_int, u_int, u_int, u_int, u_int, int);
static void dwlpx_cfgwrite(u_int, u_int, u_int, u_int, u_int, int, u_int32_t);
#if 0
#define RCFGP printf
#else
#define RCFGP if (0) printf
#endif
static u_int32_t
dwlpx_cfgread(u_int bh, u_int bus, u_int slot, u_int func, u_int off, int sz)
{
struct dwlpx_softc *sc;
device_t dev;
u_int32_t *dp, data, rvp, pci_idsel, hpcdev;
unsigned long paddr;
int hose, ionode;
int s = 0, i;
RCFGP("CFGREAD %u.%u.%u.%u.%u.%d", bh, bus, slot, func, off, sz);
rvp = data = ~0;
if (bh == (u_int8_t)-1)
bh = bus >> 4;
ionode = ((bh >> 2) & 0x7);
hose = (bh & 0x3);
dev = dwlpxs[ionode][hose];
if (dev == (device_t) 0) {
RCFGP(" (no dev)\n");
return (data);
}
sc = DWLPX_SOFTC(dev);
bus &= 0xf;
if (sc->nhpc < 1) {
RCFGP(" (no hpcs)\n");
return (data);
} else if (sc->nhpc < 2 && slot >= 4) {
RCFGP(" (bad hpcs (%d) <> bad slot (%d))\n", sc->nhpc, slot);
return (data);
} else if (sc->nhpc < 3 && slot >= 8) {
RCFGP(" (bad hpcs (%d) <> bad slot (%d))\n", sc->nhpc, slot);
return (data);
} else if (slot >= DWLPX_MAXDEV) {
RCFGP(" (bad slot (%d))\n", slot);
return (data);
}
hpcdev = slot >> 2;
pci_idsel = (1 << ((slot & 0x3) + 2));
paddr = (hpcdev << 22) | (pci_idsel << 16) | (func << 13);
if (bus) {
paddr &= 0x1fffff;
paddr |= (bus << 21);
alpha_pal_draina();
s = splhigh();
/*
* Set up HPCs for type 1 cycles.
*/
for (i = 0; i < sc->nhpc; i++) {
rvp = REGVAL(PCIA_CTL(i)+sc->sysbase) | PCIA_CTL_T1CYC;
alpha_mb();
REGVAL(PCIA_CTL(i) + sc->sysbase) = rvp;
alpha_mb();
}
}
paddr |= ((unsigned long) ((off >> 2) << 7));
paddr |= ((sz - 1) << 3);
paddr |= DWLPX_PCI_CONF;
paddr |= ((unsigned long) hose) << 34;
paddr |= ((unsigned long) ionode) << 36;
paddr |= 1L << 39;
dp = (u_int32_t *)KV(paddr);
RCFGP(" hose %d node%d paddr 0x%lx", bh, ionode+4, paddr);
if (badaddr(dp, sizeof (*dp)) == 0) {
data = *dp;
}
if (bus) {
alpha_pal_draina();
for (i = 0; i < sc->nhpc; i++) {
rvp = REGVAL(PCIA_CTL(i)+sc->sysbase) & ~PCIA_CTL_T1CYC;
alpha_mb();
REGVAL(PCIA_CTL(i) + sc->sysbase) = rvp;
alpha_mb();
}
(void) splx(s);
}
if (data != ~0) {
if (sz == 1) {
rvp = SPARSE_BYTE_EXTRACT(off, data);
} else if (sz == 2) {
rvp = SPARSE_WORD_EXTRACT(off, data);
} else {
rvp = data;
}
} else {
rvp = data;
}
RCFGP(" data %x->0x%x\n", data, rvp);
return (rvp);
}
#if 0
#define WCFGP printf
#else
#define WCFGP if (0) printf
#endif
static void
dwlpx_cfgwrite(u_int bh, u_int bus, u_int slot, u_int func, u_int off,
int sz, u_int32_t data)
{
int hose, ionode;
int s = 0, i;
u_int32_t *dp, rvp, pci_idsel, hpcdev;
unsigned long paddr;
struct dwlpx_softc *sc;
device_t dev;
WCFGP("CFGWRITE %u.%u.%u.%u.%u.%d", bh, bus, slot, func, off, sz);
if (bh == (u_int8_t)-1)
bh = bus >> 4;
ionode = ((bh >> 2) & 0x7);
hose = (bh & 0x3);
dev = dwlpxs[ionode][hose];
if (dev == (device_t) 0) {
WCFGP(" (no dev)\n");
return;
}
sc = DWLPX_SOFTC(dev);
bus &= 0xf;
if (sc->nhpc < 1) {
WCFGP(" (no hpcs)\n");
return;
} else if (sc->nhpc < 2 && slot >= 4) {
WCFGP(" (bad hpcs (%d) <> bad slot (%d))\n", sc->nhpc, slot);
return;
} else if (sc->nhpc < 3 && slot >= 8) {
WCFGP(" (bad hpcs (%d) <> bad slot (%d))\n", sc->nhpc, slot);
return;
} else if (slot >= DWLPX_MAXDEV) {
WCFGP(" (bad slot (%d))\n", slot);
return;
}
hpcdev = slot >> 2;
pci_idsel = (1 << ((slot & 0x3) + 2));
paddr = (hpcdev << 22) | (pci_idsel << 16) | (func << 13);
bus = 0;
if (bus) {
paddr &= 0x1fffff;
paddr |= (bus << 21);
alpha_pal_draina();
s = splhigh();
/*
* Set up HPCs for type 1 cycles.
*/
for (i = 0; i < sc->nhpc; i++) {
rvp = REGVAL(PCIA_CTL(i)+sc->sysbase) | PCIA_CTL_T1CYC;
alpha_mb();
REGVAL(PCIA_CTL(i) + sc->sysbase) = rvp;
alpha_mb();
}
}
paddr |= ((unsigned long) ((off >> 2) << 7));
paddr |= ((sz - 1) << 3);
paddr |= DWLPX_PCI_CONF;
paddr |= ((unsigned long) hose) << 34;
paddr |= ((unsigned long) ionode) << 36;
paddr |= 1L << 39;
dp = (u_int32_t *)KV(paddr);
WCFGP(" hose %d node%d paddr 0x%lx\n", bh, ionode+4, paddr);
if (badaddr(dp, sizeof (*dp)) == 0) {
u_int32_t new_data;
if (sz == 1) {
new_data = SPARSE_BYTE_INSERT(off, data);
} else if (sz == 2) {
new_data = SPARSE_WORD_INSERT(off, data);
} else {
new_data = data;
}
*dp = new_data;
}
if (bus) {
alpha_pal_draina();
for (i = 0; i < sc->nhpc; i++) {
rvp = REGVAL(PCIA_CTL(i)+sc->sysbase) & ~PCIA_CTL_T1CYC;
alpha_mb();
REGVAL(PCIA_CTL(i) + sc->sysbase) = rvp;
alpha_mb();
}
(void) splx(s);
}
}
static u_int8_t
dwlpx_cfgreadb(u_int h, u_int b, u_int s, u_int f, u_int r)
{
return (u_int8_t) dwlpx_cfgread(h, b, s, f, r, 1);
}
static u_int16_t
dwlpx_cfgreadw(u_int h, u_int b, u_int s, u_int f, u_int r)
{
return (u_int16_t) dwlpx_cfgread(h, b, s, f, r, 2);
}
static u_int32_t
dwlpx_cfgreadl(u_int h, u_int b, u_int s, u_int f, u_int r)
{
return dwlpx_cfgread(h, b, s, f, r, 4);
}
static void
dwlpx_cfgwriteb(u_int h, u_int b, u_int s, u_int f, u_int r, u_int8_t data)
{
dwlpx_cfgwrite(h, b, s, f, r, 1, (u_int32_t) data);
}
static void
dwlpx_cfgwritew(u_int h, u_int b, u_int s, u_int f, u_int r, u_int16_t data)
{
dwlpx_cfgwrite(h, b, s, f, r, 2, (u_int32_t) data);
}
static void
dwlpx_cfgwritel(u_int h, u_int b, u_int s, u_int f, u_int r, u_int32_t data)
{
dwlpx_cfgwrite(h, b, s, f, r, 4, (u_int32_t) data);
}
static int
dwlpx_probe(device_t dev)
{
device_t child;
u_int32_t ctl;
struct dwlpx_softc *xc, *sc = DWLPX_SOFTC(dev);
unsigned long ls;
int io, hose;
io = kft_get_node(dev) - 4;
hose = kft_get_hosenum(dev);
sc->bushose = (io << 2) | hose;
if (dwlpxs[io][hose]) {
printf("%s: already attached\n", device_get_nameunit(dev));
return EEXIST;
}
if ((xc = dwlpx_root) == NULL) {
dwlpx_root = sc;
} else {
while (xc->next)
xc = xc->next;
xc->next = sc;
}
sc->dev = dwlpxs[io][hose] = dev;
ls = DWLPX_BASE(io + 4, hose);
for (sc->nhpc = 1; sc->nhpc < NHPC; sc->nhpc++) {
if (badaddr(KV(PCIA_CTL(sc->nhpc) + ls), sizeof (ctl))) {
break;
}
}
if (sc->nhpc != NHPC) {
REGVAL(PCIA_ERR(0) + ls) = PCIA_ERR_ALLERR;
}
ctl = REGVAL(PCIA_PRESENT + ls);
if ((ctl >> PCIA_PRESENT_REVSHIFT) & PCIA_PRESENT_REVMASK) {
sc->dwlpb = 1;
device_set_desc(dev, "DWLPB PCI adapter");
} else {
device_set_desc(dev, "DWLPA PCI adapter");
}
sc->sgmapsz = DWLPX_SG32K;
if (device_get_unit(dev) == 0) {
pci_init_resources();
}
child = device_add_child(dev, "pcib", device_get_unit(dev));
device_set_ivars(child, &sc->bushose);
return (0);
}
static int
dwlpx_attach(device_t dev)
{
struct dwlpx_softc *sc = DWLPX_SOFTC(dev);
device_t parent = device_get_parent(dev);
vm_offset_t regs;
u_int32_t ctl;
int i, io, hose;
void *intr;
io = kft_get_node(dev) - 4;
hose = kft_get_hosenum(dev);
chipset = dwlpx_chipset;
/* chipset.intrdev = dev; */
sc->sysbase = DWLPX_BASE(io + 4, hose);
regs = (vm_offset_t) KV(sc->sysbase);
sc->dmem_base = regs + DWLPX_PCI_DENSE;
sc->smem_base = regs + DWLPX_PCI_SPARSE;
sc->io_base = regs + DWLPX_PCI_IOSPACE;
/*
* Set up interrupt stuff for this DWLPX.
*
* Note that all PCI interrupt pins are disabled at this time.
*
* Do this even for all HPCs- even for the
* nonexistent one on hose zero of a KFTIA.
*/
for (i = 0; i < NHPC; i++) {
REGVAL(PCIA_IMASK(i) + sc->sysbase) = DWLPX_IMASK_DFLT;
REGVAL(PCIA_ERRVEC(i) + sc->sysbase) =
DWLPX_ERRVEC(io, hose);
}
for (i = 0; i < DWLPX_MAXDEV; i++) {
u_int16_t vec;
int ss, hpc;
vec = DWLPX_MVEC(io, hose, i);
ss = i;
if (i < 4) {
hpc = 0;
} else if (i < 8) {
ss -= 4;
hpc = 1;
} else {
ss -= 8;
hpc = 2;
}
REGVAL(PCIA_DEVVEC(hpc, ss, 1) + sc->sysbase) = vec;
REGVAL(PCIA_DEVVEC(hpc, ss, 2) + sc->sysbase) = vec;
REGVAL(PCIA_DEVVEC(hpc, ss, 3) + sc->sysbase) = vec;
REGVAL(PCIA_DEVVEC(hpc, ss, 4) + sc->sysbase) = vec;
}
/*
* Establish HAE values, as well as make sure of sanity elsewhere.
*/
for (i = 0; i < sc->nhpc; i++) {
ctl = REGVAL(PCIA_CTL(i) + sc->sysbase);
ctl &= 0x0fffffff;
ctl &= ~(PCIA_CTL_MHAE(0x1f) | PCIA_CTL_IHAE(0x1f));
/*
* I originally also had it or'ing in 3, which makes no sense.
*/
ctl |= PCIA_CTL_RMMENA | PCIA_CTL_RMMARB;
/*
* Only valid if we're attached to a KFTIA or a KTHA.
*/
ctl |= PCIA_CTL_3UP;
ctl |= PCIA_CTL_CUTENA;
/*
* Fit in appropriate S/G Map Ram size.
*/
if (sc->sgmapsz == DWLPX_SG32K)
ctl |= PCIA_CTL_SG32K;
else if (sc->sgmapsz == DWLPX_SG128K)
ctl |= PCIA_CTL_SG128K;
else
ctl |= PCIA_CTL_SG32K;
REGVAL(PCIA_CTL(i) + sc->sysbase) = ctl;
}
/*
* Enable TBIT if required
*/
if (sc->sgmapsz == DWLPX_SG128K)
REGVAL(PCIA_TBIT + sc->sysbase) = 1;
alpha_mb();
for (io = 0; io < DWLPX_NIONODE; io++) {
for (hose = 0; hose < DWLPX_NHOSE; hose++) {
for (i = 0; i < NHPC; i++) {
imaskcache[io][hose][i] = DWLPX_IMASK_DFLT;
}
}
}
/*
* Set up DMA stuff here.
*/
dwlpx_dma_init(sc);
/*
* Register our interrupt service requirements with out parent.
*/
i = BUS_SETUP_INTR(parent, dev, NULL,
INTR_TYPE_MISC, dwlpx_intr, 0, &intr);
if (i == 0) {
bus_generic_attach(dev);
}
return (i);
}
static void dwlpx_enadis_intr(int, int, int);
static void
dwlpx_enadis_intr(int vector, int intpin, int onoff)
{
unsigned long paddr;
u_int32_t val;
int device, ionode, hose, hpc, s;
ionode = DWLPX_MVEC_IONODE(vector);
hose = DWLPX_MVEC_HOSE(vector);
device = DWLPX_MVEC_PCISLOT(vector);
paddr = (1LL << 39);
paddr |= (unsigned long) ionode << 36;
paddr |= (unsigned long) hose << 34;
if (device < 4) {
hpc = 0;
} else if (device < 8) {
hpc = 1;
device -= 4;
} else {
hpc = 2;
device -= 8;
}
intpin <<= (device << 2);
val = imaskcache[ionode][hose][hpc];
if (onoff)
val |= intpin;
else
val &= ~intpin;
imaskcache[ionode][hose][hpc] = val;
s = splhigh();
REGVAL(PCIA_IMASK(hpc) + paddr) = val;
alpha_mb();
splx(s);
}
static int
dwlpx_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
driver_intr_t *intr, void *arg, void **cookiep)
{
int slot, ionode, hose, error, vector, intpin;
error = rman_activate_resource(irq);
if (error)
return error;
intpin = pci_get_intpin(child);
slot = pci_get_slot(child);
hose = pci_get_hose(child);
ionode = hose >> 2;
hose &= 0x3;
vector = DWLPX_MVEC(ionode, hose, slot);
error = alpha_setup_intr(vector, intr, arg, cookiep,
&intrcnt[INTRCNT_KN8AE_IRQ]);
if (error)
return error;
dwlpx_enadis_intr(vector, intpin, 1);
device_printf(child, "Node %d Hose %d Slot %d interrupting at TLSB "
"vector 0x%x intpin %d\n", ionode+4, hose, slot, vector, intpin);
return (0);
}
static int
dwlpx_teardown_intr(device_t dev, device_t child, struct resource *irq, void *c)
{
int slot, ionode, hose, vector, intpin;
intpin = pci_get_intpin(child);
slot = pci_get_slot(child);
hose = pci_get_hose(child);
ionode = hose >> 2;
hose &= 0x3;
vector = DWLPX_MVEC(ionode, hose, slot);
dwlpx_enadis_intr(vector, intpin, 0);
alpha_teardown_intr(c);
return rman_deactivate_resource(irq);
}
static void
dwlpx_dma_init(struct dwlpx_softc *sc)
{
u_int32_t *tbl, sgwmask, sgwbase, sgwend;
int i, lim;
/*
* Determine size of Window C based on the amount of SGMAP
* page table SRAM available.
*/
if (sc->sgmapsz == DWLPX_SG128K) {
lim = 128 * 1024;
sgwmask = PCIA_WMASK_1G;
sgwbase = 1UL*1024UL*1024UL*1024UL;
} else {
lim = 32 * 1024;
sgwmask = PCIA_WMASK_256M;
sgwbase = 1UL*1024UL*1024UL*1024UL+3UL*256UL*1024UL*1024UL;
}
sgwend = sgwbase + (lim * 8192) - 1;
/*
* A few notes about SGMAP-mapped DMA on the DWLPx:
*
* The DWLPx has PCIA-resident SRAM that is used for
* the SGMAP page table; there is no TLB. The DWLPA
* has room for 32K entries, yielding a total of 256M
* of sgva space. The DWLPB has 32K entries or 128K
* entries, depending on TBIT, yielding either 256M or
* 1G of sgva space.
*/
/*
* Initialize the page table.
*/
tbl = (u_int32_t *) ALPHA_PHYS_TO_K0SEG(PCIA_SGMAP_PT + sc->sysbase);
for (i = 0; i < lim; i++)
tbl[i] = 0;
#if 0
/* XXX NOT DONE YET XXX */
/*
* Initialize the SGMAP for window C:
*
* Size: 256M or 1GB
* Window base: 1GB
* SGVA base: 0
*/
chipset.sgmap = sgmap_map_create(sgwbase, sgwend, dwlpx_sgmap_map, tbl);
#endif
/*
* Set up DMA windows for this DWLPx.
*/
for (i = 0; i < sc->nhpc; i++) {
REGVAL(PCIA_WMASK_A(i) + sc->sysbase) =
DWLPx_DIRECT_MAPPED_WMASK;
REGVAL(PCIA_TBASE_A(i) + sc->sysbase) = 0;
REGVAL(PCIA_WBASE_A(i) + sc->sysbase) =
DWLPx_DIRECT_MAPPED_BASE | PCIA_WBASE_W_EN;
REGVAL(PCIA_WMASK_B(i) + sc->sysbase) = 0;
REGVAL(PCIA_TBASE_B(i) + sc->sysbase) = 0;
REGVAL(PCIA_WBASE_B(i) + sc->sysbase) = 0;
REGVAL(PCIA_WMASK_C(i) + sc->sysbase) = sgwmask;
REGVAL(PCIA_TBASE_C(i) + sc->sysbase) = 0;
REGVAL(PCIA_WBASE_C(i) + sc->sysbase) =
sgwbase | PCIA_WBASE_W_EN | PCIA_WBASE_SG_EN;
}
alpha_mb();
/* XXX XXX BEGIN XXX XXX */
{ /* XXX */
alpha_XXX_dmamap_or = DWLPx_DIRECT_MAPPED_BASE; /* XXX */
} /* XXX */
/* XXX XXX END XXX XXX */
}
/*
*/
static void
dwlpx_intr(void *arg)
{
#ifdef SIMOS
extern void simos_intr(int);
simos_intr(0);
#else
unsigned long vec = (unsigned long) arg;
if ((vec & DWLPX_VEC_EMARK) != 0) {
dwlpx_eintr(vec);
return;
}
if ((vec & DWLPX_VEC_MARK) == 0) {
panic("dwlpx_intr: bad vector %p", arg);
/* NOTREACHED */
}
alpha_dispatch_intr(NULL, vec);
#endif
}
static void
dwlpx_eintr(unsigned long vec)
{
device_t dev;
struct dwlpx_softc *sc;
int ionode, hosenum, i;
struct {
u_int32_t err;
u_int32_t addr;
} hpcs[NHPC];
ionode = (vec >> 8) & 0xf;
hosenum = (vec >> 4) & 0x7;
if (ionode >= DWLPX_NIONODE || hosenum >= DWLPX_NHOSE) {
panic("dwlpx_iointr: mangled vector 0x%lx", vec);
/* NOTREACHED */
}
dev = dwlpxs[ionode][hosenum];
sc = DWLPX_SOFTC(dev);
for (i = 0; i < sc->nhpc; i++) {
hpcs[i].err = REGVAL(PCIA_ERR(i) + sc->sysbase);
hpcs[i].addr = REGVAL(PCIA_FADR(i) + sc->sysbase);
}
printf("%s: node %d hose %d error interrupt\n",
device_get_nameunit(dev), ionode + 4, hosenum);
for (i = 0; i < sc->nhpc; i++) {
if ((hpcs[i].err & PCIA_ERR_ERROR) == 0)
continue;
printf("\tHPC %d: ERR=0x%08x; DMA %s Memory, "
"Failing Address 0x%x\n",
i, hpcs[i].err, hpcs[i].addr & 0x1? "write to" :
"read from", hpcs[i].addr & ~3);
if (hpcs[i].err & PCIA_ERR_SERR_L)
printf("\t PCI device asserted SERR_L\n");
if (hpcs[i].err & PCIA_ERR_ILAT)
printf("\t Incremental Latency Exceeded\n");
if (hpcs[i].err & PCIA_ERR_SGPRTY)
printf("\t CPU access of SG RAM Parity Error\n");
if (hpcs[i].err & PCIA_ERR_ILLCSR)
printf("\t Illegal CSR Address Error\n");
if (hpcs[i].err & PCIA_ERR_PCINXM)
printf("\t Nonexistent PCI Address Error\n");
if (hpcs[i].err & PCIA_ERR_DSCERR)
printf("\t PCI Target Disconnect Error\n");
if (hpcs[i].err & PCIA_ERR_ABRT)
printf("\t PCI Target Abort Error\n");
if (hpcs[i].err & PCIA_ERR_WPRTY)
printf("\t PCI Write Parity Error\n");
if (hpcs[i].err & PCIA_ERR_DPERR)
printf("\t PCI Data Parity Error\n");
if (hpcs[i].err & PCIA_ERR_APERR)
printf("\t PCI Address Parity Error\n");
if (hpcs[i].err & PCIA_ERR_DFLT)
printf("\t SG Map RAM Invalid Entry Error\n");
if (hpcs[i].err & PCIA_ERR_DPRTY)
printf("\t DMA access of SG RAM Parity Error\n");
if (hpcs[i].err & PCIA_ERR_DRPERR)
printf("\t DMA Read Return Parity Error\n");
if (hpcs[i].err & PCIA_ERR_MABRT)
printf("\t PCI Master Abort Error\n");
if (hpcs[i].err & PCIA_ERR_CPRTY)
printf("\t CSR Parity Error\n");
if (hpcs[i].err & PCIA_ERR_COVR)
printf("\t CSR Overrun Error\n");
if (hpcs[i].err & PCIA_ERR_MBPERR)
printf("\t Mailbox Parity Error\n");
if (hpcs[i].err & PCIA_ERR_MBILI)
printf("\t Mailbox Illegal Length Error\n");
REGVAL(PCIA_ERR(i) + sc->sysbase) = hpcs[i].err;
}
}
DRIVER_MODULE(dwlpx, kft, dwlpx_driver, dwlpx_devclass, 0, 0);