freebsd-dev/lib/libpthread/thread/thr_fork.c
Daniel Eischen 4fc937ef8f Change signal handling to conform to POSIX specified semantics.
Before this change, a signal was delivered to each thread that
didn't have the signal masked.  Signals also improperly woke up
threads waiting on I/O.  With this change, signals are now
handled in the following way:

  o If a thread is waiting in a sigwait for the signal,
    then the thread is woken up.

  o If no threads are sigwait'ing on the signal and a
    thread is in a sigsuspend waiting for the signal,
    then the thread is woken up.

  o In the case that no threads are waiting or suspended
    on the signal, then the signal is delivered to the
    first thread we find that has the signal unmasked.

  o If no threads are waiting or suspended on the signal,
    and no threads have the signal unmasked, then the signal
    is added to the process wide pending signal set.  The
    signal will be delivered to the first thread that unmasks
    the signal.

If there is an installed signal handler, it is only invoked
if the chosen thread was not in a sigwait.

In the case that multiple threads are waiting or suspended
on a signal, or multiple threads have the signal unmasked,
we wake up/deliver the signal to the first thread we find.
The above rules still apply.

Reported by:	Scott Hess <scott@avantgo.com>
Reviewed by:	jb, jasone
1999-12-04 22:55:59 +00:00

224 lines
6.9 KiB
C

/*
* Copyright (c) 1995-1998 John Birrell <jb@cimlogic.com.au>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by John Birrell.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY JOHN BIRRELL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#ifdef _THREAD_SAFE
#include <pthread.h>
#include "pthread_private.h"
pid_t
fork(void)
{
int i, flags;
pid_t ret;
pthread_t pthread;
pthread_t pthread_save;
/*
* Defer signals to protect the scheduling queues from access
* by the signal handler:
*/
_thread_kern_sig_defer();
/* Fork a new process: */
if ((ret = _thread_sys_fork()) != 0) {
/* Parent process or error. Nothing to do here. */
} else {
/* Close the pthread kernel pipe: */
_thread_sys_close(_thread_kern_pipe[0]);
_thread_sys_close(_thread_kern_pipe[1]);
/* Reset signals pending for the running thread: */
sigemptyset(&_thread_run->sigpend);
/*
* Create a pipe that is written to by the signal handler to
* prevent signals being missed in calls to
* _thread_sys_select:
*/
if (_thread_sys_pipe(_thread_kern_pipe) != 0) {
/* Cannot create pipe, so abort: */
PANIC("Cannot create pthread kernel pipe for forked process");
}
/* Get the flags for the read pipe: */
else if ((flags = _thread_sys_fcntl(_thread_kern_pipe[0], F_GETFL, NULL)) == -1) {
/* Abort this application: */
abort();
}
/* Make the read pipe non-blocking: */
else if (_thread_sys_fcntl(_thread_kern_pipe[0], F_SETFL, flags | O_NONBLOCK) == -1) {
/* Abort this application: */
abort();
}
/* Get the flags for the write pipe: */
else if ((flags = _thread_sys_fcntl(_thread_kern_pipe[1], F_GETFL, NULL)) == -1) {
/* Abort this application: */
abort();
}
/* Make the write pipe non-blocking: */
else if (_thread_sys_fcntl(_thread_kern_pipe[1], F_SETFL, flags | O_NONBLOCK) == -1) {
/* Abort this application: */
abort();
}
/* Reinitialize the GC mutex: */
else if (_mutex_reinit(&_gc_mutex) != 0) {
/* Abort this application: */
PANIC("Cannot initialize GC mutex for forked process");
}
/* Reinitialize the GC condition variable: */
else if (_cond_reinit(&_gc_cond) != 0) {
/* Abort this application: */
PANIC("Cannot initialize GC condvar for forked process");
}
/* Initialize the ready queue: */
else if (_pq_init(&_readyq) != 0) {
/* Abort this application: */
PANIC("Cannot initialize priority ready queue.");
} else {
/*
* Enter a loop to remove all threads other than
* the running thread from the thread list:
*/
pthread = TAILQ_FIRST(&_thread_list);
while (pthread != NULL) {
/* Save the thread to be freed: */
pthread_save = pthread;
/*
* Advance to the next thread before
* destroying the current thread:
*/
pthread = TAILQ_NEXT(pthread, dle);
/* Make sure this isn't the running thread: */
if (pthread_save != _thread_run) {
/* Remove this thread from the list: */
TAILQ_REMOVE(&_thread_list,
pthread_save, tle);
if (pthread_save->attr.stackaddr_attr ==
NULL && pthread_save->stack != NULL)
if (pthread_save->attr.stacksize_attr
== PTHREAD_STACK_DEFAULT) {
/*
* Default-size stack. Cache
* it:
*/
struct stack *spare_stack;
spare_stack
= (pthread_save->stack
+ PTHREAD_STACK_DEFAULT
- sizeof(struct stack));
SLIST_INSERT_HEAD(
&_stackq,
spare_stack,
qe);
} else
/*
* Free the stack of
* the dead thread:
*/
free(pthread_save->stack);
if (pthread_save->specific_data != NULL)
free(pthread_save->specific_data);
if (pthread_save->poll_data.fds != NULL)
free(pthread_save->poll_data.fds);
free(pthread_save);
}
}
/* Treat the current thread as the initial thread: */
_thread_initial = _thread_run;
/* Re-init the dead thread list: */
TAILQ_INIT(&_dead_list);
/* Re-init the waiting and work queues. */
TAILQ_INIT(&_waitingq);
TAILQ_INIT(&_workq);
/* Re-init the threads mutex queue: */
TAILQ_INIT(&_thread_run->mutexq);
/* No spinlocks yet: */
_spinblock_count = 0;
/* Don't queue signals yet: */
_queue_signals = 0;
/* Initialize signal handling: */
_thread_sig_init();
/* Initialize the scheduling switch hook routine: */
_sched_switch_hook = NULL;
/* Clear out any locks in the file descriptor table: */
for (i = 0; i < _thread_dtablesize; i++) {
if (_thread_fd_table[i] != NULL) {
/* Initialise the file locks: */
memset(&_thread_fd_table[i]->lock, 0,
sizeof(_thread_fd_table[i]->lock));
_thread_fd_table[i]->r_owner = NULL;
_thread_fd_table[i]->w_owner = NULL;
_thread_fd_table[i]->r_fname = NULL;
_thread_fd_table[i]->w_fname = NULL;
_thread_fd_table[i]->r_lineno = 0;;
_thread_fd_table[i]->w_lineno = 0;;
_thread_fd_table[i]->r_lockcount = 0;;
_thread_fd_table[i]->w_lockcount = 0;;
/* Initialise the read/write queues: */
TAILQ_INIT(&_thread_fd_table[i]->r_queue);
TAILQ_INIT(&_thread_fd_table[i]->w_queue);
}
}
}
}
/*
* Undefer and handle pending signals, yielding if necessary:
*/
_thread_kern_sig_undefer();
/* Return the process ID: */
return (ret);
}
#endif