2f70fca5ec
- Move destruction of per-ring locks to netmap_dtor_locked to mirror the initialization that happens in NIOCREGIF. Otherwise unloading a netmap- capable interface that was never put into netmap mode would try to mtx_destroy an uninitialized mutex, and panic. - Destroy core_lock in netmap_detach, mirroring init in netmap_attach. - Also comment out the knlist_destroy for now as there is currently no knlist_init. Sponsored by: ADARA Networks Reviewed by: luigi@
2114 lines
58 KiB
C
2114 lines
58 KiB
C
/*
|
|
* Copyright (C) 2011-2012 Matteo Landi, Luigi Rizzo. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#define NM_BRIDGE
|
|
|
|
/*
|
|
* This module supports memory mapped access to network devices,
|
|
* see netmap(4).
|
|
*
|
|
* The module uses a large, memory pool allocated by the kernel
|
|
* and accessible as mmapped memory by multiple userspace threads/processes.
|
|
* The memory pool contains packet buffers and "netmap rings",
|
|
* i.e. user-accessible copies of the interface's queues.
|
|
*
|
|
* Access to the network card works like this:
|
|
* 1. a process/thread issues one or more open() on /dev/netmap, to create
|
|
* select()able file descriptor on which events are reported.
|
|
* 2. on each descriptor, the process issues an ioctl() to identify
|
|
* the interface that should report events to the file descriptor.
|
|
* 3. on each descriptor, the process issues an mmap() request to
|
|
* map the shared memory region within the process' address space.
|
|
* The list of interesting queues is indicated by a location in
|
|
* the shared memory region.
|
|
* 4. using the functions in the netmap(4) userspace API, a process
|
|
* can look up the occupation state of a queue, access memory buffers,
|
|
* and retrieve received packets or enqueue packets to transmit.
|
|
* 5. using some ioctl()s the process can synchronize the userspace view
|
|
* of the queue with the actual status in the kernel. This includes both
|
|
* receiving the notification of new packets, and transmitting new
|
|
* packets on the output interface.
|
|
* 6. select() or poll() can be used to wait for events on individual
|
|
* transmit or receive queues (or all queues for a given interface).
|
|
*/
|
|
|
|
#ifdef linux
|
|
#include "bsd_glue.h"
|
|
static netdev_tx_t linux_netmap_start(struct sk_buff *skb, struct net_device *dev);
|
|
#endif /* linux */
|
|
|
|
#ifdef __APPLE__
|
|
#include "osx_glue.h"
|
|
#endif /* __APPLE__ */
|
|
|
|
#ifdef __FreeBSD__
|
|
#include <sys/cdefs.h> /* prerequisite */
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/module.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/param.h> /* defines used in kernel.h */
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h> /* types used in module initialization */
|
|
#include <sys/conf.h> /* cdevsw struct */
|
|
#include <sys/uio.h> /* uio struct */
|
|
#include <sys/sockio.h>
|
|
#include <sys/socketvar.h> /* struct socket */
|
|
#include <sys/malloc.h>
|
|
#include <sys/mman.h> /* PROT_EXEC */
|
|
#include <sys/poll.h>
|
|
#include <sys/proc.h>
|
|
#include <vm/vm.h> /* vtophys */
|
|
#include <vm/pmap.h> /* vtophys */
|
|
#include <sys/socket.h> /* sockaddrs */
|
|
#include <machine/bus.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/sysctl.h>
|
|
#include <net/if.h>
|
|
#include <net/bpf.h> /* BIOCIMMEDIATE */
|
|
#include <net/vnet.h>
|
|
#include <machine/bus.h> /* bus_dmamap_* */
|
|
|
|
MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
|
|
#endif /* __FreeBSD__ */
|
|
|
|
#include <net/netmap.h>
|
|
#include <dev/netmap/netmap_kern.h>
|
|
|
|
/*
|
|
* lock and unlock for the netmap memory allocator
|
|
*/
|
|
#define NMA_LOCK() mtx_lock(&nm_mem->nm_mtx);
|
|
#define NMA_UNLOCK() mtx_unlock(&nm_mem->nm_mtx);
|
|
struct netmap_mem_d;
|
|
static struct netmap_mem_d *nm_mem; /* Our memory allocator. */
|
|
|
|
u_int netmap_total_buffers;
|
|
char *netmap_buffer_base; /* address of an invalid buffer */
|
|
|
|
/* user-controlled variables */
|
|
int netmap_verbose;
|
|
|
|
static int netmap_no_timestamp; /* don't timestamp on rxsync */
|
|
|
|
SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
|
|
CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
|
|
CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
|
|
u_int netmap_buf_size = 2048;
|
|
TUNABLE_INT("hw.netmap.buf_size", (u_int *)&netmap_buf_size);
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, buf_size,
|
|
CTLFLAG_RD, &netmap_buf_size, 0, "Size of packet buffers");
|
|
int netmap_mitigate = 1;
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, mitigate, CTLFLAG_RW, &netmap_mitigate, 0, "");
|
|
int netmap_no_pendintr = 1;
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr,
|
|
CTLFLAG_RW, &netmap_no_pendintr, 0, "Always look for new received packets.");
|
|
|
|
int netmap_drop = 0; /* debugging */
|
|
int netmap_flags = 0; /* debug flags */
|
|
int netmap_copy = 0; /* debugging, copy content */
|
|
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, drop, CTLFLAG_RW, &netmap_drop, 0 , "");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, flags, CTLFLAG_RW, &netmap_flags, 0 , "");
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, copy, CTLFLAG_RW, &netmap_copy, 0 , "");
|
|
|
|
#ifdef NM_BRIDGE /* support for netmap bridge */
|
|
|
|
/*
|
|
* system parameters.
|
|
*
|
|
* All switched ports have prefix NM_NAME.
|
|
* The switch has a max of NM_BDG_MAXPORTS ports (often stored in a bitmap,
|
|
* so a practical upper bound is 64).
|
|
* Each tx ring is read-write, whereas rx rings are readonly (XXX not done yet).
|
|
* The virtual interfaces use per-queue lock instead of core lock.
|
|
* In the tx loop, we aggregate traffic in batches to make all operations
|
|
* faster. The batch size is NM_BDG_BATCH
|
|
*/
|
|
#define NM_NAME "vale" /* prefix for the interface */
|
|
#define NM_BDG_MAXPORTS 16 /* up to 64 ? */
|
|
#define NM_BRIDGE_RINGSIZE 1024 /* in the device */
|
|
#define NM_BDG_HASH 1024 /* forwarding table entries */
|
|
#define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */
|
|
#define NM_BRIDGES 4 /* number of bridges */
|
|
int netmap_bridge = NM_BDG_BATCH; /* bridge batch size */
|
|
SYSCTL_INT(_dev_netmap, OID_AUTO, bridge, CTLFLAG_RW, &netmap_bridge, 0 , "");
|
|
|
|
#ifdef linux
|
|
#define ADD_BDG_REF(ifp) (NA(ifp)->if_refcount++)
|
|
#define DROP_BDG_REF(ifp) (NA(ifp)->if_refcount-- <= 1)
|
|
#else /* !linux */
|
|
#define ADD_BDG_REF(ifp) (ifp)->if_refcount++
|
|
#define DROP_BDG_REF(ifp) refcount_release(&(ifp)->if_refcount)
|
|
#ifdef __FreeBSD__
|
|
#include <sys/endian.h>
|
|
#include <sys/refcount.h>
|
|
#endif /* __FreeBSD__ */
|
|
#define prefetch(x) __builtin_prefetch(x)
|
|
#endif /* !linux */
|
|
|
|
static void bdg_netmap_attach(struct ifnet *ifp);
|
|
static int bdg_netmap_reg(struct ifnet *ifp, int onoff);
|
|
/* per-tx-queue entry */
|
|
struct nm_bdg_fwd { /* forwarding entry for a bridge */
|
|
void *buf;
|
|
uint64_t dst; /* dst mask */
|
|
uint32_t src; /* src index ? */
|
|
uint16_t len; /* src len */
|
|
};
|
|
|
|
struct nm_hash_ent {
|
|
uint64_t mac; /* the top 2 bytes are the epoch */
|
|
uint64_t ports;
|
|
};
|
|
|
|
/*
|
|
* Interfaces for a bridge are all in ports[].
|
|
* The array has fixed size, an empty entry does not terminate
|
|
* the search.
|
|
*/
|
|
struct nm_bridge {
|
|
struct ifnet *bdg_ports[NM_BDG_MAXPORTS];
|
|
int n_ports;
|
|
uint64_t act_ports;
|
|
int freelist; /* first buffer index */
|
|
NM_SELINFO_T si; /* poll/select wait queue */
|
|
NM_LOCK_T bdg_lock; /* protect the selinfo ? */
|
|
|
|
/* the forwarding table, MAC+ports */
|
|
struct nm_hash_ent ht[NM_BDG_HASH];
|
|
|
|
int namelen; /* 0 means free */
|
|
char basename[IFNAMSIZ];
|
|
};
|
|
|
|
struct nm_bridge nm_bridges[NM_BRIDGES];
|
|
|
|
#define BDG_LOCK(b) mtx_lock(&(b)->bdg_lock)
|
|
#define BDG_UNLOCK(b) mtx_unlock(&(b)->bdg_lock)
|
|
|
|
/*
|
|
* NA(ifp)->bdg_port port index
|
|
*/
|
|
|
|
// XXX only for multiples of 64 bytes, non overlapped.
|
|
static inline void
|
|
pkt_copy(void *_src, void *_dst, int l)
|
|
{
|
|
uint64_t *src = _src;
|
|
uint64_t *dst = _dst;
|
|
if (unlikely(l >= 1024)) {
|
|
bcopy(src, dst, l);
|
|
return;
|
|
}
|
|
for (; likely(l > 0); l-=64) {
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* locate a bridge among the existing ones.
|
|
* a ':' in the name terminates the bridge name. Otherwise, just NM_NAME.
|
|
* We assume that this is called with a name of at least NM_NAME chars.
|
|
*/
|
|
static struct nm_bridge *
|
|
nm_find_bridge(const char *name)
|
|
{
|
|
int i, l, namelen, e;
|
|
struct nm_bridge *b = NULL;
|
|
|
|
namelen = strlen(NM_NAME); /* base length */
|
|
l = strlen(name); /* actual length */
|
|
for (i = namelen + 1; i < l; i++) {
|
|
if (name[i] == ':') {
|
|
namelen = i;
|
|
break;
|
|
}
|
|
}
|
|
if (namelen >= IFNAMSIZ)
|
|
namelen = IFNAMSIZ;
|
|
ND("--- prefix is '%.*s' ---", namelen, name);
|
|
|
|
/* use the first entry for locking */
|
|
BDG_LOCK(nm_bridges); // XXX do better
|
|
for (e = -1, i = 1; i < NM_BRIDGES; i++) {
|
|
b = nm_bridges + i;
|
|
if (b->namelen == 0)
|
|
e = i; /* record empty slot */
|
|
else if (strncmp(name, b->basename, namelen) == 0) {
|
|
ND("found '%.*s' at %d", namelen, name, i);
|
|
break;
|
|
}
|
|
}
|
|
if (i == NM_BRIDGES) { /* all full */
|
|
if (e == -1) { /* no empty slot */
|
|
b = NULL;
|
|
} else {
|
|
b = nm_bridges + e;
|
|
strncpy(b->basename, name, namelen);
|
|
b->namelen = namelen;
|
|
}
|
|
}
|
|
BDG_UNLOCK(nm_bridges);
|
|
return b;
|
|
}
|
|
#endif /* NM_BRIDGE */
|
|
|
|
/*------------- memory allocator -----------------*/
|
|
#ifdef NETMAP_MEM2
|
|
#include "netmap_mem2.c"
|
|
#else /* !NETMAP_MEM2 */
|
|
#include "netmap_mem1.c"
|
|
#endif /* !NETMAP_MEM2 */
|
|
/*------------ end of memory allocator ----------*/
|
|
|
|
/* Structure associated to each thread which registered an interface. */
|
|
struct netmap_priv_d {
|
|
struct netmap_if *np_nifp; /* netmap interface descriptor. */
|
|
|
|
struct ifnet *np_ifp; /* device for which we hold a reference */
|
|
int np_ringid; /* from the ioctl */
|
|
u_int np_qfirst, np_qlast; /* range of rings to scan */
|
|
uint16_t np_txpoll;
|
|
};
|
|
|
|
|
|
/*
|
|
* File descriptor's private data destructor.
|
|
*
|
|
* Call nm_register(ifp,0) to stop netmap mode on the interface and
|
|
* revert to normal operation. We expect that np_ifp has not gone.
|
|
*/
|
|
static void
|
|
netmap_dtor_locked(void *data)
|
|
{
|
|
struct netmap_priv_d *priv = data;
|
|
struct ifnet *ifp = priv->np_ifp;
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_if *nifp = priv->np_nifp;
|
|
|
|
na->refcount--;
|
|
if (na->refcount <= 0) { /* last instance */
|
|
u_int i, j, lim;
|
|
|
|
D("deleting last netmap instance for %s", ifp->if_xname);
|
|
/*
|
|
* there is a race here with *_netmap_task() and
|
|
* netmap_poll(), which don't run under NETMAP_REG_LOCK.
|
|
* na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP
|
|
* (aka NETMAP_DELETING(na)) are a unique marker that the
|
|
* device is dying.
|
|
* Before destroying stuff we sleep a bit, and then complete
|
|
* the job. NIOCREG should realize the condition and
|
|
* loop until they can continue; the other routines
|
|
* should check the condition at entry and quit if
|
|
* they cannot run.
|
|
*/
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
tsleep(na, 0, "NIOCUNREG", 4);
|
|
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
|
|
na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */
|
|
/* Wake up any sleeping threads. netmap_poll will
|
|
* then return POLLERR
|
|
*/
|
|
for (i = 0; i < na->num_tx_rings + 1; i++)
|
|
selwakeuppri(&na->tx_rings[i].si, PI_NET);
|
|
for (i = 0; i < na->num_rx_rings + 1; i++)
|
|
selwakeuppri(&na->rx_rings[i].si, PI_NET);
|
|
selwakeuppri(&na->tx_si, PI_NET);
|
|
selwakeuppri(&na->rx_si, PI_NET);
|
|
/* release all buffers */
|
|
NMA_LOCK();
|
|
for (i = 0; i < na->num_tx_rings + 1; i++) {
|
|
struct netmap_ring *ring = na->tx_rings[i].ring;
|
|
lim = na->tx_rings[i].nkr_num_slots;
|
|
for (j = 0; j < lim; j++)
|
|
netmap_free_buf(nifp, ring->slot[j].buf_idx);
|
|
/* knlist_destroy(&na->tx_rings[i].si.si_note); */
|
|
mtx_destroy(&na->tx_rings[i].q_lock);
|
|
}
|
|
for (i = 0; i < na->num_rx_rings + 1; i++) {
|
|
struct netmap_ring *ring = na->rx_rings[i].ring;
|
|
lim = na->rx_rings[i].nkr_num_slots;
|
|
for (j = 0; j < lim; j++)
|
|
netmap_free_buf(nifp, ring->slot[j].buf_idx);
|
|
/* knlist_destroy(&na->rx_rings[i].si.si_note); */
|
|
mtx_destroy(&na->rx_rings[i].q_lock);
|
|
}
|
|
/* XXX kqueue(9) needed; these will mirror knlist_init. */
|
|
/* knlist_destroy(&na->tx_si.si_note); */
|
|
/* knlist_destroy(&na->rx_si.si_note); */
|
|
NMA_UNLOCK();
|
|
netmap_free_rings(na);
|
|
wakeup(na);
|
|
}
|
|
netmap_if_free(nifp);
|
|
}
|
|
|
|
static void
|
|
nm_if_rele(struct ifnet *ifp)
|
|
{
|
|
#ifndef NM_BRIDGE
|
|
if_rele(ifp);
|
|
#else /* NM_BRIDGE */
|
|
int i, full;
|
|
struct nm_bridge *b;
|
|
|
|
if (strncmp(ifp->if_xname, NM_NAME, sizeof(NM_NAME) - 1)) {
|
|
if_rele(ifp);
|
|
return;
|
|
}
|
|
if (!DROP_BDG_REF(ifp))
|
|
return;
|
|
b = ifp->if_bridge;
|
|
BDG_LOCK(nm_bridges);
|
|
BDG_LOCK(b);
|
|
ND("want to disconnect %s from the bridge", ifp->if_xname);
|
|
full = 0;
|
|
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
|
|
if (b->bdg_ports[i] == ifp) {
|
|
b->bdg_ports[i] = NULL;
|
|
bzero(ifp, sizeof(*ifp));
|
|
free(ifp, M_DEVBUF);
|
|
break;
|
|
}
|
|
else if (b->bdg_ports[i] != NULL)
|
|
full = 1;
|
|
}
|
|
BDG_UNLOCK(b);
|
|
if (full == 0) {
|
|
ND("freeing bridge %d", b - nm_bridges);
|
|
b->namelen = 0;
|
|
}
|
|
BDG_UNLOCK(nm_bridges);
|
|
if (i == NM_BDG_MAXPORTS)
|
|
D("ouch, cannot find ifp to remove");
|
|
#endif /* NM_BRIDGE */
|
|
}
|
|
|
|
static void
|
|
netmap_dtor(void *data)
|
|
{
|
|
struct netmap_priv_d *priv = data;
|
|
struct ifnet *ifp = priv->np_ifp;
|
|
struct netmap_adapter *na = NA(ifp);
|
|
|
|
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
|
|
netmap_dtor_locked(data);
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
|
|
nm_if_rele(ifp);
|
|
bzero(priv, sizeof(*priv)); /* XXX for safety */
|
|
free(priv, M_DEVBUF);
|
|
}
|
|
|
|
|
|
/*
|
|
* mmap(2) support for the "netmap" device.
|
|
*
|
|
* Expose all the memory previously allocated by our custom memory
|
|
* allocator: this way the user has only to issue a single mmap(2), and
|
|
* can work on all the data structures flawlessly.
|
|
*
|
|
* Return 0 on success, -1 otherwise.
|
|
*/
|
|
|
|
#ifdef __FreeBSD__
|
|
static int
|
|
netmap_mmap(__unused struct cdev *dev,
|
|
#if __FreeBSD_version < 900000
|
|
vm_offset_t offset, vm_paddr_t *paddr, int nprot
|
|
#else
|
|
vm_ooffset_t offset, vm_paddr_t *paddr, int nprot,
|
|
__unused vm_memattr_t *memattr
|
|
#endif
|
|
)
|
|
{
|
|
if (nprot & PROT_EXEC)
|
|
return (-1); // XXX -1 or EINVAL ?
|
|
|
|
ND("request for offset 0x%x", (uint32_t)offset);
|
|
*paddr = netmap_ofstophys(offset);
|
|
|
|
return (0);
|
|
}
|
|
#endif /* __FreeBSD__ */
|
|
|
|
|
|
/*
|
|
* Handlers for synchronization of the queues from/to the host.
|
|
*
|
|
* netmap_sync_to_host() passes packets up. We are called from a
|
|
* system call in user process context, and the only contention
|
|
* can be among multiple user threads erroneously calling
|
|
* this routine concurrently. In principle we should not even
|
|
* need to lock.
|
|
*/
|
|
static void
|
|
netmap_sync_to_host(struct netmap_adapter *na)
|
|
{
|
|
struct netmap_kring *kring = &na->tx_rings[na->num_tx_rings];
|
|
struct netmap_ring *ring = kring->ring;
|
|
struct mbuf *head = NULL, *tail = NULL, *m;
|
|
u_int k, n, lim = kring->nkr_num_slots - 1;
|
|
|
|
k = ring->cur;
|
|
if (k > lim) {
|
|
netmap_ring_reinit(kring);
|
|
return;
|
|
}
|
|
// na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
|
|
|
|
/* Take packets from hwcur to cur and pass them up.
|
|
* In case of no buffers we give up. At the end of the loop,
|
|
* the queue is drained in all cases.
|
|
*/
|
|
for (n = kring->nr_hwcur; n != k;) {
|
|
struct netmap_slot *slot = &ring->slot[n];
|
|
|
|
n = (n == lim) ? 0 : n + 1;
|
|
if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) {
|
|
D("bad pkt at %d len %d", n, slot->len);
|
|
continue;
|
|
}
|
|
m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL);
|
|
|
|
if (m == NULL)
|
|
break;
|
|
if (tail)
|
|
tail->m_nextpkt = m;
|
|
else
|
|
head = m;
|
|
tail = m;
|
|
m->m_nextpkt = NULL;
|
|
}
|
|
kring->nr_hwcur = k;
|
|
kring->nr_hwavail = ring->avail = lim;
|
|
// na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
|
|
|
|
/* send packets up, outside the lock */
|
|
while ((m = head) != NULL) {
|
|
head = head->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("sending up pkt %p size %d", m, MBUF_LEN(m));
|
|
NM_SEND_UP(na->ifp, m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* rxsync backend for packets coming from the host stack.
|
|
* They have been put in the queue by netmap_start() so we
|
|
* need to protect access to the kring using a lock.
|
|
*
|
|
* This routine also does the selrecord if called from the poll handler
|
|
* (we know because td != NULL).
|
|
*
|
|
* NOTE: on linux, selrecord() is defined as a macro and uses pwait
|
|
* as an additional hidden argument.
|
|
*/
|
|
static void
|
|
netmap_sync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait)
|
|
{
|
|
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int j, n, lim = kring->nkr_num_slots;
|
|
u_int k = ring->cur, resvd = ring->reserved;
|
|
|
|
(void)pwait; /* disable unused warnings */
|
|
na->nm_lock(na->ifp, NETMAP_CORE_LOCK, 0);
|
|
if (k >= lim) {
|
|
netmap_ring_reinit(kring);
|
|
return;
|
|
}
|
|
/* new packets are already set in nr_hwavail */
|
|
/* skip past packets that userspace has released */
|
|
j = kring->nr_hwcur;
|
|
if (resvd > 0) {
|
|
if (resvd + ring->avail >= lim + 1) {
|
|
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
|
|
ring->reserved = resvd = 0; // XXX panic...
|
|
}
|
|
k = (k >= resvd) ? k - resvd : k + lim - resvd;
|
|
}
|
|
if (j != k) {
|
|
n = k >= j ? k - j : k + lim - j;
|
|
kring->nr_hwavail -= n;
|
|
kring->nr_hwcur = k;
|
|
}
|
|
k = ring->avail = kring->nr_hwavail - resvd;
|
|
if (k == 0 && td)
|
|
selrecord(td, &kring->si);
|
|
if (k && (netmap_verbose & NM_VERB_HOST))
|
|
D("%d pkts from stack", k);
|
|
na->nm_lock(na->ifp, NETMAP_CORE_UNLOCK, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* get a refcounted reference to an interface.
|
|
* Return ENXIO if the interface does not exist, EINVAL if netmap
|
|
* is not supported by the interface.
|
|
* If successful, hold a reference.
|
|
*/
|
|
static int
|
|
get_ifp(const char *name, struct ifnet **ifp)
|
|
{
|
|
#ifdef NM_BRIDGE
|
|
struct ifnet *iter = NULL;
|
|
|
|
do {
|
|
struct nm_bridge *b;
|
|
int i, l, cand = -1;
|
|
|
|
if (strncmp(name, NM_NAME, sizeof(NM_NAME) - 1))
|
|
break;
|
|
b = nm_find_bridge(name);
|
|
if (b == NULL) {
|
|
D("no bridges available for '%s'", name);
|
|
return (ENXIO);
|
|
}
|
|
/* XXX locking */
|
|
BDG_LOCK(b);
|
|
/* lookup in the local list of ports */
|
|
for (i = 0; i < NM_BDG_MAXPORTS; i++) {
|
|
iter = b->bdg_ports[i];
|
|
if (iter == NULL) {
|
|
if (cand == -1)
|
|
cand = i; /* potential insert point */
|
|
continue;
|
|
}
|
|
if (!strcmp(iter->if_xname, name)) {
|
|
ADD_BDG_REF(iter);
|
|
ND("found existing interface");
|
|
BDG_UNLOCK(b);
|
|
break;
|
|
}
|
|
}
|
|
if (i < NM_BDG_MAXPORTS) /* already unlocked */
|
|
break;
|
|
if (cand == -1) {
|
|
D("bridge full, cannot create new port");
|
|
no_port:
|
|
BDG_UNLOCK(b);
|
|
*ifp = NULL;
|
|
return EINVAL;
|
|
}
|
|
ND("create new bridge port %s", name);
|
|
/* space for forwarding list after the ifnet */
|
|
l = sizeof(*iter) +
|
|
sizeof(struct nm_bdg_fwd)*NM_BDG_BATCH ;
|
|
iter = malloc(l, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (!iter)
|
|
goto no_port;
|
|
strcpy(iter->if_xname, name);
|
|
bdg_netmap_attach(iter);
|
|
b->bdg_ports[cand] = iter;
|
|
iter->if_bridge = b;
|
|
ADD_BDG_REF(iter);
|
|
BDG_UNLOCK(b);
|
|
ND("attaching virtual bridge %p", b);
|
|
} while (0);
|
|
*ifp = iter;
|
|
if (! *ifp)
|
|
#endif /* NM_BRIDGE */
|
|
*ifp = ifunit_ref(name);
|
|
if (*ifp == NULL)
|
|
return (ENXIO);
|
|
/* can do this if the capability exists and if_pspare[0]
|
|
* points to the netmap descriptor.
|
|
*/
|
|
if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp))
|
|
return 0; /* valid pointer, we hold the refcount */
|
|
nm_if_rele(*ifp);
|
|
return EINVAL; // not NETMAP capable
|
|
}
|
|
|
|
|
|
/*
|
|
* Error routine called when txsync/rxsync detects an error.
|
|
* Can't do much more than resetting cur = hwcur, avail = hwavail.
|
|
* Return 1 on reinit.
|
|
*
|
|
* This routine is only called by the upper half of the kernel.
|
|
* It only reads hwcur (which is changed only by the upper half, too)
|
|
* and hwavail (which may be changed by the lower half, but only on
|
|
* a tx ring and only to increase it, so any error will be recovered
|
|
* on the next call). For the above, we don't strictly need to call
|
|
* it under lock.
|
|
*/
|
|
int
|
|
netmap_ring_reinit(struct netmap_kring *kring)
|
|
{
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int i, lim = kring->nkr_num_slots - 1;
|
|
int errors = 0;
|
|
|
|
D("called for %s", kring->na->ifp->if_xname);
|
|
if (ring->cur > lim)
|
|
errors++;
|
|
for (i = 0; i <= lim; i++) {
|
|
u_int idx = ring->slot[i].buf_idx;
|
|
u_int len = ring->slot[i].len;
|
|
if (idx < 2 || idx >= netmap_total_buffers) {
|
|
if (!errors++)
|
|
D("bad buffer at slot %d idx %d len %d ", i, idx, len);
|
|
ring->slot[i].buf_idx = 0;
|
|
ring->slot[i].len = 0;
|
|
} else if (len > NETMAP_BUF_SIZE) {
|
|
ring->slot[i].len = 0;
|
|
if (!errors++)
|
|
D("bad len %d at slot %d idx %d",
|
|
len, i, idx);
|
|
}
|
|
}
|
|
if (errors) {
|
|
int pos = kring - kring->na->tx_rings;
|
|
int n = kring->na->num_tx_rings + 1;
|
|
|
|
D("total %d errors", errors);
|
|
errors++;
|
|
D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d",
|
|
kring->na->ifp->if_xname,
|
|
pos < n ? "TX" : "RX", pos < n ? pos : pos - n,
|
|
ring->cur, kring->nr_hwcur,
|
|
ring->avail, kring->nr_hwavail);
|
|
ring->cur = kring->nr_hwcur;
|
|
ring->avail = kring->nr_hwavail;
|
|
}
|
|
return (errors ? 1 : 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Set the ring ID. For devices with a single queue, a request
|
|
* for all rings is the same as a single ring.
|
|
*/
|
|
static int
|
|
netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid)
|
|
{
|
|
struct ifnet *ifp = priv->np_ifp;
|
|
struct netmap_adapter *na = NA(ifp);
|
|
u_int i = ringid & NETMAP_RING_MASK;
|
|
/* initially (np_qfirst == np_qlast) we don't want to lock */
|
|
int need_lock = (priv->np_qfirst != priv->np_qlast);
|
|
int lim = na->num_rx_rings;
|
|
|
|
if (na->num_tx_rings > lim)
|
|
lim = na->num_tx_rings;
|
|
if ( (ringid & NETMAP_HW_RING) && i >= lim) {
|
|
D("invalid ring id %d", i);
|
|
return (EINVAL);
|
|
}
|
|
if (need_lock)
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
priv->np_ringid = ringid;
|
|
if (ringid & NETMAP_SW_RING) {
|
|
priv->np_qfirst = NETMAP_SW_RING;
|
|
priv->np_qlast = 0;
|
|
} else if (ringid & NETMAP_HW_RING) {
|
|
priv->np_qfirst = i;
|
|
priv->np_qlast = i + 1;
|
|
} else {
|
|
priv->np_qfirst = 0;
|
|
priv->np_qlast = NETMAP_HW_RING ;
|
|
}
|
|
priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1;
|
|
if (need_lock)
|
|
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
|
|
if (ringid & NETMAP_SW_RING)
|
|
D("ringid %s set to SW RING", ifp->if_xname);
|
|
else if (ringid & NETMAP_HW_RING)
|
|
D("ringid %s set to HW RING %d", ifp->if_xname,
|
|
priv->np_qfirst);
|
|
else
|
|
D("ringid %s set to all %d HW RINGS", ifp->if_xname, lim);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ioctl(2) support for the "netmap" device.
|
|
*
|
|
* Following a list of accepted commands:
|
|
* - NIOCGINFO
|
|
* - SIOCGIFADDR just for convenience
|
|
* - NIOCREGIF
|
|
* - NIOCUNREGIF
|
|
* - NIOCTXSYNC
|
|
* - NIOCRXSYNC
|
|
*
|
|
* Return 0 on success, errno otherwise.
|
|
*/
|
|
static int
|
|
netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data,
|
|
int fflag, struct thread *td)
|
|
{
|
|
struct netmap_priv_d *priv = NULL;
|
|
struct ifnet *ifp;
|
|
struct nmreq *nmr = (struct nmreq *) data;
|
|
struct netmap_adapter *na;
|
|
int error;
|
|
u_int i, lim;
|
|
struct netmap_if *nifp;
|
|
|
|
(void)dev; /* UNUSED */
|
|
(void)fflag; /* UNUSED */
|
|
#ifdef linux
|
|
#define devfs_get_cdevpriv(pp) \
|
|
({ *(struct netmap_priv_d **)pp = ((struct file *)td)->private_data; \
|
|
(*pp ? 0 : ENOENT); })
|
|
|
|
/* devfs_set_cdevpriv cannot fail on linux */
|
|
#define devfs_set_cdevpriv(p, fn) \
|
|
({ ((struct file *)td)->private_data = p; (p ? 0 : EINVAL); })
|
|
|
|
|
|
#define devfs_clear_cdevpriv() do { \
|
|
netmap_dtor(priv); ((struct file *)td)->private_data = 0; \
|
|
} while (0)
|
|
#endif /* linux */
|
|
|
|
CURVNET_SET(TD_TO_VNET(td));
|
|
|
|
error = devfs_get_cdevpriv((void **)&priv);
|
|
if (error != ENOENT && error != 0) {
|
|
CURVNET_RESTORE();
|
|
return (error);
|
|
}
|
|
|
|
error = 0; /* Could be ENOENT */
|
|
nmr->nr_name[sizeof(nmr->nr_name) - 1] = '\0'; /* truncate name */
|
|
switch (cmd) {
|
|
case NIOCGINFO: /* return capabilities etc */
|
|
/* memsize is always valid */
|
|
nmr->nr_memsize = nm_mem->nm_totalsize;
|
|
nmr->nr_offset = 0;
|
|
nmr->nr_rx_rings = nmr->nr_tx_rings = 0;
|
|
nmr->nr_rx_slots = nmr->nr_tx_slots = 0;
|
|
if (nmr->nr_version != NETMAP_API) {
|
|
D("API mismatch got %d have %d",
|
|
nmr->nr_version, NETMAP_API);
|
|
nmr->nr_version = NETMAP_API;
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (nmr->nr_name[0] == '\0') /* just get memory info */
|
|
break;
|
|
error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */
|
|
if (error)
|
|
break;
|
|
na = NA(ifp); /* retrieve netmap_adapter */
|
|
nmr->nr_rx_rings = na->num_rx_rings;
|
|
nmr->nr_tx_rings = na->num_tx_rings;
|
|
nmr->nr_rx_slots = na->num_rx_desc;
|
|
nmr->nr_tx_slots = na->num_tx_desc;
|
|
nm_if_rele(ifp); /* return the refcount */
|
|
break;
|
|
|
|
case NIOCREGIF:
|
|
if (nmr->nr_version != NETMAP_API) {
|
|
nmr->nr_version = NETMAP_API;
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (priv != NULL) { /* thread already registered */
|
|
error = netmap_set_ringid(priv, nmr->nr_ringid);
|
|
break;
|
|
}
|
|
/* find the interface and a reference */
|
|
error = get_ifp(nmr->nr_name, &ifp); /* keep reference */
|
|
if (error)
|
|
break;
|
|
na = NA(ifp); /* retrieve netmap adapter */
|
|
/*
|
|
* Allocate the private per-thread structure.
|
|
* XXX perhaps we can use a blocking malloc ?
|
|
*/
|
|
priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF,
|
|
M_NOWAIT | M_ZERO);
|
|
if (priv == NULL) {
|
|
error = ENOMEM;
|
|
nm_if_rele(ifp); /* return the refcount */
|
|
break;
|
|
}
|
|
|
|
for (i = 10; i > 0; i--) {
|
|
na->nm_lock(ifp, NETMAP_REG_LOCK, 0);
|
|
if (!NETMAP_DELETING(na))
|
|
break;
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
tsleep(na, 0, "NIOCREGIF", hz/10);
|
|
}
|
|
if (i == 0) {
|
|
D("too many NIOCREGIF attempts, give up");
|
|
error = EINVAL;
|
|
free(priv, M_DEVBUF);
|
|
nm_if_rele(ifp); /* return the refcount */
|
|
break;
|
|
}
|
|
|
|
priv->np_ifp = ifp; /* store the reference */
|
|
error = netmap_set_ringid(priv, nmr->nr_ringid);
|
|
if (error)
|
|
goto error;
|
|
priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na);
|
|
if (nifp == NULL) { /* allocation failed */
|
|
error = ENOMEM;
|
|
} else if (ifp->if_capenable & IFCAP_NETMAP) {
|
|
/* was already set */
|
|
} else {
|
|
/* Otherwise set the card in netmap mode
|
|
* and make it use the shared buffers.
|
|
*/
|
|
for (i = 0 ; i < na->num_tx_rings + 1; i++)
|
|
mtx_init(&na->tx_rings[i].q_lock, "nm_txq_lock", MTX_NETWORK_LOCK, MTX_DEF);
|
|
for (i = 0 ; i < na->num_rx_rings + 1; i++) {
|
|
mtx_init(&na->rx_rings[i].q_lock, "nm_rxq_lock", MTX_NETWORK_LOCK, MTX_DEF);
|
|
}
|
|
error = na->nm_register(ifp, 1); /* mode on */
|
|
if (error)
|
|
netmap_dtor_locked(priv);
|
|
}
|
|
|
|
if (error) { /* reg. failed, release priv and ref */
|
|
error:
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
nm_if_rele(ifp); /* return the refcount */
|
|
bzero(priv, sizeof(*priv));
|
|
free(priv, M_DEVBUF);
|
|
break;
|
|
}
|
|
|
|
na->nm_lock(ifp, NETMAP_REG_UNLOCK, 0);
|
|
error = devfs_set_cdevpriv(priv, netmap_dtor);
|
|
|
|
if (error != 0) {
|
|
/* could not assign the private storage for the
|
|
* thread, call the destructor explicitly.
|
|
*/
|
|
netmap_dtor(priv);
|
|
break;
|
|
}
|
|
|
|
/* return the offset of the netmap_if object */
|
|
nmr->nr_rx_rings = na->num_rx_rings;
|
|
nmr->nr_tx_rings = na->num_tx_rings;
|
|
nmr->nr_rx_slots = na->num_rx_desc;
|
|
nmr->nr_tx_slots = na->num_tx_desc;
|
|
nmr->nr_memsize = nm_mem->nm_totalsize;
|
|
nmr->nr_offset = netmap_if_offset(nifp);
|
|
break;
|
|
|
|
case NIOCUNREGIF:
|
|
if (priv == NULL) {
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
|
|
/* the interface is unregistered inside the
|
|
destructor of the private data. */
|
|
devfs_clear_cdevpriv();
|
|
break;
|
|
|
|
case NIOCTXSYNC:
|
|
case NIOCRXSYNC:
|
|
if (priv == NULL) {
|
|
error = ENXIO;
|
|
break;
|
|
}
|
|
ifp = priv->np_ifp; /* we have a reference */
|
|
na = NA(ifp); /* retrieve netmap adapter */
|
|
if (priv->np_qfirst == NETMAP_SW_RING) { /* host rings */
|
|
if (cmd == NIOCTXSYNC)
|
|
netmap_sync_to_host(na);
|
|
else
|
|
netmap_sync_from_host(na, NULL, NULL);
|
|
break;
|
|
}
|
|
/* find the last ring to scan */
|
|
lim = priv->np_qlast;
|
|
if (lim == NETMAP_HW_RING)
|
|
lim = (cmd == NIOCTXSYNC) ?
|
|
na->num_tx_rings : na->num_rx_rings;
|
|
|
|
for (i = priv->np_qfirst; i < lim; i++) {
|
|
if (cmd == NIOCTXSYNC) {
|
|
struct netmap_kring *kring = &na->tx_rings[i];
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("pre txsync ring %d cur %d hwcur %d",
|
|
i, kring->ring->cur,
|
|
kring->nr_hwcur);
|
|
na->nm_txsync(ifp, i, 1 /* do lock */);
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("post txsync ring %d cur %d hwcur %d",
|
|
i, kring->ring->cur,
|
|
kring->nr_hwcur);
|
|
} else {
|
|
na->nm_rxsync(ifp, i, 1 /* do lock */);
|
|
microtime(&na->rx_rings[i].ring->ts);
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
#ifdef __FreeBSD__
|
|
case BIOCIMMEDIATE:
|
|
case BIOCGHDRCMPLT:
|
|
case BIOCSHDRCMPLT:
|
|
case BIOCSSEESENT:
|
|
D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT");
|
|
break;
|
|
|
|
default: /* allow device-specific ioctls */
|
|
{
|
|
struct socket so;
|
|
bzero(&so, sizeof(so));
|
|
error = get_ifp(nmr->nr_name, &ifp); /* keep reference */
|
|
if (error)
|
|
break;
|
|
so.so_vnet = ifp->if_vnet;
|
|
// so->so_proto not null.
|
|
error = ifioctl(&so, cmd, data, td);
|
|
nm_if_rele(ifp);
|
|
break;
|
|
}
|
|
|
|
#else /* linux */
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
#endif /* linux */
|
|
}
|
|
|
|
CURVNET_RESTORE();
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* select(2) and poll(2) handlers for the "netmap" device.
|
|
*
|
|
* Can be called for one or more queues.
|
|
* Return true the event mask corresponding to ready events.
|
|
* If there are no ready events, do a selrecord on either individual
|
|
* selfd or on the global one.
|
|
* Device-dependent parts (locking and sync of tx/rx rings)
|
|
* are done through callbacks.
|
|
*
|
|
* On linux, arguments are really pwait, the poll table, and 'td' is struct file *
|
|
* The first one is remapped to pwait as selrecord() uses the name as an
|
|
* hidden argument.
|
|
*/
|
|
static int
|
|
netmap_poll(struct cdev *dev, int events, struct thread *td)
|
|
{
|
|
struct netmap_priv_d *priv = NULL;
|
|
struct netmap_adapter *na;
|
|
struct ifnet *ifp;
|
|
struct netmap_kring *kring;
|
|
u_int core_lock, i, check_all, want_tx, want_rx, revents = 0;
|
|
u_int lim_tx, lim_rx;
|
|
enum {NO_CL, NEED_CL, LOCKED_CL }; /* see below */
|
|
void *pwait = dev; /* linux compatibility */
|
|
|
|
(void)pwait;
|
|
|
|
if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL)
|
|
return POLLERR;
|
|
|
|
ifp = priv->np_ifp;
|
|
// XXX check for deleting() ?
|
|
if ( (ifp->if_capenable & IFCAP_NETMAP) == 0)
|
|
return POLLERR;
|
|
|
|
if (netmap_verbose & 0x8000)
|
|
D("device %s events 0x%x", ifp->if_xname, events);
|
|
want_tx = events & (POLLOUT | POLLWRNORM);
|
|
want_rx = events & (POLLIN | POLLRDNORM);
|
|
|
|
na = NA(ifp); /* retrieve netmap adapter */
|
|
|
|
lim_tx = na->num_tx_rings;
|
|
lim_rx = na->num_rx_rings;
|
|
/* how many queues we are scanning */
|
|
if (priv->np_qfirst == NETMAP_SW_RING) {
|
|
if (priv->np_txpoll || want_tx) {
|
|
/* push any packets up, then we are always ready */
|
|
kring = &na->tx_rings[lim_tx];
|
|
netmap_sync_to_host(na);
|
|
revents |= want_tx;
|
|
}
|
|
if (want_rx) {
|
|
kring = &na->rx_rings[lim_rx];
|
|
if (kring->ring->avail == 0)
|
|
netmap_sync_from_host(na, td, dev);
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_rx;
|
|
}
|
|
}
|
|
return (revents);
|
|
}
|
|
|
|
/*
|
|
* check_all is set if the card has more than one queue and
|
|
* the client is polling all of them. If true, we sleep on
|
|
* the "global" selfd, otherwise we sleep on individual selfd
|
|
* (we can only sleep on one of them per direction).
|
|
* The interrupt routine in the driver should always wake on
|
|
* the individual selfd, and also on the global one if the card
|
|
* has more than one ring.
|
|
*
|
|
* If the card has only one lock, we just use that.
|
|
* If the card has separate ring locks, we just use those
|
|
* unless we are doing check_all, in which case the whole
|
|
* loop is wrapped by the global lock.
|
|
* We acquire locks only when necessary: if poll is called
|
|
* when buffers are available, we can just return without locks.
|
|
*
|
|
* rxsync() is only called if we run out of buffers on a POLLIN.
|
|
* txsync() is called if we run out of buffers on POLLOUT, or
|
|
* there are pending packets to send. The latter can be disabled
|
|
* passing NETMAP_NO_TX_POLL in the NIOCREG call.
|
|
*/
|
|
check_all = (priv->np_qlast == NETMAP_HW_RING) && (lim_tx > 1 || lim_rx > 1);
|
|
|
|
/*
|
|
* core_lock indicates what to do with the core lock.
|
|
* The core lock is used when either the card has no individual
|
|
* locks, or it has individual locks but we are cheking all
|
|
* rings so we need the core lock to avoid missing wakeup events.
|
|
*
|
|
* It has three possible states:
|
|
* NO_CL we don't need to use the core lock, e.g.
|
|
* because we are protected by individual locks.
|
|
* NEED_CL we need the core lock. In this case, when we
|
|
* call the lock routine, move to LOCKED_CL
|
|
* to remember to release the lock once done.
|
|
* LOCKED_CL core lock is set, so we need to release it.
|
|
*/
|
|
core_lock = (check_all || !na->separate_locks) ? NEED_CL : NO_CL;
|
|
#ifdef NM_BRIDGE
|
|
/* the bridge uses separate locks */
|
|
if (na->nm_register == bdg_netmap_reg) {
|
|
ND("not using core lock for %s", ifp->if_xname);
|
|
core_lock = NO_CL;
|
|
}
|
|
#endif /* NM_BRIDGE */
|
|
if (priv->np_qlast != NETMAP_HW_RING) {
|
|
lim_tx = lim_rx = priv->np_qlast;
|
|
}
|
|
|
|
/*
|
|
* We start with a lock free round which is good if we have
|
|
* data available. If this fails, then lock and call the sync
|
|
* routines.
|
|
*/
|
|
for (i = priv->np_qfirst; want_rx && i < lim_rx; i++) {
|
|
kring = &na->rx_rings[i];
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_rx;
|
|
want_rx = 0; /* also breaks the loop */
|
|
}
|
|
}
|
|
for (i = priv->np_qfirst; want_tx && i < lim_tx; i++) {
|
|
kring = &na->tx_rings[i];
|
|
if (kring->ring->avail > 0) {
|
|
revents |= want_tx;
|
|
want_tx = 0; /* also breaks the loop */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we to push packets out (priv->np_txpoll) or want_tx is
|
|
* still set, we do need to run the txsync calls (on all rings,
|
|
* to avoid that the tx rings stall).
|
|
*/
|
|
if (priv->np_txpoll || want_tx) {
|
|
for (i = priv->np_qfirst; i < lim_tx; i++) {
|
|
kring = &na->tx_rings[i];
|
|
/*
|
|
* Skip the current ring if want_tx == 0
|
|
* (we have already done a successful sync on
|
|
* a previous ring) AND kring->cur == kring->hwcur
|
|
* (there are no pending transmissions for this ring).
|
|
*/
|
|
if (!want_tx && kring->ring->cur == kring->nr_hwcur)
|
|
continue;
|
|
if (core_lock == NEED_CL) {
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
core_lock = LOCKED_CL;
|
|
}
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_TX_LOCK, i);
|
|
if (netmap_verbose & NM_VERB_TXSYNC)
|
|
D("send %d on %s %d",
|
|
kring->ring->cur,
|
|
ifp->if_xname, i);
|
|
if (na->nm_txsync(ifp, i, 0 /* no lock */))
|
|
revents |= POLLERR;
|
|
|
|
/* Check avail/call selrecord only if called with POLLOUT */
|
|
if (want_tx) {
|
|
if (kring->ring->avail > 0) {
|
|
/* stop at the first ring. We don't risk
|
|
* starvation.
|
|
*/
|
|
revents |= want_tx;
|
|
want_tx = 0;
|
|
} else if (!check_all)
|
|
selrecord(td, &kring->si);
|
|
}
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_TX_UNLOCK, i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* now if want_rx is still set we need to lock and rxsync.
|
|
* Do it on all rings because otherwise we starve.
|
|
*/
|
|
if (want_rx) {
|
|
for (i = priv->np_qfirst; i < lim_rx; i++) {
|
|
kring = &na->rx_rings[i];
|
|
if (core_lock == NEED_CL) {
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
core_lock = LOCKED_CL;
|
|
}
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_RX_LOCK, i);
|
|
|
|
if (na->nm_rxsync(ifp, i, 0 /* no lock */))
|
|
revents |= POLLERR;
|
|
if (netmap_no_timestamp == 0 ||
|
|
kring->ring->flags & NR_TIMESTAMP) {
|
|
microtime(&kring->ring->ts);
|
|
}
|
|
|
|
if (kring->ring->avail > 0)
|
|
revents |= want_rx;
|
|
else if (!check_all)
|
|
selrecord(td, &kring->si);
|
|
if (na->separate_locks)
|
|
na->nm_lock(ifp, NETMAP_RX_UNLOCK, i);
|
|
}
|
|
}
|
|
if (check_all && revents == 0) { /* signal on the global queue */
|
|
if (want_tx)
|
|
selrecord(td, &na->tx_si);
|
|
if (want_rx)
|
|
selrecord(td, &na->rx_si);
|
|
}
|
|
if (core_lock == LOCKED_CL)
|
|
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
|
|
|
|
return (revents);
|
|
}
|
|
|
|
/*------- driver support routines ------*/
|
|
|
|
/*
|
|
* default lock wrapper.
|
|
*/
|
|
static void
|
|
netmap_lock_wrapper(struct ifnet *dev, int what, u_int queueid)
|
|
{
|
|
struct netmap_adapter *na = NA(dev);
|
|
|
|
switch (what) {
|
|
#ifdef linux /* some system do not need lock on register */
|
|
case NETMAP_REG_LOCK:
|
|
case NETMAP_REG_UNLOCK:
|
|
break;
|
|
#endif /* linux */
|
|
|
|
case NETMAP_CORE_LOCK:
|
|
mtx_lock(&na->core_lock);
|
|
break;
|
|
|
|
case NETMAP_CORE_UNLOCK:
|
|
mtx_unlock(&na->core_lock);
|
|
break;
|
|
|
|
case NETMAP_TX_LOCK:
|
|
mtx_lock(&na->tx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_TX_UNLOCK:
|
|
mtx_unlock(&na->tx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_RX_LOCK:
|
|
mtx_lock(&na->rx_rings[queueid].q_lock);
|
|
break;
|
|
|
|
case NETMAP_RX_UNLOCK:
|
|
mtx_unlock(&na->rx_rings[queueid].q_lock);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize a ``netmap_adapter`` object created by driver on attach.
|
|
* We allocate a block of memory with room for a struct netmap_adapter
|
|
* plus two sets of N+2 struct netmap_kring (where N is the number
|
|
* of hardware rings):
|
|
* krings 0..N-1 are for the hardware queues.
|
|
* kring N is for the host stack queue
|
|
* kring N+1 is only used for the selinfo for all queues.
|
|
* Return 0 on success, ENOMEM otherwise.
|
|
*
|
|
* By default the receive and transmit adapter ring counts are both initialized
|
|
* to num_queues. na->num_tx_rings can be set for cards with different tx/rx
|
|
* setups.
|
|
*/
|
|
int
|
|
netmap_attach(struct netmap_adapter *na, int num_queues)
|
|
{
|
|
int n, size;
|
|
void *buf;
|
|
struct ifnet *ifp = na->ifp;
|
|
|
|
if (ifp == NULL) {
|
|
D("ifp not set, giving up");
|
|
return EINVAL;
|
|
}
|
|
/* clear other fields ? */
|
|
na->refcount = 0;
|
|
if (na->num_tx_rings == 0)
|
|
na->num_tx_rings = num_queues;
|
|
na->num_rx_rings = num_queues;
|
|
/* on each direction we have N+1 resources
|
|
* 0..n-1 are the hardware rings
|
|
* n is the ring attached to the stack.
|
|
*/
|
|
n = na->num_rx_rings + na->num_tx_rings + 2;
|
|
size = sizeof(*na) + n * sizeof(struct netmap_kring);
|
|
|
|
buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (buf) {
|
|
WNA(ifp) = buf;
|
|
na->tx_rings = (void *)((char *)buf + sizeof(*na));
|
|
na->rx_rings = na->tx_rings + na->num_tx_rings + 1;
|
|
bcopy(na, buf, sizeof(*na));
|
|
ifp->if_capabilities |= IFCAP_NETMAP;
|
|
|
|
na = buf;
|
|
/* Core lock initialized here. Others are initialized after
|
|
* netmap_if_new.
|
|
*/
|
|
mtx_init(&na->core_lock, "netmap core lock", MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
if (na->nm_lock == NULL) {
|
|
ND("using default locks for %s", ifp->if_xname);
|
|
na->nm_lock = netmap_lock_wrapper;
|
|
}
|
|
}
|
|
#ifdef linux
|
|
if (ifp->netdev_ops) {
|
|
D("netdev_ops %p", ifp->netdev_ops);
|
|
/* prepare a clone of the netdev ops */
|
|
na->nm_ndo = *ifp->netdev_ops;
|
|
}
|
|
na->nm_ndo.ndo_start_xmit = linux_netmap_start;
|
|
#endif
|
|
D("%s for %s", buf ? "ok" : "failed", ifp->if_xname);
|
|
|
|
return (buf ? 0 : ENOMEM);
|
|
}
|
|
|
|
|
|
/*
|
|
* Free the allocated memory linked to the given ``netmap_adapter``
|
|
* object.
|
|
*/
|
|
void
|
|
netmap_detach(struct ifnet *ifp)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
|
|
if (!na)
|
|
return;
|
|
|
|
mtx_destroy(&na->core_lock);
|
|
|
|
bzero(na, sizeof(*na));
|
|
WNA(ifp) = NULL;
|
|
free(na, M_DEVBUF);
|
|
}
|
|
|
|
|
|
/*
|
|
* Intercept packets from the network stack and pass them
|
|
* to netmap as incoming packets on the 'software' ring.
|
|
* We are not locked when called.
|
|
*/
|
|
int
|
|
netmap_start(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring = &na->rx_rings[na->num_rx_rings];
|
|
u_int i, len = MBUF_LEN(m);
|
|
u_int error = EBUSY, lim = kring->nkr_num_slots - 1;
|
|
struct netmap_slot *slot;
|
|
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("%s packet %d len %d from the stack", ifp->if_xname,
|
|
kring->nr_hwcur + kring->nr_hwavail, len);
|
|
na->nm_lock(ifp, NETMAP_CORE_LOCK, 0);
|
|
if (kring->nr_hwavail >= lim) {
|
|
if (netmap_verbose)
|
|
D("stack ring %s full\n", ifp->if_xname);
|
|
goto done; /* no space */
|
|
}
|
|
if (len > NETMAP_BUF_SIZE) {
|
|
D("drop packet size %d > %d", len, NETMAP_BUF_SIZE);
|
|
goto done; /* too long for us */
|
|
}
|
|
|
|
/* compute the insert position */
|
|
i = kring->nr_hwcur + kring->nr_hwavail;
|
|
if (i > lim)
|
|
i -= lim + 1;
|
|
slot = &kring->ring->slot[i];
|
|
m_copydata(m, 0, len, NMB(slot));
|
|
slot->len = len;
|
|
kring->nr_hwavail++;
|
|
if (netmap_verbose & NM_VERB_HOST)
|
|
D("wake up host ring %s %d", na->ifp->if_xname, na->num_rx_rings);
|
|
selwakeuppri(&kring->si, PI_NET);
|
|
error = 0;
|
|
done:
|
|
na->nm_lock(ifp, NETMAP_CORE_UNLOCK, 0);
|
|
|
|
/* release the mbuf in either cases of success or failure. As an
|
|
* alternative, put the mbuf in a free list and free the list
|
|
* only when really necessary.
|
|
*/
|
|
m_freem(m);
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* netmap_reset() is called by the driver routines when reinitializing
|
|
* a ring. The driver is in charge of locking to protect the kring.
|
|
* If netmap mode is not set just return NULL.
|
|
*/
|
|
struct netmap_slot *
|
|
netmap_reset(struct netmap_adapter *na, enum txrx tx, int n,
|
|
u_int new_cur)
|
|
{
|
|
struct netmap_kring *kring;
|
|
int new_hwofs, lim;
|
|
|
|
if (na == NULL)
|
|
return NULL; /* no netmap support here */
|
|
if (!(na->ifp->if_capenable & IFCAP_NETMAP))
|
|
return NULL; /* nothing to reinitialize */
|
|
|
|
if (tx == NR_TX) {
|
|
kring = na->tx_rings + n;
|
|
new_hwofs = kring->nr_hwcur - new_cur;
|
|
} else {
|
|
kring = na->rx_rings + n;
|
|
new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur;
|
|
}
|
|
lim = kring->nkr_num_slots - 1;
|
|
if (new_hwofs > lim)
|
|
new_hwofs -= lim + 1;
|
|
|
|
/* Alwayws set the new offset value and realign the ring. */
|
|
kring->nkr_hwofs = new_hwofs;
|
|
if (tx == NR_TX)
|
|
kring->nr_hwavail = kring->nkr_num_slots - 1;
|
|
D("new hwofs %d on %s %s[%d]",
|
|
kring->nkr_hwofs, na->ifp->if_xname,
|
|
tx == NR_TX ? "TX" : "RX", n);
|
|
|
|
#if 0 // def linux
|
|
/* XXX check that the mappings are correct */
|
|
/* need ring_nr, adapter->pdev, direction */
|
|
buffer_info->dma = dma_map_single(&pdev->dev, addr, adapter->rx_buffer_len, DMA_FROM_DEVICE);
|
|
if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
|
|
D("error mapping rx netmap buffer %d", i);
|
|
// XXX fix error handling
|
|
}
|
|
|
|
#endif /* linux */
|
|
/*
|
|
* Wakeup on the individual and global lock
|
|
* We do the wakeup here, but the ring is not yet reconfigured.
|
|
* However, we are under lock so there are no races.
|
|
*/
|
|
selwakeuppri(&kring->si, PI_NET);
|
|
selwakeuppri(tx == NR_TX ? &na->tx_si : &na->rx_si, PI_NET);
|
|
return kring->ring->slot;
|
|
}
|
|
|
|
|
|
/*
|
|
* Default functions to handle rx/tx interrupts
|
|
* we have 4 cases:
|
|
* 1 ring, single lock:
|
|
* lock(core); wake(i=0); unlock(core)
|
|
* N rings, single lock:
|
|
* lock(core); wake(i); wake(N+1) unlock(core)
|
|
* 1 ring, separate locks: (i=0)
|
|
* lock(i); wake(i); unlock(i)
|
|
* N rings, separate locks:
|
|
* lock(i); wake(i); unlock(i); lock(core) wake(N+1) unlock(core)
|
|
* work_done is non-null on the RX path.
|
|
*/
|
|
int
|
|
netmap_rx_irq(struct ifnet *ifp, int q, int *work_done)
|
|
{
|
|
struct netmap_adapter *na;
|
|
struct netmap_kring *r;
|
|
NM_SELINFO_T *main_wq;
|
|
|
|
if (!(ifp->if_capenable & IFCAP_NETMAP))
|
|
return 0;
|
|
na = NA(ifp);
|
|
if (work_done) { /* RX path */
|
|
r = na->rx_rings + q;
|
|
r->nr_kflags |= NKR_PENDINTR;
|
|
main_wq = (na->num_rx_rings > 1) ? &na->rx_si : NULL;
|
|
} else { /* tx path */
|
|
r = na->tx_rings + q;
|
|
main_wq = (na->num_tx_rings > 1) ? &na->tx_si : NULL;
|
|
work_done = &q; /* dummy */
|
|
}
|
|
if (na->separate_locks) {
|
|
mtx_lock(&r->q_lock);
|
|
selwakeuppri(&r->si, PI_NET);
|
|
mtx_unlock(&r->q_lock);
|
|
if (main_wq) {
|
|
mtx_lock(&na->core_lock);
|
|
selwakeuppri(main_wq, PI_NET);
|
|
mtx_unlock(&na->core_lock);
|
|
}
|
|
} else {
|
|
mtx_lock(&na->core_lock);
|
|
selwakeuppri(&r->si, PI_NET);
|
|
if (main_wq)
|
|
selwakeuppri(main_wq, PI_NET);
|
|
mtx_unlock(&na->core_lock);
|
|
}
|
|
*work_done = 1; /* do not fire napi again */
|
|
return 1;
|
|
}
|
|
|
|
|
|
#ifdef linux /* linux-specific routines */
|
|
|
|
/*
|
|
* Remap linux arguments into the FreeBSD call.
|
|
* - pwait is the poll table, passed as 'dev';
|
|
* If pwait == NULL someone else already woke up before. We can report
|
|
* events but they are filtered upstream.
|
|
* If pwait != NULL, then pwait->key contains the list of events.
|
|
* - events is computed from pwait as above.
|
|
* - file is passed as 'td';
|
|
*/
|
|
static u_int
|
|
linux_netmap_poll(struct file * file, struct poll_table_struct *pwait)
|
|
{
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(3,4,0)
|
|
int events = pwait ? pwait->key : POLLIN | POLLOUT;
|
|
#else /* in 3.4.0 field 'key' was renamed to '_key' */
|
|
int events = pwait ? pwait->_key : POLLIN | POLLOUT;
|
|
#endif
|
|
return netmap_poll((void *)pwait, events, (void *)file);
|
|
}
|
|
|
|
static int
|
|
linux_netmap_mmap(struct file *f, struct vm_area_struct *vma)
|
|
{
|
|
int lut_skip, i, j;
|
|
int user_skip = 0;
|
|
struct lut_entry *l_entry;
|
|
const struct netmap_obj_pool *p[] = {
|
|
nm_mem->nm_if_pool,
|
|
nm_mem->nm_ring_pool,
|
|
nm_mem->nm_buf_pool };
|
|
/*
|
|
* vma->vm_start: start of mapping user address space
|
|
* vma->vm_end: end of the mapping user address space
|
|
*/
|
|
|
|
(void)f; /* UNUSED */
|
|
// XXX security checks
|
|
|
|
for (i = 0; i < 3; i++) { /* loop through obj_pools */
|
|
/*
|
|
* In each pool memory is allocated in clusters
|
|
* of size _clustsize , each containing clustentries
|
|
* entries. For each object k we already store the
|
|
* vtophys malling in lut[k] so we use that, scanning
|
|
* the lut[] array in steps of clustentries,
|
|
* and we map each cluster (not individual pages,
|
|
* it would be overkill).
|
|
*/
|
|
for (lut_skip = 0, j = 0; j < p[i]->_numclusters; j++) {
|
|
l_entry = &p[i]->lut[lut_skip];
|
|
if (remap_pfn_range(vma, vma->vm_start + user_skip,
|
|
l_entry->paddr >> PAGE_SHIFT, p[i]->_clustsize,
|
|
vma->vm_page_prot))
|
|
return -EAGAIN; // XXX check return value
|
|
lut_skip += p[i]->clustentries;
|
|
user_skip += p[i]->_clustsize;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static netdev_tx_t
|
|
linux_netmap_start(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
netmap_start(dev, skb);
|
|
return (NETDEV_TX_OK);
|
|
}
|
|
|
|
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,37) // XXX was 38
|
|
#define LIN_IOCTL_NAME .ioctl
|
|
int
|
|
linux_netmap_ioctl(struct inode *inode, struct file *file, u_int cmd, u_long data /* arg */)
|
|
#else
|
|
#define LIN_IOCTL_NAME .unlocked_ioctl
|
|
long
|
|
linux_netmap_ioctl(struct file *file, u_int cmd, u_long data /* arg */)
|
|
#endif
|
|
{
|
|
int ret;
|
|
struct nmreq nmr;
|
|
bzero(&nmr, sizeof(nmr));
|
|
|
|
if (data && copy_from_user(&nmr, (void *)data, sizeof(nmr) ) != 0)
|
|
return -EFAULT;
|
|
ret = netmap_ioctl(NULL, cmd, (caddr_t)&nmr, 0, (void *)file);
|
|
if (data && copy_to_user((void*)data, &nmr, sizeof(nmr) ) != 0)
|
|
return -EFAULT;
|
|
return -ret;
|
|
}
|
|
|
|
|
|
static int
|
|
netmap_release(struct inode *inode, struct file *file)
|
|
{
|
|
(void)inode; /* UNUSED */
|
|
if (file->private_data)
|
|
netmap_dtor(file->private_data);
|
|
return (0);
|
|
}
|
|
|
|
|
|
static struct file_operations netmap_fops = {
|
|
.mmap = linux_netmap_mmap,
|
|
LIN_IOCTL_NAME = linux_netmap_ioctl,
|
|
.poll = linux_netmap_poll,
|
|
.release = netmap_release,
|
|
};
|
|
|
|
static struct miscdevice netmap_cdevsw = { /* same name as FreeBSD */
|
|
MISC_DYNAMIC_MINOR,
|
|
"netmap",
|
|
&netmap_fops,
|
|
};
|
|
|
|
static int netmap_init(void);
|
|
static void netmap_fini(void);
|
|
|
|
/* Errors have negative values on linux */
|
|
static int linux_netmap_init(void)
|
|
{
|
|
return -netmap_init();
|
|
}
|
|
|
|
module_init(linux_netmap_init);
|
|
module_exit(netmap_fini);
|
|
/* export certain symbols to other modules */
|
|
EXPORT_SYMBOL(netmap_attach); // driver attach routines
|
|
EXPORT_SYMBOL(netmap_detach); // driver detach routines
|
|
EXPORT_SYMBOL(netmap_ring_reinit); // ring init on error
|
|
EXPORT_SYMBOL(netmap_buffer_lut);
|
|
EXPORT_SYMBOL(netmap_total_buffers); // index check
|
|
EXPORT_SYMBOL(netmap_buffer_base);
|
|
EXPORT_SYMBOL(netmap_reset); // ring init routines
|
|
EXPORT_SYMBOL(netmap_buf_size);
|
|
EXPORT_SYMBOL(netmap_rx_irq); // default irq handler
|
|
EXPORT_SYMBOL(netmap_no_pendintr); // XXX mitigation - should go away
|
|
|
|
|
|
MODULE_AUTHOR("http://info.iet.unipi.it/~luigi/netmap/");
|
|
MODULE_DESCRIPTION("The netmap packet I/O framework");
|
|
MODULE_LICENSE("Dual BSD/GPL"); /* the code here is all BSD. */
|
|
|
|
#else /* __FreeBSD__ */
|
|
|
|
static struct cdevsw netmap_cdevsw = {
|
|
.d_version = D_VERSION,
|
|
.d_name = "netmap",
|
|
.d_mmap = netmap_mmap,
|
|
.d_ioctl = netmap_ioctl,
|
|
.d_poll = netmap_poll,
|
|
};
|
|
#endif /* __FreeBSD__ */
|
|
|
|
#ifdef NM_BRIDGE
|
|
/*
|
|
*---- support for virtual bridge -----
|
|
*/
|
|
|
|
/* ----- FreeBSD if_bridge hash function ------- */
|
|
|
|
/*
|
|
* The following hash function is adapted from "Hash Functions" by Bob Jenkins
|
|
* ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
|
|
*
|
|
* http://www.burtleburtle.net/bob/hash/spooky.html
|
|
*/
|
|
#define mix(a, b, c) \
|
|
do { \
|
|
a -= b; a -= c; a ^= (c >> 13); \
|
|
b -= c; b -= a; b ^= (a << 8); \
|
|
c -= a; c -= b; c ^= (b >> 13); \
|
|
a -= b; a -= c; a ^= (c >> 12); \
|
|
b -= c; b -= a; b ^= (a << 16); \
|
|
c -= a; c -= b; c ^= (b >> 5); \
|
|
a -= b; a -= c; a ^= (c >> 3); \
|
|
b -= c; b -= a; b ^= (a << 10); \
|
|
c -= a; c -= b; c ^= (b >> 15); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
static __inline uint32_t
|
|
nm_bridge_rthash(const uint8_t *addr)
|
|
{
|
|
uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key
|
|
|
|
b += addr[5] << 8;
|
|
b += addr[4];
|
|
a += addr[3] << 24;
|
|
a += addr[2] << 16;
|
|
a += addr[1] << 8;
|
|
a += addr[0];
|
|
|
|
mix(a, b, c);
|
|
#define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1)
|
|
return (c & BRIDGE_RTHASH_MASK);
|
|
}
|
|
|
|
#undef mix
|
|
|
|
|
|
static int
|
|
bdg_netmap_reg(struct ifnet *ifp, int onoff)
|
|
{
|
|
int i, err = 0;
|
|
struct nm_bridge *b = ifp->if_bridge;
|
|
|
|
BDG_LOCK(b);
|
|
if (onoff) {
|
|
/* the interface must be already in the list.
|
|
* only need to mark the port as active
|
|
*/
|
|
ND("should attach %s to the bridge", ifp->if_xname);
|
|
for (i=0; i < NM_BDG_MAXPORTS; i++)
|
|
if (b->bdg_ports[i] == ifp)
|
|
break;
|
|
if (i == NM_BDG_MAXPORTS) {
|
|
D("no more ports available");
|
|
err = EINVAL;
|
|
goto done;
|
|
}
|
|
ND("setting %s in netmap mode", ifp->if_xname);
|
|
ifp->if_capenable |= IFCAP_NETMAP;
|
|
NA(ifp)->bdg_port = i;
|
|
b->act_ports |= (1<<i);
|
|
b->bdg_ports[i] = ifp;
|
|
} else {
|
|
/* should be in the list, too -- remove from the mask */
|
|
ND("removing %s from netmap mode", ifp->if_xname);
|
|
ifp->if_capenable &= ~IFCAP_NETMAP;
|
|
i = NA(ifp)->bdg_port;
|
|
b->act_ports &= ~(1<<i);
|
|
}
|
|
done:
|
|
BDG_UNLOCK(b);
|
|
return err;
|
|
}
|
|
|
|
|
|
static int
|
|
nm_bdg_flush(struct nm_bdg_fwd *ft, int n, struct ifnet *ifp)
|
|
{
|
|
int i, ifn;
|
|
uint64_t all_dst, dst;
|
|
uint32_t sh, dh;
|
|
uint64_t mysrc = 1 << NA(ifp)->bdg_port;
|
|
uint64_t smac, dmac;
|
|
struct netmap_slot *slot;
|
|
struct nm_bridge *b = ifp->if_bridge;
|
|
|
|
ND("prepare to send %d packets, act_ports 0x%x", n, b->act_ports);
|
|
/* only consider valid destinations */
|
|
all_dst = (b->act_ports & ~mysrc);
|
|
/* first pass: hash and find destinations */
|
|
for (i = 0; likely(i < n); i++) {
|
|
uint8_t *buf = ft[i].buf;
|
|
dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff;
|
|
smac = le64toh(*(uint64_t *)(buf + 4));
|
|
smac >>= 16;
|
|
if (unlikely(netmap_verbose)) {
|
|
uint8_t *s = buf+6, *d = buf;
|
|
D("%d len %4d %02x:%02x:%02x:%02x:%02x:%02x -> %02x:%02x:%02x:%02x:%02x:%02x",
|
|
i,
|
|
ft[i].len,
|
|
s[0], s[1], s[2], s[3], s[4], s[5],
|
|
d[0], d[1], d[2], d[3], d[4], d[5]);
|
|
}
|
|
/*
|
|
* The hash is somewhat expensive, there might be some
|
|
* worthwhile optimizations here.
|
|
*/
|
|
if ((buf[6] & 1) == 0) { /* valid src */
|
|
uint8_t *s = buf+6;
|
|
sh = nm_bridge_rthash(buf+6); // XXX hash of source
|
|
/* update source port forwarding entry */
|
|
b->ht[sh].mac = smac; /* XXX expire ? */
|
|
b->ht[sh].ports = mysrc;
|
|
if (netmap_verbose)
|
|
D("src %02x:%02x:%02x:%02x:%02x:%02x on port %d",
|
|
s[0], s[1], s[2], s[3], s[4], s[5], NA(ifp)->bdg_port);
|
|
}
|
|
dst = 0;
|
|
if ( (buf[0] & 1) == 0) { /* unicast */
|
|
uint8_t *d = buf;
|
|
dh = nm_bridge_rthash(buf); // XXX hash of dst
|
|
if (b->ht[dh].mac == dmac) { /* found dst */
|
|
dst = b->ht[dh].ports;
|
|
if (netmap_verbose)
|
|
D("dst %02x:%02x:%02x:%02x:%02x:%02x to port %x",
|
|
d[0], d[1], d[2], d[3], d[4], d[5], (uint32_t)(dst >> 16));
|
|
}
|
|
}
|
|
if (dst == 0)
|
|
dst = all_dst;
|
|
dst &= all_dst; /* only consider valid ports */
|
|
if (unlikely(netmap_verbose))
|
|
D("pkt goes to ports 0x%x", (uint32_t)dst);
|
|
ft[i].dst = dst;
|
|
}
|
|
|
|
/* second pass, scan interfaces and forward */
|
|
all_dst = (b->act_ports & ~mysrc);
|
|
for (ifn = 0; all_dst; ifn++) {
|
|
struct ifnet *dst_ifp = b->bdg_ports[ifn];
|
|
struct netmap_adapter *na;
|
|
struct netmap_kring *kring;
|
|
struct netmap_ring *ring;
|
|
int j, lim, sent, locked;
|
|
|
|
if (!dst_ifp)
|
|
continue;
|
|
ND("scan port %d %s", ifn, dst_ifp->if_xname);
|
|
dst = 1 << ifn;
|
|
if ((dst & all_dst) == 0) /* skip if not set */
|
|
continue;
|
|
all_dst &= ~dst; /* clear current node */
|
|
na = NA(dst_ifp);
|
|
|
|
ring = NULL;
|
|
kring = NULL;
|
|
lim = sent = locked = 0;
|
|
/* inside, scan slots */
|
|
for (i = 0; likely(i < n); i++) {
|
|
if ((ft[i].dst & dst) == 0)
|
|
continue; /* not here */
|
|
if (!locked) {
|
|
kring = &na->rx_rings[0];
|
|
ring = kring->ring;
|
|
lim = kring->nkr_num_slots - 1;
|
|
na->nm_lock(dst_ifp, NETMAP_RX_LOCK, 0);
|
|
locked = 1;
|
|
}
|
|
if (unlikely(kring->nr_hwavail >= lim)) {
|
|
if (netmap_verbose)
|
|
D("rx ring full on %s", ifp->if_xname);
|
|
break;
|
|
}
|
|
j = kring->nr_hwcur + kring->nr_hwavail;
|
|
if (j > lim)
|
|
j -= kring->nkr_num_slots;
|
|
slot = &ring->slot[j];
|
|
ND("send %d %d bytes at %s:%d", i, ft[i].len, dst_ifp->if_xname, j);
|
|
pkt_copy(ft[i].buf, NMB(slot), ft[i].len);
|
|
slot->len = ft[i].len;
|
|
kring->nr_hwavail++;
|
|
sent++;
|
|
}
|
|
if (locked) {
|
|
ND("sent %d on %s", sent, dst_ifp->if_xname);
|
|
if (sent)
|
|
selwakeuppri(&kring->si, PI_NET);
|
|
na->nm_lock(dst_ifp, NETMAP_RX_UNLOCK, 0);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* main dispatch routine
|
|
*/
|
|
static int
|
|
bdg_netmap_txsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring = &na->tx_rings[ring_nr];
|
|
struct netmap_ring *ring = kring->ring;
|
|
int i, j, k, lim = kring->nkr_num_slots - 1;
|
|
struct nm_bdg_fwd *ft = (struct nm_bdg_fwd *)(ifp + 1);
|
|
int ft_i; /* position in the forwarding table */
|
|
|
|
k = ring->cur;
|
|
if (k > lim)
|
|
return netmap_ring_reinit(kring);
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_TX_LOCK, ring_nr);
|
|
|
|
if (netmap_bridge <= 0) { /* testing only */
|
|
j = k; // used all
|
|
goto done;
|
|
}
|
|
if (netmap_bridge > NM_BDG_BATCH)
|
|
netmap_bridge = NM_BDG_BATCH;
|
|
|
|
ft_i = 0; /* start from 0 */
|
|
for (j = kring->nr_hwcur; likely(j != k); j = unlikely(j == lim) ? 0 : j+1) {
|
|
struct netmap_slot *slot = &ring->slot[j];
|
|
int len = ft[ft_i].len = slot->len;
|
|
char *buf = ft[ft_i].buf = NMB(slot);
|
|
|
|
prefetch(buf);
|
|
if (unlikely(len < 14))
|
|
continue;
|
|
if (unlikely(++ft_i == netmap_bridge))
|
|
ft_i = nm_bdg_flush(ft, ft_i, ifp);
|
|
}
|
|
if (ft_i)
|
|
ft_i = nm_bdg_flush(ft, ft_i, ifp);
|
|
/* count how many packets we sent */
|
|
i = k - j;
|
|
if (i < 0)
|
|
i += kring->nkr_num_slots;
|
|
kring->nr_hwavail = kring->nkr_num_slots - 1 - i;
|
|
if (j != k)
|
|
D("early break at %d/ %d, avail %d", j, k, kring->nr_hwavail);
|
|
|
|
done:
|
|
kring->nr_hwcur = j;
|
|
ring->avail = kring->nr_hwavail;
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_TX_UNLOCK, ring_nr);
|
|
|
|
if (netmap_verbose)
|
|
D("%s ring %d lock %d", ifp->if_xname, ring_nr, do_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bdg_netmap_rxsync(struct ifnet *ifp, u_int ring_nr, int do_lock)
|
|
{
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring = &na->rx_rings[ring_nr];
|
|
struct netmap_ring *ring = kring->ring;
|
|
u_int j, n, lim = kring->nkr_num_slots - 1;
|
|
u_int k = ring->cur, resvd = ring->reserved;
|
|
|
|
ND("%s ring %d lock %d avail %d",
|
|
ifp->if_xname, ring_nr, do_lock, kring->nr_hwavail);
|
|
|
|
if (k > lim)
|
|
return netmap_ring_reinit(kring);
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_RX_LOCK, ring_nr);
|
|
|
|
/* skip past packets that userspace has released */
|
|
j = kring->nr_hwcur; /* netmap ring index */
|
|
if (resvd > 0) {
|
|
if (resvd + ring->avail >= lim + 1) {
|
|
D("XXX invalid reserve/avail %d %d", resvd, ring->avail);
|
|
ring->reserved = resvd = 0; // XXX panic...
|
|
}
|
|
k = (k >= resvd) ? k - resvd : k + lim + 1 - resvd;
|
|
}
|
|
|
|
if (j != k) { /* userspace has released some packets. */
|
|
n = k - j;
|
|
if (n < 0)
|
|
n += kring->nkr_num_slots;
|
|
ND("userspace releases %d packets", n);
|
|
for (n = 0; likely(j != k); n++) {
|
|
struct netmap_slot *slot = &ring->slot[j];
|
|
void *addr = NMB(slot);
|
|
|
|
if (addr == netmap_buffer_base) { /* bad buf */
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
|
|
return netmap_ring_reinit(kring);
|
|
}
|
|
/* decrease refcount for buffer */
|
|
|
|
slot->flags &= ~NS_BUF_CHANGED;
|
|
j = unlikely(j == lim) ? 0 : j + 1;
|
|
}
|
|
kring->nr_hwavail -= n;
|
|
kring->nr_hwcur = k;
|
|
}
|
|
/* tell userspace that there are new packets */
|
|
ring->avail = kring->nr_hwavail - resvd;
|
|
|
|
if (do_lock)
|
|
na->nm_lock(ifp, NETMAP_RX_UNLOCK, ring_nr);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bdg_netmap_attach(struct ifnet *ifp)
|
|
{
|
|
struct netmap_adapter na;
|
|
|
|
ND("attaching virtual bridge");
|
|
bzero(&na, sizeof(na));
|
|
|
|
na.ifp = ifp;
|
|
na.separate_locks = 1;
|
|
na.num_tx_desc = NM_BRIDGE_RINGSIZE;
|
|
na.num_rx_desc = NM_BRIDGE_RINGSIZE;
|
|
na.nm_txsync = bdg_netmap_txsync;
|
|
na.nm_rxsync = bdg_netmap_rxsync;
|
|
na.nm_register = bdg_netmap_reg;
|
|
netmap_attach(&na, 1);
|
|
}
|
|
|
|
#endif /* NM_BRIDGE */
|
|
|
|
static struct cdev *netmap_dev; /* /dev/netmap character device. */
|
|
|
|
|
|
/*
|
|
* Module loader.
|
|
*
|
|
* Create the /dev/netmap device and initialize all global
|
|
* variables.
|
|
*
|
|
* Return 0 on success, errno on failure.
|
|
*/
|
|
static int
|
|
netmap_init(void)
|
|
{
|
|
int error;
|
|
|
|
error = netmap_memory_init();
|
|
if (error != 0) {
|
|
printf("netmap: unable to initialize the memory allocator.\n");
|
|
return (error);
|
|
}
|
|
printf("netmap: loaded module with %d Mbytes\n",
|
|
(int)(nm_mem->nm_totalsize >> 20));
|
|
netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660,
|
|
"netmap");
|
|
|
|
#ifdef NM_BRIDGE
|
|
{
|
|
int i;
|
|
for (i = 0; i < NM_BRIDGES; i++)
|
|
mtx_init(&nm_bridges[i].bdg_lock, "bdg lock", "bdg_lock", MTX_DEF);
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* Module unloader.
|
|
*
|
|
* Free all the memory, and destroy the ``/dev/netmap`` device.
|
|
*/
|
|
static void
|
|
netmap_fini(void)
|
|
{
|
|
destroy_dev(netmap_dev);
|
|
netmap_memory_fini();
|
|
printf("netmap: unloaded module.\n");
|
|
}
|
|
|
|
|
|
#ifdef __FreeBSD__
|
|
/*
|
|
* Kernel entry point.
|
|
*
|
|
* Initialize/finalize the module and return.
|
|
*
|
|
* Return 0 on success, errno on failure.
|
|
*/
|
|
static int
|
|
netmap_loader(__unused struct module *module, int event, __unused void *arg)
|
|
{
|
|
int error = 0;
|
|
|
|
switch (event) {
|
|
case MOD_LOAD:
|
|
error = netmap_init();
|
|
break;
|
|
|
|
case MOD_UNLOAD:
|
|
netmap_fini();
|
|
break;
|
|
|
|
default:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
DEV_MODULE(netmap, netmap_loader, NULL);
|
|
#endif /* __FreeBSD__ */
|