dd0b4fb6d5
every architecture's busdma_machdep.c. It is done by unifying the bus_dmamap_load_buffer() routines so that they may be called from MI code. The MD busdma is then given a chance to do any final processing in the complete() callback. The cam changes unify the bus_dmamap_load* handling in cam drivers. The arm and mips implementations are updated to track virtual addresses for sync(). Previously this was done in a type specific way. Now it is done in a generic way by recording the list of virtuals in the map. Submitted by: jeff (sponsored by EMC/Isilon) Reviewed by: kan (previous version), scottl, mjacob (isp(4), no objections for target mode changes) Discussed with: ian (arm changes) Tested by: marius (sparc64), mips (jmallet), isci(4) on x86 (jharris), amd64 (Fabian Keil <freebsd-listen@fabiankeil.de>)
4666 lines
134 KiB
C
4666 lines
134 KiB
C
/*-
|
|
* Copyright (c) 2001 Michael Smith
|
|
* Copyright (c) 2004 Paul Saab
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* Common Interface for SCSI-3 Support driver.
|
|
*
|
|
* CISS claims to provide a common interface between a generic SCSI
|
|
* transport and an intelligent host adapter.
|
|
*
|
|
* This driver supports CISS as defined in the document "CISS Command
|
|
* Interface for SCSI-3 Support Open Specification", Version 1.04,
|
|
* Valence Number 1, dated 20001127, produced by Compaq Computer
|
|
* Corporation. This document appears to be a hastily and somewhat
|
|
* arbitrarlily cut-down version of a larger (and probably even more
|
|
* chaotic and inconsistent) Compaq internal document. Various
|
|
* details were also gleaned from Compaq's "cciss" driver for Linux.
|
|
*
|
|
* We provide a shim layer between the CISS interface and CAM,
|
|
* offloading most of the queueing and being-a-disk chores onto CAM.
|
|
* Entry to the driver is via the PCI bus attachment (ciss_probe,
|
|
* ciss_attach, etc) and via the CAM interface (ciss_cam_action,
|
|
* ciss_cam_poll). The Compaq CISS adapters are, however, poor SCSI
|
|
* citizens and we have to fake up some responses to get reasonable
|
|
* behaviour out of them. In addition, the CISS command set is by no
|
|
* means adequate to support the functionality of a RAID controller,
|
|
* and thus the supported Compaq adapters utilise portions of the
|
|
* control protocol from earlier Compaq adapter families.
|
|
*
|
|
* Note that we only support the "simple" transport layer over PCI.
|
|
* This interface (ab)uses the I2O register set (specifically the post
|
|
* queues) to exchange commands with the adapter. Other interfaces
|
|
* are available, but we aren't supposed to know about them, and it is
|
|
* dubious whether they would provide major performance improvements
|
|
* except under extreme load.
|
|
*
|
|
* Currently the only supported CISS adapters are the Compaq Smart
|
|
* Array 5* series (5300, 5i, 532). Even with only three adapters,
|
|
* Compaq still manage to have interface variations.
|
|
*
|
|
*
|
|
* Thanks must go to Fred Harris and Darryl DeVinney at Compaq, as
|
|
* well as Paul Saab at Yahoo! for their assistance in making this
|
|
* driver happen.
|
|
*
|
|
* More thanks must go to John Cagle at HP for the countless hours
|
|
* spent making this driver "work" with the MSA* series storage
|
|
* enclosures. Without his help (and nagging), this driver could not
|
|
* be used with these enclosures.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_periph.h>
|
|
#include <cam/cam_sim.h>
|
|
#include <cam/cam_xpt_sim.h>
|
|
#include <cam/scsi/scsi_all.h>
|
|
#include <cam/scsi/scsi_message.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/endian.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <dev/ciss/cissreg.h>
|
|
#include <dev/ciss/cissio.h>
|
|
#include <dev/ciss/cissvar.h>
|
|
|
|
static MALLOC_DEFINE(CISS_MALLOC_CLASS, "ciss_data",
|
|
"ciss internal data buffers");
|
|
|
|
/* pci interface */
|
|
static int ciss_lookup(device_t dev);
|
|
static int ciss_probe(device_t dev);
|
|
static int ciss_attach(device_t dev);
|
|
static int ciss_detach(device_t dev);
|
|
static int ciss_shutdown(device_t dev);
|
|
|
|
/* (de)initialisation functions, control wrappers */
|
|
static int ciss_init_pci(struct ciss_softc *sc);
|
|
static int ciss_setup_msix(struct ciss_softc *sc);
|
|
static int ciss_init_perf(struct ciss_softc *sc);
|
|
static int ciss_wait_adapter(struct ciss_softc *sc);
|
|
static int ciss_flush_adapter(struct ciss_softc *sc);
|
|
static int ciss_init_requests(struct ciss_softc *sc);
|
|
static void ciss_command_map_helper(void *arg, bus_dma_segment_t *segs,
|
|
int nseg, int error);
|
|
static int ciss_identify_adapter(struct ciss_softc *sc);
|
|
static int ciss_init_logical(struct ciss_softc *sc);
|
|
static int ciss_init_physical(struct ciss_softc *sc);
|
|
static int ciss_filter_physical(struct ciss_softc *sc, struct ciss_lun_report *cll);
|
|
static int ciss_identify_logical(struct ciss_softc *sc, struct ciss_ldrive *ld);
|
|
static int ciss_get_ldrive_status(struct ciss_softc *sc, struct ciss_ldrive *ld);
|
|
static int ciss_update_config(struct ciss_softc *sc);
|
|
static int ciss_accept_media(struct ciss_softc *sc, struct ciss_ldrive *ld);
|
|
static void ciss_init_sysctl(struct ciss_softc *sc);
|
|
static void ciss_soft_reset(struct ciss_softc *sc);
|
|
static void ciss_free(struct ciss_softc *sc);
|
|
static void ciss_spawn_notify_thread(struct ciss_softc *sc);
|
|
static void ciss_kill_notify_thread(struct ciss_softc *sc);
|
|
|
|
/* request submission/completion */
|
|
static int ciss_start(struct ciss_request *cr);
|
|
static void ciss_done(struct ciss_softc *sc, cr_qhead_t *qh);
|
|
static void ciss_perf_done(struct ciss_softc *sc, cr_qhead_t *qh);
|
|
static void ciss_intr(void *arg);
|
|
static void ciss_perf_intr(void *arg);
|
|
static void ciss_perf_msi_intr(void *arg);
|
|
static void ciss_complete(struct ciss_softc *sc, cr_qhead_t *qh);
|
|
static int _ciss_report_request(struct ciss_request *cr, int *command_status, int *scsi_status, const char *func);
|
|
static int ciss_synch_request(struct ciss_request *cr, int timeout);
|
|
static int ciss_poll_request(struct ciss_request *cr, int timeout);
|
|
static int ciss_wait_request(struct ciss_request *cr, int timeout);
|
|
#if 0
|
|
static int ciss_abort_request(struct ciss_request *cr);
|
|
#endif
|
|
|
|
/* request queueing */
|
|
static int ciss_get_request(struct ciss_softc *sc, struct ciss_request **crp);
|
|
static void ciss_preen_command(struct ciss_request *cr);
|
|
static void ciss_release_request(struct ciss_request *cr);
|
|
|
|
/* request helpers */
|
|
static int ciss_get_bmic_request(struct ciss_softc *sc, struct ciss_request **crp,
|
|
int opcode, void **bufp, size_t bufsize);
|
|
static int ciss_user_command(struct ciss_softc *sc, IOCTL_Command_struct *ioc);
|
|
|
|
/* DMA map/unmap */
|
|
static int ciss_map_request(struct ciss_request *cr);
|
|
static void ciss_request_map_helper(void *arg, bus_dma_segment_t *segs,
|
|
int nseg, int error);
|
|
static void ciss_unmap_request(struct ciss_request *cr);
|
|
|
|
/* CAM interface */
|
|
static int ciss_cam_init(struct ciss_softc *sc);
|
|
static void ciss_cam_rescan_target(struct ciss_softc *sc,
|
|
int bus, int target);
|
|
static void ciss_cam_action(struct cam_sim *sim, union ccb *ccb);
|
|
static int ciss_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
|
|
static int ciss_cam_emulate(struct ciss_softc *sc, struct ccb_scsiio *csio);
|
|
static void ciss_cam_poll(struct cam_sim *sim);
|
|
static void ciss_cam_complete(struct ciss_request *cr);
|
|
static void ciss_cam_complete_fixup(struct ciss_softc *sc, struct ccb_scsiio *csio);
|
|
static struct cam_periph *ciss_find_periph(struct ciss_softc *sc,
|
|
int bus, int target);
|
|
static int ciss_name_device(struct ciss_softc *sc, int bus, int target);
|
|
|
|
/* periodic status monitoring */
|
|
static void ciss_periodic(void *arg);
|
|
static void ciss_nop_complete(struct ciss_request *cr);
|
|
static void ciss_disable_adapter(struct ciss_softc *sc);
|
|
static void ciss_notify_event(struct ciss_softc *sc);
|
|
static void ciss_notify_complete(struct ciss_request *cr);
|
|
static int ciss_notify_abort(struct ciss_softc *sc);
|
|
static int ciss_notify_abort_bmic(struct ciss_softc *sc);
|
|
static void ciss_notify_hotplug(struct ciss_softc *sc, struct ciss_notify *cn);
|
|
static void ciss_notify_logical(struct ciss_softc *sc, struct ciss_notify *cn);
|
|
static void ciss_notify_physical(struct ciss_softc *sc, struct ciss_notify *cn);
|
|
|
|
/* debugging output */
|
|
static void ciss_print_request(struct ciss_request *cr);
|
|
static void ciss_print_ldrive(struct ciss_softc *sc, struct ciss_ldrive *ld);
|
|
static const char *ciss_name_ldrive_status(int status);
|
|
static int ciss_decode_ldrive_status(int status);
|
|
static const char *ciss_name_ldrive_org(int org);
|
|
static const char *ciss_name_command_status(int status);
|
|
|
|
/*
|
|
* PCI bus interface.
|
|
*/
|
|
static device_method_t ciss_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, ciss_probe),
|
|
DEVMETHOD(device_attach, ciss_attach),
|
|
DEVMETHOD(device_detach, ciss_detach),
|
|
DEVMETHOD(device_shutdown, ciss_shutdown),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t ciss_pci_driver = {
|
|
"ciss",
|
|
ciss_methods,
|
|
sizeof(struct ciss_softc)
|
|
};
|
|
|
|
static devclass_t ciss_devclass;
|
|
DRIVER_MODULE(ciss, pci, ciss_pci_driver, ciss_devclass, 0, 0);
|
|
MODULE_DEPEND(ciss, cam, 1, 1, 1);
|
|
MODULE_DEPEND(ciss, pci, 1, 1, 1);
|
|
|
|
/*
|
|
* Control device interface.
|
|
*/
|
|
static d_open_t ciss_open;
|
|
static d_close_t ciss_close;
|
|
static d_ioctl_t ciss_ioctl;
|
|
|
|
static struct cdevsw ciss_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_flags = 0,
|
|
.d_open = ciss_open,
|
|
.d_close = ciss_close,
|
|
.d_ioctl = ciss_ioctl,
|
|
.d_name = "ciss",
|
|
};
|
|
|
|
/*
|
|
* This tunable can be set at boot time and controls whether physical devices
|
|
* that are marked hidden by the firmware should be exposed anyways.
|
|
*/
|
|
static unsigned int ciss_expose_hidden_physical = 0;
|
|
TUNABLE_INT("hw.ciss.expose_hidden_physical", &ciss_expose_hidden_physical);
|
|
|
|
static unsigned int ciss_nop_message_heartbeat = 0;
|
|
TUNABLE_INT("hw.ciss.nop_message_heartbeat", &ciss_nop_message_heartbeat);
|
|
|
|
/*
|
|
* This tunable can force a particular transport to be used:
|
|
* <= 0 : use default
|
|
* 1 : force simple
|
|
* 2 : force performant
|
|
*/
|
|
static int ciss_force_transport = 0;
|
|
TUNABLE_INT("hw.ciss.force_transport", &ciss_force_transport);
|
|
|
|
/*
|
|
* This tunable can force a particular interrupt delivery method to be used:
|
|
* <= 0 : use default
|
|
* 1 : force INTx
|
|
* 2 : force MSIX
|
|
*/
|
|
static int ciss_force_interrupt = 0;
|
|
TUNABLE_INT("hw.ciss.force_interrupt", &ciss_force_interrupt);
|
|
|
|
/************************************************************************
|
|
* CISS adapters amazingly don't have a defined programming interface
|
|
* value. (One could say some very despairing things about PCI and
|
|
* people just not getting the general idea.) So we are forced to
|
|
* stick with matching against subvendor/subdevice, and thus have to
|
|
* be updated for every new CISS adapter that appears.
|
|
*/
|
|
#define CISS_BOARD_UNKNWON 0
|
|
#define CISS_BOARD_SA5 1
|
|
#define CISS_BOARD_SA5B 2
|
|
#define CISS_BOARD_NOMSI (1<<4)
|
|
|
|
static struct
|
|
{
|
|
u_int16_t subvendor;
|
|
u_int16_t subdevice;
|
|
int flags;
|
|
char *desc;
|
|
} ciss_vendor_data[] = {
|
|
{ 0x0e11, 0x4070, CISS_BOARD_SA5|CISS_BOARD_NOMSI, "Compaq Smart Array 5300" },
|
|
{ 0x0e11, 0x4080, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "Compaq Smart Array 5i" },
|
|
{ 0x0e11, 0x4082, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "Compaq Smart Array 532" },
|
|
{ 0x0e11, 0x4083, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "HP Smart Array 5312" },
|
|
{ 0x0e11, 0x4091, CISS_BOARD_SA5, "HP Smart Array 6i" },
|
|
{ 0x0e11, 0x409A, CISS_BOARD_SA5, "HP Smart Array 641" },
|
|
{ 0x0e11, 0x409B, CISS_BOARD_SA5, "HP Smart Array 642" },
|
|
{ 0x0e11, 0x409C, CISS_BOARD_SA5, "HP Smart Array 6400" },
|
|
{ 0x0e11, 0x409D, CISS_BOARD_SA5, "HP Smart Array 6400 EM" },
|
|
{ 0x103C, 0x3211, CISS_BOARD_SA5, "HP Smart Array E200i" },
|
|
{ 0x103C, 0x3212, CISS_BOARD_SA5, "HP Smart Array E200" },
|
|
{ 0x103C, 0x3213, CISS_BOARD_SA5, "HP Smart Array E200i" },
|
|
{ 0x103C, 0x3214, CISS_BOARD_SA5, "HP Smart Array E200i" },
|
|
{ 0x103C, 0x3215, CISS_BOARD_SA5, "HP Smart Array E200i" },
|
|
{ 0x103C, 0x3220, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x3222, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x3223, CISS_BOARD_SA5, "HP Smart Array P800" },
|
|
{ 0x103C, 0x3225, CISS_BOARD_SA5, "HP Smart Array P600" },
|
|
{ 0x103C, 0x3230, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x3231, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x3232, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x3233, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x3234, CISS_BOARD_SA5, "HP Smart Array P400" },
|
|
{ 0x103C, 0x3235, CISS_BOARD_SA5, "HP Smart Array P400i" },
|
|
{ 0x103C, 0x3236, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x3237, CISS_BOARD_SA5, "HP Smart Array E500" },
|
|
{ 0x103C, 0x3238, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x3239, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x323A, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x323B, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x323C, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x323D, CISS_BOARD_SA5, "HP Smart Array P700m" },
|
|
{ 0x103C, 0x3241, CISS_BOARD_SA5, "HP Smart Array P212" },
|
|
{ 0x103C, 0x3243, CISS_BOARD_SA5, "HP Smart Array P410" },
|
|
{ 0x103C, 0x3245, CISS_BOARD_SA5, "HP Smart Array P410i" },
|
|
{ 0x103C, 0x3247, CISS_BOARD_SA5, "HP Smart Array P411" },
|
|
{ 0x103C, 0x3249, CISS_BOARD_SA5, "HP Smart Array P812" },
|
|
{ 0x103C, 0x324A, CISS_BOARD_SA5, "HP Smart Array P712m" },
|
|
{ 0x103C, 0x324B, CISS_BOARD_SA5, "HP Smart Array" },
|
|
{ 0x103C, 0x3350, CISS_BOARD_SA5, "HP Smart Array P222" },
|
|
{ 0x103C, 0x3351, CISS_BOARD_SA5, "HP Smart Array P420" },
|
|
{ 0x103C, 0x3352, CISS_BOARD_SA5, "HP Smart Array P421" },
|
|
{ 0x103C, 0x3353, CISS_BOARD_SA5, "HP Smart Array P822" },
|
|
{ 0x103C, 0x3354, CISS_BOARD_SA5, "HP Smart Array P420i" },
|
|
{ 0x103C, 0x3355, CISS_BOARD_SA5, "HP Smart Array P220i" },
|
|
{ 0x103C, 0x3356, CISS_BOARD_SA5, "HP Smart Array P721m" },
|
|
{ 0, 0, 0, NULL }
|
|
};
|
|
|
|
/************************************************************************
|
|
* Find a match for the device in our list of known adapters.
|
|
*/
|
|
static int
|
|
ciss_lookup(device_t dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; ciss_vendor_data[i].desc != NULL; i++)
|
|
if ((pci_get_subvendor(dev) == ciss_vendor_data[i].subvendor) &&
|
|
(pci_get_subdevice(dev) == ciss_vendor_data[i].subdevice)) {
|
|
return(i);
|
|
}
|
|
return(-1);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Match a known CISS adapter.
|
|
*/
|
|
static int
|
|
ciss_probe(device_t dev)
|
|
{
|
|
int i;
|
|
|
|
i = ciss_lookup(dev);
|
|
if (i != -1) {
|
|
device_set_desc(dev, ciss_vendor_data[i].desc);
|
|
return(BUS_PROBE_DEFAULT);
|
|
}
|
|
return(ENOENT);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Attach the driver to this adapter.
|
|
*/
|
|
static int
|
|
ciss_attach(device_t dev)
|
|
{
|
|
struct ciss_softc *sc;
|
|
int error;
|
|
|
|
debug_called(1);
|
|
|
|
#ifdef CISS_DEBUG
|
|
/* print structure/union sizes */
|
|
debug_struct(ciss_command);
|
|
debug_struct(ciss_header);
|
|
debug_union(ciss_device_address);
|
|
debug_struct(ciss_cdb);
|
|
debug_struct(ciss_report_cdb);
|
|
debug_struct(ciss_notify_cdb);
|
|
debug_struct(ciss_notify);
|
|
debug_struct(ciss_message_cdb);
|
|
debug_struct(ciss_error_info_pointer);
|
|
debug_struct(ciss_error_info);
|
|
debug_struct(ciss_sg_entry);
|
|
debug_struct(ciss_config_table);
|
|
debug_struct(ciss_bmic_cdb);
|
|
debug_struct(ciss_bmic_id_ldrive);
|
|
debug_struct(ciss_bmic_id_lstatus);
|
|
debug_struct(ciss_bmic_id_table);
|
|
debug_struct(ciss_bmic_id_pdrive);
|
|
debug_struct(ciss_bmic_blink_pdrive);
|
|
debug_struct(ciss_bmic_flush_cache);
|
|
debug_const(CISS_MAX_REQUESTS);
|
|
debug_const(CISS_MAX_LOGICAL);
|
|
debug_const(CISS_INTERRUPT_COALESCE_DELAY);
|
|
debug_const(CISS_INTERRUPT_COALESCE_COUNT);
|
|
debug_const(CISS_COMMAND_ALLOC_SIZE);
|
|
debug_const(CISS_COMMAND_SG_LENGTH);
|
|
|
|
debug_type(cciss_pci_info_struct);
|
|
debug_type(cciss_coalint_struct);
|
|
debug_type(cciss_coalint_struct);
|
|
debug_type(NodeName_type);
|
|
debug_type(NodeName_type);
|
|
debug_type(Heartbeat_type);
|
|
debug_type(BusTypes_type);
|
|
debug_type(FirmwareVer_type);
|
|
debug_type(DriverVer_type);
|
|
debug_type(IOCTL_Command_struct);
|
|
#endif
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->ciss_dev = dev;
|
|
mtx_init(&sc->ciss_mtx, "cissmtx", NULL, MTX_DEF);
|
|
callout_init_mtx(&sc->ciss_periodic, &sc->ciss_mtx, 0);
|
|
|
|
/*
|
|
* Do PCI-specific init.
|
|
*/
|
|
if ((error = ciss_init_pci(sc)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Initialise driver queues.
|
|
*/
|
|
ciss_initq_free(sc);
|
|
ciss_initq_notify(sc);
|
|
|
|
/*
|
|
* Initalize device sysctls.
|
|
*/
|
|
ciss_init_sysctl(sc);
|
|
|
|
/*
|
|
* Initialise command/request pool.
|
|
*/
|
|
if ((error = ciss_init_requests(sc)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Get adapter information.
|
|
*/
|
|
if ((error = ciss_identify_adapter(sc)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Find all the physical devices.
|
|
*/
|
|
if ((error = ciss_init_physical(sc)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Build our private table of logical devices.
|
|
*/
|
|
if ((error = ciss_init_logical(sc)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Enable interrupts so that the CAM scan can complete.
|
|
*/
|
|
CISS_TL_SIMPLE_ENABLE_INTERRUPTS(sc);
|
|
|
|
/*
|
|
* Initialise the CAM interface.
|
|
*/
|
|
if ((error = ciss_cam_init(sc)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Start the heartbeat routine and event chain.
|
|
*/
|
|
ciss_periodic(sc);
|
|
|
|
/*
|
|
* Create the control device.
|
|
*/
|
|
sc->ciss_dev_t = make_dev(&ciss_cdevsw, device_get_unit(sc->ciss_dev),
|
|
UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
|
|
"ciss%d", device_get_unit(sc->ciss_dev));
|
|
sc->ciss_dev_t->si_drv1 = sc;
|
|
|
|
/*
|
|
* The adapter is running; synchronous commands can now sleep
|
|
* waiting for an interrupt to signal completion.
|
|
*/
|
|
sc->ciss_flags |= CISS_FLAG_RUNNING;
|
|
|
|
ciss_spawn_notify_thread(sc);
|
|
|
|
error = 0;
|
|
out:
|
|
if (error != 0) {
|
|
/* ciss_free() expects the mutex to be held */
|
|
mtx_lock(&sc->ciss_mtx);
|
|
ciss_free(sc);
|
|
}
|
|
return(error);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Detach the driver from this adapter.
|
|
*/
|
|
static int
|
|
ciss_detach(device_t dev)
|
|
{
|
|
struct ciss_softc *sc = device_get_softc(dev);
|
|
|
|
debug_called(1);
|
|
|
|
mtx_lock(&sc->ciss_mtx);
|
|
if (sc->ciss_flags & CISS_FLAG_CONTROL_OPEN) {
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
return (EBUSY);
|
|
}
|
|
|
|
/* flush adapter cache */
|
|
ciss_flush_adapter(sc);
|
|
|
|
/* release all resources. The mutex is released and freed here too. */
|
|
ciss_free(sc);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Prepare adapter for system shutdown.
|
|
*/
|
|
static int
|
|
ciss_shutdown(device_t dev)
|
|
{
|
|
struct ciss_softc *sc = device_get_softc(dev);
|
|
|
|
debug_called(1);
|
|
|
|
mtx_lock(&sc->ciss_mtx);
|
|
/* flush adapter cache */
|
|
ciss_flush_adapter(sc);
|
|
|
|
if (sc->ciss_soft_reset)
|
|
ciss_soft_reset(sc);
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
ciss_init_sysctl(struct ciss_softc *sc)
|
|
{
|
|
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->ciss_dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ciss_dev)),
|
|
OID_AUTO, "soft_reset", CTLFLAG_RW, &sc->ciss_soft_reset, 0, "");
|
|
}
|
|
|
|
/************************************************************************
|
|
* Perform PCI-specific attachment actions.
|
|
*/
|
|
static int
|
|
ciss_init_pci(struct ciss_softc *sc)
|
|
{
|
|
uintptr_t cbase, csize, cofs;
|
|
uint32_t method, supported_methods;
|
|
int error, sqmask, i;
|
|
void *intr;
|
|
|
|
debug_called(1);
|
|
|
|
/*
|
|
* Work out adapter type.
|
|
*/
|
|
i = ciss_lookup(sc->ciss_dev);
|
|
if (i < 0) {
|
|
ciss_printf(sc, "unknown adapter type\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
if (ciss_vendor_data[i].flags & CISS_BOARD_SA5) {
|
|
sqmask = CISS_TL_SIMPLE_INTR_OPQ_SA5;
|
|
} else if (ciss_vendor_data[i].flags & CISS_BOARD_SA5B) {
|
|
sqmask = CISS_TL_SIMPLE_INTR_OPQ_SA5B;
|
|
} else {
|
|
/*
|
|
* XXX Big hammer, masks/unmasks all possible interrupts. This should
|
|
* work on all hardware variants. Need to add code to handle the
|
|
* "controller crashed" interupt bit that this unmasks.
|
|
*/
|
|
sqmask = ~0;
|
|
}
|
|
|
|
/*
|
|
* Allocate register window first (we need this to find the config
|
|
* struct).
|
|
*/
|
|
error = ENXIO;
|
|
sc->ciss_regs_rid = CISS_TL_SIMPLE_BAR_REGS;
|
|
if ((sc->ciss_regs_resource =
|
|
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_MEMORY,
|
|
&sc->ciss_regs_rid, RF_ACTIVE)) == NULL) {
|
|
ciss_printf(sc, "can't allocate register window\n");
|
|
return(ENXIO);
|
|
}
|
|
sc->ciss_regs_bhandle = rman_get_bushandle(sc->ciss_regs_resource);
|
|
sc->ciss_regs_btag = rman_get_bustag(sc->ciss_regs_resource);
|
|
|
|
/*
|
|
* Find the BAR holding the config structure. If it's not the one
|
|
* we already mapped for registers, map it too.
|
|
*/
|
|
sc->ciss_cfg_rid = CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_CFG_BAR) & 0xffff;
|
|
if (sc->ciss_cfg_rid != sc->ciss_regs_rid) {
|
|
if ((sc->ciss_cfg_resource =
|
|
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_MEMORY,
|
|
&sc->ciss_cfg_rid, RF_ACTIVE)) == NULL) {
|
|
ciss_printf(sc, "can't allocate config window\n");
|
|
return(ENXIO);
|
|
}
|
|
cbase = (uintptr_t)rman_get_virtual(sc->ciss_cfg_resource);
|
|
csize = rman_get_end(sc->ciss_cfg_resource) -
|
|
rman_get_start(sc->ciss_cfg_resource) + 1;
|
|
} else {
|
|
cbase = (uintptr_t)rman_get_virtual(sc->ciss_regs_resource);
|
|
csize = rman_get_end(sc->ciss_regs_resource) -
|
|
rman_get_start(sc->ciss_regs_resource) + 1;
|
|
}
|
|
cofs = CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_CFG_OFF);
|
|
|
|
/*
|
|
* Use the base/size/offset values we just calculated to
|
|
* sanity-check the config structure. If it's OK, point to it.
|
|
*/
|
|
if ((cofs + sizeof(struct ciss_config_table)) > csize) {
|
|
ciss_printf(sc, "config table outside window\n");
|
|
return(ENXIO);
|
|
}
|
|
sc->ciss_cfg = (struct ciss_config_table *)(cbase + cofs);
|
|
debug(1, "config struct at %p", sc->ciss_cfg);
|
|
|
|
/*
|
|
* Calculate the number of request structures/commands we are
|
|
* going to provide for this adapter.
|
|
*/
|
|
sc->ciss_max_requests = min(CISS_MAX_REQUESTS, sc->ciss_cfg->max_outstanding_commands);
|
|
|
|
/*
|
|
* Validate the config structure. If we supported other transport
|
|
* methods, we could select amongst them at this point in time.
|
|
*/
|
|
if (strncmp(sc->ciss_cfg->signature, "CISS", 4)) {
|
|
ciss_printf(sc, "config signature mismatch (got '%c%c%c%c')\n",
|
|
sc->ciss_cfg->signature[0], sc->ciss_cfg->signature[1],
|
|
sc->ciss_cfg->signature[2], sc->ciss_cfg->signature[3]);
|
|
return(ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Select the mode of operation, prefer Performant.
|
|
*/
|
|
if (!(sc->ciss_cfg->supported_methods &
|
|
(CISS_TRANSPORT_METHOD_SIMPLE | CISS_TRANSPORT_METHOD_PERF))) {
|
|
ciss_printf(sc, "No supported transport layers: 0x%x\n",
|
|
sc->ciss_cfg->supported_methods);
|
|
}
|
|
|
|
switch (ciss_force_transport) {
|
|
case 1:
|
|
supported_methods = CISS_TRANSPORT_METHOD_SIMPLE;
|
|
break;
|
|
case 2:
|
|
supported_methods = CISS_TRANSPORT_METHOD_PERF;
|
|
break;
|
|
default:
|
|
supported_methods = sc->ciss_cfg->supported_methods;
|
|
break;
|
|
}
|
|
|
|
setup:
|
|
if ((supported_methods & CISS_TRANSPORT_METHOD_PERF) != 0) {
|
|
method = CISS_TRANSPORT_METHOD_PERF;
|
|
sc->ciss_perf = (struct ciss_perf_config *)(cbase + cofs +
|
|
sc->ciss_cfg->transport_offset);
|
|
if (ciss_init_perf(sc)) {
|
|
supported_methods &= ~method;
|
|
goto setup;
|
|
}
|
|
} else if (supported_methods & CISS_TRANSPORT_METHOD_SIMPLE) {
|
|
method = CISS_TRANSPORT_METHOD_SIMPLE;
|
|
} else {
|
|
ciss_printf(sc, "No supported transport methods: 0x%x\n",
|
|
sc->ciss_cfg->supported_methods);
|
|
return(ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Tell it we're using the low 4GB of RAM. Set the default interrupt
|
|
* coalescing options.
|
|
*/
|
|
sc->ciss_cfg->requested_method = method;
|
|
sc->ciss_cfg->command_physlimit = 0;
|
|
sc->ciss_cfg->interrupt_coalesce_delay = CISS_INTERRUPT_COALESCE_DELAY;
|
|
sc->ciss_cfg->interrupt_coalesce_count = CISS_INTERRUPT_COALESCE_COUNT;
|
|
|
|
#ifdef __i386__
|
|
sc->ciss_cfg->host_driver |= CISS_DRIVER_SCSI_PREFETCH;
|
|
#endif
|
|
|
|
if (ciss_update_config(sc)) {
|
|
ciss_printf(sc, "adapter refuses to accept config update (IDBR 0x%x)\n",
|
|
CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_IDBR));
|
|
return(ENXIO);
|
|
}
|
|
if ((sc->ciss_cfg->active_method & method) == 0) {
|
|
supported_methods &= ~method;
|
|
if (supported_methods == 0) {
|
|
ciss_printf(sc, "adapter refuses to go into available transports "
|
|
"mode (0x%x, 0x%x)\n", supported_methods,
|
|
sc->ciss_cfg->active_method);
|
|
return(ENXIO);
|
|
} else
|
|
goto setup;
|
|
}
|
|
|
|
/*
|
|
* Wait for the adapter to come ready.
|
|
*/
|
|
if ((error = ciss_wait_adapter(sc)) != 0)
|
|
return(error);
|
|
|
|
/* Prepare to possibly use MSIX and/or PERFORMANT interrupts. Normal
|
|
* interrupts have a rid of 0, this will be overridden if MSIX is used.
|
|
*/
|
|
sc->ciss_irq_rid[0] = 0;
|
|
if (method == CISS_TRANSPORT_METHOD_PERF) {
|
|
ciss_printf(sc, "PERFORMANT Transport\n");
|
|
if ((ciss_force_interrupt != 1) && (ciss_setup_msix(sc) == 0)) {
|
|
intr = ciss_perf_msi_intr;
|
|
} else {
|
|
intr = ciss_perf_intr;
|
|
}
|
|
/* XXX The docs say that the 0x01 bit is only for SAS controllers.
|
|
* Unfortunately, there is no good way to know if this is a SAS
|
|
* controller. Hopefully enabling this bit universally will work OK.
|
|
* It seems to work fine for SA6i controllers.
|
|
*/
|
|
sc->ciss_interrupt_mask = CISS_TL_PERF_INTR_OPQ | CISS_TL_PERF_INTR_MSI;
|
|
|
|
} else {
|
|
ciss_printf(sc, "SIMPLE Transport\n");
|
|
/* MSIX doesn't seem to work in SIMPLE mode, only enable if it forced */
|
|
if (ciss_force_interrupt == 2)
|
|
/* If this fails, we automatically revert to INTx */
|
|
ciss_setup_msix(sc);
|
|
sc->ciss_perf = NULL;
|
|
intr = ciss_intr;
|
|
sc->ciss_interrupt_mask = sqmask;
|
|
}
|
|
|
|
/*
|
|
* Turn off interrupts before we go routing anything.
|
|
*/
|
|
CISS_TL_SIMPLE_DISABLE_INTERRUPTS(sc);
|
|
|
|
/*
|
|
* Allocate and set up our interrupt.
|
|
*/
|
|
if ((sc->ciss_irq_resource =
|
|
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_IRQ, &sc->ciss_irq_rid[0],
|
|
RF_ACTIVE | RF_SHAREABLE)) == NULL) {
|
|
ciss_printf(sc, "can't allocate interrupt\n");
|
|
return(ENXIO);
|
|
}
|
|
|
|
if (bus_setup_intr(sc->ciss_dev, sc->ciss_irq_resource,
|
|
INTR_TYPE_CAM|INTR_MPSAFE, NULL, intr, sc,
|
|
&sc->ciss_intr)) {
|
|
ciss_printf(sc, "can't set up interrupt\n");
|
|
return(ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Allocate the parent bus DMA tag appropriate for our PCI
|
|
* interface.
|
|
*
|
|
* Note that "simple" adapters can only address within a 32-bit
|
|
* span.
|
|
*/
|
|
if (bus_dma_tag_create(bus_get_dma_tag(sc->ciss_dev),/* PCI parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
CISS_MAX_SG_ELEMENTS, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->ciss_parent_dmat)) {
|
|
ciss_printf(sc, "can't allocate parent DMA tag\n");
|
|
return(ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Create DMA tag for mapping buffers into adapter-addressable
|
|
* space.
|
|
*/
|
|
if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MAXBSIZE, CISS_MAX_SG_ELEMENTS, /* maxsize, nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
BUS_DMA_ALLOCNOW, /* flags */
|
|
busdma_lock_mutex, &sc->ciss_mtx, /* lockfunc, lockarg */
|
|
&sc->ciss_buffer_dmat)) {
|
|
ciss_printf(sc, "can't allocate buffer DMA tag\n");
|
|
return(ENOMEM);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Setup MSI/MSIX operation (Performant only)
|
|
* Four interrupts are available, but we only use 1 right now. If MSI-X
|
|
* isn't avaialble, try using MSI instead.
|
|
*/
|
|
static int
|
|
ciss_setup_msix(struct ciss_softc *sc)
|
|
{
|
|
int val, i;
|
|
|
|
/* Weed out devices that don't actually support MSI */
|
|
i = ciss_lookup(sc->ciss_dev);
|
|
if (ciss_vendor_data[i].flags & CISS_BOARD_NOMSI)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Only need to use the minimum number of MSI vectors, as the driver
|
|
* doesn't support directed MSIX interrupts.
|
|
*/
|
|
val = pci_msix_count(sc->ciss_dev);
|
|
if (val < CISS_MSI_COUNT) {
|
|
val = pci_msi_count(sc->ciss_dev);
|
|
device_printf(sc->ciss_dev, "got %d MSI messages]\n", val);
|
|
if (val < CISS_MSI_COUNT)
|
|
return (EINVAL);
|
|
}
|
|
val = MIN(val, CISS_MSI_COUNT);
|
|
if (pci_alloc_msix(sc->ciss_dev, &val) != 0) {
|
|
if (pci_alloc_msi(sc->ciss_dev, &val) != 0)
|
|
return (EINVAL);
|
|
}
|
|
|
|
sc->ciss_msi = val;
|
|
if (bootverbose)
|
|
ciss_printf(sc, "Using %d MSIX interrupt%s\n", val,
|
|
(val != 1) ? "s" : "");
|
|
|
|
for (i = 0; i < val; i++)
|
|
sc->ciss_irq_rid[i] = i + 1;
|
|
|
|
return (0);
|
|
|
|
}
|
|
|
|
/************************************************************************
|
|
* Setup the Performant structures.
|
|
*/
|
|
static int
|
|
ciss_init_perf(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_perf_config *pc = sc->ciss_perf;
|
|
int reply_size;
|
|
|
|
/*
|
|
* Create the DMA tag for the reply queue.
|
|
*/
|
|
reply_size = sizeof(uint64_t) * sc->ciss_max_requests;
|
|
if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
reply_size, 1, /* maxsize, nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->ciss_reply_dmat)) {
|
|
ciss_printf(sc, "can't allocate reply DMA tag\n");
|
|
return(ENOMEM);
|
|
}
|
|
/*
|
|
* Allocate memory and make it available for DMA.
|
|
*/
|
|
if (bus_dmamem_alloc(sc->ciss_reply_dmat, (void **)&sc->ciss_reply,
|
|
BUS_DMA_NOWAIT, &sc->ciss_reply_map)) {
|
|
ciss_printf(sc, "can't allocate reply memory\n");
|
|
return(ENOMEM);
|
|
}
|
|
bus_dmamap_load(sc->ciss_reply_dmat, sc->ciss_reply_map, sc->ciss_reply,
|
|
reply_size, ciss_command_map_helper, &sc->ciss_reply_phys, 0);
|
|
bzero(sc->ciss_reply, reply_size);
|
|
|
|
sc->ciss_cycle = 0x1;
|
|
sc->ciss_rqidx = 0;
|
|
|
|
/*
|
|
* Preload the fetch table with common command sizes. This allows the
|
|
* hardware to not waste bus cycles for typical i/o commands, but also not
|
|
* tax the driver to be too exact in choosing sizes. The table is optimized
|
|
* for page-aligned i/o's, but since most i/o comes from the various pagers,
|
|
* it's a reasonable assumption to make.
|
|
*/
|
|
pc->fetch_count[CISS_SG_FETCH_NONE] = (sizeof(struct ciss_command) + 15) / 16;
|
|
pc->fetch_count[CISS_SG_FETCH_1] =
|
|
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 1 + 15) / 16;
|
|
pc->fetch_count[CISS_SG_FETCH_2] =
|
|
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 2 + 15) / 16;
|
|
pc->fetch_count[CISS_SG_FETCH_4] =
|
|
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 4 + 15) / 16;
|
|
pc->fetch_count[CISS_SG_FETCH_8] =
|
|
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 8 + 15) / 16;
|
|
pc->fetch_count[CISS_SG_FETCH_16] =
|
|
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 16 + 15) / 16;
|
|
pc->fetch_count[CISS_SG_FETCH_32] =
|
|
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 32 + 15) / 16;
|
|
pc->fetch_count[CISS_SG_FETCH_MAX] = (CISS_COMMAND_ALLOC_SIZE + 15) / 16;
|
|
|
|
pc->rq_size = sc->ciss_max_requests; /* XXX less than the card supports? */
|
|
pc->rq_count = 1; /* XXX Hardcode for a single queue */
|
|
pc->rq_bank_hi = 0;
|
|
pc->rq_bank_lo = 0;
|
|
pc->rq[0].rq_addr_hi = 0x0;
|
|
pc->rq[0].rq_addr_lo = sc->ciss_reply_phys;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Wait for the adapter to come ready.
|
|
*/
|
|
static int
|
|
ciss_wait_adapter(struct ciss_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
debug_called(1);
|
|
|
|
/*
|
|
* Wait for the adapter to come ready.
|
|
*/
|
|
if (!(sc->ciss_cfg->active_method & CISS_TRANSPORT_METHOD_READY)) {
|
|
ciss_printf(sc, "waiting for adapter to come ready...\n");
|
|
for (i = 0; !(sc->ciss_cfg->active_method & CISS_TRANSPORT_METHOD_READY); i++) {
|
|
DELAY(1000000); /* one second */
|
|
if (i > 30) {
|
|
ciss_printf(sc, "timed out waiting for adapter to come ready\n");
|
|
return(EIO);
|
|
}
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Flush the adapter cache.
|
|
*/
|
|
static int
|
|
ciss_flush_adapter(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_bmic_flush_cache *cbfc;
|
|
int error, command_status;
|
|
|
|
debug_called(1);
|
|
|
|
cr = NULL;
|
|
cbfc = NULL;
|
|
|
|
/*
|
|
* Build a BMIC request to flush the cache. We don't disable
|
|
* it, as we may be going to do more I/O (eg. we are emulating
|
|
* the Synchronise Cache command).
|
|
*/
|
|
if ((cbfc = malloc(sizeof(*cbfc), CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_FLUSH_CACHE,
|
|
(void **)&cbfc, sizeof(*cbfc))) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Submit the request and wait for it to complete.
|
|
*/
|
|
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
|
|
ciss_printf(sc, "error sending BMIC FLUSH_CACHE command (%d)\n", error);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check response.
|
|
*/
|
|
ciss_report_request(cr, &command_status, NULL);
|
|
switch(command_status) {
|
|
case CISS_CMD_STATUS_SUCCESS:
|
|
break;
|
|
default:
|
|
ciss_printf(sc, "error flushing cache (%s)\n",
|
|
ciss_name_command_status(command_status));
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
if (cbfc != NULL)
|
|
free(cbfc, CISS_MALLOC_CLASS);
|
|
if (cr != NULL)
|
|
ciss_release_request(cr);
|
|
return(error);
|
|
}
|
|
|
|
static void
|
|
ciss_soft_reset(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_request *cr = NULL;
|
|
struct ciss_command *cc;
|
|
int i, error = 0;
|
|
|
|
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
|
|
/* only reset proxy controllers */
|
|
if (sc->ciss_controllers[i].physical.bus == 0)
|
|
continue;
|
|
|
|
if ((error = ciss_get_request(sc, &cr)) != 0)
|
|
break;
|
|
|
|
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_SOFT_RESET,
|
|
NULL, 0)) != 0)
|
|
break;
|
|
|
|
cc = cr->cr_cc;
|
|
cc->header.address = sc->ciss_controllers[i];
|
|
|
|
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0)
|
|
break;
|
|
|
|
ciss_release_request(cr);
|
|
}
|
|
|
|
if (error)
|
|
ciss_printf(sc, "error resetting controller (%d)\n", error);
|
|
|
|
if (cr != NULL)
|
|
ciss_release_request(cr);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Allocate memory for the adapter command structures, initialise
|
|
* the request structures.
|
|
*
|
|
* Note that the entire set of commands are allocated in a single
|
|
* contiguous slab.
|
|
*/
|
|
static int
|
|
ciss_init_requests(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_request *cr;
|
|
int i;
|
|
|
|
debug_called(1);
|
|
|
|
if (bootverbose)
|
|
ciss_printf(sc, "using %d of %d available commands\n",
|
|
sc->ciss_max_requests, sc->ciss_cfg->max_outstanding_commands);
|
|
|
|
/*
|
|
* Create the DMA tag for commands.
|
|
*/
|
|
if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */
|
|
32, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
CISS_COMMAND_ALLOC_SIZE *
|
|
sc->ciss_max_requests, 1, /* maxsize, nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->ciss_command_dmat)) {
|
|
ciss_printf(sc, "can't allocate command DMA tag\n");
|
|
return(ENOMEM);
|
|
}
|
|
/*
|
|
* Allocate memory and make it available for DMA.
|
|
*/
|
|
if (bus_dmamem_alloc(sc->ciss_command_dmat, (void **)&sc->ciss_command,
|
|
BUS_DMA_NOWAIT, &sc->ciss_command_map)) {
|
|
ciss_printf(sc, "can't allocate command memory\n");
|
|
return(ENOMEM);
|
|
}
|
|
bus_dmamap_load(sc->ciss_command_dmat, sc->ciss_command_map,sc->ciss_command,
|
|
CISS_COMMAND_ALLOC_SIZE * sc->ciss_max_requests,
|
|
ciss_command_map_helper, &sc->ciss_command_phys, 0);
|
|
bzero(sc->ciss_command, CISS_COMMAND_ALLOC_SIZE * sc->ciss_max_requests);
|
|
|
|
/*
|
|
* Set up the request and command structures, push requests onto
|
|
* the free queue.
|
|
*/
|
|
for (i = 1; i < sc->ciss_max_requests; i++) {
|
|
cr = &sc->ciss_request[i];
|
|
cr->cr_sc = sc;
|
|
cr->cr_tag = i;
|
|
cr->cr_cc = (struct ciss_command *)((uintptr_t)sc->ciss_command +
|
|
CISS_COMMAND_ALLOC_SIZE * i);
|
|
cr->cr_ccphys = sc->ciss_command_phys + CISS_COMMAND_ALLOC_SIZE * i;
|
|
bus_dmamap_create(sc->ciss_buffer_dmat, 0, &cr->cr_datamap);
|
|
ciss_enqueue_free(cr);
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
ciss_command_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
uint32_t *addr;
|
|
|
|
addr = arg;
|
|
*addr = segs[0].ds_addr;
|
|
}
|
|
|
|
/************************************************************************
|
|
* Identify the adapter, print some information about it.
|
|
*/
|
|
static int
|
|
ciss_identify_adapter(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_request *cr;
|
|
int error, command_status;
|
|
|
|
debug_called(1);
|
|
|
|
cr = NULL;
|
|
|
|
/*
|
|
* Get a request, allocate storage for the adapter data.
|
|
*/
|
|
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_CTLR,
|
|
(void **)&sc->ciss_id,
|
|
sizeof(*sc->ciss_id))) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Submit the request and wait for it to complete.
|
|
*/
|
|
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
|
|
ciss_printf(sc, "error sending BMIC ID_CTLR command (%d)\n", error);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check response.
|
|
*/
|
|
ciss_report_request(cr, &command_status, NULL);
|
|
switch(command_status) {
|
|
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
|
|
break;
|
|
case CISS_CMD_STATUS_DATA_UNDERRUN:
|
|
case CISS_CMD_STATUS_DATA_OVERRUN:
|
|
ciss_printf(sc, "data over/underrun reading adapter information\n");
|
|
default:
|
|
ciss_printf(sc, "error reading adapter information (%s)\n",
|
|
ciss_name_command_status(command_status));
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* sanity-check reply */
|
|
if (!sc->ciss_id->big_map_supported) {
|
|
ciss_printf(sc, "adapter does not support BIG_MAP\n");
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
#if 0
|
|
/* XXX later revisions may not need this */
|
|
sc->ciss_flags |= CISS_FLAG_FAKE_SYNCH;
|
|
#endif
|
|
|
|
/* XXX only really required for old 5300 adapters? */
|
|
sc->ciss_flags |= CISS_FLAG_BMIC_ABORT;
|
|
|
|
/*
|
|
* Earlier controller specs do not contain these config
|
|
* entries, so assume that a 0 means its old and assign
|
|
* these values to the defaults that were established
|
|
* when this driver was developed for them
|
|
*/
|
|
if (sc->ciss_cfg->max_logical_supported == 0)
|
|
sc->ciss_cfg->max_logical_supported = CISS_MAX_LOGICAL;
|
|
if (sc->ciss_cfg->max_physical_supported == 0)
|
|
sc->ciss_cfg->max_physical_supported = CISS_MAX_PHYSICAL;
|
|
/* print information */
|
|
if (bootverbose) {
|
|
ciss_printf(sc, " %d logical drive%s configured\n",
|
|
sc->ciss_id->configured_logical_drives,
|
|
(sc->ciss_id->configured_logical_drives == 1) ? "" : "s");
|
|
ciss_printf(sc, " firmware %4.4s\n", sc->ciss_id->running_firmware_revision);
|
|
ciss_printf(sc, " %d SCSI channels\n", sc->ciss_id->scsi_bus_count);
|
|
|
|
ciss_printf(sc, " signature '%.4s'\n", sc->ciss_cfg->signature);
|
|
ciss_printf(sc, " valence %d\n", sc->ciss_cfg->valence);
|
|
ciss_printf(sc, " supported I/O methods 0x%b\n",
|
|
sc->ciss_cfg->supported_methods,
|
|
"\20\1READY\2simple\3performant\4MEMQ\n");
|
|
ciss_printf(sc, " active I/O method 0x%b\n",
|
|
sc->ciss_cfg->active_method, "\20\2simple\3performant\4MEMQ\n");
|
|
ciss_printf(sc, " 4G page base 0x%08x\n",
|
|
sc->ciss_cfg->command_physlimit);
|
|
ciss_printf(sc, " interrupt coalesce delay %dus\n",
|
|
sc->ciss_cfg->interrupt_coalesce_delay);
|
|
ciss_printf(sc, " interrupt coalesce count %d\n",
|
|
sc->ciss_cfg->interrupt_coalesce_count);
|
|
ciss_printf(sc, " max outstanding commands %d\n",
|
|
sc->ciss_cfg->max_outstanding_commands);
|
|
ciss_printf(sc, " bus types 0x%b\n", sc->ciss_cfg->bus_types,
|
|
"\20\1ultra2\2ultra3\10fibre1\11fibre2\n");
|
|
ciss_printf(sc, " server name '%.16s'\n", sc->ciss_cfg->server_name);
|
|
ciss_printf(sc, " heartbeat 0x%x\n", sc->ciss_cfg->heartbeat);
|
|
ciss_printf(sc, " max logical logical volumes: %d\n", sc->ciss_cfg->max_logical_supported);
|
|
ciss_printf(sc, " max physical disks supported: %d\n", sc->ciss_cfg->max_physical_supported);
|
|
ciss_printf(sc, " max physical disks per logical volume: %d\n", sc->ciss_cfg->max_physical_per_logical);
|
|
}
|
|
|
|
out:
|
|
if (error) {
|
|
if (sc->ciss_id != NULL) {
|
|
free(sc->ciss_id, CISS_MALLOC_CLASS);
|
|
sc->ciss_id = NULL;
|
|
}
|
|
}
|
|
if (cr != NULL)
|
|
ciss_release_request(cr);
|
|
return(error);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Helper routine for generating a list of logical and physical luns.
|
|
*/
|
|
static struct ciss_lun_report *
|
|
ciss_report_luns(struct ciss_softc *sc, int opcode, int nunits)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
struct ciss_report_cdb *crc;
|
|
struct ciss_lun_report *cll;
|
|
int command_status;
|
|
int report_size;
|
|
int error = 0;
|
|
|
|
debug_called(1);
|
|
|
|
cr = NULL;
|
|
cll = NULL;
|
|
|
|
/*
|
|
* Get a request, allocate storage for the address list.
|
|
*/
|
|
if ((error = ciss_get_request(sc, &cr)) != 0)
|
|
goto out;
|
|
report_size = sizeof(*cll) + nunits * sizeof(union ciss_device_address);
|
|
if ((cll = malloc(report_size, CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
|
|
ciss_printf(sc, "can't allocate memory for lun report\n");
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Build the Report Logical/Physical LUNs command.
|
|
*/
|
|
cc = cr->cr_cc;
|
|
cr->cr_data = cll;
|
|
cr->cr_length = report_size;
|
|
cr->cr_flags = CISS_REQ_DATAIN;
|
|
|
|
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
|
|
cc->header.address.physical.bus = 0;
|
|
cc->header.address.physical.target = 0;
|
|
cc->cdb.cdb_length = sizeof(*crc);
|
|
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
|
|
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
|
|
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
|
|
cc->cdb.timeout = 30; /* XXX better suggestions? */
|
|
|
|
crc = (struct ciss_report_cdb *)&(cc->cdb.cdb[0]);
|
|
bzero(crc, sizeof(*crc));
|
|
crc->opcode = opcode;
|
|
crc->length = htonl(report_size); /* big-endian field */
|
|
cll->list_size = htonl(report_size - sizeof(*cll)); /* big-endian field */
|
|
|
|
/*
|
|
* Submit the request and wait for it to complete. (timeout
|
|
* here should be much greater than above)
|
|
*/
|
|
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
|
|
ciss_printf(sc, "error sending %d LUN command (%d)\n", opcode, error);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check response. Note that data over/underrun is OK.
|
|
*/
|
|
ciss_report_request(cr, &command_status, NULL);
|
|
switch(command_status) {
|
|
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
|
|
case CISS_CMD_STATUS_DATA_UNDERRUN: /* buffer too large, not bad */
|
|
break;
|
|
case CISS_CMD_STATUS_DATA_OVERRUN:
|
|
ciss_printf(sc, "WARNING: more units than driver limit (%d)\n",
|
|
sc->ciss_cfg->max_logical_supported);
|
|
break;
|
|
default:
|
|
ciss_printf(sc, "error detecting logical drive configuration (%s)\n",
|
|
ciss_name_command_status(command_status));
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
ciss_release_request(cr);
|
|
cr = NULL;
|
|
|
|
out:
|
|
if (cr != NULL)
|
|
ciss_release_request(cr);
|
|
if (error && cll != NULL) {
|
|
free(cll, CISS_MALLOC_CLASS);
|
|
cll = NULL;
|
|
}
|
|
return(cll);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Find logical drives on the adapter.
|
|
*/
|
|
static int
|
|
ciss_init_logical(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_lun_report *cll;
|
|
int error = 0, i, j;
|
|
int ndrives;
|
|
|
|
debug_called(1);
|
|
|
|
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_LOGICAL_LUNS,
|
|
sc->ciss_cfg->max_logical_supported);
|
|
if (cll == NULL) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
/* sanity-check reply */
|
|
ndrives = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
|
|
if ((ndrives < 0) || (ndrives > sc->ciss_cfg->max_logical_supported)) {
|
|
ciss_printf(sc, "adapter claims to report absurd number of logical drives (%d > %d)\n",
|
|
ndrives, sc->ciss_cfg->max_logical_supported);
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Save logical drive information.
|
|
*/
|
|
if (bootverbose) {
|
|
ciss_printf(sc, "%d logical drive%s\n",
|
|
ndrives, (ndrives > 1 || ndrives == 0) ? "s" : "");
|
|
}
|
|
|
|
sc->ciss_logical =
|
|
malloc(sc->ciss_max_logical_bus * sizeof(struct ciss_ldrive *),
|
|
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
|
|
if (sc->ciss_logical == NULL) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i <= sc->ciss_max_logical_bus; i++) {
|
|
sc->ciss_logical[i] =
|
|
malloc(sc->ciss_cfg->max_logical_supported *
|
|
sizeof(struct ciss_ldrive),
|
|
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
|
|
if (sc->ciss_logical[i] == NULL) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++)
|
|
sc->ciss_logical[i][j].cl_status = CISS_LD_NONEXISTENT;
|
|
}
|
|
|
|
|
|
for (i = 0; i < sc->ciss_cfg->max_logical_supported; i++) {
|
|
if (i < ndrives) {
|
|
struct ciss_ldrive *ld;
|
|
int bus, target;
|
|
|
|
bus = CISS_LUN_TO_BUS(cll->lun[i].logical.lun);
|
|
target = CISS_LUN_TO_TARGET(cll->lun[i].logical.lun);
|
|
ld = &sc->ciss_logical[bus][target];
|
|
|
|
ld->cl_address = cll->lun[i];
|
|
ld->cl_controller = &sc->ciss_controllers[bus];
|
|
if (ciss_identify_logical(sc, ld) != 0)
|
|
continue;
|
|
/*
|
|
* If the drive has had media exchanged, we should bring it online.
|
|
*/
|
|
if (ld->cl_lstatus->media_exchanged)
|
|
ciss_accept_media(sc, ld);
|
|
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (cll != NULL)
|
|
free(cll, CISS_MALLOC_CLASS);
|
|
return(error);
|
|
}
|
|
|
|
static int
|
|
ciss_init_physical(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_lun_report *cll;
|
|
int error = 0, i;
|
|
int nphys;
|
|
int bus, target;
|
|
|
|
debug_called(1);
|
|
|
|
bus = 0;
|
|
target = 0;
|
|
|
|
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_PHYSICAL_LUNS,
|
|
sc->ciss_cfg->max_physical_supported);
|
|
if (cll == NULL) {
|
|
error = ENXIO;
|
|
goto out;
|
|
}
|
|
|
|
nphys = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
|
|
|
|
if (bootverbose) {
|
|
ciss_printf(sc, "%d physical device%s\n",
|
|
nphys, (nphys > 1 || nphys == 0) ? "s" : "");
|
|
}
|
|
|
|
/*
|
|
* Figure out the bus mapping.
|
|
* Logical buses include both the local logical bus for local arrays and
|
|
* proxy buses for remote arrays. Physical buses are numbered by the
|
|
* controller and represent physical buses that hold physical devices.
|
|
* We shift these bus numbers so that everything fits into a single flat
|
|
* numbering space for CAM. Logical buses occupy the first 32 CAM bus
|
|
* numbers, and the physical bus numbers are shifted to be above that.
|
|
* This results in the various driver arrays being indexed as follows:
|
|
*
|
|
* ciss_controllers[] - indexed by logical bus
|
|
* ciss_cam_sim[] - indexed by both logical and physical, with physical
|
|
* being shifted by 32.
|
|
* ciss_logical[][] - indexed by logical bus
|
|
* ciss_physical[][] - indexed by physical bus
|
|
*
|
|
* XXX This is getting more and more hackish. CISS really doesn't play
|
|
* well with a standard SCSI model; devices are addressed via magic
|
|
* cookies, not via b/t/l addresses. Since there is no way to store
|
|
* the cookie in the CAM device object, we have to keep these lookup
|
|
* tables handy so that the devices can be found quickly at the cost
|
|
* of wasting memory and having a convoluted lookup scheme. This
|
|
* driver should probably be converted to block interface.
|
|
*/
|
|
/*
|
|
* If the L2 and L3 SCSI addresses are 0, this signifies a proxy
|
|
* controller. A proxy controller is another physical controller
|
|
* behind the primary PCI controller. We need to know about this
|
|
* so that BMIC commands can be properly targeted. There can be
|
|
* proxy controllers attached to a single PCI controller, so
|
|
* find the highest numbered one so the array can be properly
|
|
* sized.
|
|
*/
|
|
sc->ciss_max_logical_bus = 1;
|
|
for (i = 0; i < nphys; i++) {
|
|
if (cll->lun[i].physical.extra_address == 0) {
|
|
bus = cll->lun[i].physical.bus;
|
|
sc->ciss_max_logical_bus = max(sc->ciss_max_logical_bus, bus) + 1;
|
|
} else {
|
|
bus = CISS_EXTRA_BUS2(cll->lun[i].physical.extra_address);
|
|
sc->ciss_max_physical_bus = max(sc->ciss_max_physical_bus, bus);
|
|
}
|
|
}
|
|
|
|
sc->ciss_controllers =
|
|
malloc(sc->ciss_max_logical_bus * sizeof (union ciss_device_address),
|
|
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
|
|
|
|
if (sc->ciss_controllers == NULL) {
|
|
ciss_printf(sc, "Could not allocate memory for controller map\n");
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/* setup a map of controller addresses */
|
|
for (i = 0; i < nphys; i++) {
|
|
if (cll->lun[i].physical.extra_address == 0) {
|
|
sc->ciss_controllers[cll->lun[i].physical.bus] = cll->lun[i];
|
|
}
|
|
}
|
|
|
|
sc->ciss_physical =
|
|
malloc(sc->ciss_max_physical_bus * sizeof(struct ciss_pdrive *),
|
|
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
|
|
if (sc->ciss_physical == NULL) {
|
|
ciss_printf(sc, "Could not allocate memory for physical device map\n");
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < sc->ciss_max_physical_bus; i++) {
|
|
sc->ciss_physical[i] =
|
|
malloc(sizeof(struct ciss_pdrive) * CISS_MAX_PHYSTGT,
|
|
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
|
|
if (sc->ciss_physical[i] == NULL) {
|
|
ciss_printf(sc, "Could not allocate memory for target map\n");
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ciss_filter_physical(sc, cll);
|
|
|
|
out:
|
|
if (cll != NULL)
|
|
free(cll, CISS_MALLOC_CLASS);
|
|
|
|
return(error);
|
|
}
|
|
|
|
static int
|
|
ciss_filter_physical(struct ciss_softc *sc, struct ciss_lun_report *cll)
|
|
{
|
|
u_int32_t ea;
|
|
int i, nphys;
|
|
int bus, target;
|
|
|
|
nphys = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
|
|
for (i = 0; i < nphys; i++) {
|
|
if (cll->lun[i].physical.extra_address == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Filter out devices that we don't want. Level 3 LUNs could
|
|
* probably be supported, but the docs don't give enough of a
|
|
* hint to know how.
|
|
*
|
|
* The mode field of the physical address is likely set to have
|
|
* hard disks masked out. Honor it unless the user has overridden
|
|
* us with the tunable. We also munge the inquiry data for these
|
|
* disks so that they only show up as passthrough devices. Keeping
|
|
* them visible in this fashion is useful for doing things like
|
|
* flashing firmware.
|
|
*/
|
|
ea = cll->lun[i].physical.extra_address;
|
|
if ((CISS_EXTRA_BUS3(ea) != 0) || (CISS_EXTRA_TARGET3(ea) != 0) ||
|
|
(CISS_EXTRA_MODE2(ea) == 0x3))
|
|
continue;
|
|
if ((ciss_expose_hidden_physical == 0) &&
|
|
(cll->lun[i].physical.mode == CISS_HDR_ADDRESS_MODE_MASK_PERIPHERAL))
|
|
continue;
|
|
|
|
/*
|
|
* Note: CISS firmware numbers physical busses starting at '1', not
|
|
* '0'. This numbering is internal to the firmware and is only
|
|
* used as a hint here.
|
|
*/
|
|
bus = CISS_EXTRA_BUS2(ea) - 1;
|
|
target = CISS_EXTRA_TARGET2(ea);
|
|
sc->ciss_physical[bus][target].cp_address = cll->lun[i];
|
|
sc->ciss_physical[bus][target].cp_online = 1;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ciss_inquiry_logical(struct ciss_softc *sc, struct ciss_ldrive *ld)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
struct scsi_inquiry *inq;
|
|
int error;
|
|
int command_status;
|
|
|
|
cr = NULL;
|
|
|
|
bzero(&ld->cl_geometry, sizeof(ld->cl_geometry));
|
|
|
|
if ((error = ciss_get_request(sc, &cr)) != 0)
|
|
goto out;
|
|
|
|
cc = cr->cr_cc;
|
|
cr->cr_data = &ld->cl_geometry;
|
|
cr->cr_length = sizeof(ld->cl_geometry);
|
|
cr->cr_flags = CISS_REQ_DATAIN;
|
|
|
|
cc->header.address = ld->cl_address;
|
|
cc->cdb.cdb_length = 6;
|
|
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
|
|
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
|
|
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
|
|
cc->cdb.timeout = 30;
|
|
|
|
inq = (struct scsi_inquiry *)&(cc->cdb.cdb[0]);
|
|
inq->opcode = INQUIRY;
|
|
inq->byte2 = SI_EVPD;
|
|
inq->page_code = CISS_VPD_LOGICAL_DRIVE_GEOMETRY;
|
|
scsi_ulto2b(sizeof(ld->cl_geometry), inq->length);
|
|
|
|
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
|
|
ciss_printf(sc, "error getting geometry (%d)\n", error);
|
|
goto out;
|
|
}
|
|
|
|
ciss_report_request(cr, &command_status, NULL);
|
|
switch(command_status) {
|
|
case CISS_CMD_STATUS_SUCCESS:
|
|
case CISS_CMD_STATUS_DATA_UNDERRUN:
|
|
break;
|
|
case CISS_CMD_STATUS_DATA_OVERRUN:
|
|
ciss_printf(sc, "WARNING: Data overrun\n");
|
|
break;
|
|
default:
|
|
ciss_printf(sc, "Error detecting logical drive geometry (%s)\n",
|
|
ciss_name_command_status(command_status));
|
|
break;
|
|
}
|
|
|
|
out:
|
|
if (cr != NULL)
|
|
ciss_release_request(cr);
|
|
return(error);
|
|
}
|
|
/************************************************************************
|
|
* Identify a logical drive, initialise state related to it.
|
|
*/
|
|
static int
|
|
ciss_identify_logical(struct ciss_softc *sc, struct ciss_ldrive *ld)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
struct ciss_bmic_cdb *cbc;
|
|
int error, command_status;
|
|
|
|
debug_called(1);
|
|
|
|
cr = NULL;
|
|
|
|
/*
|
|
* Build a BMIC request to fetch the drive ID.
|
|
*/
|
|
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_LDRIVE,
|
|
(void **)&ld->cl_ldrive,
|
|
sizeof(*ld->cl_ldrive))) != 0)
|
|
goto out;
|
|
cc = cr->cr_cc;
|
|
cc->header.address = *ld->cl_controller; /* target controller */
|
|
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
|
|
cbc->log_drive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
|
|
|
|
/*
|
|
* Submit the request and wait for it to complete.
|
|
*/
|
|
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
|
|
ciss_printf(sc, "error sending BMIC LDRIVE command (%d)\n", error);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check response.
|
|
*/
|
|
ciss_report_request(cr, &command_status, NULL);
|
|
switch(command_status) {
|
|
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
|
|
break;
|
|
case CISS_CMD_STATUS_DATA_UNDERRUN:
|
|
case CISS_CMD_STATUS_DATA_OVERRUN:
|
|
ciss_printf(sc, "data over/underrun reading logical drive ID\n");
|
|
default:
|
|
ciss_printf(sc, "error reading logical drive ID (%s)\n",
|
|
ciss_name_command_status(command_status));
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
ciss_release_request(cr);
|
|
cr = NULL;
|
|
|
|
/*
|
|
* Build a CISS BMIC command to get the logical drive status.
|
|
*/
|
|
if ((error = ciss_get_ldrive_status(sc, ld)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Get the logical drive geometry.
|
|
*/
|
|
if ((error = ciss_inquiry_logical(sc, ld)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Print the drive's basic characteristics.
|
|
*/
|
|
if (bootverbose) {
|
|
ciss_printf(sc, "logical drive (b%dt%d): %s, %dMB ",
|
|
CISS_LUN_TO_BUS(ld->cl_address.logical.lun),
|
|
CISS_LUN_TO_TARGET(ld->cl_address.logical.lun),
|
|
ciss_name_ldrive_org(ld->cl_ldrive->fault_tolerance),
|
|
((ld->cl_ldrive->blocks_available / (1024 * 1024)) *
|
|
ld->cl_ldrive->block_size));
|
|
|
|
ciss_print_ldrive(sc, ld);
|
|
}
|
|
out:
|
|
if (error != 0) {
|
|
/* make the drive not-exist */
|
|
ld->cl_status = CISS_LD_NONEXISTENT;
|
|
if (ld->cl_ldrive != NULL) {
|
|
free(ld->cl_ldrive, CISS_MALLOC_CLASS);
|
|
ld->cl_ldrive = NULL;
|
|
}
|
|
if (ld->cl_lstatus != NULL) {
|
|
free(ld->cl_lstatus, CISS_MALLOC_CLASS);
|
|
ld->cl_lstatus = NULL;
|
|
}
|
|
}
|
|
if (cr != NULL)
|
|
ciss_release_request(cr);
|
|
|
|
return(error);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Get status for a logical drive.
|
|
*
|
|
* XXX should we also do this in response to Test Unit Ready?
|
|
*/
|
|
static int
|
|
ciss_get_ldrive_status(struct ciss_softc *sc, struct ciss_ldrive *ld)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
struct ciss_bmic_cdb *cbc;
|
|
int error, command_status;
|
|
|
|
/*
|
|
* Build a CISS BMIC command to get the logical drive status.
|
|
*/
|
|
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_LSTATUS,
|
|
(void **)&ld->cl_lstatus,
|
|
sizeof(*ld->cl_lstatus))) != 0)
|
|
goto out;
|
|
cc = cr->cr_cc;
|
|
cc->header.address = *ld->cl_controller; /* target controller */
|
|
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
|
|
cbc->log_drive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
|
|
|
|
/*
|
|
* Submit the request and wait for it to complete.
|
|
*/
|
|
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
|
|
ciss_printf(sc, "error sending BMIC LSTATUS command (%d)\n", error);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check response.
|
|
*/
|
|
ciss_report_request(cr, &command_status, NULL);
|
|
switch(command_status) {
|
|
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
|
|
break;
|
|
case CISS_CMD_STATUS_DATA_UNDERRUN:
|
|
case CISS_CMD_STATUS_DATA_OVERRUN:
|
|
ciss_printf(sc, "data over/underrun reading logical drive status\n");
|
|
default:
|
|
ciss_printf(sc, "error reading logical drive status (%s)\n",
|
|
ciss_name_command_status(command_status));
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Set the drive's summary status based on the returned status.
|
|
*
|
|
* XXX testing shows that a failed JBOD drive comes back at next
|
|
* boot in "queued for expansion" mode. WTF?
|
|
*/
|
|
ld->cl_status = ciss_decode_ldrive_status(ld->cl_lstatus->status);
|
|
|
|
out:
|
|
if (cr != NULL)
|
|
ciss_release_request(cr);
|
|
return(error);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Notify the adapter of a config update.
|
|
*/
|
|
static int
|
|
ciss_update_config(struct ciss_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
debug_called(1);
|
|
|
|
CISS_TL_SIMPLE_WRITE(sc, CISS_TL_SIMPLE_IDBR, CISS_TL_SIMPLE_IDBR_CFG_TABLE);
|
|
for (i = 0; i < 1000; i++) {
|
|
if (!(CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_IDBR) &
|
|
CISS_TL_SIMPLE_IDBR_CFG_TABLE)) {
|
|
return(0);
|
|
}
|
|
DELAY(1000);
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Accept new media into a logical drive.
|
|
*
|
|
* XXX The drive has previously been offline; it would be good if we
|
|
* could make sure it's not open right now.
|
|
*/
|
|
static int
|
|
ciss_accept_media(struct ciss_softc *sc, struct ciss_ldrive *ld)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
struct ciss_bmic_cdb *cbc;
|
|
int command_status;
|
|
int error = 0, ldrive;
|
|
|
|
ldrive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
|
|
|
|
debug(0, "bringing logical drive %d back online");
|
|
|
|
/*
|
|
* Build a CISS BMIC command to bring the drive back online.
|
|
*/
|
|
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ACCEPT_MEDIA,
|
|
NULL, 0)) != 0)
|
|
goto out;
|
|
cc = cr->cr_cc;
|
|
cc->header.address = *ld->cl_controller; /* target controller */
|
|
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
|
|
cbc->log_drive = ldrive;
|
|
|
|
/*
|
|
* Submit the request and wait for it to complete.
|
|
*/
|
|
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
|
|
ciss_printf(sc, "error sending BMIC ACCEPT MEDIA command (%d)\n", error);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check response.
|
|
*/
|
|
ciss_report_request(cr, &command_status, NULL);
|
|
switch(command_status) {
|
|
case CISS_CMD_STATUS_SUCCESS: /* all OK */
|
|
/* we should get a logical drive status changed event here */
|
|
break;
|
|
default:
|
|
ciss_printf(cr->cr_sc, "error accepting media into failed logical drive (%s)\n",
|
|
ciss_name_command_status(command_status));
|
|
break;
|
|
}
|
|
|
|
out:
|
|
if (cr != NULL)
|
|
ciss_release_request(cr);
|
|
return(error);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Release adapter resources.
|
|
*/
|
|
static void
|
|
ciss_free(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_request *cr;
|
|
int i, j;
|
|
|
|
debug_called(1);
|
|
|
|
/* we're going away */
|
|
sc->ciss_flags |= CISS_FLAG_ABORTING;
|
|
|
|
/* terminate the periodic heartbeat routine */
|
|
callout_stop(&sc->ciss_periodic);
|
|
|
|
/* cancel the Event Notify chain */
|
|
ciss_notify_abort(sc);
|
|
|
|
ciss_kill_notify_thread(sc);
|
|
|
|
/* disconnect from CAM */
|
|
if (sc->ciss_cam_sim) {
|
|
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
|
|
if (sc->ciss_cam_sim[i]) {
|
|
xpt_bus_deregister(cam_sim_path(sc->ciss_cam_sim[i]));
|
|
cam_sim_free(sc->ciss_cam_sim[i], 0);
|
|
}
|
|
}
|
|
for (i = CISS_PHYSICAL_BASE; i < sc->ciss_max_physical_bus +
|
|
CISS_PHYSICAL_BASE; i++) {
|
|
if (sc->ciss_cam_sim[i]) {
|
|
xpt_bus_deregister(cam_sim_path(sc->ciss_cam_sim[i]));
|
|
cam_sim_free(sc->ciss_cam_sim[i], 0);
|
|
}
|
|
}
|
|
free(sc->ciss_cam_sim, CISS_MALLOC_CLASS);
|
|
}
|
|
if (sc->ciss_cam_devq)
|
|
cam_simq_free(sc->ciss_cam_devq);
|
|
|
|
/* remove the control device */
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
if (sc->ciss_dev_t != NULL)
|
|
destroy_dev(sc->ciss_dev_t);
|
|
|
|
/* Final cleanup of the callout. */
|
|
callout_drain(&sc->ciss_periodic);
|
|
mtx_destroy(&sc->ciss_mtx);
|
|
|
|
/* free the controller data */
|
|
if (sc->ciss_id != NULL)
|
|
free(sc->ciss_id, CISS_MALLOC_CLASS);
|
|
|
|
/* release I/O resources */
|
|
if (sc->ciss_regs_resource != NULL)
|
|
bus_release_resource(sc->ciss_dev, SYS_RES_MEMORY,
|
|
sc->ciss_regs_rid, sc->ciss_regs_resource);
|
|
if (sc->ciss_cfg_resource != NULL)
|
|
bus_release_resource(sc->ciss_dev, SYS_RES_MEMORY,
|
|
sc->ciss_cfg_rid, sc->ciss_cfg_resource);
|
|
if (sc->ciss_intr != NULL)
|
|
bus_teardown_intr(sc->ciss_dev, sc->ciss_irq_resource, sc->ciss_intr);
|
|
if (sc->ciss_irq_resource != NULL)
|
|
bus_release_resource(sc->ciss_dev, SYS_RES_IRQ,
|
|
sc->ciss_irq_rid[0], sc->ciss_irq_resource);
|
|
if (sc->ciss_msi)
|
|
pci_release_msi(sc->ciss_dev);
|
|
|
|
while ((cr = ciss_dequeue_free(sc)) != NULL)
|
|
bus_dmamap_destroy(sc->ciss_buffer_dmat, cr->cr_datamap);
|
|
if (sc->ciss_buffer_dmat)
|
|
bus_dma_tag_destroy(sc->ciss_buffer_dmat);
|
|
|
|
/* destroy command memory and DMA tag */
|
|
if (sc->ciss_command != NULL) {
|
|
bus_dmamap_unload(sc->ciss_command_dmat, sc->ciss_command_map);
|
|
bus_dmamem_free(sc->ciss_command_dmat, sc->ciss_command, sc->ciss_command_map);
|
|
}
|
|
if (sc->ciss_command_dmat)
|
|
bus_dma_tag_destroy(sc->ciss_command_dmat);
|
|
|
|
if (sc->ciss_reply) {
|
|
bus_dmamap_unload(sc->ciss_reply_dmat, sc->ciss_reply_map);
|
|
bus_dmamem_free(sc->ciss_reply_dmat, sc->ciss_reply, sc->ciss_reply_map);
|
|
}
|
|
if (sc->ciss_reply_dmat)
|
|
bus_dma_tag_destroy(sc->ciss_reply_dmat);
|
|
|
|
/* destroy DMA tags */
|
|
if (sc->ciss_parent_dmat)
|
|
bus_dma_tag_destroy(sc->ciss_parent_dmat);
|
|
if (sc->ciss_logical) {
|
|
for (i = 0; i <= sc->ciss_max_logical_bus; i++) {
|
|
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) {
|
|
if (sc->ciss_logical[i][j].cl_ldrive)
|
|
free(sc->ciss_logical[i][j].cl_ldrive, CISS_MALLOC_CLASS);
|
|
if (sc->ciss_logical[i][j].cl_lstatus)
|
|
free(sc->ciss_logical[i][j].cl_lstatus, CISS_MALLOC_CLASS);
|
|
}
|
|
free(sc->ciss_logical[i], CISS_MALLOC_CLASS);
|
|
}
|
|
free(sc->ciss_logical, CISS_MALLOC_CLASS);
|
|
}
|
|
|
|
if (sc->ciss_physical) {
|
|
for (i = 0; i < sc->ciss_max_physical_bus; i++)
|
|
free(sc->ciss_physical[i], CISS_MALLOC_CLASS);
|
|
free(sc->ciss_physical, CISS_MALLOC_CLASS);
|
|
}
|
|
|
|
if (sc->ciss_controllers)
|
|
free(sc->ciss_controllers, CISS_MALLOC_CLASS);
|
|
|
|
}
|
|
|
|
/************************************************************************
|
|
* Give a command to the adapter.
|
|
*
|
|
* Note that this uses the simple transport layer directly. If we
|
|
* want to add support for other layers, we'll need a switch of some
|
|
* sort.
|
|
*
|
|
* Note that the simple transport layer has no way of refusing a
|
|
* command; we only have as many request structures as the adapter
|
|
* supports commands, so we don't have to check (this presumes that
|
|
* the adapter can handle commands as fast as we throw them at it).
|
|
*/
|
|
static int
|
|
ciss_start(struct ciss_request *cr)
|
|
{
|
|
struct ciss_command *cc; /* XXX debugging only */
|
|
int error;
|
|
|
|
cc = cr->cr_cc;
|
|
debug(2, "post command %d tag %d ", cr->cr_tag, cc->header.host_tag);
|
|
|
|
/*
|
|
* Map the request's data.
|
|
*/
|
|
if ((error = ciss_map_request(cr)))
|
|
return(error);
|
|
|
|
#if 0
|
|
ciss_print_request(cr);
|
|
#endif
|
|
|
|
return(0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Fetch completed request(s) from the adapter, queue them for
|
|
* completion handling.
|
|
*
|
|
* Note that this uses the simple transport layer directly. If we
|
|
* want to add support for other layers, we'll need a switch of some
|
|
* sort.
|
|
*
|
|
* Note that the simple transport mechanism does not require any
|
|
* reentrancy protection; the OPQ read is atomic. If there is a
|
|
* chance of a race with something else that might move the request
|
|
* off the busy list, then we will have to lock against that
|
|
* (eg. timeouts, etc.)
|
|
*/
|
|
static void
|
|
ciss_done(struct ciss_softc *sc, cr_qhead_t *qh)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
u_int32_t tag, index;
|
|
|
|
debug_called(3);
|
|
|
|
/*
|
|
* Loop quickly taking requests from the adapter and moving them
|
|
* to the completed queue.
|
|
*/
|
|
for (;;) {
|
|
|
|
tag = CISS_TL_SIMPLE_FETCH_CMD(sc);
|
|
if (tag == CISS_TL_SIMPLE_OPQ_EMPTY)
|
|
break;
|
|
index = tag >> 2;
|
|
debug(2, "completed command %d%s", index,
|
|
(tag & CISS_HDR_HOST_TAG_ERROR) ? " with error" : "");
|
|
if (index >= sc->ciss_max_requests) {
|
|
ciss_printf(sc, "completed invalid request %d (0x%x)\n", index, tag);
|
|
continue;
|
|
}
|
|
cr = &(sc->ciss_request[index]);
|
|
cc = cr->cr_cc;
|
|
cc->header.host_tag = tag; /* not updated by adapter */
|
|
ciss_enqueue_complete(cr, qh);
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
ciss_perf_done(struct ciss_softc *sc, cr_qhead_t *qh)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
u_int32_t tag, index;
|
|
|
|
debug_called(3);
|
|
|
|
/*
|
|
* Loop quickly taking requests from the adapter and moving them
|
|
* to the completed queue.
|
|
*/
|
|
for (;;) {
|
|
tag = sc->ciss_reply[sc->ciss_rqidx];
|
|
if ((tag & CISS_CYCLE_MASK) != sc->ciss_cycle)
|
|
break;
|
|
index = tag >> 2;
|
|
debug(2, "completed command %d%s\n", index,
|
|
(tag & CISS_HDR_HOST_TAG_ERROR) ? " with error" : "");
|
|
if (index < sc->ciss_max_requests) {
|
|
cr = &(sc->ciss_request[index]);
|
|
cc = cr->cr_cc;
|
|
cc->header.host_tag = tag; /* not updated by adapter */
|
|
ciss_enqueue_complete(cr, qh);
|
|
} else {
|
|
ciss_printf(sc, "completed invalid request %d (0x%x)\n", index, tag);
|
|
}
|
|
if (++sc->ciss_rqidx == sc->ciss_max_requests) {
|
|
sc->ciss_rqidx = 0;
|
|
sc->ciss_cycle ^= 1;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/************************************************************************
|
|
* Take an interrupt from the adapter.
|
|
*/
|
|
static void
|
|
ciss_intr(void *arg)
|
|
{
|
|
cr_qhead_t qh;
|
|
struct ciss_softc *sc = (struct ciss_softc *)arg;
|
|
|
|
/*
|
|
* The only interrupt we recognise indicates that there are
|
|
* entries in the outbound post queue.
|
|
*/
|
|
STAILQ_INIT(&qh);
|
|
ciss_done(sc, &qh);
|
|
mtx_lock(&sc->ciss_mtx);
|
|
ciss_complete(sc, &qh);
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
}
|
|
|
|
static void
|
|
ciss_perf_intr(void *arg)
|
|
{
|
|
struct ciss_softc *sc = (struct ciss_softc *)arg;
|
|
|
|
/* Clear the interrupt and flush the bridges. Docs say that the flush
|
|
* needs to be done twice, which doesn't seem right.
|
|
*/
|
|
CISS_TL_PERF_CLEAR_INT(sc);
|
|
CISS_TL_PERF_FLUSH_INT(sc);
|
|
|
|
ciss_perf_msi_intr(sc);
|
|
}
|
|
|
|
static void
|
|
ciss_perf_msi_intr(void *arg)
|
|
{
|
|
cr_qhead_t qh;
|
|
struct ciss_softc *sc = (struct ciss_softc *)arg;
|
|
|
|
STAILQ_INIT(&qh);
|
|
ciss_perf_done(sc, &qh);
|
|
mtx_lock(&sc->ciss_mtx);
|
|
ciss_complete(sc, &qh);
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
}
|
|
|
|
|
|
/************************************************************************
|
|
* Process completed requests.
|
|
*
|
|
* Requests can be completed in three fashions:
|
|
*
|
|
* - by invoking a callback function (cr_complete is non-null)
|
|
* - by waking up a sleeper (cr_flags has CISS_REQ_SLEEP set)
|
|
* - by clearing the CISS_REQ_POLL flag in interrupt/timeout context
|
|
*/
|
|
static void
|
|
ciss_complete(struct ciss_softc *sc, cr_qhead_t *qh)
|
|
{
|
|
struct ciss_request *cr;
|
|
|
|
debug_called(2);
|
|
|
|
/*
|
|
* Loop taking requests off the completed queue and performing
|
|
* completion processing on them.
|
|
*/
|
|
for (;;) {
|
|
if ((cr = ciss_dequeue_complete(sc, qh)) == NULL)
|
|
break;
|
|
ciss_unmap_request(cr);
|
|
|
|
if ((cr->cr_flags & CISS_REQ_BUSY) == 0)
|
|
ciss_printf(sc, "WARNING: completing non-busy request\n");
|
|
cr->cr_flags &= ~CISS_REQ_BUSY;
|
|
|
|
/*
|
|
* If the request has a callback, invoke it.
|
|
*/
|
|
if (cr->cr_complete != NULL) {
|
|
cr->cr_complete(cr);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If someone is sleeping on this request, wake them up.
|
|
*/
|
|
if (cr->cr_flags & CISS_REQ_SLEEP) {
|
|
cr->cr_flags &= ~CISS_REQ_SLEEP;
|
|
wakeup(cr);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If someone is polling this request for completion, signal.
|
|
*/
|
|
if (cr->cr_flags & CISS_REQ_POLL) {
|
|
cr->cr_flags &= ~CISS_REQ_POLL;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Give up and throw the request back on the free queue. This
|
|
* should never happen; resources will probably be lost.
|
|
*/
|
|
ciss_printf(sc, "WARNING: completed command with no submitter\n");
|
|
ciss_enqueue_free(cr);
|
|
}
|
|
}
|
|
|
|
/************************************************************************
|
|
* Report on the completion status of a request, and pass back SCSI
|
|
* and command status values.
|
|
*/
|
|
static int
|
|
_ciss_report_request(struct ciss_request *cr, int *command_status, int *scsi_status, const char *func)
|
|
{
|
|
struct ciss_command *cc;
|
|
struct ciss_error_info *ce;
|
|
|
|
debug_called(2);
|
|
|
|
cc = cr->cr_cc;
|
|
ce = (struct ciss_error_info *)&(cc->sg[0]);
|
|
|
|
/*
|
|
* We don't consider data under/overrun an error for the Report
|
|
* Logical/Physical LUNs commands.
|
|
*/
|
|
if ((cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) &&
|
|
((ce->command_status == CISS_CMD_STATUS_DATA_OVERRUN) ||
|
|
(ce->command_status == CISS_CMD_STATUS_DATA_UNDERRUN)) &&
|
|
((cc->cdb.cdb[0] == CISS_OPCODE_REPORT_LOGICAL_LUNS) ||
|
|
(cc->cdb.cdb[0] == CISS_OPCODE_REPORT_PHYSICAL_LUNS) ||
|
|
(cc->cdb.cdb[0] == INQUIRY))) {
|
|
cc->header.host_tag &= ~CISS_HDR_HOST_TAG_ERROR;
|
|
debug(2, "ignoring irrelevant under/overrun error");
|
|
}
|
|
|
|
/*
|
|
* Check the command's error bit, if clear, there's no status and
|
|
* everything is OK.
|
|
*/
|
|
if (!(cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR)) {
|
|
if (scsi_status != NULL)
|
|
*scsi_status = SCSI_STATUS_OK;
|
|
if (command_status != NULL)
|
|
*command_status = CISS_CMD_STATUS_SUCCESS;
|
|
return(0);
|
|
} else {
|
|
if (command_status != NULL)
|
|
*command_status = ce->command_status;
|
|
if (scsi_status != NULL) {
|
|
if (ce->command_status == CISS_CMD_STATUS_TARGET_STATUS) {
|
|
*scsi_status = ce->scsi_status;
|
|
} else {
|
|
*scsi_status = -1;
|
|
}
|
|
}
|
|
if (bootverbose)
|
|
ciss_printf(cr->cr_sc, "command status 0x%x (%s) scsi status 0x%x\n",
|
|
ce->command_status, ciss_name_command_status(ce->command_status),
|
|
ce->scsi_status);
|
|
if (ce->command_status == CISS_CMD_STATUS_INVALID_COMMAND) {
|
|
ciss_printf(cr->cr_sc, "invalid command, offense size %d at %d, value 0x%x, function %s\n",
|
|
ce->additional_error_info.invalid_command.offense_size,
|
|
ce->additional_error_info.invalid_command.offense_offset,
|
|
ce->additional_error_info.invalid_command.offense_value,
|
|
func);
|
|
}
|
|
}
|
|
#if 0
|
|
ciss_print_request(cr);
|
|
#endif
|
|
return(1);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Issue a request and don't return until it's completed.
|
|
*
|
|
* Depending on adapter status, we may poll or sleep waiting for
|
|
* completion.
|
|
*/
|
|
static int
|
|
ciss_synch_request(struct ciss_request *cr, int timeout)
|
|
{
|
|
if (cr->cr_sc->ciss_flags & CISS_FLAG_RUNNING) {
|
|
return(ciss_wait_request(cr, timeout));
|
|
} else {
|
|
return(ciss_poll_request(cr, timeout));
|
|
}
|
|
}
|
|
|
|
/************************************************************************
|
|
* Issue a request and poll for completion.
|
|
*
|
|
* Timeout in milliseconds.
|
|
*/
|
|
static int
|
|
ciss_poll_request(struct ciss_request *cr, int timeout)
|
|
{
|
|
cr_qhead_t qh;
|
|
struct ciss_softc *sc;
|
|
int error;
|
|
|
|
debug_called(2);
|
|
|
|
STAILQ_INIT(&qh);
|
|
sc = cr->cr_sc;
|
|
cr->cr_flags |= CISS_REQ_POLL;
|
|
if ((error = ciss_start(cr)) != 0)
|
|
return(error);
|
|
|
|
do {
|
|
if (sc->ciss_perf)
|
|
ciss_perf_done(sc, &qh);
|
|
else
|
|
ciss_done(sc, &qh);
|
|
ciss_complete(sc, &qh);
|
|
if (!(cr->cr_flags & CISS_REQ_POLL))
|
|
return(0);
|
|
DELAY(1000);
|
|
} while (timeout-- >= 0);
|
|
return(EWOULDBLOCK);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Issue a request and sleep waiting for completion.
|
|
*
|
|
* Timeout in milliseconds. Note that a spurious wakeup will reset
|
|
* the timeout.
|
|
*/
|
|
static int
|
|
ciss_wait_request(struct ciss_request *cr, int timeout)
|
|
{
|
|
int error;
|
|
|
|
debug_called(2);
|
|
|
|
cr->cr_flags |= CISS_REQ_SLEEP;
|
|
if ((error = ciss_start(cr)) != 0)
|
|
return(error);
|
|
|
|
while ((cr->cr_flags & CISS_REQ_SLEEP) && (error != EWOULDBLOCK)) {
|
|
error = msleep(cr, &cr->cr_sc->ciss_mtx, PRIBIO, "cissREQ", (timeout * hz) / 1000);
|
|
}
|
|
return(error);
|
|
}
|
|
|
|
#if 0
|
|
/************************************************************************
|
|
* Abort a request. Note that a potential exists here to race the
|
|
* request being completed; the caller must deal with this.
|
|
*/
|
|
static int
|
|
ciss_abort_request(struct ciss_request *ar)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
struct ciss_message_cdb *cmc;
|
|
int error;
|
|
|
|
debug_called(1);
|
|
|
|
/* get a request */
|
|
if ((error = ciss_get_request(ar->cr_sc, &cr)) != 0)
|
|
return(error);
|
|
|
|
/* build the abort command */
|
|
cc = cr->cr_cc;
|
|
cc->header.address.mode.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL; /* addressing? */
|
|
cc->header.address.physical.target = 0;
|
|
cc->header.address.physical.bus = 0;
|
|
cc->cdb.cdb_length = sizeof(*cmc);
|
|
cc->cdb.type = CISS_CDB_TYPE_MESSAGE;
|
|
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
|
|
cc->cdb.direction = CISS_CDB_DIRECTION_NONE;
|
|
cc->cdb.timeout = 30;
|
|
|
|
cmc = (struct ciss_message_cdb *)&(cc->cdb.cdb[0]);
|
|
cmc->opcode = CISS_OPCODE_MESSAGE_ABORT;
|
|
cmc->type = CISS_MESSAGE_ABORT_TASK;
|
|
cmc->abort_tag = ar->cr_tag; /* endianness?? */
|
|
|
|
/*
|
|
* Send the request and wait for a response. If we believe we
|
|
* aborted the request OK, clear the flag that indicates it's
|
|
* running.
|
|
*/
|
|
error = ciss_synch_request(cr, 35 * 1000);
|
|
if (!error)
|
|
error = ciss_report_request(cr, NULL, NULL);
|
|
ciss_release_request(cr);
|
|
|
|
return(error);
|
|
}
|
|
#endif
|
|
|
|
|
|
/************************************************************************
|
|
* Fetch and initialise a request
|
|
*/
|
|
static int
|
|
ciss_get_request(struct ciss_softc *sc, struct ciss_request **crp)
|
|
{
|
|
struct ciss_request *cr;
|
|
|
|
debug_called(2);
|
|
|
|
/*
|
|
* Get a request and clean it up.
|
|
*/
|
|
if ((cr = ciss_dequeue_free(sc)) == NULL)
|
|
return(ENOMEM);
|
|
|
|
cr->cr_data = NULL;
|
|
cr->cr_flags = 0;
|
|
cr->cr_complete = NULL;
|
|
cr->cr_private = NULL;
|
|
cr->cr_sg_tag = CISS_SG_MAX; /* Backstop to prevent accidents */
|
|
|
|
ciss_preen_command(cr);
|
|
*crp = cr;
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
ciss_preen_command(struct ciss_request *cr)
|
|
{
|
|
struct ciss_command *cc;
|
|
u_int32_t cmdphys;
|
|
|
|
/*
|
|
* Clean up the command structure.
|
|
*
|
|
* Note that we set up the error_info structure here, since the
|
|
* length can be overwritten by any command.
|
|
*/
|
|
cc = cr->cr_cc;
|
|
cc->header.sg_in_list = 0; /* kinda inefficient this way */
|
|
cc->header.sg_total = 0;
|
|
cc->header.host_tag = cr->cr_tag << 2;
|
|
cc->header.host_tag_zeroes = 0;
|
|
cmdphys = cr->cr_ccphys;
|
|
cc->error_info.error_info_address = cmdphys + sizeof(struct ciss_command);
|
|
cc->error_info.error_info_length = CISS_COMMAND_ALLOC_SIZE - sizeof(struct ciss_command);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Release a request to the free list.
|
|
*/
|
|
static void
|
|
ciss_release_request(struct ciss_request *cr)
|
|
{
|
|
struct ciss_softc *sc;
|
|
|
|
debug_called(2);
|
|
|
|
sc = cr->cr_sc;
|
|
|
|
/* release the request to the free queue */
|
|
ciss_requeue_free(cr);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Allocate a request that will be used to send a BMIC command. Do some
|
|
* of the common setup here to avoid duplicating it everywhere else.
|
|
*/
|
|
static int
|
|
ciss_get_bmic_request(struct ciss_softc *sc, struct ciss_request **crp,
|
|
int opcode, void **bufp, size_t bufsize)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
struct ciss_bmic_cdb *cbc;
|
|
void *buf;
|
|
int error;
|
|
int dataout;
|
|
|
|
debug_called(2);
|
|
|
|
cr = NULL;
|
|
buf = NULL;
|
|
|
|
/*
|
|
* Get a request.
|
|
*/
|
|
if ((error = ciss_get_request(sc, &cr)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Allocate data storage if requested, determine the data direction.
|
|
*/
|
|
dataout = 0;
|
|
if ((bufsize > 0) && (bufp != NULL)) {
|
|
if (*bufp == NULL) {
|
|
if ((buf = malloc(bufsize, CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
} else {
|
|
buf = *bufp;
|
|
dataout = 1; /* we are given a buffer, so we are writing */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a CISS BMIC command to get the logical drive ID.
|
|
*/
|
|
cr->cr_data = buf;
|
|
cr->cr_length = bufsize;
|
|
if (!dataout)
|
|
cr->cr_flags = CISS_REQ_DATAIN;
|
|
|
|
cc = cr->cr_cc;
|
|
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
|
|
cc->header.address.physical.bus = 0;
|
|
cc->header.address.physical.target = 0;
|
|
cc->cdb.cdb_length = sizeof(*cbc);
|
|
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
|
|
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
|
|
cc->cdb.direction = dataout ? CISS_CDB_DIRECTION_WRITE : CISS_CDB_DIRECTION_READ;
|
|
cc->cdb.timeout = 0;
|
|
|
|
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
|
|
bzero(cbc, sizeof(*cbc));
|
|
cbc->opcode = dataout ? CISS_ARRAY_CONTROLLER_WRITE : CISS_ARRAY_CONTROLLER_READ;
|
|
cbc->bmic_opcode = opcode;
|
|
cbc->size = htons((u_int16_t)bufsize);
|
|
|
|
out:
|
|
if (error) {
|
|
if (cr != NULL)
|
|
ciss_release_request(cr);
|
|
} else {
|
|
*crp = cr;
|
|
if ((bufp != NULL) && (*bufp == NULL) && (buf != NULL))
|
|
*bufp = buf;
|
|
}
|
|
return(error);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Handle a command passed in from userspace.
|
|
*/
|
|
static int
|
|
ciss_user_command(struct ciss_softc *sc, IOCTL_Command_struct *ioc)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
struct ciss_error_info *ce;
|
|
int error = 0;
|
|
|
|
debug_called(1);
|
|
|
|
cr = NULL;
|
|
|
|
/*
|
|
* Get a request.
|
|
*/
|
|
while (ciss_get_request(sc, &cr) != 0)
|
|
msleep(sc, &sc->ciss_mtx, PPAUSE, "cissREQ", hz);
|
|
cc = cr->cr_cc;
|
|
|
|
/*
|
|
* Allocate an in-kernel databuffer if required, copy in user data.
|
|
*/
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
cr->cr_length = ioc->buf_size;
|
|
if (ioc->buf_size > 0) {
|
|
if ((cr->cr_data = malloc(ioc->buf_size, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) {
|
|
error = ENOMEM;
|
|
goto out_unlocked;
|
|
}
|
|
if ((error = copyin(ioc->buf, cr->cr_data, ioc->buf_size))) {
|
|
debug(0, "copyin: bad data buffer %p/%d", ioc->buf, ioc->buf_size);
|
|
goto out_unlocked;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build the request based on the user command.
|
|
*/
|
|
bcopy(&ioc->LUN_info, &cc->header.address, sizeof(cc->header.address));
|
|
bcopy(&ioc->Request, &cc->cdb, sizeof(cc->cdb));
|
|
|
|
/* XXX anything else to populate here? */
|
|
mtx_lock(&sc->ciss_mtx);
|
|
|
|
/*
|
|
* Run the command.
|
|
*/
|
|
if ((error = ciss_synch_request(cr, 60 * 1000))) {
|
|
debug(0, "request failed - %d", error);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check to see if the command succeeded.
|
|
*/
|
|
ce = (struct ciss_error_info *)&(cc->sg[0]);
|
|
if ((cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) == 0)
|
|
bzero(ce, sizeof(*ce));
|
|
|
|
/*
|
|
* Copy the results back to the user.
|
|
*/
|
|
bcopy(ce, &ioc->error_info, sizeof(*ce));
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
if ((ioc->buf_size > 0) &&
|
|
(error = copyout(cr->cr_data, ioc->buf, ioc->buf_size))) {
|
|
debug(0, "copyout: bad data buffer %p/%d", ioc->buf, ioc->buf_size);
|
|
goto out_unlocked;
|
|
}
|
|
|
|
/* done OK */
|
|
error = 0;
|
|
|
|
out_unlocked:
|
|
mtx_lock(&sc->ciss_mtx);
|
|
|
|
out:
|
|
if ((cr != NULL) && (cr->cr_data != NULL))
|
|
free(cr->cr_data, CISS_MALLOC_CLASS);
|
|
if (cr != NULL)
|
|
ciss_release_request(cr);
|
|
return(error);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Map a request into bus-visible space, initialise the scatter/gather
|
|
* list.
|
|
*/
|
|
static int
|
|
ciss_map_request(struct ciss_request *cr)
|
|
{
|
|
struct ciss_softc *sc;
|
|
int error = 0;
|
|
|
|
debug_called(2);
|
|
|
|
sc = cr->cr_sc;
|
|
|
|
/* check that mapping is necessary */
|
|
if (cr->cr_flags & CISS_REQ_MAPPED)
|
|
return(0);
|
|
|
|
cr->cr_flags |= CISS_REQ_MAPPED;
|
|
|
|
bus_dmamap_sync(sc->ciss_command_dmat, sc->ciss_command_map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
if (cr->cr_data != NULL) {
|
|
if (cr->cr_flags & CISS_REQ_CCB)
|
|
error = bus_dmamap_load_ccb(sc->ciss_buffer_dmat,
|
|
cr->cr_datamap, cr->cr_data,
|
|
ciss_request_map_helper, cr, 0);
|
|
else
|
|
error = bus_dmamap_load(sc->ciss_buffer_dmat, cr->cr_datamap,
|
|
cr->cr_data, cr->cr_length,
|
|
ciss_request_map_helper, cr, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
} else {
|
|
/*
|
|
* Post the command to the adapter.
|
|
*/
|
|
cr->cr_sg_tag = CISS_SG_NONE;
|
|
cr->cr_flags |= CISS_REQ_BUSY;
|
|
if (sc->ciss_perf)
|
|
CISS_TL_PERF_POST_CMD(sc, cr);
|
|
else
|
|
CISS_TL_SIMPLE_POST_CMD(sc, cr->cr_ccphys);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
ciss_request_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct ciss_command *cc;
|
|
struct ciss_request *cr;
|
|
struct ciss_softc *sc;
|
|
int i;
|
|
|
|
debug_called(2);
|
|
|
|
cr = (struct ciss_request *)arg;
|
|
sc = cr->cr_sc;
|
|
cc = cr->cr_cc;
|
|
|
|
for (i = 0; i < nseg; i++) {
|
|
cc->sg[i].address = segs[i].ds_addr;
|
|
cc->sg[i].length = segs[i].ds_len;
|
|
cc->sg[i].extension = 0;
|
|
}
|
|
/* we leave the s/g table entirely within the command */
|
|
cc->header.sg_in_list = nseg;
|
|
cc->header.sg_total = nseg;
|
|
|
|
if (cr->cr_flags & CISS_REQ_DATAIN)
|
|
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_PREREAD);
|
|
if (cr->cr_flags & CISS_REQ_DATAOUT)
|
|
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_PREWRITE);
|
|
|
|
if (nseg == 0)
|
|
cr->cr_sg_tag = CISS_SG_NONE;
|
|
else if (nseg == 1)
|
|
cr->cr_sg_tag = CISS_SG_1;
|
|
else if (nseg == 2)
|
|
cr->cr_sg_tag = CISS_SG_2;
|
|
else if (nseg <= 4)
|
|
cr->cr_sg_tag = CISS_SG_4;
|
|
else if (nseg <= 8)
|
|
cr->cr_sg_tag = CISS_SG_8;
|
|
else if (nseg <= 16)
|
|
cr->cr_sg_tag = CISS_SG_16;
|
|
else if (nseg <= 32)
|
|
cr->cr_sg_tag = CISS_SG_32;
|
|
else
|
|
cr->cr_sg_tag = CISS_SG_MAX;
|
|
|
|
/*
|
|
* Post the command to the adapter.
|
|
*/
|
|
cr->cr_flags |= CISS_REQ_BUSY;
|
|
if (sc->ciss_perf)
|
|
CISS_TL_PERF_POST_CMD(sc, cr);
|
|
else
|
|
CISS_TL_SIMPLE_POST_CMD(sc, cr->cr_ccphys);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Unmap a request from bus-visible space.
|
|
*/
|
|
static void
|
|
ciss_unmap_request(struct ciss_request *cr)
|
|
{
|
|
struct ciss_softc *sc;
|
|
|
|
debug_called(2);
|
|
|
|
sc = cr->cr_sc;
|
|
|
|
/* check that unmapping is necessary */
|
|
if ((cr->cr_flags & CISS_REQ_MAPPED) == 0)
|
|
return;
|
|
|
|
bus_dmamap_sync(sc->ciss_command_dmat, sc->ciss_command_map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
|
|
if (cr->cr_data == NULL)
|
|
goto out;
|
|
|
|
if (cr->cr_flags & CISS_REQ_DATAIN)
|
|
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_POSTREAD);
|
|
if (cr->cr_flags & CISS_REQ_DATAOUT)
|
|
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_POSTWRITE);
|
|
|
|
bus_dmamap_unload(sc->ciss_buffer_dmat, cr->cr_datamap);
|
|
out:
|
|
cr->cr_flags &= ~CISS_REQ_MAPPED;
|
|
}
|
|
|
|
/************************************************************************
|
|
* Attach the driver to CAM.
|
|
*
|
|
* We put all the logical drives on a single SCSI bus.
|
|
*/
|
|
static int
|
|
ciss_cam_init(struct ciss_softc *sc)
|
|
{
|
|
int i, maxbus;
|
|
|
|
debug_called(1);
|
|
|
|
/*
|
|
* Allocate a devq. We can reuse this for the masked physical
|
|
* devices if we decide to export these as well.
|
|
*/
|
|
if ((sc->ciss_cam_devq = cam_simq_alloc(sc->ciss_max_requests - 2)) == NULL) {
|
|
ciss_printf(sc, "can't allocate CAM SIM queue\n");
|
|
return(ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Create a SIM.
|
|
*
|
|
* This naturally wastes a bit of memory. The alternative is to allocate
|
|
* and register each bus as it is found, and then track them on a linked
|
|
* list. Unfortunately, the driver has a few places where it needs to
|
|
* look up the SIM based solely on bus number, and it's unclear whether
|
|
* a list traversal would work for these situations.
|
|
*/
|
|
maxbus = max(sc->ciss_max_logical_bus, sc->ciss_max_physical_bus +
|
|
CISS_PHYSICAL_BASE);
|
|
sc->ciss_cam_sim = malloc(maxbus * sizeof(struct cam_sim*),
|
|
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
|
|
if (sc->ciss_cam_sim == NULL) {
|
|
ciss_printf(sc, "can't allocate memory for controller SIM\n");
|
|
return(ENOMEM);
|
|
}
|
|
|
|
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
|
|
if ((sc->ciss_cam_sim[i] = cam_sim_alloc(ciss_cam_action, ciss_cam_poll,
|
|
"ciss", sc,
|
|
device_get_unit(sc->ciss_dev),
|
|
&sc->ciss_mtx,
|
|
2,
|
|
sc->ciss_max_requests - 2,
|
|
sc->ciss_cam_devq)) == NULL) {
|
|
ciss_printf(sc, "can't allocate CAM SIM for controller %d\n", i);
|
|
return(ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Register bus with this SIM.
|
|
*/
|
|
mtx_lock(&sc->ciss_mtx);
|
|
if (i == 0 || sc->ciss_controllers[i].physical.bus != 0) {
|
|
if (xpt_bus_register(sc->ciss_cam_sim[i], sc->ciss_dev, i) != 0) {
|
|
ciss_printf(sc, "can't register SCSI bus %d\n", i);
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
}
|
|
|
|
for (i = CISS_PHYSICAL_BASE; i < sc->ciss_max_physical_bus +
|
|
CISS_PHYSICAL_BASE; i++) {
|
|
if ((sc->ciss_cam_sim[i] = cam_sim_alloc(ciss_cam_action, ciss_cam_poll,
|
|
"ciss", sc,
|
|
device_get_unit(sc->ciss_dev),
|
|
&sc->ciss_mtx, 1,
|
|
sc->ciss_max_requests - 2,
|
|
sc->ciss_cam_devq)) == NULL) {
|
|
ciss_printf(sc, "can't allocate CAM SIM for controller %d\n", i);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
mtx_lock(&sc->ciss_mtx);
|
|
if (xpt_bus_register(sc->ciss_cam_sim[i], sc->ciss_dev, i) != 0) {
|
|
ciss_printf(sc, "can't register SCSI bus %d\n", i);
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
return (ENXIO);
|
|
}
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Initiate a rescan of the 'logical devices' SIM
|
|
*/
|
|
static void
|
|
ciss_cam_rescan_target(struct ciss_softc *sc, int bus, int target)
|
|
{
|
|
union ccb *ccb;
|
|
|
|
debug_called(1);
|
|
|
|
if ((ccb = xpt_alloc_ccb_nowait()) == NULL) {
|
|
ciss_printf(sc, "rescan failed (can't allocate CCB)\n");
|
|
return;
|
|
}
|
|
|
|
if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
|
|
cam_sim_path(sc->ciss_cam_sim[bus]),
|
|
target, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
|
|
ciss_printf(sc, "rescan failed (can't create path)\n");
|
|
xpt_free_ccb(ccb);
|
|
return;
|
|
}
|
|
xpt_rescan(ccb);
|
|
/* scan is now in progress */
|
|
}
|
|
|
|
/************************************************************************
|
|
* Handle requests coming from CAM
|
|
*/
|
|
static void
|
|
ciss_cam_action(struct cam_sim *sim, union ccb *ccb)
|
|
{
|
|
struct ciss_softc *sc;
|
|
struct ccb_scsiio *csio;
|
|
int bus, target;
|
|
int physical;
|
|
|
|
sc = cam_sim_softc(sim);
|
|
bus = cam_sim_bus(sim);
|
|
csio = (struct ccb_scsiio *)&ccb->csio;
|
|
target = csio->ccb_h.target_id;
|
|
physical = CISS_IS_PHYSICAL(bus);
|
|
|
|
switch (ccb->ccb_h.func_code) {
|
|
|
|
/* perform SCSI I/O */
|
|
case XPT_SCSI_IO:
|
|
if (!ciss_cam_action_io(sim, csio))
|
|
return;
|
|
break;
|
|
|
|
/* perform geometry calculations */
|
|
case XPT_CALC_GEOMETRY:
|
|
{
|
|
struct ccb_calc_geometry *ccg = &ccb->ccg;
|
|
struct ciss_ldrive *ld;
|
|
|
|
debug(1, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
|
|
|
|
ld = NULL;
|
|
if (!physical)
|
|
ld = &sc->ciss_logical[bus][target];
|
|
|
|
/*
|
|
* Use the cached geometry settings unless the fault tolerance
|
|
* is invalid.
|
|
*/
|
|
if (physical || ld->cl_geometry.fault_tolerance == 0xFF) {
|
|
u_int32_t secs_per_cylinder;
|
|
|
|
ccg->heads = 255;
|
|
ccg->secs_per_track = 32;
|
|
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
|
|
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
|
|
} else {
|
|
ccg->heads = ld->cl_geometry.heads;
|
|
ccg->secs_per_track = ld->cl_geometry.sectors;
|
|
ccg->cylinders = ntohs(ld->cl_geometry.cylinders);
|
|
}
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
|
|
/* handle path attribute inquiry */
|
|
case XPT_PATH_INQ:
|
|
{
|
|
struct ccb_pathinq *cpi = &ccb->cpi;
|
|
|
|
debug(1, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
|
|
|
|
cpi->version_num = 1;
|
|
cpi->hba_inquiry = PI_TAG_ABLE; /* XXX is this correct? */
|
|
cpi->target_sprt = 0;
|
|
cpi->hba_misc = 0;
|
|
cpi->max_target = sc->ciss_cfg->max_logical_supported;
|
|
cpi->max_lun = 0; /* 'logical drive' channel only */
|
|
cpi->initiator_id = sc->ciss_cfg->max_logical_supported;
|
|
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
|
|
strncpy(cpi->hba_vid, "msmith@freebsd.org", HBA_IDLEN);
|
|
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
|
|
cpi->unit_number = cam_sim_unit(sim);
|
|
cpi->bus_id = cam_sim_bus(sim);
|
|
cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */
|
|
cpi->transport = XPORT_SPI;
|
|
cpi->transport_version = 2;
|
|
cpi->protocol = PROTO_SCSI;
|
|
cpi->protocol_version = SCSI_REV_2;
|
|
cpi->maxio = (CISS_MAX_SG_ELEMENTS - 1) * PAGE_SIZE;
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
|
|
case XPT_GET_TRAN_SETTINGS:
|
|
{
|
|
struct ccb_trans_settings *cts = &ccb->cts;
|
|
int bus, target;
|
|
struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
|
|
struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
|
|
|
|
bus = cam_sim_bus(sim);
|
|
target = cts->ccb_h.target_id;
|
|
|
|
debug(1, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
|
|
/* disconnect always OK */
|
|
cts->protocol = PROTO_SCSI;
|
|
cts->protocol_version = SCSI_REV_2;
|
|
cts->transport = XPORT_SPI;
|
|
cts->transport_version = 2;
|
|
|
|
spi->valid = CTS_SPI_VALID_DISC;
|
|
spi->flags = CTS_SPI_FLAGS_DISC_ENB;
|
|
|
|
scsi->valid = CTS_SCSI_VALID_TQ;
|
|
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
|
|
|
|
cts->ccb_h.status = CAM_REQ_CMP;
|
|
break;
|
|
}
|
|
|
|
default: /* we can't do this */
|
|
debug(1, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
break;
|
|
}
|
|
|
|
xpt_done(ccb);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Handle a CAM SCSI I/O request.
|
|
*/
|
|
static int
|
|
ciss_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
|
|
{
|
|
struct ciss_softc *sc;
|
|
int bus, target;
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
int error;
|
|
|
|
sc = cam_sim_softc(sim);
|
|
bus = cam_sim_bus(sim);
|
|
target = csio->ccb_h.target_id;
|
|
|
|
debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
|
|
|
|
/* check that the CDB pointer is not to a physical address */
|
|
if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
|
|
debug(3, " CDB pointer is to physical address");
|
|
csio->ccb_h.status = CAM_REQ_CMP_ERR;
|
|
}
|
|
|
|
/* abandon aborted ccbs or those that have failed validation */
|
|
if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
|
|
debug(3, "abandoning CCB due to abort/validation failure");
|
|
return(EINVAL);
|
|
}
|
|
|
|
/* handle emulation of some SCSI commands ourself */
|
|
if (ciss_cam_emulate(sc, csio))
|
|
return(0);
|
|
|
|
/*
|
|
* Get a request to manage this command. If we can't, return the
|
|
* ccb, freeze the queue and flag so that we unfreeze it when a
|
|
* request completes.
|
|
*/
|
|
if ((error = ciss_get_request(sc, &cr)) != 0) {
|
|
xpt_freeze_simq(sim, 1);
|
|
sc->ciss_flags |= CISS_FLAG_BUSY;
|
|
csio->ccb_h.status |= CAM_REQUEUE_REQ;
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Build the command.
|
|
*/
|
|
cc = cr->cr_cc;
|
|
cr->cr_data = csio;
|
|
cr->cr_length = csio->dxfer_len;
|
|
cr->cr_complete = ciss_cam_complete;
|
|
cr->cr_private = csio;
|
|
|
|
/*
|
|
* Target the right logical volume.
|
|
*/
|
|
if (CISS_IS_PHYSICAL(bus))
|
|
cc->header.address =
|
|
sc->ciss_physical[CISS_CAM_TO_PBUS(bus)][target].cp_address;
|
|
else
|
|
cc->header.address =
|
|
sc->ciss_logical[bus][target].cl_address;
|
|
cc->cdb.cdb_length = csio->cdb_len;
|
|
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
|
|
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; /* XXX ordered tags? */
|
|
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
|
|
cr->cr_flags = CISS_REQ_DATAOUT | CISS_REQ_CCB;
|
|
cc->cdb.direction = CISS_CDB_DIRECTION_WRITE;
|
|
} else if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
|
|
cr->cr_flags = CISS_REQ_DATAIN | CISS_REQ_CCB;
|
|
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
|
|
} else {
|
|
cr->cr_data = NULL;
|
|
cr->cr_flags = 0;
|
|
cc->cdb.direction = CISS_CDB_DIRECTION_NONE;
|
|
}
|
|
cc->cdb.timeout = (csio->ccb_h.timeout / 1000) + 1;
|
|
if (csio->ccb_h.flags & CAM_CDB_POINTER) {
|
|
bcopy(csio->cdb_io.cdb_ptr, &cc->cdb.cdb[0], csio->cdb_len);
|
|
} else {
|
|
bcopy(csio->cdb_io.cdb_bytes, &cc->cdb.cdb[0], csio->cdb_len);
|
|
}
|
|
|
|
/*
|
|
* Submit the request to the adapter.
|
|
*
|
|
* Note that this may fail if we're unable to map the request (and
|
|
* if we ever learn a transport layer other than simple, may fail
|
|
* if the adapter rejects the command).
|
|
*/
|
|
if ((error = ciss_start(cr)) != 0) {
|
|
xpt_freeze_simq(sim, 1);
|
|
csio->ccb_h.status |= CAM_RELEASE_SIMQ;
|
|
if (error == EINPROGRESS) {
|
|
error = 0;
|
|
} else {
|
|
csio->ccb_h.status |= CAM_REQUEUE_REQ;
|
|
ciss_release_request(cr);
|
|
}
|
|
return(error);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Emulate SCSI commands the adapter doesn't handle as we might like.
|
|
*/
|
|
static int
|
|
ciss_cam_emulate(struct ciss_softc *sc, struct ccb_scsiio *csio)
|
|
{
|
|
int bus, target;
|
|
u_int8_t opcode;
|
|
|
|
target = csio->ccb_h.target_id;
|
|
bus = cam_sim_bus(xpt_path_sim(csio->ccb_h.path));
|
|
opcode = (csio->ccb_h.flags & CAM_CDB_POINTER) ?
|
|
*(u_int8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes[0];
|
|
|
|
if (CISS_IS_PHYSICAL(bus)) {
|
|
if (sc->ciss_physical[CISS_CAM_TO_PBUS(bus)][target].cp_online != 1) {
|
|
csio->ccb_h.status |= CAM_SEL_TIMEOUT;
|
|
xpt_done((union ccb *)csio);
|
|
return(1);
|
|
} else
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Handle requests for volumes that don't exist or are not online.
|
|
* A selection timeout is slightly better than an illegal request.
|
|
* Other errors might be better.
|
|
*/
|
|
if (sc->ciss_logical[bus][target].cl_status != CISS_LD_ONLINE) {
|
|
csio->ccb_h.status |= CAM_SEL_TIMEOUT;
|
|
xpt_done((union ccb *)csio);
|
|
return(1);
|
|
}
|
|
|
|
/* if we have to fake Synchronise Cache */
|
|
if (sc->ciss_flags & CISS_FLAG_FAKE_SYNCH) {
|
|
/*
|
|
* If this is a Synchronise Cache command, typically issued when
|
|
* a device is closed, flush the adapter and complete now.
|
|
*/
|
|
if (((csio->ccb_h.flags & CAM_CDB_POINTER) ?
|
|
*(u_int8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes[0]) == SYNCHRONIZE_CACHE) {
|
|
ciss_flush_adapter(sc);
|
|
csio->ccb_h.status |= CAM_REQ_CMP;
|
|
xpt_done((union ccb *)csio);
|
|
return(1);
|
|
}
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Check for possibly-completed commands.
|
|
*/
|
|
static void
|
|
ciss_cam_poll(struct cam_sim *sim)
|
|
{
|
|
cr_qhead_t qh;
|
|
struct ciss_softc *sc = cam_sim_softc(sim);
|
|
|
|
debug_called(2);
|
|
|
|
STAILQ_INIT(&qh);
|
|
if (sc->ciss_perf)
|
|
ciss_perf_done(sc, &qh);
|
|
else
|
|
ciss_done(sc, &qh);
|
|
ciss_complete(sc, &qh);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Handle completion of a command - pass results back through the CCB
|
|
*/
|
|
static void
|
|
ciss_cam_complete(struct ciss_request *cr)
|
|
{
|
|
struct ciss_softc *sc;
|
|
struct ciss_command *cc;
|
|
struct ciss_error_info *ce;
|
|
struct ccb_scsiio *csio;
|
|
int scsi_status;
|
|
int command_status;
|
|
|
|
debug_called(2);
|
|
|
|
sc = cr->cr_sc;
|
|
cc = cr->cr_cc;
|
|
ce = (struct ciss_error_info *)&(cc->sg[0]);
|
|
csio = (struct ccb_scsiio *)cr->cr_private;
|
|
|
|
/*
|
|
* Extract status values from request.
|
|
*/
|
|
ciss_report_request(cr, &command_status, &scsi_status);
|
|
csio->scsi_status = scsi_status;
|
|
|
|
/*
|
|
* Handle specific SCSI status values.
|
|
*/
|
|
switch(scsi_status) {
|
|
/* no status due to adapter error */
|
|
case -1:
|
|
debug(0, "adapter error");
|
|
csio->ccb_h.status |= CAM_REQ_CMP_ERR;
|
|
break;
|
|
|
|
/* no status due to command completed OK */
|
|
case SCSI_STATUS_OK: /* CISS_SCSI_STATUS_GOOD */
|
|
debug(2, "SCSI_STATUS_OK");
|
|
csio->ccb_h.status |= CAM_REQ_CMP;
|
|
break;
|
|
|
|
/* check condition, sense data included */
|
|
case SCSI_STATUS_CHECK_COND: /* CISS_SCSI_STATUS_CHECK_CONDITION */
|
|
debug(0, "SCSI_STATUS_CHECK_COND sense size %d resid %d\n",
|
|
ce->sense_length, ce->residual_count);
|
|
bzero(&csio->sense_data, SSD_FULL_SIZE);
|
|
bcopy(&ce->sense_info[0], &csio->sense_data, ce->sense_length);
|
|
if (csio->sense_len > ce->sense_length)
|
|
csio->sense_resid = csio->sense_len - ce->sense_length;
|
|
else
|
|
csio->sense_resid = 0;
|
|
csio->resid = ce->residual_count;
|
|
csio->ccb_h.status |= CAM_SCSI_STATUS_ERROR | CAM_AUTOSNS_VALID;
|
|
#ifdef CISS_DEBUG
|
|
{
|
|
struct scsi_sense_data *sns = (struct scsi_sense_data *)&ce->sense_info[0];
|
|
debug(0, "sense key %x", scsi_get_sense_key(sns, csio->sense_len -
|
|
csio->sense_resid, /*show_errors*/ 1));
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case SCSI_STATUS_BUSY: /* CISS_SCSI_STATUS_BUSY */
|
|
debug(0, "SCSI_STATUS_BUSY");
|
|
csio->ccb_h.status |= CAM_SCSI_BUSY;
|
|
break;
|
|
|
|
default:
|
|
debug(0, "unknown status 0x%x", csio->scsi_status);
|
|
csio->ccb_h.status |= CAM_REQ_CMP_ERR;
|
|
break;
|
|
}
|
|
|
|
/* handle post-command fixup */
|
|
ciss_cam_complete_fixup(sc, csio);
|
|
|
|
ciss_release_request(cr);
|
|
if (sc->ciss_flags & CISS_FLAG_BUSY) {
|
|
sc->ciss_flags &= ~CISS_FLAG_BUSY;
|
|
if (csio->ccb_h.status & CAM_RELEASE_SIMQ)
|
|
xpt_release_simq(xpt_path_sim(csio->ccb_h.path), 0);
|
|
else
|
|
csio->ccb_h.status |= CAM_RELEASE_SIMQ;
|
|
}
|
|
xpt_done((union ccb *)csio);
|
|
}
|
|
|
|
/********************************************************************************
|
|
* Fix up the result of some commands here.
|
|
*/
|
|
static void
|
|
ciss_cam_complete_fixup(struct ciss_softc *sc, struct ccb_scsiio *csio)
|
|
{
|
|
struct scsi_inquiry_data *inq;
|
|
struct ciss_ldrive *cl;
|
|
uint8_t *cdb;
|
|
int bus, target;
|
|
|
|
cdb = (csio->ccb_h.flags & CAM_CDB_POINTER) ?
|
|
(uint8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes;
|
|
if (cdb[0] == INQUIRY &&
|
|
(cdb[1] & SI_EVPD) == 0 &&
|
|
(csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN &&
|
|
csio->dxfer_len >= SHORT_INQUIRY_LENGTH) {
|
|
|
|
inq = (struct scsi_inquiry_data *)csio->data_ptr;
|
|
target = csio->ccb_h.target_id;
|
|
bus = cam_sim_bus(xpt_path_sim(csio->ccb_h.path));
|
|
|
|
/*
|
|
* Don't let hard drives be seen by the DA driver. They will still be
|
|
* attached by the PASS driver.
|
|
*/
|
|
if (CISS_IS_PHYSICAL(bus)) {
|
|
if (SID_TYPE(inq) == T_DIRECT)
|
|
inq->device = (inq->device & 0xe0) | T_NODEVICE;
|
|
return;
|
|
}
|
|
|
|
cl = &sc->ciss_logical[bus][target];
|
|
|
|
padstr(inq->vendor, "COMPAQ", 8);
|
|
padstr(inq->product, ciss_name_ldrive_org(cl->cl_ldrive->fault_tolerance), 8);
|
|
padstr(inq->revision, ciss_name_ldrive_status(cl->cl_lstatus->status), 16);
|
|
}
|
|
}
|
|
|
|
|
|
/********************************************************************************
|
|
* Find a peripheral attached at (target)
|
|
*/
|
|
static struct cam_periph *
|
|
ciss_find_periph(struct ciss_softc *sc, int bus, int target)
|
|
{
|
|
struct cam_periph *periph;
|
|
struct cam_path *path;
|
|
int status;
|
|
|
|
status = xpt_create_path(&path, NULL, cam_sim_path(sc->ciss_cam_sim[bus]),
|
|
target, 0);
|
|
if (status == CAM_REQ_CMP) {
|
|
periph = cam_periph_find(path, NULL);
|
|
xpt_free_path(path);
|
|
} else {
|
|
periph = NULL;
|
|
}
|
|
return(periph);
|
|
}
|
|
|
|
/********************************************************************************
|
|
* Name the device at (target)
|
|
*
|
|
* XXX is this strictly correct?
|
|
*/
|
|
static int
|
|
ciss_name_device(struct ciss_softc *sc, int bus, int target)
|
|
{
|
|
struct cam_periph *periph;
|
|
|
|
if (CISS_IS_PHYSICAL(bus))
|
|
return (0);
|
|
if ((periph = ciss_find_periph(sc, bus, target)) != NULL) {
|
|
sprintf(sc->ciss_logical[bus][target].cl_name, "%s%d",
|
|
periph->periph_name, periph->unit_number);
|
|
return(0);
|
|
}
|
|
sc->ciss_logical[bus][target].cl_name[0] = 0;
|
|
return(ENOENT);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Periodic status monitoring.
|
|
*/
|
|
static void
|
|
ciss_periodic(void *arg)
|
|
{
|
|
struct ciss_softc *sc;
|
|
struct ciss_request *cr = NULL;
|
|
struct ciss_command *cc = NULL;
|
|
int error = 0;
|
|
|
|
debug_called(1);
|
|
|
|
sc = (struct ciss_softc *)arg;
|
|
|
|
/*
|
|
* Check the adapter heartbeat.
|
|
*/
|
|
if (sc->ciss_cfg->heartbeat == sc->ciss_heartbeat) {
|
|
sc->ciss_heart_attack++;
|
|
debug(0, "adapter heart attack in progress 0x%x/%d",
|
|
sc->ciss_heartbeat, sc->ciss_heart_attack);
|
|
if (sc->ciss_heart_attack == 3) {
|
|
ciss_printf(sc, "ADAPTER HEARTBEAT FAILED\n");
|
|
ciss_disable_adapter(sc);
|
|
return;
|
|
}
|
|
} else {
|
|
sc->ciss_heartbeat = sc->ciss_cfg->heartbeat;
|
|
sc->ciss_heart_attack = 0;
|
|
debug(3, "new heartbeat 0x%x", sc->ciss_heartbeat);
|
|
}
|
|
|
|
/*
|
|
* Send the NOP message and wait for a response.
|
|
*/
|
|
if (ciss_nop_message_heartbeat != 0 && (error = ciss_get_request(sc, &cr)) == 0) {
|
|
cc = cr->cr_cc;
|
|
cr->cr_complete = ciss_nop_complete;
|
|
cc->cdb.cdb_length = 1;
|
|
cc->cdb.type = CISS_CDB_TYPE_MESSAGE;
|
|
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
|
|
cc->cdb.direction = CISS_CDB_DIRECTION_WRITE;
|
|
cc->cdb.timeout = 0;
|
|
cc->cdb.cdb[0] = CISS_OPCODE_MESSAGE_NOP;
|
|
|
|
if ((error = ciss_start(cr)) != 0) {
|
|
ciss_printf(sc, "SENDING NOP MESSAGE FAILED\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the notify event request has died for some reason, or has
|
|
* not started yet, restart it.
|
|
*/
|
|
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK)) {
|
|
debug(0, "(re)starting Event Notify chain");
|
|
ciss_notify_event(sc);
|
|
}
|
|
|
|
/*
|
|
* Reschedule.
|
|
*/
|
|
callout_reset(&sc->ciss_periodic, CISS_HEARTBEAT_RATE * hz, ciss_periodic, sc);
|
|
}
|
|
|
|
static void
|
|
ciss_nop_complete(struct ciss_request *cr)
|
|
{
|
|
struct ciss_softc *sc;
|
|
static int first_time = 1;
|
|
|
|
sc = cr->cr_sc;
|
|
if (ciss_report_request(cr, NULL, NULL) != 0) {
|
|
if (first_time == 1) {
|
|
first_time = 0;
|
|
ciss_printf(sc, "SENDING NOP MESSAGE FAILED (not logging anymore)\n");
|
|
}
|
|
}
|
|
|
|
ciss_release_request(cr);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Disable the adapter.
|
|
*
|
|
* The all requests in completed queue is failed with hardware error.
|
|
* This will cause failover in a multipath configuration.
|
|
*/
|
|
static void
|
|
ciss_disable_adapter(struct ciss_softc *sc)
|
|
{
|
|
cr_qhead_t qh;
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
struct ciss_error_info *ce;
|
|
int i;
|
|
|
|
CISS_TL_SIMPLE_DISABLE_INTERRUPTS(sc);
|
|
pci_disable_busmaster(sc->ciss_dev);
|
|
sc->ciss_flags &= ~CISS_FLAG_RUNNING;
|
|
|
|
for (i = 1; i < sc->ciss_max_requests; i++) {
|
|
cr = &sc->ciss_request[i];
|
|
if ((cr->cr_flags & CISS_REQ_BUSY) == 0)
|
|
continue;
|
|
|
|
cc = cr->cr_cc;
|
|
ce = (struct ciss_error_info *)&(cc->sg[0]);
|
|
ce->command_status = CISS_CMD_STATUS_HARDWARE_ERROR;
|
|
ciss_enqueue_complete(cr, &qh);
|
|
}
|
|
|
|
for (;;) {
|
|
if ((cr = ciss_dequeue_complete(sc, &qh)) == NULL)
|
|
break;
|
|
|
|
/*
|
|
* If the request has a callback, invoke it.
|
|
*/
|
|
if (cr->cr_complete != NULL) {
|
|
cr->cr_complete(cr);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If someone is sleeping on this request, wake them up.
|
|
*/
|
|
if (cr->cr_flags & CISS_REQ_SLEEP) {
|
|
cr->cr_flags &= ~CISS_REQ_SLEEP;
|
|
wakeup(cr);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/************************************************************************
|
|
* Request a notification response from the adapter.
|
|
*
|
|
* If (cr) is NULL, this is the first request of the adapter, so
|
|
* reset the adapter's message pointer and start with the oldest
|
|
* message available.
|
|
*/
|
|
static void
|
|
ciss_notify_event(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
struct ciss_notify_cdb *cnc;
|
|
int error;
|
|
|
|
debug_called(1);
|
|
|
|
cr = sc->ciss_periodic_notify;
|
|
|
|
/* get a request if we don't already have one */
|
|
if (cr == NULL) {
|
|
if ((error = ciss_get_request(sc, &cr)) != 0) {
|
|
debug(0, "can't get notify event request");
|
|
goto out;
|
|
}
|
|
sc->ciss_periodic_notify = cr;
|
|
cr->cr_complete = ciss_notify_complete;
|
|
debug(1, "acquired request %d", cr->cr_tag);
|
|
}
|
|
|
|
/*
|
|
* Get a databuffer if we don't already have one, note that the
|
|
* adapter command wants a larger buffer than the actual
|
|
* structure.
|
|
*/
|
|
if (cr->cr_data == NULL) {
|
|
if ((cr->cr_data = malloc(CISS_NOTIFY_DATA_SIZE, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) {
|
|
debug(0, "can't get notify event request buffer");
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
cr->cr_length = CISS_NOTIFY_DATA_SIZE;
|
|
}
|
|
|
|
/* re-setup the request's command (since we never release it) XXX overkill*/
|
|
ciss_preen_command(cr);
|
|
|
|
/* (re)build the notify event command */
|
|
cc = cr->cr_cc;
|
|
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
|
|
cc->header.address.physical.bus = 0;
|
|
cc->header.address.physical.target = 0;
|
|
|
|
cc->cdb.cdb_length = sizeof(*cnc);
|
|
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
|
|
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
|
|
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
|
|
cc->cdb.timeout = 0; /* no timeout, we hope */
|
|
|
|
cnc = (struct ciss_notify_cdb *)&(cc->cdb.cdb[0]);
|
|
bzero(cr->cr_data, CISS_NOTIFY_DATA_SIZE);
|
|
cnc->opcode = CISS_OPCODE_READ;
|
|
cnc->command = CISS_COMMAND_NOTIFY_ON_EVENT;
|
|
cnc->timeout = 0; /* no timeout, we hope */
|
|
cnc->synchronous = 0;
|
|
cnc->ordered = 0;
|
|
cnc->seek_to_oldest = 0;
|
|
if ((sc->ciss_flags & CISS_FLAG_RUNNING) == 0)
|
|
cnc->new_only = 1;
|
|
else
|
|
cnc->new_only = 0;
|
|
cnc->length = htonl(CISS_NOTIFY_DATA_SIZE);
|
|
|
|
/* submit the request */
|
|
error = ciss_start(cr);
|
|
|
|
out:
|
|
if (error) {
|
|
if (cr != NULL) {
|
|
if (cr->cr_data != NULL)
|
|
free(cr->cr_data, CISS_MALLOC_CLASS);
|
|
ciss_release_request(cr);
|
|
}
|
|
sc->ciss_periodic_notify = NULL;
|
|
debug(0, "can't submit notify event request");
|
|
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
|
|
} else {
|
|
debug(1, "notify event submitted");
|
|
sc->ciss_flags |= CISS_FLAG_NOTIFY_OK;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ciss_notify_complete(struct ciss_request *cr)
|
|
{
|
|
struct ciss_command *cc;
|
|
struct ciss_notify *cn;
|
|
struct ciss_softc *sc;
|
|
int scsi_status;
|
|
int command_status;
|
|
debug_called(1);
|
|
|
|
cc = cr->cr_cc;
|
|
cn = (struct ciss_notify *)cr->cr_data;
|
|
sc = cr->cr_sc;
|
|
|
|
/*
|
|
* Report request results, decode status.
|
|
*/
|
|
ciss_report_request(cr, &command_status, &scsi_status);
|
|
|
|
/*
|
|
* Abort the chain on a fatal error.
|
|
*
|
|
* XXX which of these are actually errors?
|
|
*/
|
|
if ((command_status != CISS_CMD_STATUS_SUCCESS) &&
|
|
(command_status != CISS_CMD_STATUS_TARGET_STATUS) &&
|
|
(command_status != CISS_CMD_STATUS_TIMEOUT)) { /* XXX timeout? */
|
|
ciss_printf(sc, "fatal error in Notify Event request (%s)\n",
|
|
ciss_name_command_status(command_status));
|
|
ciss_release_request(cr);
|
|
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the adapter gave us a text message, print it.
|
|
*/
|
|
if (cn->message[0] != 0)
|
|
ciss_printf(sc, "*** %.80s\n", cn->message);
|
|
|
|
debug(0, "notify event class %d subclass %d detail %d",
|
|
cn->class, cn->subclass, cn->detail);
|
|
|
|
/*
|
|
* If the response indicates that the notifier has been aborted,
|
|
* release the notifier command.
|
|
*/
|
|
if ((cn->class == CISS_NOTIFY_NOTIFIER) &&
|
|
(cn->subclass == CISS_NOTIFY_NOTIFIER_STATUS) &&
|
|
(cn->detail == 1)) {
|
|
debug(0, "notifier exiting");
|
|
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
|
|
ciss_release_request(cr);
|
|
sc->ciss_periodic_notify = NULL;
|
|
wakeup(&sc->ciss_periodic_notify);
|
|
} else {
|
|
/* Handle notify events in a kernel thread */
|
|
ciss_enqueue_notify(cr);
|
|
sc->ciss_periodic_notify = NULL;
|
|
wakeup(&sc->ciss_periodic_notify);
|
|
wakeup(&sc->ciss_notify);
|
|
}
|
|
/*
|
|
* Send a new notify event command, if we're not aborting.
|
|
*/
|
|
if (!(sc->ciss_flags & CISS_FLAG_ABORTING)) {
|
|
ciss_notify_event(sc);
|
|
}
|
|
}
|
|
|
|
/************************************************************************
|
|
* Abort the Notify Event chain.
|
|
*
|
|
* Note that we can't just abort the command in progress; we have to
|
|
* explicitly issue an Abort Notify Event command in order for the
|
|
* adapter to clean up correctly.
|
|
*
|
|
* If we are called with CISS_FLAG_ABORTING set in the adapter softc,
|
|
* the chain will not restart itself.
|
|
*/
|
|
static int
|
|
ciss_notify_abort(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_request *cr;
|
|
struct ciss_command *cc;
|
|
struct ciss_notify_cdb *cnc;
|
|
int error, command_status, scsi_status;
|
|
|
|
debug_called(1);
|
|
|
|
cr = NULL;
|
|
error = 0;
|
|
|
|
/* verify that there's an outstanding command */
|
|
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK))
|
|
goto out;
|
|
|
|
/* get a command to issue the abort with */
|
|
if ((error = ciss_get_request(sc, &cr)))
|
|
goto out;
|
|
|
|
/* get a buffer for the result */
|
|
if ((cr->cr_data = malloc(CISS_NOTIFY_DATA_SIZE, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) {
|
|
debug(0, "can't get notify event request buffer");
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
cr->cr_length = CISS_NOTIFY_DATA_SIZE;
|
|
|
|
/* build the CDB */
|
|
cc = cr->cr_cc;
|
|
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
|
|
cc->header.address.physical.bus = 0;
|
|
cc->header.address.physical.target = 0;
|
|
cc->cdb.cdb_length = sizeof(*cnc);
|
|
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
|
|
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
|
|
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
|
|
cc->cdb.timeout = 0; /* no timeout, we hope */
|
|
|
|
cnc = (struct ciss_notify_cdb *)&(cc->cdb.cdb[0]);
|
|
bzero(cnc, sizeof(*cnc));
|
|
cnc->opcode = CISS_OPCODE_WRITE;
|
|
cnc->command = CISS_COMMAND_ABORT_NOTIFY;
|
|
cnc->length = htonl(CISS_NOTIFY_DATA_SIZE);
|
|
|
|
ciss_print_request(cr);
|
|
|
|
/*
|
|
* Submit the request and wait for it to complete.
|
|
*/
|
|
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
|
|
ciss_printf(sc, "Abort Notify Event command failed (%d)\n", error);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check response.
|
|
*/
|
|
ciss_report_request(cr, &command_status, &scsi_status);
|
|
switch(command_status) {
|
|
case CISS_CMD_STATUS_SUCCESS:
|
|
break;
|
|
case CISS_CMD_STATUS_INVALID_COMMAND:
|
|
/*
|
|
* Some older adapters don't support the CISS version of this
|
|
* command. Fall back to using the BMIC version.
|
|
*/
|
|
error = ciss_notify_abort_bmic(sc);
|
|
if (error != 0)
|
|
goto out;
|
|
break;
|
|
|
|
case CISS_CMD_STATUS_TARGET_STATUS:
|
|
/*
|
|
* This can happen if the adapter thinks there wasn't an outstanding
|
|
* Notify Event command but we did. We clean up here.
|
|
*/
|
|
if (scsi_status == CISS_SCSI_STATUS_CHECK_CONDITION) {
|
|
if (sc->ciss_periodic_notify != NULL)
|
|
ciss_release_request(sc->ciss_periodic_notify);
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
/* FALLTHROUGH */
|
|
|
|
default:
|
|
ciss_printf(sc, "Abort Notify Event command failed (%s)\n",
|
|
ciss_name_command_status(command_status));
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Sleep waiting for the notifier command to complete. Note
|
|
* that if it doesn't, we may end up in a bad situation, since
|
|
* the adapter may deliver it later. Also note that the adapter
|
|
* requires the Notify Event command to be cancelled in order to
|
|
* maintain internal bookkeeping.
|
|
*/
|
|
while (sc->ciss_periodic_notify != NULL) {
|
|
error = msleep(&sc->ciss_periodic_notify, &sc->ciss_mtx, PRIBIO, "cissNEA", hz * 5);
|
|
if (error == EWOULDBLOCK) {
|
|
ciss_printf(sc, "Notify Event command failed to abort, adapter may wedge.\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
/* release the cancel request */
|
|
if (cr != NULL) {
|
|
if (cr->cr_data != NULL)
|
|
free(cr->cr_data, CISS_MALLOC_CLASS);
|
|
ciss_release_request(cr);
|
|
}
|
|
if (error == 0)
|
|
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
|
|
return(error);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Abort the Notify Event chain using a BMIC command.
|
|
*/
|
|
static int
|
|
ciss_notify_abort_bmic(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_request *cr;
|
|
int error, command_status;
|
|
|
|
debug_called(1);
|
|
|
|
cr = NULL;
|
|
error = 0;
|
|
|
|
/* verify that there's an outstanding command */
|
|
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK))
|
|
goto out;
|
|
|
|
/*
|
|
* Build a BMIC command to cancel the Notify on Event command.
|
|
*
|
|
* Note that we are sending a CISS opcode here. Odd.
|
|
*/
|
|
if ((error = ciss_get_bmic_request(sc, &cr, CISS_COMMAND_ABORT_NOTIFY,
|
|
NULL, 0)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Submit the request and wait for it to complete.
|
|
*/
|
|
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
|
|
ciss_printf(sc, "error sending BMIC Cancel Notify on Event command (%d)\n", error);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check response.
|
|
*/
|
|
ciss_report_request(cr, &command_status, NULL);
|
|
switch(command_status) {
|
|
case CISS_CMD_STATUS_SUCCESS:
|
|
break;
|
|
default:
|
|
ciss_printf(sc, "error cancelling Notify on Event (%s)\n",
|
|
ciss_name_command_status(command_status));
|
|
error = EIO;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
if (cr != NULL)
|
|
ciss_release_request(cr);
|
|
return(error);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Handle rescanning all the logical volumes when a notify event
|
|
* causes the drives to come online or offline.
|
|
*/
|
|
static void
|
|
ciss_notify_rescan_logical(struct ciss_softc *sc)
|
|
{
|
|
struct ciss_lun_report *cll;
|
|
struct ciss_ldrive *ld;
|
|
int i, j, ndrives;
|
|
|
|
/*
|
|
* We must rescan all logical volumes to get the right logical
|
|
* drive address.
|
|
*/
|
|
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_LOGICAL_LUNS,
|
|
sc->ciss_cfg->max_logical_supported);
|
|
if (cll == NULL)
|
|
return;
|
|
|
|
ndrives = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
|
|
|
|
/*
|
|
* Delete any of the drives which were destroyed by the
|
|
* firmware.
|
|
*/
|
|
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
|
|
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) {
|
|
ld = &sc->ciss_logical[i][j];
|
|
|
|
if (ld->cl_update == 0)
|
|
continue;
|
|
|
|
if (ld->cl_status != CISS_LD_ONLINE) {
|
|
ciss_cam_rescan_target(sc, i, j);
|
|
ld->cl_update = 0;
|
|
if (ld->cl_ldrive)
|
|
free(ld->cl_ldrive, CISS_MALLOC_CLASS);
|
|
if (ld->cl_lstatus)
|
|
free(ld->cl_lstatus, CISS_MALLOC_CLASS);
|
|
|
|
ld->cl_ldrive = NULL;
|
|
ld->cl_lstatus = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Scan for new drives.
|
|
*/
|
|
for (i = 0; i < ndrives; i++) {
|
|
int bus, target;
|
|
|
|
bus = CISS_LUN_TO_BUS(cll->lun[i].logical.lun);
|
|
target = CISS_LUN_TO_TARGET(cll->lun[i].logical.lun);
|
|
ld = &sc->ciss_logical[bus][target];
|
|
|
|
if (ld->cl_update == 0)
|
|
continue;
|
|
|
|
ld->cl_update = 0;
|
|
ld->cl_address = cll->lun[i];
|
|
ld->cl_controller = &sc->ciss_controllers[bus];
|
|
if (ciss_identify_logical(sc, ld) == 0) {
|
|
ciss_cam_rescan_target(sc, bus, target);
|
|
}
|
|
}
|
|
free(cll, CISS_MALLOC_CLASS);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Handle a notify event relating to the status of a logical drive.
|
|
*
|
|
* XXX need to be able to defer some of these to properly handle
|
|
* calling the "ID Physical drive" command, unless the 'extended'
|
|
* drive IDs are always in BIG_MAP format.
|
|
*/
|
|
static void
|
|
ciss_notify_logical(struct ciss_softc *sc, struct ciss_notify *cn)
|
|
{
|
|
struct ciss_ldrive *ld;
|
|
int ostatus, bus, target;
|
|
|
|
debug_called(2);
|
|
|
|
bus = cn->device.physical.bus;
|
|
target = cn->data.logical_status.logical_drive;
|
|
ld = &sc->ciss_logical[bus][target];
|
|
|
|
switch (cn->subclass) {
|
|
case CISS_NOTIFY_LOGICAL_STATUS:
|
|
switch (cn->detail) {
|
|
case 0:
|
|
ciss_name_device(sc, bus, target);
|
|
ciss_printf(sc, "logical drive %d (%s) changed status %s->%s, spare status 0x%b\n",
|
|
cn->data.logical_status.logical_drive, ld->cl_name,
|
|
ciss_name_ldrive_status(cn->data.logical_status.previous_state),
|
|
ciss_name_ldrive_status(cn->data.logical_status.new_state),
|
|
cn->data.logical_status.spare_state,
|
|
"\20\1configured\2rebuilding\3failed\4in use\5available\n");
|
|
|
|
/*
|
|
* Update our idea of the drive's status.
|
|
*/
|
|
ostatus = ciss_decode_ldrive_status(cn->data.logical_status.previous_state);
|
|
ld->cl_status = ciss_decode_ldrive_status(cn->data.logical_status.new_state);
|
|
if (ld->cl_lstatus != NULL)
|
|
ld->cl_lstatus->status = cn->data.logical_status.new_state;
|
|
|
|
/*
|
|
* Have CAM rescan the drive if its status has changed.
|
|
*/
|
|
if (ostatus != ld->cl_status) {
|
|
ld->cl_update = 1;
|
|
ciss_notify_rescan_logical(sc);
|
|
}
|
|
|
|
break;
|
|
|
|
case 1: /* logical drive has recognised new media, needs Accept Media Exchange */
|
|
ciss_name_device(sc, bus, target);
|
|
ciss_printf(sc, "logical drive %d (%s) media exchanged, ready to go online\n",
|
|
cn->data.logical_status.logical_drive, ld->cl_name);
|
|
ciss_accept_media(sc, ld);
|
|
|
|
ld->cl_update = 1;
|
|
ld->cl_status = ciss_decode_ldrive_status(cn->data.logical_status.new_state);
|
|
ciss_notify_rescan_logical(sc);
|
|
break;
|
|
|
|
case 2:
|
|
case 3:
|
|
ciss_printf(sc, "rebuild of logical drive %d (%s) failed due to %s error\n",
|
|
cn->data.rebuild_aborted.logical_drive,
|
|
ld->cl_name,
|
|
(cn->detail == 2) ? "read" : "write");
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case CISS_NOTIFY_LOGICAL_ERROR:
|
|
if (cn->detail == 0) {
|
|
ciss_printf(sc, "FATAL I/O ERROR on logical drive %d (%s), SCSI port %d ID %d\n",
|
|
cn->data.io_error.logical_drive,
|
|
ld->cl_name,
|
|
cn->data.io_error.failure_bus,
|
|
cn->data.io_error.failure_drive);
|
|
/* XXX should we take the drive down at this point, or will we be told? */
|
|
}
|
|
break;
|
|
|
|
case CISS_NOTIFY_LOGICAL_SURFACE:
|
|
if (cn->detail == 0)
|
|
ciss_printf(sc, "logical drive %d (%s) completed consistency initialisation\n",
|
|
cn->data.consistency_completed.logical_drive,
|
|
ld->cl_name);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/************************************************************************
|
|
* Handle a notify event relating to the status of a physical drive.
|
|
*/
|
|
static void
|
|
ciss_notify_physical(struct ciss_softc *sc, struct ciss_notify *cn)
|
|
{
|
|
}
|
|
|
|
/************************************************************************
|
|
* Handle a notify event relating to the status of a physical drive.
|
|
*/
|
|
static void
|
|
ciss_notify_hotplug(struct ciss_softc *sc, struct ciss_notify *cn)
|
|
{
|
|
struct ciss_lun_report *cll = NULL;
|
|
int bus, target;
|
|
|
|
switch (cn->subclass) {
|
|
case CISS_NOTIFY_HOTPLUG_PHYSICAL:
|
|
case CISS_NOTIFY_HOTPLUG_NONDISK:
|
|
bus = CISS_BIG_MAP_BUS(sc, cn->data.drive.big_physical_drive_number);
|
|
target =
|
|
CISS_BIG_MAP_TARGET(sc, cn->data.drive.big_physical_drive_number);
|
|
|
|
if (cn->detail == 0) {
|
|
/*
|
|
* Mark the device offline so that it'll start producing selection
|
|
* timeouts to the upper layer.
|
|
*/
|
|
if ((bus >= 0) && (target >= 0))
|
|
sc->ciss_physical[bus][target].cp_online = 0;
|
|
} else {
|
|
/*
|
|
* Rescan the physical lun list for new items
|
|
*/
|
|
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_PHYSICAL_LUNS,
|
|
sc->ciss_cfg->max_physical_supported);
|
|
if (cll == NULL) {
|
|
ciss_printf(sc, "Warning, cannot get physical lun list\n");
|
|
break;
|
|
}
|
|
ciss_filter_physical(sc, cll);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ciss_printf(sc, "Unknown hotplug event %d\n", cn->subclass);
|
|
return;
|
|
}
|
|
|
|
if (cll != NULL)
|
|
free(cll, CISS_MALLOC_CLASS);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Handle deferred processing of notify events. Notify events may need
|
|
* sleep which is unsafe during an interrupt.
|
|
*/
|
|
static void
|
|
ciss_notify_thread(void *arg)
|
|
{
|
|
struct ciss_softc *sc;
|
|
struct ciss_request *cr;
|
|
struct ciss_notify *cn;
|
|
|
|
sc = (struct ciss_softc *)arg;
|
|
#if __FreeBSD_version >= 500000
|
|
mtx_lock(&sc->ciss_mtx);
|
|
#endif
|
|
|
|
for (;;) {
|
|
if (STAILQ_EMPTY(&sc->ciss_notify) != 0 &&
|
|
(sc->ciss_flags & CISS_FLAG_THREAD_SHUT) == 0) {
|
|
msleep(&sc->ciss_notify, &sc->ciss_mtx, PUSER, "idle", 0);
|
|
}
|
|
|
|
if (sc->ciss_flags & CISS_FLAG_THREAD_SHUT)
|
|
break;
|
|
|
|
cr = ciss_dequeue_notify(sc);
|
|
|
|
if (cr == NULL)
|
|
panic("cr null");
|
|
cn = (struct ciss_notify *)cr->cr_data;
|
|
|
|
switch (cn->class) {
|
|
case CISS_NOTIFY_HOTPLUG:
|
|
ciss_notify_hotplug(sc, cn);
|
|
break;
|
|
case CISS_NOTIFY_LOGICAL:
|
|
ciss_notify_logical(sc, cn);
|
|
break;
|
|
case CISS_NOTIFY_PHYSICAL:
|
|
ciss_notify_physical(sc, cn);
|
|
break;
|
|
}
|
|
|
|
ciss_release_request(cr);
|
|
|
|
}
|
|
sc->ciss_notify_thread = NULL;
|
|
wakeup(&sc->ciss_notify_thread);
|
|
|
|
#if __FreeBSD_version >= 500000
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
#endif
|
|
kproc_exit(0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Start the notification kernel thread.
|
|
*/
|
|
static void
|
|
ciss_spawn_notify_thread(struct ciss_softc *sc)
|
|
{
|
|
|
|
#if __FreeBSD_version > 500005
|
|
if (kproc_create((void(*)(void *))ciss_notify_thread, sc,
|
|
&sc->ciss_notify_thread, 0, 0, "ciss_notify%d",
|
|
device_get_unit(sc->ciss_dev)))
|
|
#else
|
|
if (kproc_create((void(*)(void *))ciss_notify_thread, sc,
|
|
&sc->ciss_notify_thread, "ciss_notify%d",
|
|
device_get_unit(sc->ciss_dev)))
|
|
#endif
|
|
panic("Could not create notify thread\n");
|
|
}
|
|
|
|
/************************************************************************
|
|
* Kill the notification kernel thread.
|
|
*/
|
|
static void
|
|
ciss_kill_notify_thread(struct ciss_softc *sc)
|
|
{
|
|
|
|
if (sc->ciss_notify_thread == NULL)
|
|
return;
|
|
|
|
sc->ciss_flags |= CISS_FLAG_THREAD_SHUT;
|
|
wakeup(&sc->ciss_notify);
|
|
msleep(&sc->ciss_notify_thread, &sc->ciss_mtx, PUSER, "thtrm", 0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Print a request.
|
|
*/
|
|
static void
|
|
ciss_print_request(struct ciss_request *cr)
|
|
{
|
|
struct ciss_softc *sc;
|
|
struct ciss_command *cc;
|
|
int i;
|
|
|
|
sc = cr->cr_sc;
|
|
cc = cr->cr_cc;
|
|
|
|
ciss_printf(sc, "REQUEST @ %p\n", cr);
|
|
ciss_printf(sc, " data %p/%d tag %d flags %b\n",
|
|
cr->cr_data, cr->cr_length, cr->cr_tag, cr->cr_flags,
|
|
"\20\1mapped\2sleep\3poll\4dataout\5datain\n");
|
|
ciss_printf(sc, " sg list/total %d/%d host tag 0x%x\n",
|
|
cc->header.sg_in_list, cc->header.sg_total, cc->header.host_tag);
|
|
switch(cc->header.address.mode.mode) {
|
|
case CISS_HDR_ADDRESS_MODE_PERIPHERAL:
|
|
case CISS_HDR_ADDRESS_MODE_MASK_PERIPHERAL:
|
|
ciss_printf(sc, " physical bus %d target %d\n",
|
|
cc->header.address.physical.bus, cc->header.address.physical.target);
|
|
break;
|
|
case CISS_HDR_ADDRESS_MODE_LOGICAL:
|
|
ciss_printf(sc, " logical unit %d\n", cc->header.address.logical.lun);
|
|
break;
|
|
}
|
|
ciss_printf(sc, " %s cdb length %d type %s attribute %s\n",
|
|
(cc->cdb.direction == CISS_CDB_DIRECTION_NONE) ? "no-I/O" :
|
|
(cc->cdb.direction == CISS_CDB_DIRECTION_READ) ? "READ" :
|
|
(cc->cdb.direction == CISS_CDB_DIRECTION_WRITE) ? "WRITE" : "??",
|
|
cc->cdb.cdb_length,
|
|
(cc->cdb.type == CISS_CDB_TYPE_COMMAND) ? "command" :
|
|
(cc->cdb.type == CISS_CDB_TYPE_MESSAGE) ? "message" : "??",
|
|
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_UNTAGGED) ? "untagged" :
|
|
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_SIMPLE) ? "simple" :
|
|
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_HEAD_OF_QUEUE) ? "head-of-queue" :
|
|
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_ORDERED) ? "ordered" :
|
|
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_AUTO_CONTINGENT) ? "auto-contingent" : "??");
|
|
ciss_printf(sc, " %*D\n", cc->cdb.cdb_length, &cc->cdb.cdb[0], " ");
|
|
|
|
if (cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) {
|
|
/* XXX print error info */
|
|
} else {
|
|
/* since we don't use chained s/g, don't support it here */
|
|
for (i = 0; i < cc->header.sg_in_list; i++) {
|
|
if ((i % 4) == 0)
|
|
ciss_printf(sc, " ");
|
|
printf("0x%08x/%d ", (u_int32_t)cc->sg[i].address, cc->sg[i].length);
|
|
if ((((i + 1) % 4) == 0) || (i == (cc->header.sg_in_list - 1)))
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/************************************************************************
|
|
* Print information about the status of a logical drive.
|
|
*/
|
|
static void
|
|
ciss_print_ldrive(struct ciss_softc *sc, struct ciss_ldrive *ld)
|
|
{
|
|
int bus, target, i;
|
|
|
|
if (ld->cl_lstatus == NULL) {
|
|
printf("does not exist\n");
|
|
return;
|
|
}
|
|
|
|
/* print drive status */
|
|
switch(ld->cl_lstatus->status) {
|
|
case CISS_LSTATUS_OK:
|
|
printf("online\n");
|
|
break;
|
|
case CISS_LSTATUS_INTERIM_RECOVERY:
|
|
printf("in interim recovery mode\n");
|
|
break;
|
|
case CISS_LSTATUS_READY_RECOVERY:
|
|
printf("ready to begin recovery\n");
|
|
break;
|
|
case CISS_LSTATUS_RECOVERING:
|
|
bus = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_rebuilding);
|
|
target = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_rebuilding);
|
|
printf("being recovered, working on physical drive %d.%d, %u blocks remaining\n",
|
|
bus, target, ld->cl_lstatus->blocks_to_recover);
|
|
break;
|
|
case CISS_LSTATUS_EXPANDING:
|
|
printf("being expanded, %u blocks remaining\n",
|
|
ld->cl_lstatus->blocks_to_recover);
|
|
break;
|
|
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
|
|
printf("queued for expansion\n");
|
|
break;
|
|
case CISS_LSTATUS_FAILED:
|
|
printf("queued for expansion\n");
|
|
break;
|
|
case CISS_LSTATUS_WRONG_PDRIVE:
|
|
printf("wrong physical drive inserted\n");
|
|
break;
|
|
case CISS_LSTATUS_MISSING_PDRIVE:
|
|
printf("missing a needed physical drive\n");
|
|
break;
|
|
case CISS_LSTATUS_BECOMING_READY:
|
|
printf("becoming ready\n");
|
|
break;
|
|
}
|
|
|
|
/* print failed physical drives */
|
|
for (i = 0; i < CISS_BIG_MAP_ENTRIES / 8; i++) {
|
|
bus = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_failure_map[i]);
|
|
target = CISS_BIG_MAP_TARGET(sc, ld->cl_lstatus->drive_failure_map[i]);
|
|
if (bus == -1)
|
|
continue;
|
|
ciss_printf(sc, "physical drive %d:%d (%x) failed\n", bus, target,
|
|
ld->cl_lstatus->drive_failure_map[i]);
|
|
}
|
|
}
|
|
|
|
#ifdef CISS_DEBUG
|
|
/************************************************************************
|
|
* Print information about the controller/driver.
|
|
*/
|
|
static void
|
|
ciss_print_adapter(struct ciss_softc *sc)
|
|
{
|
|
int i, j;
|
|
|
|
ciss_printf(sc, "ADAPTER:\n");
|
|
for (i = 0; i < CISSQ_COUNT; i++) {
|
|
ciss_printf(sc, "%s %d/%d\n",
|
|
i == 0 ? "free" :
|
|
i == 1 ? "busy" : "complete",
|
|
sc->ciss_qstat[i].q_length,
|
|
sc->ciss_qstat[i].q_max);
|
|
}
|
|
ciss_printf(sc, "max_requests %d\n", sc->ciss_max_requests);
|
|
ciss_printf(sc, "flags %b\n", sc->ciss_flags,
|
|
"\20\1notify_ok\2control_open\3aborting\4running\21fake_synch\22bmic_abort\n");
|
|
|
|
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
|
|
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) {
|
|
ciss_printf(sc, "LOGICAL DRIVE %d: ", i);
|
|
ciss_print_ldrive(sc, &sc->ciss_logical[i][j]);
|
|
}
|
|
}
|
|
|
|
/* XXX Should physical drives be printed out here? */
|
|
|
|
for (i = 1; i < sc->ciss_max_requests; i++)
|
|
ciss_print_request(sc->ciss_request + i);
|
|
}
|
|
|
|
/* DDB hook */
|
|
static void
|
|
ciss_print0(void)
|
|
{
|
|
struct ciss_softc *sc;
|
|
|
|
sc = devclass_get_softc(devclass_find("ciss"), 0);
|
|
if (sc == NULL) {
|
|
printf("no ciss controllers\n");
|
|
} else {
|
|
ciss_print_adapter(sc);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/************************************************************************
|
|
* Return a name for a logical drive status value.
|
|
*/
|
|
static const char *
|
|
ciss_name_ldrive_status(int status)
|
|
{
|
|
switch (status) {
|
|
case CISS_LSTATUS_OK:
|
|
return("OK");
|
|
case CISS_LSTATUS_FAILED:
|
|
return("failed");
|
|
case CISS_LSTATUS_NOT_CONFIGURED:
|
|
return("not configured");
|
|
case CISS_LSTATUS_INTERIM_RECOVERY:
|
|
return("interim recovery");
|
|
case CISS_LSTATUS_READY_RECOVERY:
|
|
return("ready for recovery");
|
|
case CISS_LSTATUS_RECOVERING:
|
|
return("recovering");
|
|
case CISS_LSTATUS_WRONG_PDRIVE:
|
|
return("wrong physical drive inserted");
|
|
case CISS_LSTATUS_MISSING_PDRIVE:
|
|
return("missing physical drive");
|
|
case CISS_LSTATUS_EXPANDING:
|
|
return("expanding");
|
|
case CISS_LSTATUS_BECOMING_READY:
|
|
return("becoming ready");
|
|
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
|
|
return("queued for expansion");
|
|
}
|
|
return("unknown status");
|
|
}
|
|
|
|
/************************************************************************
|
|
* Return an online/offline/nonexistent value for a logical drive
|
|
* status value.
|
|
*/
|
|
static int
|
|
ciss_decode_ldrive_status(int status)
|
|
{
|
|
switch(status) {
|
|
case CISS_LSTATUS_NOT_CONFIGURED:
|
|
return(CISS_LD_NONEXISTENT);
|
|
|
|
case CISS_LSTATUS_OK:
|
|
case CISS_LSTATUS_INTERIM_RECOVERY:
|
|
case CISS_LSTATUS_READY_RECOVERY:
|
|
case CISS_LSTATUS_RECOVERING:
|
|
case CISS_LSTATUS_EXPANDING:
|
|
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
|
|
return(CISS_LD_ONLINE);
|
|
|
|
case CISS_LSTATUS_FAILED:
|
|
case CISS_LSTATUS_WRONG_PDRIVE:
|
|
case CISS_LSTATUS_MISSING_PDRIVE:
|
|
case CISS_LSTATUS_BECOMING_READY:
|
|
default:
|
|
return(CISS_LD_OFFLINE);
|
|
}
|
|
}
|
|
|
|
|
|
/************************************************************************
|
|
* Return a name for a logical drive's organisation.
|
|
*/
|
|
static const char *
|
|
ciss_name_ldrive_org(int org)
|
|
{
|
|
switch(org) {
|
|
case CISS_LDRIVE_RAID0:
|
|
return("RAID 0");
|
|
case CISS_LDRIVE_RAID1:
|
|
return("RAID 1(1+0)");
|
|
case CISS_LDRIVE_RAID4:
|
|
return("RAID 4");
|
|
case CISS_LDRIVE_RAID5:
|
|
return("RAID 5");
|
|
case CISS_LDRIVE_RAID51:
|
|
return("RAID 5+1");
|
|
case CISS_LDRIVE_RAIDADG:
|
|
return("RAID ADG");
|
|
}
|
|
return("unkown");
|
|
}
|
|
|
|
/************************************************************************
|
|
* Return a name for a command status value.
|
|
*/
|
|
static const char *
|
|
ciss_name_command_status(int status)
|
|
{
|
|
switch(status) {
|
|
case CISS_CMD_STATUS_SUCCESS:
|
|
return("success");
|
|
case CISS_CMD_STATUS_TARGET_STATUS:
|
|
return("target status");
|
|
case CISS_CMD_STATUS_DATA_UNDERRUN:
|
|
return("data underrun");
|
|
case CISS_CMD_STATUS_DATA_OVERRUN:
|
|
return("data overrun");
|
|
case CISS_CMD_STATUS_INVALID_COMMAND:
|
|
return("invalid command");
|
|
case CISS_CMD_STATUS_PROTOCOL_ERROR:
|
|
return("protocol error");
|
|
case CISS_CMD_STATUS_HARDWARE_ERROR:
|
|
return("hardware error");
|
|
case CISS_CMD_STATUS_CONNECTION_LOST:
|
|
return("connection lost");
|
|
case CISS_CMD_STATUS_ABORTED:
|
|
return("aborted");
|
|
case CISS_CMD_STATUS_ABORT_FAILED:
|
|
return("abort failed");
|
|
case CISS_CMD_STATUS_UNSOLICITED_ABORT:
|
|
return("unsolicited abort");
|
|
case CISS_CMD_STATUS_TIMEOUT:
|
|
return("timeout");
|
|
case CISS_CMD_STATUS_UNABORTABLE:
|
|
return("unabortable");
|
|
}
|
|
return("unknown status");
|
|
}
|
|
|
|
/************************************************************************
|
|
* Handle an open on the control device.
|
|
*/
|
|
static int
|
|
ciss_open(struct cdev *dev, int flags, int fmt, struct thread *p)
|
|
{
|
|
struct ciss_softc *sc;
|
|
|
|
debug_called(1);
|
|
|
|
sc = (struct ciss_softc *)dev->si_drv1;
|
|
|
|
/* we might want to veto if someone already has us open */
|
|
|
|
mtx_lock(&sc->ciss_mtx);
|
|
sc->ciss_flags |= CISS_FLAG_CONTROL_OPEN;
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
return(0);
|
|
}
|
|
|
|
/************************************************************************
|
|
* Handle the last close on the control device.
|
|
*/
|
|
static int
|
|
ciss_close(struct cdev *dev, int flags, int fmt, struct thread *p)
|
|
{
|
|
struct ciss_softc *sc;
|
|
|
|
debug_called(1);
|
|
|
|
sc = (struct ciss_softc *)dev->si_drv1;
|
|
|
|
mtx_lock(&sc->ciss_mtx);
|
|
sc->ciss_flags &= ~CISS_FLAG_CONTROL_OPEN;
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
return (0);
|
|
}
|
|
|
|
/********************************************************************************
|
|
* Handle adapter-specific control operations.
|
|
*
|
|
* Note that the API here is compatible with the Linux driver, in order to
|
|
* simplify the porting of Compaq's userland tools.
|
|
*/
|
|
static int
|
|
ciss_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int32_t flag, struct thread *p)
|
|
{
|
|
struct ciss_softc *sc;
|
|
IOCTL_Command_struct *ioc = (IOCTL_Command_struct *)addr;
|
|
#ifdef __amd64__
|
|
IOCTL_Command_struct32 *ioc32 = (IOCTL_Command_struct32 *)addr;
|
|
IOCTL_Command_struct ioc_swab;
|
|
#endif
|
|
int error;
|
|
|
|
debug_called(1);
|
|
|
|
sc = (struct ciss_softc *)dev->si_drv1;
|
|
error = 0;
|
|
mtx_lock(&sc->ciss_mtx);
|
|
|
|
switch(cmd) {
|
|
case CCISS_GETQSTATS:
|
|
{
|
|
union ciss_statrequest *cr = (union ciss_statrequest *)addr;
|
|
|
|
switch (cr->cs_item) {
|
|
case CISSQ_FREE:
|
|
case CISSQ_NOTIFY:
|
|
bcopy(&sc->ciss_qstat[cr->cs_item], &cr->cs_qstat,
|
|
sizeof(struct ciss_qstat));
|
|
break;
|
|
default:
|
|
error = ENOIOCTL;
|
|
break;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case CCISS_GETPCIINFO:
|
|
{
|
|
cciss_pci_info_struct *pis = (cciss_pci_info_struct *)addr;
|
|
|
|
pis->bus = pci_get_bus(sc->ciss_dev);
|
|
pis->dev_fn = pci_get_slot(sc->ciss_dev);
|
|
pis->board_id = (pci_get_subvendor(sc->ciss_dev) << 16) |
|
|
pci_get_subdevice(sc->ciss_dev);
|
|
|
|
break;
|
|
}
|
|
|
|
case CCISS_GETINTINFO:
|
|
{
|
|
cciss_coalint_struct *cis = (cciss_coalint_struct *)addr;
|
|
|
|
cis->delay = sc->ciss_cfg->interrupt_coalesce_delay;
|
|
cis->count = sc->ciss_cfg->interrupt_coalesce_count;
|
|
|
|
break;
|
|
}
|
|
|
|
case CCISS_SETINTINFO:
|
|
{
|
|
cciss_coalint_struct *cis = (cciss_coalint_struct *)addr;
|
|
|
|
if ((cis->delay == 0) && (cis->count == 0)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* XXX apparently this is only safe if the controller is idle,
|
|
* we should suspend it before doing this.
|
|
*/
|
|
sc->ciss_cfg->interrupt_coalesce_delay = cis->delay;
|
|
sc->ciss_cfg->interrupt_coalesce_count = cis->count;
|
|
|
|
if (ciss_update_config(sc))
|
|
error = EIO;
|
|
|
|
/* XXX resume the controller here */
|
|
break;
|
|
}
|
|
|
|
case CCISS_GETNODENAME:
|
|
bcopy(sc->ciss_cfg->server_name, (NodeName_type *)addr,
|
|
sizeof(NodeName_type));
|
|
break;
|
|
|
|
case CCISS_SETNODENAME:
|
|
bcopy((NodeName_type *)addr, sc->ciss_cfg->server_name,
|
|
sizeof(NodeName_type));
|
|
if (ciss_update_config(sc))
|
|
error = EIO;
|
|
break;
|
|
|
|
case CCISS_GETHEARTBEAT:
|
|
*(Heartbeat_type *)addr = sc->ciss_cfg->heartbeat;
|
|
break;
|
|
|
|
case CCISS_GETBUSTYPES:
|
|
*(BusTypes_type *)addr = sc->ciss_cfg->bus_types;
|
|
break;
|
|
|
|
case CCISS_GETFIRMVER:
|
|
bcopy(sc->ciss_id->running_firmware_revision, (FirmwareVer_type *)addr,
|
|
sizeof(FirmwareVer_type));
|
|
break;
|
|
|
|
case CCISS_GETDRIVERVER:
|
|
*(DriverVer_type *)addr = CISS_DRIVER_VERSION;
|
|
break;
|
|
|
|
case CCISS_REVALIDVOLS:
|
|
/*
|
|
* This is a bit ugly; to do it "right" we really need
|
|
* to find any disks that have changed, kick CAM off them,
|
|
* then rescan only these disks. It'd be nice if they
|
|
* a) told us which disk(s) they were going to play with,
|
|
* and b) which ones had arrived. 8(
|
|
*/
|
|
break;
|
|
|
|
#ifdef __amd64__
|
|
case CCISS_PASSTHRU32:
|
|
ioc_swab.LUN_info = ioc32->LUN_info;
|
|
ioc_swab.Request = ioc32->Request;
|
|
ioc_swab.error_info = ioc32->error_info;
|
|
ioc_swab.buf_size = ioc32->buf_size;
|
|
ioc_swab.buf = (u_int8_t *)(uintptr_t)ioc32->buf;
|
|
ioc = &ioc_swab;
|
|
/* FALLTHROUGH */
|
|
#endif
|
|
|
|
case CCISS_PASSTHRU:
|
|
error = ciss_user_command(sc, ioc);
|
|
break;
|
|
|
|
default:
|
|
debug(0, "unknown ioctl 0x%lx", cmd);
|
|
|
|
debug(1, "CCISS_GETPCIINFO: 0x%lx", CCISS_GETPCIINFO);
|
|
debug(1, "CCISS_GETINTINFO: 0x%lx", CCISS_GETINTINFO);
|
|
debug(1, "CCISS_SETINTINFO: 0x%lx", CCISS_SETINTINFO);
|
|
debug(1, "CCISS_GETNODENAME: 0x%lx", CCISS_GETNODENAME);
|
|
debug(1, "CCISS_SETNODENAME: 0x%lx", CCISS_SETNODENAME);
|
|
debug(1, "CCISS_GETHEARTBEAT: 0x%lx", CCISS_GETHEARTBEAT);
|
|
debug(1, "CCISS_GETBUSTYPES: 0x%lx", CCISS_GETBUSTYPES);
|
|
debug(1, "CCISS_GETFIRMVER: 0x%lx", CCISS_GETFIRMVER);
|
|
debug(1, "CCISS_GETDRIVERVER: 0x%lx", CCISS_GETDRIVERVER);
|
|
debug(1, "CCISS_REVALIDVOLS: 0x%lx", CCISS_REVALIDVOLS);
|
|
debug(1, "CCISS_PASSTHRU: 0x%lx", CCISS_PASSTHRU);
|
|
|
|
error = ENOIOCTL;
|
|
break;
|
|
}
|
|
|
|
mtx_unlock(&sc->ciss_mtx);
|
|
return(error);
|
|
}
|