71625ec9ad
Remove /^/[*/]\s*\$FreeBSD\$.*\n/
825 lines
24 KiB
C
825 lines
24 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*
|
|
* Copyright (c) 2016 Nicole Graziano <nicole@nextbsd.org>
|
|
* Copyright (c) 2017 Matthew Macy <mmacy@mattmacy.io>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "if_em.h"
|
|
|
|
#ifdef RSS
|
|
#include <net/rss_config.h>
|
|
#include <netinet/in_rss.h>
|
|
#endif
|
|
|
|
#ifdef VERBOSE_DEBUG
|
|
#define DPRINTF device_printf
|
|
#else
|
|
#define DPRINTF(...)
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* Local Function prototypes
|
|
*********************************************************************/
|
|
static int em_tso_setup(struct e1000_softc *sc, if_pkt_info_t pi,
|
|
uint32_t *txd_upper, uint32_t *txd_lower);
|
|
static int em_transmit_checksum_setup(struct e1000_softc *sc,
|
|
if_pkt_info_t pi, uint32_t *txd_upper, uint32_t *txd_lower);
|
|
static int em_isc_txd_encap(void *arg, if_pkt_info_t pi);
|
|
static void em_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
|
|
static int em_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
|
|
static void em_isc_rxd_refill(void *arg, if_rxd_update_t iru);
|
|
static void em_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused,
|
|
qidx_t pidx);
|
|
static int em_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx,
|
|
qidx_t budget);
|
|
static int em_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
|
|
|
|
static void lem_isc_rxd_refill(void *arg, if_rxd_update_t iru);
|
|
|
|
static int lem_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx,
|
|
qidx_t budget);
|
|
static int lem_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
|
|
|
|
static void em_receive_checksum(uint16_t, uint8_t, if_rxd_info_t);
|
|
static int em_determine_rsstype(uint32_t pkt_info);
|
|
extern int em_intr(void *arg);
|
|
|
|
struct if_txrx em_txrx = {
|
|
.ift_txd_encap = em_isc_txd_encap,
|
|
.ift_txd_flush = em_isc_txd_flush,
|
|
.ift_txd_credits_update = em_isc_txd_credits_update,
|
|
.ift_rxd_available = em_isc_rxd_available,
|
|
.ift_rxd_pkt_get = em_isc_rxd_pkt_get,
|
|
.ift_rxd_refill = em_isc_rxd_refill,
|
|
.ift_rxd_flush = em_isc_rxd_flush,
|
|
.ift_legacy_intr = em_intr
|
|
};
|
|
|
|
struct if_txrx lem_txrx = {
|
|
.ift_txd_encap = em_isc_txd_encap,
|
|
.ift_txd_flush = em_isc_txd_flush,
|
|
.ift_txd_credits_update = em_isc_txd_credits_update,
|
|
.ift_rxd_available = lem_isc_rxd_available,
|
|
.ift_rxd_pkt_get = lem_isc_rxd_pkt_get,
|
|
.ift_rxd_refill = lem_isc_rxd_refill,
|
|
.ift_rxd_flush = em_isc_rxd_flush,
|
|
.ift_legacy_intr = em_intr
|
|
};
|
|
|
|
extern if_shared_ctx_t em_sctx;
|
|
|
|
void
|
|
em_dump_rs(struct e1000_softc *sc)
|
|
{
|
|
if_softc_ctx_t scctx = sc->shared;
|
|
struct em_tx_queue *que;
|
|
struct tx_ring *txr;
|
|
qidx_t i, ntxd, qid, cur;
|
|
int16_t rs_cidx;
|
|
uint8_t status;
|
|
|
|
printf("\n");
|
|
ntxd = scctx->isc_ntxd[0];
|
|
for (qid = 0; qid < sc->tx_num_queues; qid++) {
|
|
que = &sc->tx_queues[qid];
|
|
txr = &que->txr;
|
|
rs_cidx = txr->tx_rs_cidx;
|
|
if (rs_cidx != txr->tx_rs_pidx) {
|
|
cur = txr->tx_rsq[rs_cidx];
|
|
status = txr->tx_base[cur].upper.fields.status;
|
|
if (!(status & E1000_TXD_STAT_DD))
|
|
printf("qid[%d]->tx_rsq[%d]: %d clear ", qid, rs_cidx, cur);
|
|
} else {
|
|
rs_cidx = (rs_cidx-1)&(ntxd-1);
|
|
cur = txr->tx_rsq[rs_cidx];
|
|
printf("qid[%d]->tx_rsq[rs_cidx-1=%d]: %d ", qid, rs_cidx, cur);
|
|
}
|
|
printf("cidx_prev=%d rs_pidx=%d ",txr->tx_cidx_processed,
|
|
txr->tx_rs_pidx);
|
|
for (i = 0; i < ntxd; i++) {
|
|
if (txr->tx_base[i].upper.fields.status & E1000_TXD_STAT_DD)
|
|
printf("%d set ", i);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Setup work for hardware segmentation offload (TSO) on
|
|
* adapters using advanced tx descriptors
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
em_tso_setup(struct e1000_softc *sc, if_pkt_info_t pi, uint32_t *txd_upper,
|
|
uint32_t *txd_lower)
|
|
{
|
|
if_softc_ctx_t scctx = sc->shared;
|
|
struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
|
|
struct tx_ring *txr = &que->txr;
|
|
struct e1000_context_desc *TXD;
|
|
int cur, hdr_len;
|
|
uint32_t cmd_type_len;
|
|
|
|
hdr_len = pi->ipi_ehdrlen + pi->ipi_ip_hlen + pi->ipi_tcp_hlen;
|
|
*txd_lower = (E1000_TXD_CMD_DEXT | /* Extended descr type */
|
|
E1000_TXD_DTYP_D | /* Data descr type */
|
|
E1000_TXD_CMD_TSE); /* Do TSE on this packet */
|
|
|
|
cur = pi->ipi_pidx;
|
|
TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
|
|
|
|
/*
|
|
* ipcss - Start offset for header checksum calculation.
|
|
* ipcse - End offset for header checksum calculation.
|
|
* ipcso - Offset of place to put the checksum.
|
|
*/
|
|
switch(pi->ipi_etype) {
|
|
case ETHERTYPE_IP:
|
|
/* IP and/or TCP header checksum calculation and insertion. */
|
|
*txd_upper = (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
|
|
|
|
TXD->lower_setup.ip_fields.ipcse =
|
|
htole16(pi->ipi_ehdrlen + pi->ipi_ip_hlen - 1);
|
|
break;
|
|
case ETHERTYPE_IPV6:
|
|
/* TCP header checksum calculation and insertion. */
|
|
*txd_upper = E1000_TXD_POPTS_TXSM << 8;
|
|
|
|
TXD->lower_setup.ip_fields.ipcse = htole16(0);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
TXD->lower_setup.ip_fields.ipcss = pi->ipi_ehdrlen;
|
|
TXD->lower_setup.ip_fields.ipcso =
|
|
pi->ipi_ehdrlen + offsetof(struct ip, ip_sum);
|
|
|
|
/*
|
|
* tucss - Start offset for payload checksum calculation.
|
|
* tucse - End offset for payload checksum calculation.
|
|
* tucso - Offset of place to put the checksum.
|
|
*/
|
|
TXD->upper_setup.tcp_fields.tucss = pi->ipi_ehdrlen + pi->ipi_ip_hlen;
|
|
TXD->upper_setup.tcp_fields.tucse = 0;
|
|
TXD->upper_setup.tcp_fields.tucso =
|
|
pi->ipi_ehdrlen + pi->ipi_ip_hlen + offsetof(struct tcphdr, th_sum);
|
|
|
|
/*
|
|
* Payload size per packet w/o any headers.
|
|
* Length of all headers up to payload.
|
|
*/
|
|
TXD->tcp_seg_setup.fields.mss = htole16(pi->ipi_tso_segsz);
|
|
TXD->tcp_seg_setup.fields.hdr_len = hdr_len;
|
|
|
|
/*
|
|
* "PCI/PCI-X SDM 4.0" page 45, and "PCIe GbE SDM 2.5" page 63
|
|
* - Set up basic TUCMDs
|
|
* - For others IP bit on indicates IPv4, while off indicates IPv6
|
|
*/
|
|
cmd_type_len = sc->txd_cmd |
|
|
E1000_TXD_CMD_DEXT | /* Extended descr */
|
|
E1000_TXD_CMD_TSE | /* TSE context */
|
|
E1000_TXD_CMD_TCP; /* Do TCP checksum */
|
|
if (pi->ipi_etype == ETHERTYPE_IP)
|
|
cmd_type_len |= E1000_TXD_CMD_IP;
|
|
TXD->cmd_and_length = htole32(cmd_type_len |
|
|
(pi->ipi_len - hdr_len)); /* Total len */
|
|
|
|
txr->tx_tso = true;
|
|
|
|
if (++cur == scctx->isc_ntxd[0]) {
|
|
cur = 0;
|
|
}
|
|
DPRINTF(iflib_get_dev(sc->ctx), "%s: pidx: %d cur: %d\n", __FUNCTION__,
|
|
pi->ipi_pidx, cur);
|
|
return (cur);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* The offload context is protocol specific (TCP/UDP) and thus
|
|
* only needs to be set when the protocol changes. The occasion
|
|
* of a context change can be a performance detriment, and
|
|
* might be better just disabled. The reason arises in the way
|
|
* in which the controller supports pipelined requests from the
|
|
* Tx data DMA. Up to four requests can be pipelined, and they may
|
|
* belong to the same packet or to multiple packets. However all
|
|
* requests for one packet are issued before a request is issued
|
|
* for a subsequent packet and if a request for the next packet
|
|
* requires a context change, that request will be stalled
|
|
* until the previous request completes. This means setting up
|
|
* a new context effectively disables pipelined Tx data DMA which
|
|
* in turn greatly slow down performance to send small sized
|
|
* frames.
|
|
**********************************************************************/
|
|
#define DONT_FORCE_CTX 1
|
|
|
|
static int
|
|
em_transmit_checksum_setup(struct e1000_softc *sc, if_pkt_info_t pi,
|
|
uint32_t *txd_upper, uint32_t *txd_lower)
|
|
{
|
|
struct e1000_context_desc *TXD = NULL;
|
|
if_softc_ctx_t scctx = sc->shared;
|
|
struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
|
|
struct tx_ring *txr = &que->txr;
|
|
int csum_flags = pi->ipi_csum_flags;
|
|
int cur, hdr_len;
|
|
uint32_t cmd;
|
|
|
|
cur = pi->ipi_pidx;
|
|
hdr_len = pi->ipi_ehdrlen + pi->ipi_ip_hlen;
|
|
cmd = sc->txd_cmd;
|
|
|
|
/*
|
|
* The 82574L can only remember the *last* context used
|
|
* regardless of queue that it was use for. We cannot reuse
|
|
* contexts on this hardware platform and must generate a new
|
|
* context every time. 82574L hardware spec, section 7.2.6,
|
|
* second note.
|
|
*/
|
|
if (DONT_FORCE_CTX &&
|
|
sc->tx_num_queues == 1 &&
|
|
txr->csum_lhlen == pi->ipi_ehdrlen &&
|
|
txr->csum_iphlen == pi->ipi_ip_hlen &&
|
|
txr->csum_flags == csum_flags) {
|
|
/*
|
|
* Same csum offload context as the previous packets;
|
|
* just return.
|
|
*/
|
|
*txd_upper = txr->csum_txd_upper;
|
|
*txd_lower = txr->csum_txd_lower;
|
|
return (cur);
|
|
}
|
|
|
|
TXD = (struct e1000_context_desc *)&txr->tx_base[cur];
|
|
/*
|
|
* ipcss - Start offset for header checksum calculation.
|
|
* ipcse - End offset for header checksum calculation.
|
|
* ipcso - Offset of place to put the checksum.
|
|
*
|
|
* We set ipcsX values regardless of IP version to work around HW issues
|
|
* and ipcse must be 0 for IPv6 per "PCIe GbE SDM 2.5" page 61.
|
|
* IXSM controls whether it's inserted.
|
|
*/
|
|
TXD->lower_setup.ip_fields.ipcss = pi->ipi_ehdrlen;
|
|
TXD->lower_setup.ip_fields.ipcso = pi->ipi_ehdrlen +
|
|
offsetof(struct ip, ip_sum);
|
|
if (csum_flags & CSUM_IP) {
|
|
*txd_upper |= E1000_TXD_POPTS_IXSM << 8;
|
|
TXD->lower_setup.ip_fields.ipcse = htole16(hdr_len - 1);
|
|
cmd |= E1000_TXD_CMD_IP;
|
|
} else if (csum_flags & (CSUM_IP6_TCP | CSUM_IP6_UDP))
|
|
TXD->lower_setup.ip_fields.ipcse = htole16(0);
|
|
|
|
/*
|
|
* tucss - Start offset for payload checksum calculation.
|
|
* tucse - End offset for payload checksum calculation.
|
|
* tucso - Offset of place to put the checksum.
|
|
*/
|
|
if (csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_IP6_TCP | CSUM_IP6_UDP)) {
|
|
uint8_t tucso;
|
|
|
|
*txd_upper |= E1000_TXD_POPTS_TXSM << 8;
|
|
*txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
|
|
|
|
if (csum_flags & (CSUM_TCP | CSUM_IP6_TCP)) {
|
|
tucso = hdr_len + offsetof(struct tcphdr, th_sum);
|
|
cmd |= E1000_TXD_CMD_TCP;
|
|
} else
|
|
tucso = hdr_len + offsetof(struct udphdr, uh_sum);
|
|
TXD->upper_setup.tcp_fields.tucss = hdr_len;
|
|
TXD->upper_setup.tcp_fields.tucse = htole16(0);
|
|
TXD->upper_setup.tcp_fields.tucso = tucso;
|
|
}
|
|
|
|
txr->csum_lhlen = pi->ipi_ehdrlen;
|
|
txr->csum_iphlen = pi->ipi_ip_hlen;
|
|
txr->csum_flags = csum_flags;
|
|
txr->csum_txd_upper = *txd_upper;
|
|
txr->csum_txd_lower = *txd_lower;
|
|
|
|
TXD->tcp_seg_setup.data = htole32(0);
|
|
TXD->cmd_and_length =
|
|
htole32(E1000_TXD_CMD_IFCS | E1000_TXD_CMD_DEXT | cmd);
|
|
|
|
if (++cur == scctx->isc_ntxd[0]) {
|
|
cur = 0;
|
|
}
|
|
DPRINTF(iflib_get_dev(sc->ctx),
|
|
"checksum_setup csum_flags=%x txd_upper=%x txd_lower=%x hdr_len=%d cmd=%x\n",
|
|
csum_flags, *txd_upper, *txd_lower, hdr_len, cmd);
|
|
return (cur);
|
|
}
|
|
|
|
#define TSO_WORKAROUND 4 /* TSO sentinel descriptor */
|
|
|
|
static int
|
|
em_isc_txd_encap(void *arg, if_pkt_info_t pi)
|
|
{
|
|
struct e1000_softc *sc = arg;
|
|
if_softc_ctx_t scctx = sc->shared;
|
|
struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
|
|
struct tx_ring *txr = &que->txr;
|
|
bus_dma_segment_t *segs = pi->ipi_segs;
|
|
int nsegs = pi->ipi_nsegs;
|
|
int csum_flags = pi->ipi_csum_flags;
|
|
int i, j, first, pidx_last;
|
|
uint32_t txd_flags, txd_upper = 0, txd_lower = 0;
|
|
|
|
struct e1000_tx_desc *ctxd = NULL;
|
|
bool do_tso, tso_desc;
|
|
qidx_t ntxd;
|
|
|
|
txd_flags = pi->ipi_flags & IPI_TX_INTR ? E1000_TXD_CMD_RS : 0;
|
|
i = first = pi->ipi_pidx;
|
|
do_tso = (csum_flags & CSUM_TSO);
|
|
tso_desc = false;
|
|
ntxd = scctx->isc_ntxd[0];
|
|
/*
|
|
* TSO Hardware workaround, if this packet is not
|
|
* TSO, and is only a single descriptor long, and
|
|
* it follows a TSO burst, then we need to add a
|
|
* sentinel descriptor to prevent premature writeback.
|
|
*/
|
|
if ((!do_tso) && (txr->tx_tso == true)) {
|
|
if (nsegs == 1)
|
|
tso_desc = true;
|
|
txr->tx_tso = false;
|
|
}
|
|
|
|
/* Do hardware assists */
|
|
if (do_tso) {
|
|
i = em_tso_setup(sc, pi, &txd_upper, &txd_lower);
|
|
tso_desc = true;
|
|
} else if (csum_flags & EM_CSUM_OFFLOAD) {
|
|
i = em_transmit_checksum_setup(sc, pi, &txd_upper, &txd_lower);
|
|
}
|
|
|
|
if (pi->ipi_mflags & M_VLANTAG) {
|
|
/* Set the vlan id. */
|
|
txd_upper |= htole16(pi->ipi_vtag) << 16;
|
|
/* Tell hardware to add tag */
|
|
txd_lower |= htole32(E1000_TXD_CMD_VLE);
|
|
}
|
|
|
|
DPRINTF(iflib_get_dev(sc->ctx),
|
|
"encap: set up tx: nsegs=%d first=%d i=%d\n", nsegs, first, i);
|
|
/* XXX sc->pcix_82544 -- lem_fill_descriptors */
|
|
|
|
/* Set up our transmit descriptors */
|
|
for (j = 0; j < nsegs; j++) {
|
|
bus_size_t seg_len;
|
|
bus_addr_t seg_addr;
|
|
uint32_t cmd;
|
|
|
|
ctxd = &txr->tx_base[i];
|
|
seg_addr = segs[j].ds_addr;
|
|
seg_len = segs[j].ds_len;
|
|
cmd = E1000_TXD_CMD_IFCS | sc->txd_cmd;
|
|
|
|
/*
|
|
* TSO Workaround:
|
|
* If this is the last descriptor, we want to
|
|
* split it so we have a small final sentinel
|
|
*/
|
|
if (tso_desc && (j == (nsegs - 1)) && (seg_len > 8)) {
|
|
seg_len -= TSO_WORKAROUND;
|
|
ctxd->buffer_addr = htole64(seg_addr);
|
|
ctxd->lower.data = htole32(cmd | txd_lower | seg_len);
|
|
ctxd->upper.data = htole32(txd_upper);
|
|
|
|
if (++i == scctx->isc_ntxd[0])
|
|
i = 0;
|
|
|
|
/* Now make the sentinel */
|
|
ctxd = &txr->tx_base[i];
|
|
ctxd->buffer_addr = htole64(seg_addr + seg_len);
|
|
ctxd->lower.data = htole32(cmd | txd_lower | TSO_WORKAROUND);
|
|
ctxd->upper.data = htole32(txd_upper);
|
|
pidx_last = i;
|
|
if (++i == scctx->isc_ntxd[0])
|
|
i = 0;
|
|
DPRINTF(iflib_get_dev(sc->ctx),
|
|
"TSO path pidx_last=%d i=%d ntxd[0]=%d\n",
|
|
pidx_last, i, scctx->isc_ntxd[0]);
|
|
} else {
|
|
ctxd->buffer_addr = htole64(seg_addr);
|
|
ctxd->lower.data = htole32(cmd | txd_lower | seg_len);
|
|
ctxd->upper.data = htole32(txd_upper);
|
|
pidx_last = i;
|
|
if (++i == scctx->isc_ntxd[0])
|
|
i = 0;
|
|
DPRINTF(iflib_get_dev(sc->ctx), "pidx_last=%d i=%d ntxd[0]=%d\n",
|
|
pidx_last, i, scctx->isc_ntxd[0]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Last Descriptor of Packet
|
|
* needs End Of Packet (EOP)
|
|
* and Report Status (RS)
|
|
*/
|
|
if (txd_flags && nsegs) {
|
|
txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
|
|
DPRINTF(iflib_get_dev(sc->ctx),
|
|
"setting to RS on %d rs_pidx %d first: %d\n",
|
|
pidx_last, txr->tx_rs_pidx, first);
|
|
txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
|
|
MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
|
|
}
|
|
ctxd->lower.data |= htole32(E1000_TXD_CMD_EOP | txd_flags);
|
|
DPRINTF(iflib_get_dev(sc->ctx),
|
|
"tx_buffers[%d]->eop = %d ipi_new_pidx=%d\n", first, pidx_last, i);
|
|
pi->ipi_new_pidx = i;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
em_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
|
|
{
|
|
struct e1000_softc *sc = arg;
|
|
struct em_tx_queue *que = &sc->tx_queues[txqid];
|
|
struct tx_ring *txr = &que->txr;
|
|
|
|
E1000_WRITE_REG(&sc->hw, E1000_TDT(txr->me), pidx);
|
|
}
|
|
|
|
static int
|
|
em_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
|
|
{
|
|
struct e1000_softc *sc = arg;
|
|
if_softc_ctx_t scctx = sc->shared;
|
|
struct em_tx_queue *que = &sc->tx_queues[txqid];
|
|
struct tx_ring *txr = &que->txr;
|
|
|
|
qidx_t processed = 0;
|
|
int updated;
|
|
qidx_t cur, prev, ntxd, rs_cidx;
|
|
int32_t delta;
|
|
uint8_t status;
|
|
|
|
rs_cidx = txr->tx_rs_cidx;
|
|
if (rs_cidx == txr->tx_rs_pidx)
|
|
return (0);
|
|
cur = txr->tx_rsq[rs_cidx];
|
|
MPASS(cur != QIDX_INVALID);
|
|
status = txr->tx_base[cur].upper.fields.status;
|
|
updated = !!(status & E1000_TXD_STAT_DD);
|
|
|
|
if (!updated)
|
|
return (0);
|
|
|
|
/* If clear is false just let caller know that there
|
|
* are descriptors to reclaim */
|
|
if (!clear)
|
|
return (1);
|
|
|
|
prev = txr->tx_cidx_processed;
|
|
ntxd = scctx->isc_ntxd[0];
|
|
do {
|
|
MPASS(prev != cur);
|
|
delta = (int32_t)cur - (int32_t)prev;
|
|
if (delta < 0)
|
|
delta += ntxd;
|
|
MPASS(delta > 0);
|
|
DPRINTF(iflib_get_dev(sc->ctx),
|
|
"%s: cidx_processed=%u cur=%u clear=%d delta=%d\n",
|
|
__FUNCTION__, prev, cur, clear, delta);
|
|
|
|
processed += delta;
|
|
prev = cur;
|
|
rs_cidx = (rs_cidx + 1) & (ntxd-1);
|
|
if (rs_cidx == txr->tx_rs_pidx)
|
|
break;
|
|
cur = txr->tx_rsq[rs_cidx];
|
|
MPASS(cur != QIDX_INVALID);
|
|
status = txr->tx_base[cur].upper.fields.status;
|
|
} while ((status & E1000_TXD_STAT_DD));
|
|
|
|
txr->tx_rs_cidx = rs_cidx;
|
|
txr->tx_cidx_processed = prev;
|
|
return(processed);
|
|
}
|
|
|
|
static void
|
|
lem_isc_rxd_refill(void *arg, if_rxd_update_t iru)
|
|
{
|
|
struct e1000_softc *sc = arg;
|
|
if_softc_ctx_t scctx = sc->shared;
|
|
struct em_rx_queue *que = &sc->rx_queues[iru->iru_qsidx];
|
|
struct rx_ring *rxr = &que->rxr;
|
|
struct e1000_rx_desc *rxd;
|
|
uint64_t *paddrs;
|
|
uint32_t next_pidx, pidx;
|
|
uint16_t count;
|
|
int i;
|
|
|
|
paddrs = iru->iru_paddrs;
|
|
pidx = iru->iru_pidx;
|
|
count = iru->iru_count;
|
|
|
|
for (i = 0, next_pidx = pidx; i < count; i++) {
|
|
rxd = (struct e1000_rx_desc *)&rxr->rx_base[next_pidx];
|
|
rxd->buffer_addr = htole64(paddrs[i]);
|
|
/* status bits must be cleared */
|
|
rxd->status = 0;
|
|
|
|
if (++next_pidx == scctx->isc_nrxd[0])
|
|
next_pidx = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
em_isc_rxd_refill(void *arg, if_rxd_update_t iru)
|
|
{
|
|
struct e1000_softc *sc = arg;
|
|
if_softc_ctx_t scctx = sc->shared;
|
|
uint16_t rxqid = iru->iru_qsidx;
|
|
struct em_rx_queue *que = &sc->rx_queues[rxqid];
|
|
struct rx_ring *rxr = &que->rxr;
|
|
union e1000_rx_desc_extended *rxd;
|
|
uint64_t *paddrs;
|
|
uint32_t next_pidx, pidx;
|
|
uint16_t count;
|
|
int i;
|
|
|
|
paddrs = iru->iru_paddrs;
|
|
pidx = iru->iru_pidx;
|
|
count = iru->iru_count;
|
|
|
|
for (i = 0, next_pidx = pidx; i < count; i++) {
|
|
rxd = &rxr->rx_base[next_pidx];
|
|
rxd->read.buffer_addr = htole64(paddrs[i]);
|
|
/* DD bits must be cleared */
|
|
rxd->wb.upper.status_error = 0;
|
|
|
|
if (++next_pidx == scctx->isc_nrxd[0])
|
|
next_pidx = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
em_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused,
|
|
qidx_t pidx)
|
|
{
|
|
struct e1000_softc *sc = arg;
|
|
struct em_rx_queue *que = &sc->rx_queues[rxqid];
|
|
struct rx_ring *rxr = &que->rxr;
|
|
|
|
E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx);
|
|
}
|
|
|
|
static int
|
|
lem_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
|
|
{
|
|
struct e1000_softc *sc = arg;
|
|
if_softc_ctx_t scctx = sc->shared;
|
|
struct em_rx_queue *que = &sc->rx_queues[rxqid];
|
|
struct rx_ring *rxr = &que->rxr;
|
|
struct e1000_rx_desc *rxd;
|
|
uint32_t staterr = 0;
|
|
int cnt, i;
|
|
|
|
for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
|
|
rxd = (struct e1000_rx_desc *)&rxr->rx_base[i];
|
|
staterr = rxd->status;
|
|
|
|
if ((staterr & E1000_RXD_STAT_DD) == 0)
|
|
break;
|
|
if (++i == scctx->isc_nrxd[0])
|
|
i = 0;
|
|
if (staterr & E1000_RXD_STAT_EOP)
|
|
cnt++;
|
|
}
|
|
return (cnt);
|
|
}
|
|
|
|
static int
|
|
em_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
|
|
{
|
|
struct e1000_softc *sc = arg;
|
|
if_softc_ctx_t scctx = sc->shared;
|
|
struct em_rx_queue *que = &sc->rx_queues[rxqid];
|
|
struct rx_ring *rxr = &que->rxr;
|
|
union e1000_rx_desc_extended *rxd;
|
|
uint32_t staterr = 0;
|
|
int cnt, i;
|
|
|
|
for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
|
|
rxd = &rxr->rx_base[i];
|
|
staterr = le32toh(rxd->wb.upper.status_error);
|
|
|
|
if ((staterr & E1000_RXD_STAT_DD) == 0)
|
|
break;
|
|
if (++i == scctx->isc_nrxd[0])
|
|
i = 0;
|
|
if (staterr & E1000_RXD_STAT_EOP)
|
|
cnt++;
|
|
}
|
|
return (cnt);
|
|
}
|
|
|
|
static int
|
|
lem_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
|
|
{
|
|
struct e1000_softc *sc = arg;
|
|
if_softc_ctx_t scctx = sc->shared;
|
|
struct em_rx_queue *que = &sc->rx_queues[ri->iri_qsidx];
|
|
struct rx_ring *rxr = &que->rxr;
|
|
struct e1000_rx_desc *rxd;
|
|
uint16_t len;
|
|
uint32_t status, errors;
|
|
bool eop;
|
|
int i, cidx;
|
|
|
|
status = errors = i = 0;
|
|
cidx = ri->iri_cidx;
|
|
|
|
do {
|
|
rxd = (struct e1000_rx_desc *)&rxr->rx_base[cidx];
|
|
status = rxd->status;
|
|
errors = rxd->errors;
|
|
|
|
/* Error Checking then decrement count */
|
|
MPASS ((status & E1000_RXD_STAT_DD) != 0);
|
|
|
|
len = le16toh(rxd->length);
|
|
ri->iri_len += len;
|
|
|
|
eop = (status & E1000_RXD_STAT_EOP) != 0;
|
|
|
|
/* Make sure bad packets are discarded */
|
|
if (errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
|
|
sc->dropped_pkts++;
|
|
/* XXX fixup if common */
|
|
return (EBADMSG);
|
|
}
|
|
|
|
ri->iri_frags[i].irf_flid = 0;
|
|
ri->iri_frags[i].irf_idx = cidx;
|
|
ri->iri_frags[i].irf_len = len;
|
|
/* Zero out the receive descriptors status. */
|
|
rxd->status = 0;
|
|
|
|
if (++cidx == scctx->isc_nrxd[0])
|
|
cidx = 0;
|
|
i++;
|
|
} while (!eop);
|
|
|
|
if (scctx->isc_capenable & IFCAP_RXCSUM)
|
|
em_receive_checksum(status, errors, ri);
|
|
|
|
if (scctx->isc_capenable & IFCAP_VLAN_HWTAGGING &&
|
|
status & E1000_RXD_STAT_VP) {
|
|
ri->iri_vtag = le16toh(rxd->special & E1000_RXD_SPC_VLAN_MASK);
|
|
ri->iri_flags |= M_VLANTAG;
|
|
}
|
|
|
|
ri->iri_nfrags = i;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
em_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
|
|
{
|
|
struct e1000_softc *sc = arg;
|
|
if_softc_ctx_t scctx = sc->shared;
|
|
struct em_rx_queue *que = &sc->rx_queues[ri->iri_qsidx];
|
|
struct rx_ring *rxr = &que->rxr;
|
|
union e1000_rx_desc_extended *rxd;
|
|
|
|
uint16_t len;
|
|
uint32_t pkt_info;
|
|
uint32_t staterr;
|
|
bool eop;
|
|
int i, cidx;
|
|
|
|
staterr = i = 0;
|
|
cidx = ri->iri_cidx;
|
|
|
|
do {
|
|
rxd = &rxr->rx_base[cidx];
|
|
staterr = le32toh(rxd->wb.upper.status_error);
|
|
pkt_info = le32toh(rxd->wb.lower.mrq);
|
|
|
|
/* Error Checking then decrement count */
|
|
MPASS ((staterr & E1000_RXD_STAT_DD) != 0);
|
|
|
|
len = le16toh(rxd->wb.upper.length);
|
|
ri->iri_len += len;
|
|
|
|
eop = (staterr & E1000_RXD_STAT_EOP) != 0;
|
|
|
|
/* Make sure bad packets are discarded */
|
|
if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
|
|
sc->dropped_pkts++;
|
|
return EBADMSG;
|
|
}
|
|
|
|
ri->iri_frags[i].irf_flid = 0;
|
|
ri->iri_frags[i].irf_idx = cidx;
|
|
ri->iri_frags[i].irf_len = len;
|
|
/* Zero out the receive descriptors status. */
|
|
rxd->wb.upper.status_error &= htole32(~0xFF);
|
|
|
|
if (++cidx == scctx->isc_nrxd[0])
|
|
cidx = 0;
|
|
i++;
|
|
} while (!eop);
|
|
|
|
if (scctx->isc_capenable & IFCAP_RXCSUM)
|
|
em_receive_checksum(staterr, staterr >> 24, ri);
|
|
|
|
if (scctx->isc_capenable & IFCAP_VLAN_HWTAGGING &&
|
|
staterr & E1000_RXD_STAT_VP) {
|
|
ri->iri_vtag = le16toh(rxd->wb.upper.vlan);
|
|
ri->iri_flags |= M_VLANTAG;
|
|
}
|
|
|
|
ri->iri_flowid = le32toh(rxd->wb.lower.hi_dword.rss);
|
|
ri->iri_rsstype = em_determine_rsstype(pkt_info);
|
|
|
|
ri->iri_nfrags = i;
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Verify that the hardware indicated that the checksum is valid.
|
|
* Inform the stack about the status of checksum so that stack
|
|
* doesn't spend time verifying the checksum.
|
|
*
|
|
*********************************************************************/
|
|
static void
|
|
em_receive_checksum(uint16_t status, uint8_t errors, if_rxd_info_t ri)
|
|
{
|
|
if (__predict_false(status & E1000_RXD_STAT_IXSM))
|
|
return;
|
|
|
|
/* If there is a layer 3 or 4 error we are done */
|
|
if (__predict_false(errors & (E1000_RXD_ERR_IPE | E1000_RXD_ERR_TCPE)))
|
|
return;
|
|
|
|
/* IP Checksum Good */
|
|
if (status & E1000_RXD_STAT_IPCS)
|
|
ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
|
|
|
|
/* Valid L4E checksum */
|
|
if (__predict_true(status &
|
|
(E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) {
|
|
ri->iri_csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
ri->iri_csum_data = htons(0xffff);
|
|
}
|
|
}
|
|
|
|
/********************************************************************
|
|
*
|
|
* Parse the packet type to determine the appropriate hash
|
|
*
|
|
******************************************************************/
|
|
static int
|
|
em_determine_rsstype(uint32_t pkt_info)
|
|
{
|
|
switch (pkt_info & E1000_RXDADV_RSSTYPE_MASK) {
|
|
case E1000_RXDADV_RSSTYPE_IPV4_TCP:
|
|
return M_HASHTYPE_RSS_TCP_IPV4;
|
|
case E1000_RXDADV_RSSTYPE_IPV4:
|
|
return M_HASHTYPE_RSS_IPV4;
|
|
case E1000_RXDADV_RSSTYPE_IPV6_TCP:
|
|
return M_HASHTYPE_RSS_TCP_IPV6;
|
|
case E1000_RXDADV_RSSTYPE_IPV6_EX:
|
|
return M_HASHTYPE_RSS_IPV6_EX;
|
|
case E1000_RXDADV_RSSTYPE_IPV6:
|
|
return M_HASHTYPE_RSS_IPV6;
|
|
case E1000_RXDADV_RSSTYPE_IPV6_TCP_EX:
|
|
return M_HASHTYPE_RSS_TCP_IPV6_EX;
|
|
default:
|
|
return M_HASHTYPE_OPAQUE;
|
|
}
|
|
}
|