5760b029ee
setclock() and from simultaneous top-level and interrupt. For this, tc_windup() is protected with a tc_setclock_mtx spinlock, in the try mode when called from hardclock interrupt. If spinlock cannot be obtained without spinning from the interrupt context, this means that top-level executes tc_windup() on other core and our try may be avoided. The boottimebin and boottime variables should be adjusted from tc_windup(). To be correct, they must be part of the timehands and read using lockless protocol. Remove the globals and reimplement the getboottime(9)/getboottimebin(9) KPI using the timehands read protocol. Tested by: pho (as part of the whole patch) Reviewed by: jhb (same) Discussed wit: bde Sponsored by: The FreeBSD Foundation MFC after: 1 month X-Differential revision: https://reviews.freebsd.org/D7302
934 lines
23 KiB
C
934 lines
23 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_kdb.h"
|
|
#include "opt_device_polling.h"
|
|
#include "opt_hwpmc_hooks.h"
|
|
#include "opt_ntp.h"
|
|
#include "opt_watchdog.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sdt.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/sleepqueue.h>
|
|
#include <sys/smp.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_map.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/interrupt.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/timetc.h>
|
|
|
|
#ifdef GPROF
|
|
#include <sys/gmon.h>
|
|
#endif
|
|
|
|
#ifdef HWPMC_HOOKS
|
|
#include <sys/pmckern.h>
|
|
PMC_SOFT_DEFINE( , , clock, hard);
|
|
PMC_SOFT_DEFINE( , , clock, stat);
|
|
PMC_SOFT_DEFINE_EX( , , clock, prof, \
|
|
cpu_startprofclock, cpu_stopprofclock);
|
|
#endif
|
|
|
|
#ifdef DEVICE_POLLING
|
|
extern void hardclock_device_poll(void);
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
static void initclocks(void *dummy);
|
|
SYSINIT(clocks, SI_SUB_CLOCKS, SI_ORDER_FIRST, initclocks, NULL);
|
|
|
|
/* Spin-lock protecting profiling statistics. */
|
|
static struct mtx time_lock;
|
|
|
|
SDT_PROVIDER_DECLARE(sched);
|
|
SDT_PROBE_DEFINE2(sched, , , tick, "struct thread *", "struct proc *");
|
|
|
|
static int
|
|
sysctl_kern_cp_time(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
long cp_time[CPUSTATES];
|
|
#ifdef SCTL_MASK32
|
|
int i;
|
|
unsigned int cp_time32[CPUSTATES];
|
|
#endif
|
|
|
|
read_cpu_time(cp_time);
|
|
#ifdef SCTL_MASK32
|
|
if (req->flags & SCTL_MASK32) {
|
|
if (!req->oldptr)
|
|
return SYSCTL_OUT(req, 0, sizeof(cp_time32));
|
|
for (i = 0; i < CPUSTATES; i++)
|
|
cp_time32[i] = (unsigned int)cp_time[i];
|
|
error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
|
|
} else
|
|
#endif
|
|
{
|
|
if (!req->oldptr)
|
|
return SYSCTL_OUT(req, 0, sizeof(cp_time));
|
|
error = SYSCTL_OUT(req, cp_time, sizeof(cp_time));
|
|
}
|
|
return error;
|
|
}
|
|
|
|
SYSCTL_PROC(_kern, OID_AUTO, cp_time, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
|
|
0,0, sysctl_kern_cp_time, "LU", "CPU time statistics");
|
|
|
|
static long empty[CPUSTATES];
|
|
|
|
static int
|
|
sysctl_kern_cp_times(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct pcpu *pcpu;
|
|
int error;
|
|
int c;
|
|
long *cp_time;
|
|
#ifdef SCTL_MASK32
|
|
unsigned int cp_time32[CPUSTATES];
|
|
int i;
|
|
#endif
|
|
|
|
if (!req->oldptr) {
|
|
#ifdef SCTL_MASK32
|
|
if (req->flags & SCTL_MASK32)
|
|
return SYSCTL_OUT(req, 0, sizeof(cp_time32) * (mp_maxid + 1));
|
|
else
|
|
#endif
|
|
return SYSCTL_OUT(req, 0, sizeof(long) * CPUSTATES * (mp_maxid + 1));
|
|
}
|
|
for (error = 0, c = 0; error == 0 && c <= mp_maxid; c++) {
|
|
if (!CPU_ABSENT(c)) {
|
|
pcpu = pcpu_find(c);
|
|
cp_time = pcpu->pc_cp_time;
|
|
} else {
|
|
cp_time = empty;
|
|
}
|
|
#ifdef SCTL_MASK32
|
|
if (req->flags & SCTL_MASK32) {
|
|
for (i = 0; i < CPUSTATES; i++)
|
|
cp_time32[i] = (unsigned int)cp_time[i];
|
|
error = SYSCTL_OUT(req, cp_time32, sizeof(cp_time32));
|
|
} else
|
|
#endif
|
|
error = SYSCTL_OUT(req, cp_time, sizeof(long) * CPUSTATES);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
SYSCTL_PROC(_kern, OID_AUTO, cp_times, CTLTYPE_LONG|CTLFLAG_RD|CTLFLAG_MPSAFE,
|
|
0,0, sysctl_kern_cp_times, "LU", "per-CPU time statistics");
|
|
|
|
#ifdef DEADLKRES
|
|
static const char *blessed[] = {
|
|
"getblk",
|
|
"so_snd_sx",
|
|
"so_rcv_sx",
|
|
NULL
|
|
};
|
|
static int slptime_threshold = 1800;
|
|
static int blktime_threshold = 900;
|
|
static int sleepfreq = 3;
|
|
|
|
static void
|
|
deadlkres(void)
|
|
{
|
|
struct proc *p;
|
|
struct thread *td;
|
|
void *wchan;
|
|
int blkticks, i, slpticks, slptype, tryl, tticks;
|
|
|
|
tryl = 0;
|
|
for (;;) {
|
|
blkticks = blktime_threshold * hz;
|
|
slpticks = slptime_threshold * hz;
|
|
|
|
/*
|
|
* Avoid to sleep on the sx_lock in order to avoid a possible
|
|
* priority inversion problem leading to starvation.
|
|
* If the lock can't be held after 100 tries, panic.
|
|
*/
|
|
if (!sx_try_slock(&allproc_lock)) {
|
|
if (tryl > 100)
|
|
panic("%s: possible deadlock detected on allproc_lock\n",
|
|
__func__);
|
|
tryl++;
|
|
pause("allproc", sleepfreq * hz);
|
|
continue;
|
|
}
|
|
tryl = 0;
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NEW) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
|
|
thread_lock(td);
|
|
if (TD_ON_LOCK(td)) {
|
|
|
|
/*
|
|
* The thread should be blocked on a
|
|
* turnstile, simply check if the
|
|
* turnstile channel is in good state.
|
|
*/
|
|
MPASS(td->td_blocked != NULL);
|
|
|
|
tticks = ticks - td->td_blktick;
|
|
thread_unlock(td);
|
|
if (tticks > blkticks) {
|
|
|
|
/*
|
|
* Accordingly with provided
|
|
* thresholds, this thread is
|
|
* stuck for too long on a
|
|
* turnstile.
|
|
*/
|
|
PROC_UNLOCK(p);
|
|
sx_sunlock(&allproc_lock);
|
|
panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
|
|
__func__, td, tticks);
|
|
}
|
|
} else if (TD_IS_SLEEPING(td) &&
|
|
TD_ON_SLEEPQ(td)) {
|
|
|
|
/*
|
|
* Check if the thread is sleeping on a
|
|
* lock, otherwise skip the check.
|
|
* Drop the thread lock in order to
|
|
* avoid a LOR with the sleepqueue
|
|
* spinlock.
|
|
*/
|
|
wchan = td->td_wchan;
|
|
tticks = ticks - td->td_slptick;
|
|
thread_unlock(td);
|
|
slptype = sleepq_type(wchan);
|
|
if ((slptype == SLEEPQ_SX ||
|
|
slptype == SLEEPQ_LK) &&
|
|
tticks > slpticks) {
|
|
|
|
/*
|
|
* Accordingly with provided
|
|
* thresholds, this thread is
|
|
* stuck for too long on a
|
|
* sleepqueue.
|
|
* However, being on a
|
|
* sleepqueue, we might still
|
|
* check for the blessed
|
|
* list.
|
|
*/
|
|
tryl = 0;
|
|
for (i = 0; blessed[i] != NULL;
|
|
i++) {
|
|
if (!strcmp(blessed[i],
|
|
td->td_wmesg)) {
|
|
tryl = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (tryl != 0) {
|
|
tryl = 0;
|
|
continue;
|
|
}
|
|
PROC_UNLOCK(p);
|
|
sx_sunlock(&allproc_lock);
|
|
panic("%s: possible deadlock detected for %p, blocked for %d ticks\n",
|
|
__func__, td, tticks);
|
|
}
|
|
} else
|
|
thread_unlock(td);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
|
|
/* Sleep for sleepfreq seconds. */
|
|
pause("-", sleepfreq * hz);
|
|
}
|
|
}
|
|
|
|
static struct kthread_desc deadlkres_kd = {
|
|
"deadlkres",
|
|
deadlkres,
|
|
(struct thread **)NULL
|
|
};
|
|
|
|
SYSINIT(deadlkres, SI_SUB_CLOCKS, SI_ORDER_ANY, kthread_start, &deadlkres_kd);
|
|
|
|
static SYSCTL_NODE(_debug, OID_AUTO, deadlkres, CTLFLAG_RW, 0,
|
|
"Deadlock resolver");
|
|
SYSCTL_INT(_debug_deadlkres, OID_AUTO, slptime_threshold, CTLFLAG_RW,
|
|
&slptime_threshold, 0,
|
|
"Number of seconds within is valid to sleep on a sleepqueue");
|
|
SYSCTL_INT(_debug_deadlkres, OID_AUTO, blktime_threshold, CTLFLAG_RW,
|
|
&blktime_threshold, 0,
|
|
"Number of seconds within is valid to block on a turnstile");
|
|
SYSCTL_INT(_debug_deadlkres, OID_AUTO, sleepfreq, CTLFLAG_RW, &sleepfreq, 0,
|
|
"Number of seconds between any deadlock resolver thread run");
|
|
#endif /* DEADLKRES */
|
|
|
|
void
|
|
read_cpu_time(long *cp_time)
|
|
{
|
|
struct pcpu *pc;
|
|
int i, j;
|
|
|
|
/* Sum up global cp_time[]. */
|
|
bzero(cp_time, sizeof(long) * CPUSTATES);
|
|
CPU_FOREACH(i) {
|
|
pc = pcpu_find(i);
|
|
for (j = 0; j < CPUSTATES; j++)
|
|
cp_time[j] += pc->pc_cp_time[j];
|
|
}
|
|
}
|
|
|
|
#ifdef SW_WATCHDOG
|
|
#include <sys/watchdog.h>
|
|
|
|
static int watchdog_ticks;
|
|
static int watchdog_enabled;
|
|
static void watchdog_fire(void);
|
|
static void watchdog_config(void *, u_int, int *);
|
|
#endif /* SW_WATCHDOG */
|
|
|
|
/*
|
|
* Clock handling routines.
|
|
*
|
|
* This code is written to operate with two timers that run independently of
|
|
* each other.
|
|
*
|
|
* The main timer, running hz times per second, is used to trigger interval
|
|
* timers, timeouts and rescheduling as needed.
|
|
*
|
|
* The second timer handles kernel and user profiling,
|
|
* and does resource use estimation. If the second timer is programmable,
|
|
* it is randomized to avoid aliasing between the two clocks. For example,
|
|
* the randomization prevents an adversary from always giving up the cpu
|
|
* just before its quantum expires. Otherwise, it would never accumulate
|
|
* cpu ticks. The mean frequency of the second timer is stathz.
|
|
*
|
|
* If no second timer exists, stathz will be zero; in this case we drive
|
|
* profiling and statistics off the main clock. This WILL NOT be accurate;
|
|
* do not do it unless absolutely necessary.
|
|
*
|
|
* The statistics clock may (or may not) be run at a higher rate while
|
|
* profiling. This profile clock runs at profhz. We require that profhz
|
|
* be an integral multiple of stathz.
|
|
*
|
|
* If the statistics clock is running fast, it must be divided by the ratio
|
|
* profhz/stathz for statistics. (For profiling, every tick counts.)
|
|
*
|
|
* Time-of-day is maintained using a "timecounter", which may or may
|
|
* not be related to the hardware generating the above mentioned
|
|
* interrupts.
|
|
*/
|
|
|
|
int stathz;
|
|
int profhz;
|
|
int profprocs;
|
|
volatile int ticks;
|
|
int psratio;
|
|
|
|
static DPCPU_DEFINE(int, pcputicks); /* Per-CPU version of ticks. */
|
|
#ifdef DEVICE_POLLING
|
|
static int devpoll_run = 0;
|
|
#endif
|
|
|
|
/*
|
|
* Initialize clock frequencies and start both clocks running.
|
|
*/
|
|
/* ARGSUSED*/
|
|
static void
|
|
initclocks(dummy)
|
|
void *dummy;
|
|
{
|
|
#ifdef EARLY_AP_STARTUP
|
|
struct proc *p;
|
|
struct thread *td;
|
|
#endif
|
|
register int i;
|
|
|
|
/*
|
|
* Set divisors to 1 (normal case) and let the machine-specific
|
|
* code do its bit.
|
|
*/
|
|
mtx_init(&time_lock, "time lock", NULL, MTX_DEF);
|
|
cpu_initclocks();
|
|
|
|
/*
|
|
* Compute profhz/stathz, and fix profhz if needed.
|
|
*/
|
|
i = stathz ? stathz : hz;
|
|
if (profhz == 0)
|
|
profhz = i;
|
|
psratio = profhz / i;
|
|
#ifdef SW_WATCHDOG
|
|
EVENTHANDLER_REGISTER(watchdog_list, watchdog_config, NULL, 0);
|
|
#endif
|
|
/*
|
|
* Arrange for ticks to wrap 10 minutes after boot to help catch
|
|
* sign problems sooner.
|
|
*/
|
|
ticks = INT_MAX - (hz * 10 * 60);
|
|
|
|
#ifdef EARLY_AP_STARTUP
|
|
/*
|
|
* Fixup the tick counts in any blocked or sleeping threads to
|
|
* account for the jump above.
|
|
*/
|
|
sx_slock(&allproc_lock);
|
|
FOREACH_PROC_IN_SYSTEM(p) {
|
|
PROC_LOCK(p);
|
|
if (p->p_state == PRS_NEW) {
|
|
PROC_UNLOCK(p);
|
|
continue;
|
|
}
|
|
FOREACH_THREAD_IN_PROC(p, td) {
|
|
thread_lock(td);
|
|
if (TD_ON_LOCK(td)) {
|
|
MPASS(td->td_blktick == 0);
|
|
td->td_blktick = ticks;
|
|
}
|
|
if (TD_ON_SLEEPQ(td)) {
|
|
MPASS(td->td_slptick == 0);
|
|
td->td_slptick = ticks;
|
|
}
|
|
thread_unlock(td);
|
|
}
|
|
PROC_UNLOCK(p);
|
|
}
|
|
sx_sunlock(&allproc_lock);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Each time the real-time timer fires, this function is called on all CPUs.
|
|
* Note that hardclock() calls hardclock_cpu() for the boot CPU, so only
|
|
* the other CPUs in the system need to call this function.
|
|
*/
|
|
void
|
|
hardclock_cpu(int usermode)
|
|
{
|
|
struct pstats *pstats;
|
|
struct thread *td = curthread;
|
|
struct proc *p = td->td_proc;
|
|
int flags;
|
|
|
|
/*
|
|
* Run current process's virtual and profile time, as needed.
|
|
*/
|
|
pstats = p->p_stats;
|
|
flags = 0;
|
|
if (usermode &&
|
|
timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
|
|
PROC_ITIMLOCK(p);
|
|
if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
|
|
flags |= TDF_ALRMPEND | TDF_ASTPENDING;
|
|
PROC_ITIMUNLOCK(p);
|
|
}
|
|
if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
|
|
PROC_ITIMLOCK(p);
|
|
if (itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
|
|
flags |= TDF_PROFPEND | TDF_ASTPENDING;
|
|
PROC_ITIMUNLOCK(p);
|
|
}
|
|
thread_lock(td);
|
|
td->td_flags |= flags;
|
|
thread_unlock(td);
|
|
|
|
#ifdef HWPMC_HOOKS
|
|
if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
|
|
PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
|
|
if (td->td_intr_frame != NULL)
|
|
PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
|
|
#endif
|
|
callout_process(sbinuptime());
|
|
}
|
|
|
|
/*
|
|
* The real-time timer, interrupting hz times per second.
|
|
*/
|
|
void
|
|
hardclock(int usermode, uintfptr_t pc)
|
|
{
|
|
|
|
atomic_add_int(&ticks, 1);
|
|
hardclock_cpu(usermode);
|
|
tc_ticktock(1);
|
|
cpu_tick_calibration();
|
|
/*
|
|
* If no separate statistics clock is available, run it from here.
|
|
*
|
|
* XXX: this only works for UP
|
|
*/
|
|
if (stathz == 0) {
|
|
profclock(usermode, pc);
|
|
statclock(usermode);
|
|
}
|
|
#ifdef DEVICE_POLLING
|
|
hardclock_device_poll(); /* this is very short and quick */
|
|
#endif /* DEVICE_POLLING */
|
|
#ifdef SW_WATCHDOG
|
|
if (watchdog_enabled > 0 && --watchdog_ticks <= 0)
|
|
watchdog_fire();
|
|
#endif /* SW_WATCHDOG */
|
|
}
|
|
|
|
void
|
|
hardclock_cnt(int cnt, int usermode)
|
|
{
|
|
struct pstats *pstats;
|
|
struct thread *td = curthread;
|
|
struct proc *p = td->td_proc;
|
|
int *t = DPCPU_PTR(pcputicks);
|
|
int flags, global, newticks;
|
|
#ifdef SW_WATCHDOG
|
|
int i;
|
|
#endif /* SW_WATCHDOG */
|
|
|
|
/*
|
|
* Update per-CPU and possibly global ticks values.
|
|
*/
|
|
*t += cnt;
|
|
do {
|
|
global = ticks;
|
|
newticks = *t - global;
|
|
if (newticks <= 0) {
|
|
if (newticks < -1)
|
|
*t = global - 1;
|
|
newticks = 0;
|
|
break;
|
|
}
|
|
} while (!atomic_cmpset_int(&ticks, global, *t));
|
|
|
|
/*
|
|
* Run current process's virtual and profile time, as needed.
|
|
*/
|
|
pstats = p->p_stats;
|
|
flags = 0;
|
|
if (usermode &&
|
|
timevalisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value)) {
|
|
PROC_ITIMLOCK(p);
|
|
if (itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL],
|
|
tick * cnt) == 0)
|
|
flags |= TDF_ALRMPEND | TDF_ASTPENDING;
|
|
PROC_ITIMUNLOCK(p);
|
|
}
|
|
if (timevalisset(&pstats->p_timer[ITIMER_PROF].it_value)) {
|
|
PROC_ITIMLOCK(p);
|
|
if (itimerdecr(&pstats->p_timer[ITIMER_PROF],
|
|
tick * cnt) == 0)
|
|
flags |= TDF_PROFPEND | TDF_ASTPENDING;
|
|
PROC_ITIMUNLOCK(p);
|
|
}
|
|
if (flags != 0) {
|
|
thread_lock(td);
|
|
td->td_flags |= flags;
|
|
thread_unlock(td);
|
|
}
|
|
|
|
#ifdef HWPMC_HOOKS
|
|
if (PMC_CPU_HAS_SAMPLES(PCPU_GET(cpuid)))
|
|
PMC_CALL_HOOK_UNLOCKED(curthread, PMC_FN_DO_SAMPLES, NULL);
|
|
if (td->td_intr_frame != NULL)
|
|
PMC_SOFT_CALL_TF( , , clock, hard, td->td_intr_frame);
|
|
#endif
|
|
/* We are in charge to handle this tick duty. */
|
|
if (newticks > 0) {
|
|
tc_ticktock(newticks);
|
|
#ifdef DEVICE_POLLING
|
|
/* Dangerous and no need to call these things concurrently. */
|
|
if (atomic_cmpset_acq_int(&devpoll_run, 0, 1)) {
|
|
/* This is very short and quick. */
|
|
hardclock_device_poll();
|
|
atomic_store_rel_int(&devpoll_run, 0);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
#ifdef SW_WATCHDOG
|
|
if (watchdog_enabled > 0) {
|
|
i = atomic_fetchadd_int(&watchdog_ticks, -newticks);
|
|
if (i > 0 && i <= newticks)
|
|
watchdog_fire();
|
|
}
|
|
#endif /* SW_WATCHDOG */
|
|
}
|
|
if (curcpu == CPU_FIRST())
|
|
cpu_tick_calibration();
|
|
}
|
|
|
|
void
|
|
hardclock_sync(int cpu)
|
|
{
|
|
int *t = DPCPU_ID_PTR(cpu, pcputicks);
|
|
|
|
*t = ticks;
|
|
}
|
|
|
|
/*
|
|
* Compute number of ticks in the specified amount of time.
|
|
*/
|
|
int
|
|
tvtohz(tv)
|
|
struct timeval *tv;
|
|
{
|
|
register unsigned long ticks;
|
|
register long sec, usec;
|
|
|
|
/*
|
|
* If the number of usecs in the whole seconds part of the time
|
|
* difference fits in a long, then the total number of usecs will
|
|
* fit in an unsigned long. Compute the total and convert it to
|
|
* ticks, rounding up and adding 1 to allow for the current tick
|
|
* to expire. Rounding also depends on unsigned long arithmetic
|
|
* to avoid overflow.
|
|
*
|
|
* Otherwise, if the number of ticks in the whole seconds part of
|
|
* the time difference fits in a long, then convert the parts to
|
|
* ticks separately and add, using similar rounding methods and
|
|
* overflow avoidance. This method would work in the previous
|
|
* case but it is slightly slower and assumes that hz is integral.
|
|
*
|
|
* Otherwise, round the time difference down to the maximum
|
|
* representable value.
|
|
*
|
|
* If ints have 32 bits, then the maximum value for any timeout in
|
|
* 10ms ticks is 248 days.
|
|
*/
|
|
sec = tv->tv_sec;
|
|
usec = tv->tv_usec;
|
|
if (usec < 0) {
|
|
sec--;
|
|
usec += 1000000;
|
|
}
|
|
if (sec < 0) {
|
|
#ifdef DIAGNOSTIC
|
|
if (usec > 0) {
|
|
sec++;
|
|
usec -= 1000000;
|
|
}
|
|
printf("tvotohz: negative time difference %ld sec %ld usec\n",
|
|
sec, usec);
|
|
#endif
|
|
ticks = 1;
|
|
} else if (sec <= LONG_MAX / 1000000)
|
|
ticks = howmany(sec * 1000000 + (unsigned long)usec, tick) + 1;
|
|
else if (sec <= LONG_MAX / hz)
|
|
ticks = sec * hz
|
|
+ howmany((unsigned long)usec, tick) + 1;
|
|
else
|
|
ticks = LONG_MAX;
|
|
if (ticks > INT_MAX)
|
|
ticks = INT_MAX;
|
|
return ((int)ticks);
|
|
}
|
|
|
|
/*
|
|
* Start profiling on a process.
|
|
*
|
|
* Kernel profiling passes proc0 which never exits and hence
|
|
* keeps the profile clock running constantly.
|
|
*/
|
|
void
|
|
startprofclock(p)
|
|
register struct proc *p;
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
if (p->p_flag & P_STOPPROF)
|
|
return;
|
|
if ((p->p_flag & P_PROFIL) == 0) {
|
|
p->p_flag |= P_PROFIL;
|
|
mtx_lock(&time_lock);
|
|
if (++profprocs == 1)
|
|
cpu_startprofclock();
|
|
mtx_unlock(&time_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop profiling on a process.
|
|
*/
|
|
void
|
|
stopprofclock(p)
|
|
register struct proc *p;
|
|
{
|
|
|
|
PROC_LOCK_ASSERT(p, MA_OWNED);
|
|
if (p->p_flag & P_PROFIL) {
|
|
if (p->p_profthreads != 0) {
|
|
while (p->p_profthreads != 0) {
|
|
p->p_flag |= P_STOPPROF;
|
|
msleep(&p->p_profthreads, &p->p_mtx, PPAUSE,
|
|
"stopprof", 0);
|
|
}
|
|
}
|
|
if ((p->p_flag & P_PROFIL) == 0)
|
|
return;
|
|
p->p_flag &= ~P_PROFIL;
|
|
mtx_lock(&time_lock);
|
|
if (--profprocs == 0)
|
|
cpu_stopprofclock();
|
|
mtx_unlock(&time_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Statistics clock. Updates rusage information and calls the scheduler
|
|
* to adjust priorities of the active thread.
|
|
*
|
|
* This should be called by all active processors.
|
|
*/
|
|
void
|
|
statclock(int usermode)
|
|
{
|
|
|
|
statclock_cnt(1, usermode);
|
|
}
|
|
|
|
void
|
|
statclock_cnt(int cnt, int usermode)
|
|
{
|
|
struct rusage *ru;
|
|
struct vmspace *vm;
|
|
struct thread *td;
|
|
struct proc *p;
|
|
long rss;
|
|
long *cp_time;
|
|
|
|
td = curthread;
|
|
p = td->td_proc;
|
|
|
|
cp_time = (long *)PCPU_PTR(cp_time);
|
|
if (usermode) {
|
|
/*
|
|
* Charge the time as appropriate.
|
|
*/
|
|
td->td_uticks += cnt;
|
|
if (p->p_nice > NZERO)
|
|
cp_time[CP_NICE] += cnt;
|
|
else
|
|
cp_time[CP_USER] += cnt;
|
|
} else {
|
|
/*
|
|
* Came from kernel mode, so we were:
|
|
* - handling an interrupt,
|
|
* - doing syscall or trap work on behalf of the current
|
|
* user process, or
|
|
* - spinning in the idle loop.
|
|
* Whichever it is, charge the time as appropriate.
|
|
* Note that we charge interrupts to the current process,
|
|
* regardless of whether they are ``for'' that process,
|
|
* so that we know how much of its real time was spent
|
|
* in ``non-process'' (i.e., interrupt) work.
|
|
*/
|
|
if ((td->td_pflags & TDP_ITHREAD) ||
|
|
td->td_intr_nesting_level >= 2) {
|
|
td->td_iticks += cnt;
|
|
cp_time[CP_INTR] += cnt;
|
|
} else {
|
|
td->td_pticks += cnt;
|
|
td->td_sticks += cnt;
|
|
if (!TD_IS_IDLETHREAD(td))
|
|
cp_time[CP_SYS] += cnt;
|
|
else
|
|
cp_time[CP_IDLE] += cnt;
|
|
}
|
|
}
|
|
|
|
/* Update resource usage integrals and maximums. */
|
|
MPASS(p->p_vmspace != NULL);
|
|
vm = p->p_vmspace;
|
|
ru = &td->td_ru;
|
|
ru->ru_ixrss += pgtok(vm->vm_tsize) * cnt;
|
|
ru->ru_idrss += pgtok(vm->vm_dsize) * cnt;
|
|
ru->ru_isrss += pgtok(vm->vm_ssize) * cnt;
|
|
rss = pgtok(vmspace_resident_count(vm));
|
|
if (ru->ru_maxrss < rss)
|
|
ru->ru_maxrss = rss;
|
|
KTR_POINT2(KTR_SCHED, "thread", sched_tdname(td), "statclock",
|
|
"prio:%d", td->td_priority, "stathz:%d", (stathz)?stathz:hz);
|
|
SDT_PROBE2(sched, , , tick, td, td->td_proc);
|
|
thread_lock_flags(td, MTX_QUIET);
|
|
for ( ; cnt > 0; cnt--)
|
|
sched_clock(td);
|
|
thread_unlock(td);
|
|
#ifdef HWPMC_HOOKS
|
|
if (td->td_intr_frame != NULL)
|
|
PMC_SOFT_CALL_TF( , , clock, stat, td->td_intr_frame);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
profclock(int usermode, uintfptr_t pc)
|
|
{
|
|
|
|
profclock_cnt(1, usermode, pc);
|
|
}
|
|
|
|
void
|
|
profclock_cnt(int cnt, int usermode, uintfptr_t pc)
|
|
{
|
|
struct thread *td;
|
|
#ifdef GPROF
|
|
struct gmonparam *g;
|
|
uintfptr_t i;
|
|
#endif
|
|
|
|
td = curthread;
|
|
if (usermode) {
|
|
/*
|
|
* Came from user mode; CPU was in user state.
|
|
* If this process is being profiled, record the tick.
|
|
* if there is no related user location yet, don't
|
|
* bother trying to count it.
|
|
*/
|
|
if (td->td_proc->p_flag & P_PROFIL)
|
|
addupc_intr(td, pc, cnt);
|
|
}
|
|
#ifdef GPROF
|
|
else {
|
|
/*
|
|
* Kernel statistics are just like addupc_intr, only easier.
|
|
*/
|
|
g = &_gmonparam;
|
|
if (g->state == GMON_PROF_ON && pc >= g->lowpc) {
|
|
i = PC_TO_I(g, pc);
|
|
if (i < g->textsize) {
|
|
KCOUNT(g, i) += cnt;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef HWPMC_HOOKS
|
|
if (td->td_intr_frame != NULL)
|
|
PMC_SOFT_CALL_TF( , , clock, prof, td->td_intr_frame);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Return information about system clocks.
|
|
*/
|
|
static int
|
|
sysctl_kern_clockrate(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct clockinfo clkinfo;
|
|
/*
|
|
* Construct clockinfo structure.
|
|
*/
|
|
bzero(&clkinfo, sizeof(clkinfo));
|
|
clkinfo.hz = hz;
|
|
clkinfo.tick = tick;
|
|
clkinfo.profhz = profhz;
|
|
clkinfo.stathz = stathz ? stathz : hz;
|
|
return (sysctl_handle_opaque(oidp, &clkinfo, sizeof clkinfo, req));
|
|
}
|
|
|
|
SYSCTL_PROC(_kern, KERN_CLOCKRATE, clockrate,
|
|
CTLTYPE_STRUCT|CTLFLAG_RD|CTLFLAG_MPSAFE,
|
|
0, 0, sysctl_kern_clockrate, "S,clockinfo",
|
|
"Rate and period of various kernel clocks");
|
|
|
|
#ifdef SW_WATCHDOG
|
|
|
|
static void
|
|
watchdog_config(void *unused __unused, u_int cmd, int *error)
|
|
{
|
|
u_int u;
|
|
|
|
u = cmd & WD_INTERVAL;
|
|
if (u >= WD_TO_1SEC) {
|
|
watchdog_ticks = (1 << (u - WD_TO_1SEC)) * hz;
|
|
watchdog_enabled = 1;
|
|
*error = 0;
|
|
} else {
|
|
watchdog_enabled = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle a watchdog timeout by dumping interrupt information and
|
|
* then either dropping to DDB or panicking.
|
|
*/
|
|
static void
|
|
watchdog_fire(void)
|
|
{
|
|
int nintr;
|
|
uint64_t inttotal;
|
|
u_long *curintr;
|
|
char *curname;
|
|
|
|
curintr = intrcnt;
|
|
curname = intrnames;
|
|
inttotal = 0;
|
|
nintr = sintrcnt / sizeof(u_long);
|
|
|
|
printf("interrupt total\n");
|
|
while (--nintr >= 0) {
|
|
if (*curintr)
|
|
printf("%-12s %20lu\n", curname, *curintr);
|
|
curname += strlen(curname) + 1;
|
|
inttotal += *curintr++;
|
|
}
|
|
printf("Total %20ju\n", (uintmax_t)inttotal);
|
|
|
|
#if defined(KDB) && !defined(KDB_UNATTENDED)
|
|
kdb_backtrace();
|
|
kdb_enter(KDB_WHY_WATCHDOG, "watchdog timeout");
|
|
#else
|
|
panic("watchdog timeout");
|
|
#endif
|
|
}
|
|
|
|
#endif /* SW_WATCHDOG */
|