6476 lines
194 KiB
C
6476 lines
194 KiB
C
/* Subroutines shared by all languages that are variants of C.
|
||
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
|
||
2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "intl.h"
|
||
#include "tree.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "c-pragma.h"
|
||
#include "rtl.h"
|
||
#include "ggc.h"
|
||
#include "varray.h"
|
||
#include "expr.h"
|
||
#include "c-common.h"
|
||
#include "diagnostic.h"
|
||
#include "tm_p.h"
|
||
#include "obstack.h"
|
||
#include "cpplib.h"
|
||
#include "target.h"
|
||
#include "langhooks.h"
|
||
#include "tree-inline.h"
|
||
#include "c-tree.h"
|
||
#include "toplev.h"
|
||
#include "tree-iterator.h"
|
||
#include "hashtab.h"
|
||
#include "tree-mudflap.h"
|
||
#include "opts.h"
|
||
#include "real.h"
|
||
#include "cgraph.h"
|
||
|
||
cpp_reader *parse_in; /* Declared in c-pragma.h. */
|
||
|
||
/* We let tm.h override the types used here, to handle trivial differences
|
||
such as the choice of unsigned int or long unsigned int for size_t.
|
||
When machines start needing nontrivial differences in the size type,
|
||
it would be best to do something here to figure out automatically
|
||
from other information what type to use. */
|
||
|
||
#ifndef SIZE_TYPE
|
||
#define SIZE_TYPE "long unsigned int"
|
||
#endif
|
||
|
||
#ifndef PID_TYPE
|
||
#define PID_TYPE "int"
|
||
#endif
|
||
|
||
#ifndef WCHAR_TYPE
|
||
#define WCHAR_TYPE "int"
|
||
#endif
|
||
|
||
/* WCHAR_TYPE gets overridden by -fshort-wchar. */
|
||
#define MODIFIED_WCHAR_TYPE \
|
||
(flag_short_wchar ? "short unsigned int" : WCHAR_TYPE)
|
||
|
||
#ifndef PTRDIFF_TYPE
|
||
#define PTRDIFF_TYPE "long int"
|
||
#endif
|
||
|
||
#ifndef WINT_TYPE
|
||
#define WINT_TYPE "unsigned int"
|
||
#endif
|
||
|
||
#ifndef INTMAX_TYPE
|
||
#define INTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "int" \
|
||
: ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "long int" \
|
||
: "long long int"))
|
||
#endif
|
||
|
||
#ifndef UINTMAX_TYPE
|
||
#define UINTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "unsigned int" \
|
||
: ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
|
||
? "long unsigned int" \
|
||
: "long long unsigned int"))
|
||
#endif
|
||
|
||
/* The following symbols are subsumed in the c_global_trees array, and
|
||
listed here individually for documentation purposes.
|
||
|
||
INTEGER_TYPE and REAL_TYPE nodes for the standard data types.
|
||
|
||
tree short_integer_type_node;
|
||
tree long_integer_type_node;
|
||
tree long_long_integer_type_node;
|
||
|
||
tree short_unsigned_type_node;
|
||
tree long_unsigned_type_node;
|
||
tree long_long_unsigned_type_node;
|
||
|
||
tree truthvalue_type_node;
|
||
tree truthvalue_false_node;
|
||
tree truthvalue_true_node;
|
||
|
||
tree ptrdiff_type_node;
|
||
|
||
tree unsigned_char_type_node;
|
||
tree signed_char_type_node;
|
||
tree wchar_type_node;
|
||
tree signed_wchar_type_node;
|
||
tree unsigned_wchar_type_node;
|
||
|
||
tree float_type_node;
|
||
tree double_type_node;
|
||
tree long_double_type_node;
|
||
|
||
tree complex_integer_type_node;
|
||
tree complex_float_type_node;
|
||
tree complex_double_type_node;
|
||
tree complex_long_double_type_node;
|
||
|
||
tree dfloat32_type_node;
|
||
tree dfloat64_type_node;
|
||
tree_dfloat128_type_node;
|
||
|
||
tree intQI_type_node;
|
||
tree intHI_type_node;
|
||
tree intSI_type_node;
|
||
tree intDI_type_node;
|
||
tree intTI_type_node;
|
||
|
||
tree unsigned_intQI_type_node;
|
||
tree unsigned_intHI_type_node;
|
||
tree unsigned_intSI_type_node;
|
||
tree unsigned_intDI_type_node;
|
||
tree unsigned_intTI_type_node;
|
||
|
||
tree widest_integer_literal_type_node;
|
||
tree widest_unsigned_literal_type_node;
|
||
|
||
Nodes for types `void *' and `const void *'.
|
||
|
||
tree ptr_type_node, const_ptr_type_node;
|
||
|
||
Nodes for types `char *' and `const char *'.
|
||
|
||
tree string_type_node, const_string_type_node;
|
||
|
||
Type `char[SOMENUMBER]'.
|
||
Used when an array of char is needed and the size is irrelevant.
|
||
|
||
tree char_array_type_node;
|
||
|
||
Type `int[SOMENUMBER]' or something like it.
|
||
Used when an array of int needed and the size is irrelevant.
|
||
|
||
tree int_array_type_node;
|
||
|
||
Type `wchar_t[SOMENUMBER]' or something like it.
|
||
Used when a wide string literal is created.
|
||
|
||
tree wchar_array_type_node;
|
||
|
||
Type `int ()' -- used for implicit declaration of functions.
|
||
|
||
tree default_function_type;
|
||
|
||
A VOID_TYPE node, packaged in a TREE_LIST.
|
||
|
||
tree void_list_node;
|
||
|
||
The lazily created VAR_DECLs for __FUNCTION__, __PRETTY_FUNCTION__,
|
||
and __func__. (C doesn't generate __FUNCTION__ and__PRETTY_FUNCTION__
|
||
VAR_DECLS, but C++ does.)
|
||
|
||
tree function_name_decl_node;
|
||
tree pretty_function_name_decl_node;
|
||
tree c99_function_name_decl_node;
|
||
|
||
Stack of nested function name VAR_DECLs.
|
||
|
||
tree saved_function_name_decls;
|
||
|
||
*/
|
||
|
||
tree c_global_trees[CTI_MAX];
|
||
|
||
/* Switches common to the C front ends. */
|
||
|
||
/* Nonzero if prepreprocessing only. */
|
||
|
||
int flag_preprocess_only;
|
||
|
||
/* Nonzero means don't output line number information. */
|
||
|
||
char flag_no_line_commands;
|
||
|
||
/* Nonzero causes -E output not to be done, but directives such as
|
||
#define that have side effects are still obeyed. */
|
||
|
||
char flag_no_output;
|
||
|
||
/* Nonzero means dump macros in some fashion. */
|
||
|
||
char flag_dump_macros;
|
||
|
||
/* Nonzero means pass #include lines through to the output. */
|
||
|
||
char flag_dump_includes;
|
||
|
||
/* Nonzero means process PCH files while preprocessing. */
|
||
|
||
bool flag_pch_preprocess;
|
||
|
||
/* The file name to which we should write a precompiled header, or
|
||
NULL if no header will be written in this compile. */
|
||
|
||
const char *pch_file;
|
||
|
||
/* Nonzero if an ISO standard was selected. It rejects macros in the
|
||
user's namespace. */
|
||
int flag_iso;
|
||
|
||
/* Nonzero if -undef was given. It suppresses target built-in macros
|
||
and assertions. */
|
||
int flag_undef;
|
||
|
||
/* Nonzero means don't recognize the non-ANSI builtin functions. */
|
||
|
||
int flag_no_builtin;
|
||
|
||
/* Nonzero means don't recognize the non-ANSI builtin functions.
|
||
-ansi sets this. */
|
||
|
||
int flag_no_nonansi_builtin;
|
||
|
||
/* Nonzero means give `double' the same size as `float'. */
|
||
|
||
int flag_short_double;
|
||
|
||
/* Nonzero means give `wchar_t' the same size as `short'. */
|
||
|
||
int flag_short_wchar;
|
||
|
||
/* Nonzero means allow Microsoft extensions without warnings or errors. */
|
||
int flag_ms_extensions;
|
||
|
||
/* Nonzero means don't recognize the keyword `asm'. */
|
||
|
||
int flag_no_asm;
|
||
|
||
/* Nonzero means to treat bitfields as signed unless they say `unsigned'. */
|
||
|
||
int flag_signed_bitfields = 1;
|
||
|
||
/* Warn about #pragma directives that are not recognized. */
|
||
|
||
int warn_unknown_pragmas; /* Tri state variable. */
|
||
|
||
/* Warn about format/argument anomalies in calls to formatted I/O functions
|
||
(*printf, *scanf, strftime, strfmon, etc.). */
|
||
|
||
int warn_format;
|
||
|
||
/* Warn about using __null (as NULL in C++) as sentinel. For code compiled
|
||
with GCC this doesn't matter as __null is guaranteed to have the right
|
||
size. */
|
||
|
||
int warn_strict_null_sentinel;
|
||
|
||
/* Zero means that faster, ...NonNil variants of objc_msgSend...
|
||
calls will be used in ObjC; passing nil receivers to such calls
|
||
will most likely result in crashes. */
|
||
int flag_nil_receivers = 1;
|
||
|
||
/* Nonzero means that code generation will be altered to support
|
||
"zero-link" execution. This currently affects ObjC only, but may
|
||
affect other languages in the future. */
|
||
int flag_zero_link = 0;
|
||
|
||
/* Nonzero means emit an '__OBJC, __image_info' for the current translation
|
||
unit. It will inform the ObjC runtime that class definition(s) herein
|
||
contained are to replace one(s) previously loaded. */
|
||
int flag_replace_objc_classes = 0;
|
||
|
||
/* C/ObjC language option variables. */
|
||
|
||
|
||
/* Nonzero means allow type mismatches in conditional expressions;
|
||
just make their values `void'. */
|
||
|
||
int flag_cond_mismatch;
|
||
|
||
/* Nonzero means enable C89 Amendment 1 features. */
|
||
|
||
int flag_isoc94;
|
||
|
||
/* Nonzero means use the ISO C99 dialect of C. */
|
||
|
||
int flag_isoc99;
|
||
|
||
/* Nonzero means that we have builtin functions, and main is an int. */
|
||
|
||
int flag_hosted = 1;
|
||
|
||
/* Warn if main is suspicious. */
|
||
|
||
int warn_main;
|
||
|
||
|
||
/* ObjC language option variables. */
|
||
|
||
|
||
/* Open and close the file for outputting class declarations, if
|
||
requested (ObjC). */
|
||
|
||
int flag_gen_declaration;
|
||
|
||
/* Tells the compiler that this is a special run. Do not perform any
|
||
compiling, instead we are to test some platform dependent features
|
||
and output a C header file with appropriate definitions. */
|
||
|
||
int print_struct_values;
|
||
|
||
/* Tells the compiler what is the constant string class for Objc. */
|
||
|
||
const char *constant_string_class_name;
|
||
|
||
|
||
/* C++ language option variables. */
|
||
|
||
|
||
/* Nonzero means don't recognize any extension keywords. */
|
||
|
||
int flag_no_gnu_keywords;
|
||
|
||
/* Nonzero means do emit exported implementations of functions even if
|
||
they can be inlined. */
|
||
|
||
int flag_implement_inlines = 1;
|
||
|
||
/* Nonzero means that implicit instantiations will be emitted if needed. */
|
||
|
||
int flag_implicit_templates = 1;
|
||
|
||
/* Nonzero means that implicit instantiations of inline templates will be
|
||
emitted if needed, even if instantiations of non-inline templates
|
||
aren't. */
|
||
|
||
int flag_implicit_inline_templates = 1;
|
||
|
||
/* Nonzero means generate separate instantiation control files and
|
||
juggle them at link time. */
|
||
|
||
int flag_use_repository;
|
||
|
||
/* Nonzero if we want to issue diagnostics that the standard says are not
|
||
required. */
|
||
|
||
int flag_optional_diags = 1;
|
||
|
||
/* Nonzero means we should attempt to elide constructors when possible. */
|
||
|
||
int flag_elide_constructors = 1;
|
||
|
||
/* Nonzero means that member functions defined in class scope are
|
||
inline by default. */
|
||
|
||
int flag_default_inline = 1;
|
||
|
||
/* Controls whether compiler generates 'type descriptor' that give
|
||
run-time type information. */
|
||
|
||
int flag_rtti = 1;
|
||
|
||
/* Nonzero if we want to conserve space in the .o files. We do this
|
||
by putting uninitialized data and runtime initialized data into
|
||
.common instead of .data at the expense of not flagging multiple
|
||
definitions. */
|
||
|
||
int flag_conserve_space;
|
||
|
||
/* Nonzero if we want to obey access control semantics. */
|
||
|
||
int flag_access_control = 1;
|
||
|
||
/* Nonzero if we want to check the return value of new and avoid calling
|
||
constructors if it is a null pointer. */
|
||
|
||
int flag_check_new;
|
||
|
||
/* Nonzero if we want the new ISO rules for pushing a new scope for `for'
|
||
initialization variables.
|
||
0: Old rules, set by -fno-for-scope.
|
||
2: New ISO rules, set by -ffor-scope.
|
||
1: Try to implement new ISO rules, but with backup compatibility
|
||
(and warnings). This is the default, for now. */
|
||
|
||
int flag_new_for_scope = 1;
|
||
|
||
/* Nonzero if we want to emit defined symbols with common-like linkage as
|
||
weak symbols where possible, in order to conform to C++ semantics.
|
||
Otherwise, emit them as local symbols. */
|
||
|
||
int flag_weak = 1;
|
||
|
||
/* 0 means we want the preprocessor to not emit line directives for
|
||
the current working directory. 1 means we want it to do it. -1
|
||
means we should decide depending on whether debugging information
|
||
is being emitted or not. */
|
||
|
||
int flag_working_directory = -1;
|
||
|
||
/* Nonzero to use __cxa_atexit, rather than atexit, to register
|
||
destructors for local statics and global objects. '2' means it has been
|
||
set nonzero as a default, not by a command-line flag. */
|
||
|
||
int flag_use_cxa_atexit = DEFAULT_USE_CXA_ATEXIT;
|
||
|
||
/* Nonzero to use __cxa_get_exception_ptr in C++ exception-handling
|
||
code. '2' means it has not been set explicitly on the command line. */
|
||
|
||
int flag_use_cxa_get_exception_ptr = 2;
|
||
|
||
/* Nonzero means make the default pedwarns warnings instead of errors.
|
||
The value of this flag is ignored if -pedantic is specified. */
|
||
|
||
int flag_permissive;
|
||
|
||
/* Nonzero means to implement standard semantics for exception
|
||
specifications, calling unexpected if an exception is thrown that
|
||
doesn't match the specification. Zero means to treat them as
|
||
assertions and optimize accordingly, but not check them. */
|
||
|
||
int flag_enforce_eh_specs = 1;
|
||
|
||
/* Nonzero means to generate thread-safe code for initializing local
|
||
statics. */
|
||
|
||
int flag_threadsafe_statics = 1;
|
||
|
||
/* Nonzero means warn about implicit declarations. */
|
||
|
||
int warn_implicit = 1;
|
||
|
||
/* Maximum template instantiation depth. This limit is rather
|
||
arbitrary, but it exists to limit the time it takes to notice
|
||
infinite template instantiations. */
|
||
|
||
int max_tinst_depth = 500;
|
||
|
||
|
||
|
||
/* The elements of `ridpointers' are identifier nodes for the reserved
|
||
type names and storage classes. It is indexed by a RID_... value. */
|
||
tree *ridpointers;
|
||
|
||
tree (*make_fname_decl) (tree, int);
|
||
|
||
/* Nonzero means the expression being parsed will never be evaluated.
|
||
This is a count, since unevaluated expressions can nest. */
|
||
int skip_evaluation;
|
||
|
||
/* Information about how a function name is generated. */
|
||
struct fname_var_t
|
||
{
|
||
tree *const decl; /* pointer to the VAR_DECL. */
|
||
const unsigned rid; /* RID number for the identifier. */
|
||
const int pretty; /* How pretty is it? */
|
||
};
|
||
|
||
/* The three ways of getting then name of the current function. */
|
||
|
||
const struct fname_var_t fname_vars[] =
|
||
{
|
||
/* C99 compliant __func__, must be first. */
|
||
{&c99_function_name_decl_node, RID_C99_FUNCTION_NAME, 0},
|
||
/* GCC __FUNCTION__ compliant. */
|
||
{&function_name_decl_node, RID_FUNCTION_NAME, 0},
|
||
/* GCC __PRETTY_FUNCTION__ compliant. */
|
||
{&pretty_function_name_decl_node, RID_PRETTY_FUNCTION_NAME, 1},
|
||
{NULL, 0, 0},
|
||
};
|
||
|
||
static int constant_fits_type_p (tree, tree);
|
||
static tree check_case_value (tree);
|
||
static bool check_case_bounds (tree, tree, tree *, tree *);
|
||
|
||
static tree handle_packed_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_nocommon_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_common_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_noinline_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_always_inline_attribute (tree *, tree, tree, int,
|
||
bool *);
|
||
static tree handle_gnu_inline_attribute (tree *, tree, tree, int,
|
||
bool *);
|
||
static tree handle_flatten_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_used_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_unused_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_externally_visible_attribute (tree *, tree, tree, int,
|
||
bool *);
|
||
static tree handle_const_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_transparent_union_attribute (tree *, tree, tree,
|
||
int, bool *);
|
||
static tree handle_constructor_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_destructor_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_mode_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_section_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_aligned_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_weak_attribute (tree *, tree, tree, int, bool *) ;
|
||
static tree handle_alias_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_weakref_attribute (tree *, tree, tree, int, bool *) ;
|
||
static tree handle_visibility_attribute (tree *, tree, tree, int,
|
||
bool *);
|
||
static tree handle_tls_model_attribute (tree *, tree, tree, int,
|
||
bool *);
|
||
static tree handle_no_instrument_function_attribute (tree *, tree,
|
||
tree, int, bool *);
|
||
static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_returns_twice_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_no_limit_stack_attribute (tree *, tree, tree, int,
|
||
bool *);
|
||
static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_novops_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_deprecated_attribute (tree *, tree, tree, int,
|
||
bool *);
|
||
static tree handle_vector_size_attribute (tree *, tree, tree, int,
|
||
bool *);
|
||
static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_cleanup_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_warn_unused_result_attribute (tree *, tree, tree, int,
|
||
bool *);
|
||
static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *);
|
||
|
||
static void check_function_nonnull (tree, tree);
|
||
static void check_nonnull_arg (void *, tree, unsigned HOST_WIDE_INT);
|
||
static bool nonnull_check_p (tree, unsigned HOST_WIDE_INT);
|
||
static bool get_nonnull_operand (tree, unsigned HOST_WIDE_INT *);
|
||
static int resort_field_decl_cmp (const void *, const void *);
|
||
|
||
/* Table of machine-independent attributes common to all C-like languages. */
|
||
const struct attribute_spec c_common_attribute_table[] =
|
||
{
|
||
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
||
{ "packed", 0, 0, false, false, false,
|
||
handle_packed_attribute },
|
||
{ "nocommon", 0, 0, true, false, false,
|
||
handle_nocommon_attribute },
|
||
{ "common", 0, 0, true, false, false,
|
||
handle_common_attribute },
|
||
/* FIXME: logically, noreturn attributes should be listed as
|
||
"false, true, true" and apply to function types. But implementing this
|
||
would require all the places in the compiler that use TREE_THIS_VOLATILE
|
||
on a decl to identify non-returning functions to be located and fixed
|
||
to check the function type instead. */
|
||
{ "noreturn", 0, 0, true, false, false,
|
||
handle_noreturn_attribute },
|
||
{ "volatile", 0, 0, true, false, false,
|
||
handle_noreturn_attribute },
|
||
{ "noinline", 0, 0, true, false, false,
|
||
handle_noinline_attribute },
|
||
{ "always_inline", 0, 0, true, false, false,
|
||
handle_always_inline_attribute },
|
||
{ "gnu_inline", 0, 0, true, false, false,
|
||
handle_gnu_inline_attribute },
|
||
{ "flatten", 0, 0, true, false, false,
|
||
handle_flatten_attribute },
|
||
{ "used", 0, 0, true, false, false,
|
||
handle_used_attribute },
|
||
{ "unused", 0, 0, false, false, false,
|
||
handle_unused_attribute },
|
||
{ "externally_visible", 0, 0, true, false, false,
|
||
handle_externally_visible_attribute },
|
||
/* The same comments as for noreturn attributes apply to const ones. */
|
||
{ "const", 0, 0, true, false, false,
|
||
handle_const_attribute },
|
||
{ "transparent_union", 0, 0, false, false, false,
|
||
handle_transparent_union_attribute },
|
||
{ "constructor", 0, 0, true, false, false,
|
||
handle_constructor_attribute },
|
||
{ "destructor", 0, 0, true, false, false,
|
||
handle_destructor_attribute },
|
||
{ "mode", 1, 1, false, true, false,
|
||
handle_mode_attribute },
|
||
{ "section", 1, 1, true, false, false,
|
||
handle_section_attribute },
|
||
{ "aligned", 0, 1, false, false, false,
|
||
handle_aligned_attribute },
|
||
{ "weak", 0, 0, true, false, false,
|
||
handle_weak_attribute },
|
||
{ "alias", 1, 1, true, false, false,
|
||
handle_alias_attribute },
|
||
{ "weakref", 0, 1, true, false, false,
|
||
handle_weakref_attribute },
|
||
{ "no_instrument_function", 0, 0, true, false, false,
|
||
handle_no_instrument_function_attribute },
|
||
{ "malloc", 0, 0, true, false, false,
|
||
handle_malloc_attribute },
|
||
{ "returns_twice", 0, 0, true, false, false,
|
||
handle_returns_twice_attribute },
|
||
{ "no_stack_limit", 0, 0, true, false, false,
|
||
handle_no_limit_stack_attribute },
|
||
{ "pure", 0, 0, true, false, false,
|
||
handle_pure_attribute },
|
||
/* For internal use (marking of builtins) only. The name contains space
|
||
to prevent its usage in source code. */
|
||
{ "no vops", 0, 0, true, false, false,
|
||
handle_novops_attribute },
|
||
{ "deprecated", 0, 0, false, false, false,
|
||
handle_deprecated_attribute },
|
||
{ "vector_size", 1, 1, false, true, false,
|
||
handle_vector_size_attribute },
|
||
{ "visibility", 1, 1, false, false, false,
|
||
handle_visibility_attribute },
|
||
{ "tls_model", 1, 1, true, false, false,
|
||
handle_tls_model_attribute },
|
||
{ "nonnull", 0, -1, false, true, true,
|
||
handle_nonnull_attribute },
|
||
{ "nothrow", 0, 0, true, false, false,
|
||
handle_nothrow_attribute },
|
||
{ "may_alias", 0, 0, false, true, false, NULL },
|
||
{ "cleanup", 1, 1, true, false, false,
|
||
handle_cleanup_attribute },
|
||
{ "warn_unused_result", 0, 0, false, true, true,
|
||
handle_warn_unused_result_attribute },
|
||
{ "sentinel", 0, 1, false, true, true,
|
||
handle_sentinel_attribute },
|
||
{ NULL, 0, 0, false, false, false, NULL }
|
||
};
|
||
|
||
/* Give the specifications for the format attributes, used by C and all
|
||
descendants. */
|
||
|
||
const struct attribute_spec c_common_format_attribute_table[] =
|
||
{
|
||
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
||
{ "format", 3, 3, false, true, true,
|
||
handle_format_attribute },
|
||
{ "format_arg", 1, 1, false, true, true,
|
||
handle_format_arg_attribute },
|
||
{ NULL, 0, 0, false, false, false, NULL }
|
||
};
|
||
|
||
/* Push current bindings for the function name VAR_DECLS. */
|
||
|
||
void
|
||
start_fname_decls (void)
|
||
{
|
||
unsigned ix;
|
||
tree saved = NULL_TREE;
|
||
|
||
for (ix = 0; fname_vars[ix].decl; ix++)
|
||
{
|
||
tree decl = *fname_vars[ix].decl;
|
||
|
||
if (decl)
|
||
{
|
||
saved = tree_cons (decl, build_int_cst (NULL_TREE, ix), saved);
|
||
*fname_vars[ix].decl = NULL_TREE;
|
||
}
|
||
}
|
||
if (saved || saved_function_name_decls)
|
||
/* Normally they'll have been NULL, so only push if we've got a
|
||
stack, or they are non-NULL. */
|
||
saved_function_name_decls = tree_cons (saved, NULL_TREE,
|
||
saved_function_name_decls);
|
||
}
|
||
|
||
/* Finish up the current bindings, adding them into the current function's
|
||
statement tree. This must be done _before_ finish_stmt_tree is called.
|
||
If there is no current function, we must be at file scope and no statements
|
||
are involved. Pop the previous bindings. */
|
||
|
||
void
|
||
finish_fname_decls (void)
|
||
{
|
||
unsigned ix;
|
||
tree stmts = NULL_TREE;
|
||
tree stack = saved_function_name_decls;
|
||
|
||
for (; stack && TREE_VALUE (stack); stack = TREE_CHAIN (stack))
|
||
append_to_statement_list (TREE_VALUE (stack), &stmts);
|
||
|
||
if (stmts)
|
||
{
|
||
tree *bodyp = &DECL_SAVED_TREE (current_function_decl);
|
||
|
||
if (TREE_CODE (*bodyp) == BIND_EXPR)
|
||
bodyp = &BIND_EXPR_BODY (*bodyp);
|
||
|
||
append_to_statement_list_force (*bodyp, &stmts);
|
||
*bodyp = stmts;
|
||
}
|
||
|
||
for (ix = 0; fname_vars[ix].decl; ix++)
|
||
*fname_vars[ix].decl = NULL_TREE;
|
||
|
||
if (stack)
|
||
{
|
||
/* We had saved values, restore them. */
|
||
tree saved;
|
||
|
||
for (saved = TREE_PURPOSE (stack); saved; saved = TREE_CHAIN (saved))
|
||
{
|
||
tree decl = TREE_PURPOSE (saved);
|
||
unsigned ix = TREE_INT_CST_LOW (TREE_VALUE (saved));
|
||
|
||
*fname_vars[ix].decl = decl;
|
||
}
|
||
stack = TREE_CHAIN (stack);
|
||
}
|
||
saved_function_name_decls = stack;
|
||
}
|
||
|
||
/* Return the text name of the current function, suitably prettified
|
||
by PRETTY_P. Return string must be freed by caller. */
|
||
|
||
const char *
|
||
fname_as_string (int pretty_p)
|
||
{
|
||
const char *name = "top level";
|
||
char *namep;
|
||
int vrb = 2;
|
||
|
||
if (!pretty_p)
|
||
{
|
||
name = "";
|
||
vrb = 0;
|
||
}
|
||
|
||
if (current_function_decl)
|
||
name = lang_hooks.decl_printable_name (current_function_decl, vrb);
|
||
|
||
if (c_lex_string_translate)
|
||
{
|
||
int len = strlen (name) + 3; /* Two for '"'s. One for NULL. */
|
||
cpp_string cstr = { 0, 0 }, strname;
|
||
|
||
namep = XNEWVEC (char, len);
|
||
snprintf (namep, len, "\"%s\"", name);
|
||
strname.text = (unsigned char *) namep;
|
||
strname.len = len - 1;
|
||
|
||
if (cpp_interpret_string (parse_in, &strname, 1, &cstr, false))
|
||
{
|
||
XDELETEVEC (namep);
|
||
return (char *) cstr.text;
|
||
}
|
||
}
|
||
else
|
||
namep = xstrdup (name);
|
||
|
||
return namep;
|
||
}
|
||
|
||
/* Expand DECL if it declares an entity not handled by the
|
||
common code. */
|
||
|
||
int
|
||
c_expand_decl (tree decl)
|
||
{
|
||
if (TREE_CODE (decl) == VAR_DECL && !TREE_STATIC (decl))
|
||
{
|
||
/* Let the back-end know about this variable. */
|
||
if (!anon_aggr_type_p (TREE_TYPE (decl)))
|
||
emit_local_var (decl);
|
||
else
|
||
expand_anon_union_decl (decl, NULL_TREE,
|
||
DECL_ANON_UNION_ELEMS (decl));
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Return the VAR_DECL for a const char array naming the current
|
||
function. If the VAR_DECL has not yet been created, create it
|
||
now. RID indicates how it should be formatted and IDENTIFIER_NODE
|
||
ID is its name (unfortunately C and C++ hold the RID values of
|
||
keywords in different places, so we can't derive RID from ID in
|
||
this language independent code. */
|
||
|
||
tree
|
||
fname_decl (unsigned int rid, tree id)
|
||
{
|
||
unsigned ix;
|
||
tree decl = NULL_TREE;
|
||
|
||
for (ix = 0; fname_vars[ix].decl; ix++)
|
||
if (fname_vars[ix].rid == rid)
|
||
break;
|
||
|
||
decl = *fname_vars[ix].decl;
|
||
if (!decl)
|
||
{
|
||
/* If a tree is built here, it would normally have the lineno of
|
||
the current statement. Later this tree will be moved to the
|
||
beginning of the function and this line number will be wrong.
|
||
To avoid this problem set the lineno to 0 here; that prevents
|
||
it from appearing in the RTL. */
|
||
tree stmts;
|
||
location_t saved_location = input_location;
|
||
#ifdef USE_MAPPED_LOCATION
|
||
input_location = UNKNOWN_LOCATION;
|
||
#else
|
||
input_line = 0;
|
||
#endif
|
||
|
||
stmts = push_stmt_list ();
|
||
decl = (*make_fname_decl) (id, fname_vars[ix].pretty);
|
||
stmts = pop_stmt_list (stmts);
|
||
if (!IS_EMPTY_STMT (stmts))
|
||
saved_function_name_decls
|
||
= tree_cons (decl, stmts, saved_function_name_decls);
|
||
*fname_vars[ix].decl = decl;
|
||
input_location = saved_location;
|
||
}
|
||
if (!ix && !current_function_decl)
|
||
pedwarn ("%qD is not defined outside of function scope", decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Given a STRING_CST, give it a suitable array-of-chars data type. */
|
||
|
||
tree
|
||
fix_string_type (tree value)
|
||
{
|
||
const int wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
|
||
const int wide_flag = TREE_TYPE (value) == wchar_array_type_node;
|
||
int length = TREE_STRING_LENGTH (value);
|
||
int nchars;
|
||
tree e_type, i_type, a_type;
|
||
|
||
/* Compute the number of elements, for the array type. */
|
||
nchars = wide_flag ? length / wchar_bytes : length;
|
||
|
||
/* C89 2.2.4.1, C99 5.2.4.1 (Translation limits). The analogous
|
||
limit in C++98 Annex B is very large (65536) and is not normative,
|
||
so we do not diagnose it (warn_overlength_strings is forced off
|
||
in c_common_post_options). */
|
||
if (warn_overlength_strings)
|
||
{
|
||
const int nchars_max = flag_isoc99 ? 4095 : 509;
|
||
const int relevant_std = flag_isoc99 ? 99 : 90;
|
||
if (nchars - 1 > nchars_max)
|
||
/* Translators: The %d after 'ISO C' will be 90 or 99. Do not
|
||
separate the %d from the 'C'. 'ISO' should not be
|
||
translated, but it may be moved after 'C%d' in languages
|
||
where modifiers follow nouns. */
|
||
pedwarn ("string length %qd is greater than the length %qd "
|
||
"ISO C%d compilers are required to support",
|
||
nchars - 1, nchars_max, relevant_std);
|
||
}
|
||
|
||
/* Create the array type for the string constant. The ISO C++
|
||
standard says that a string literal has type `const char[N]' or
|
||
`const wchar_t[N]'. We use the same logic when invoked as a C
|
||
front-end with -Wwrite-strings.
|
||
??? We should change the type of an expression depending on the
|
||
state of a warning flag. We should just be warning -- see how
|
||
this is handled in the C++ front-end for the deprecated implicit
|
||
conversion from string literals to `char*' or `wchar_t*'.
|
||
|
||
The C++ front end relies on TYPE_MAIN_VARIANT of a cv-qualified
|
||
array type being the unqualified version of that type.
|
||
Therefore, if we are constructing an array of const char, we must
|
||
construct the matching unqualified array type first. The C front
|
||
end does not require this, but it does no harm, so we do it
|
||
unconditionally. */
|
||
e_type = wide_flag ? wchar_type_node : char_type_node;
|
||
i_type = build_index_type (build_int_cst (NULL_TREE, nchars - 1));
|
||
a_type = build_array_type (e_type, i_type);
|
||
if (c_dialect_cxx() || warn_write_strings)
|
||
a_type = c_build_qualified_type (a_type, TYPE_QUAL_CONST);
|
||
|
||
TREE_TYPE (value) = a_type;
|
||
TREE_CONSTANT (value) = 1;
|
||
TREE_INVARIANT (value) = 1;
|
||
TREE_READONLY (value) = 1;
|
||
TREE_STATIC (value) = 1;
|
||
return value;
|
||
}
|
||
|
||
/* Print a warning if a constant expression had overflow in folding.
|
||
Invoke this function on every expression that the language
|
||
requires to be a constant expression.
|
||
Note the ANSI C standard says it is erroneous for a
|
||
constant expression to overflow. */
|
||
|
||
void
|
||
constant_expression_warning (tree value)
|
||
{
|
||
if ((TREE_CODE (value) == INTEGER_CST || TREE_CODE (value) == REAL_CST
|
||
|| TREE_CODE (value) == VECTOR_CST
|
||
|| TREE_CODE (value) == COMPLEX_CST)
|
||
&& TREE_CONSTANT_OVERFLOW (value)
|
||
&& warn_overflow
|
||
&& pedantic)
|
||
pedwarn ("overflow in constant expression");
|
||
}
|
||
|
||
/* Print a warning if an expression had overflow in folding.
|
||
Invoke this function on every expression that
|
||
(1) appears in the source code, and
|
||
(2) might be a constant expression that overflowed, and
|
||
(3) is not already checked by convert_and_check;
|
||
however, do not invoke this function on operands of explicit casts. */
|
||
|
||
void
|
||
overflow_warning (tree value)
|
||
{
|
||
if ((TREE_CODE (value) == INTEGER_CST
|
||
|| (TREE_CODE (value) == COMPLEX_CST
|
||
&& TREE_CODE (TREE_REALPART (value)) == INTEGER_CST))
|
||
&& TREE_OVERFLOW (value))
|
||
{
|
||
TREE_OVERFLOW (value) = 0;
|
||
if (skip_evaluation == 0)
|
||
warning (OPT_Woverflow, "integer overflow in expression");
|
||
}
|
||
else if ((TREE_CODE (value) == REAL_CST
|
||
|| (TREE_CODE (value) == COMPLEX_CST
|
||
&& TREE_CODE (TREE_REALPART (value)) == REAL_CST))
|
||
&& TREE_OVERFLOW (value))
|
||
{
|
||
TREE_OVERFLOW (value) = 0;
|
||
if (skip_evaluation == 0)
|
||
warning (OPT_Woverflow, "floating point overflow in expression");
|
||
}
|
||
else if (TREE_CODE (value) == VECTOR_CST && TREE_OVERFLOW (value))
|
||
{
|
||
TREE_OVERFLOW (value) = 0;
|
||
if (skip_evaluation == 0)
|
||
warning (OPT_Woverflow, "vector overflow in expression");
|
||
}
|
||
}
|
||
|
||
/* Print a warning if a large constant is truncated to unsigned,
|
||
or if -Wconversion is used and a constant < 0 is converted to unsigned.
|
||
Invoke this function on every expression that might be implicitly
|
||
converted to an unsigned type. */
|
||
|
||
static void
|
||
unsigned_conversion_warning (tree result, tree operand)
|
||
{
|
||
tree type = TREE_TYPE (result);
|
||
|
||
if (TREE_CODE (operand) == INTEGER_CST
|
||
&& TREE_CODE (type) == INTEGER_TYPE
|
||
&& TYPE_UNSIGNED (type)
|
||
&& skip_evaluation == 0
|
||
&& !int_fits_type_p (operand, type))
|
||
{
|
||
if (!int_fits_type_p (operand, c_common_signed_type (type)))
|
||
/* This detects cases like converting -129 or 256 to unsigned char. */
|
||
warning (OPT_Woverflow,
|
||
"large integer implicitly truncated to unsigned type");
|
||
else
|
||
warning (OPT_Wconversion,
|
||
"negative integer implicitly converted to unsigned type");
|
||
}
|
||
}
|
||
|
||
/* Print a warning about casts that might indicate violation
|
||
of strict aliasing rules if -Wstrict-aliasing is used and
|
||
strict aliasing mode is in effect. OTYPE is the original
|
||
TREE_TYPE of EXPR, and TYPE the type we're casting to. */
|
||
|
||
void
|
||
strict_aliasing_warning (tree otype, tree type, tree expr)
|
||
{
|
||
if (flag_strict_aliasing && warn_strict_aliasing
|
||
&& POINTER_TYPE_P (type) && POINTER_TYPE_P (otype)
|
||
&& TREE_CODE (expr) == ADDR_EXPR
|
||
&& (DECL_P (TREE_OPERAND (expr, 0))
|
||
|| handled_component_p (TREE_OPERAND (expr, 0)))
|
||
&& !VOID_TYPE_P (TREE_TYPE (type)))
|
||
{
|
||
/* Casting the address of an object to non void pointer. Warn
|
||
if the cast breaks type based aliasing. */
|
||
if (!COMPLETE_TYPE_P (TREE_TYPE (type)))
|
||
warning (OPT_Wstrict_aliasing, "type-punning to incomplete type "
|
||
"might break strict-aliasing rules");
|
||
else
|
||
{
|
||
HOST_WIDE_INT set1 = get_alias_set (TREE_TYPE (TREE_OPERAND (expr, 0)));
|
||
HOST_WIDE_INT set2 = get_alias_set (TREE_TYPE (type));
|
||
|
||
if (!alias_sets_conflict_p (set1, set2))
|
||
warning (OPT_Wstrict_aliasing, "dereferencing type-punned "
|
||
"pointer will break strict-aliasing rules");
|
||
else if (warn_strict_aliasing > 1
|
||
&& !alias_sets_might_conflict_p (set1, set2))
|
||
warning (OPT_Wstrict_aliasing, "dereferencing type-punned "
|
||
"pointer might break strict-aliasing rules");
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Print a warning about if (); or if () .. else; constructs
|
||
via the special empty statement node that we create. INNER_THEN
|
||
and INNER_ELSE are the statement lists of the if and the else
|
||
block. */
|
||
|
||
void
|
||
empty_body_warning (tree inner_then, tree inner_else)
|
||
{
|
||
if (extra_warnings)
|
||
{
|
||
if (TREE_CODE (inner_then) == STATEMENT_LIST
|
||
&& STATEMENT_LIST_TAIL (inner_then))
|
||
inner_then = STATEMENT_LIST_TAIL (inner_then)->stmt;
|
||
|
||
if (inner_else && TREE_CODE (inner_else) == STATEMENT_LIST
|
||
&& STATEMENT_LIST_TAIL (inner_else))
|
||
inner_else = STATEMENT_LIST_TAIL (inner_else)->stmt;
|
||
|
||
if (IS_EMPTY_STMT (inner_then) && !inner_else)
|
||
warning (OPT_Wextra, "%Hempty body in an if-statement",
|
||
EXPR_LOCUS (inner_then));
|
||
|
||
if (inner_else && IS_EMPTY_STMT (inner_else))
|
||
warning (OPT_Wextra, "%Hempty body in an else-statement",
|
||
EXPR_LOCUS (inner_else));
|
||
}
|
||
}
|
||
|
||
|
||
/* Nonzero if constant C has a value that is permissible
|
||
for type TYPE (an INTEGER_TYPE). */
|
||
|
||
static int
|
||
constant_fits_type_p (tree c, tree type)
|
||
{
|
||
if (TREE_CODE (c) == INTEGER_CST)
|
||
return int_fits_type_p (c, type);
|
||
|
||
c = convert (type, c);
|
||
return !TREE_OVERFLOW (c);
|
||
}
|
||
|
||
/* Nonzero if vector types T1 and T2 can be converted to each other
|
||
without an explicit cast. */
|
||
int
|
||
vector_types_convertible_p (tree t1, tree t2)
|
||
{
|
||
return targetm.vector_opaque_p (t1)
|
||
|| targetm.vector_opaque_p (t2)
|
||
|| (tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2))
|
||
&& (TREE_CODE (TREE_TYPE (t1)) != REAL_TYPE ||
|
||
TYPE_PRECISION (t1) == TYPE_PRECISION (t2))
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (t1))
|
||
== INTEGRAL_TYPE_P (TREE_TYPE (t2)));
|
||
}
|
||
|
||
/* Convert EXPR to TYPE, warning about conversion problems with constants.
|
||
Invoke this function on every expression that is converted implicitly,
|
||
i.e. because of language rules and not because of an explicit cast. */
|
||
|
||
tree
|
||
convert_and_check (tree type, tree expr)
|
||
{
|
||
tree t = convert (type, expr);
|
||
if (TREE_CODE (t) == INTEGER_CST)
|
||
{
|
||
if (TREE_OVERFLOW (t))
|
||
{
|
||
TREE_OVERFLOW (t) = 0;
|
||
|
||
/* Do not diagnose overflow in a constant expression merely
|
||
because a conversion overflowed. */
|
||
TREE_CONSTANT_OVERFLOW (t) = CONSTANT_CLASS_P (expr)
|
||
&& TREE_CONSTANT_OVERFLOW (expr);
|
||
|
||
/* No warning for converting 0x80000000 to int. */
|
||
if (!(TYPE_UNSIGNED (type) < TYPE_UNSIGNED (TREE_TYPE (expr))
|
||
&& TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE
|
||
&& TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (expr))))
|
||
/* If EXPR fits in the unsigned version of TYPE,
|
||
don't warn unless pedantic. */
|
||
if ((pedantic
|
||
|| TYPE_UNSIGNED (type)
|
||
|| !constant_fits_type_p (expr,
|
||
c_common_unsigned_type (type)))
|
||
&& skip_evaluation == 0)
|
||
warning (OPT_Woverflow,
|
||
"overflow in implicit constant conversion");
|
||
}
|
||
else
|
||
unsigned_conversion_warning (t, expr);
|
||
}
|
||
return t;
|
||
}
|
||
|
||
/* A node in a list that describes references to variables (EXPR), which are
|
||
either read accesses if WRITER is zero, or write accesses, in which case
|
||
WRITER is the parent of EXPR. */
|
||
struct tlist
|
||
{
|
||
struct tlist *next;
|
||
tree expr, writer;
|
||
};
|
||
|
||
/* Used to implement a cache the results of a call to verify_tree. We only
|
||
use this for SAVE_EXPRs. */
|
||
struct tlist_cache
|
||
{
|
||
struct tlist_cache *next;
|
||
struct tlist *cache_before_sp;
|
||
struct tlist *cache_after_sp;
|
||
tree expr;
|
||
};
|
||
|
||
/* Obstack to use when allocating tlist structures, and corresponding
|
||
firstobj. */
|
||
static struct obstack tlist_obstack;
|
||
static char *tlist_firstobj = 0;
|
||
|
||
/* Keep track of the identifiers we've warned about, so we can avoid duplicate
|
||
warnings. */
|
||
static struct tlist *warned_ids;
|
||
/* SAVE_EXPRs need special treatment. We process them only once and then
|
||
cache the results. */
|
||
static struct tlist_cache *save_expr_cache;
|
||
|
||
static void add_tlist (struct tlist **, struct tlist *, tree, int);
|
||
static void merge_tlist (struct tlist **, struct tlist *, int);
|
||
static void verify_tree (tree, struct tlist **, struct tlist **, tree);
|
||
static int warning_candidate_p (tree);
|
||
static void warn_for_collisions (struct tlist *);
|
||
static void warn_for_collisions_1 (tree, tree, struct tlist *, int);
|
||
static struct tlist *new_tlist (struct tlist *, tree, tree);
|
||
|
||
/* Create a new struct tlist and fill in its fields. */
|
||
static struct tlist *
|
||
new_tlist (struct tlist *next, tree t, tree writer)
|
||
{
|
||
struct tlist *l;
|
||
l = XOBNEW (&tlist_obstack, struct tlist);
|
||
l->next = next;
|
||
l->expr = t;
|
||
l->writer = writer;
|
||
return l;
|
||
}
|
||
|
||
/* Add duplicates of the nodes found in ADD to the list *TO. If EXCLUDE_WRITER
|
||
is nonnull, we ignore any node we find which has a writer equal to it. */
|
||
|
||
static void
|
||
add_tlist (struct tlist **to, struct tlist *add, tree exclude_writer, int copy)
|
||
{
|
||
while (add)
|
||
{
|
||
struct tlist *next = add->next;
|
||
if (!copy)
|
||
add->next = *to;
|
||
if (!exclude_writer || add->writer != exclude_writer)
|
||
*to = copy ? new_tlist (*to, add->expr, add->writer) : add;
|
||
add = next;
|
||
}
|
||
}
|
||
|
||
/* Merge the nodes of ADD into TO. This merging process is done so that for
|
||
each variable that already exists in TO, no new node is added; however if
|
||
there is a write access recorded in ADD, and an occurrence on TO is only
|
||
a read access, then the occurrence in TO will be modified to record the
|
||
write. */
|
||
|
||
static void
|
||
merge_tlist (struct tlist **to, struct tlist *add, int copy)
|
||
{
|
||
struct tlist **end = to;
|
||
|
||
while (*end)
|
||
end = &(*end)->next;
|
||
|
||
while (add)
|
||
{
|
||
int found = 0;
|
||
struct tlist *tmp2;
|
||
struct tlist *next = add->next;
|
||
|
||
for (tmp2 = *to; tmp2; tmp2 = tmp2->next)
|
||
if (tmp2->expr == add->expr)
|
||
{
|
||
found = 1;
|
||
if (!tmp2->writer)
|
||
tmp2->writer = add->writer;
|
||
}
|
||
if (!found)
|
||
{
|
||
*end = copy ? add : new_tlist (NULL, add->expr, add->writer);
|
||
end = &(*end)->next;
|
||
*end = 0;
|
||
}
|
||
add = next;
|
||
}
|
||
}
|
||
|
||
/* WRITTEN is a variable, WRITER is its parent. Warn if any of the variable
|
||
references in list LIST conflict with it, excluding reads if ONLY writers
|
||
is nonzero. */
|
||
|
||
static void
|
||
warn_for_collisions_1 (tree written, tree writer, struct tlist *list,
|
||
int only_writes)
|
||
{
|
||
struct tlist *tmp;
|
||
|
||
/* Avoid duplicate warnings. */
|
||
for (tmp = warned_ids; tmp; tmp = tmp->next)
|
||
if (tmp->expr == written)
|
||
return;
|
||
|
||
while (list)
|
||
{
|
||
if (list->expr == written
|
||
&& list->writer != writer
|
||
&& (!only_writes || list->writer)
|
||
&& DECL_NAME (list->expr))
|
||
{
|
||
warned_ids = new_tlist (warned_ids, written, NULL_TREE);
|
||
warning (0, "operation on %qE may be undefined", list->expr);
|
||
}
|
||
list = list->next;
|
||
}
|
||
}
|
||
|
||
/* Given a list LIST of references to variables, find whether any of these
|
||
can cause conflicts due to missing sequence points. */
|
||
|
||
static void
|
||
warn_for_collisions (struct tlist *list)
|
||
{
|
||
struct tlist *tmp;
|
||
|
||
for (tmp = list; tmp; tmp = tmp->next)
|
||
{
|
||
if (tmp->writer)
|
||
warn_for_collisions_1 (tmp->expr, tmp->writer, list, 0);
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if X is a tree that can be verified by the sequence point
|
||
warnings. */
|
||
static int
|
||
warning_candidate_p (tree x)
|
||
{
|
||
return TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == PARM_DECL;
|
||
}
|
||
|
||
/* Walk the tree X, and record accesses to variables. If X is written by the
|
||
parent tree, WRITER is the parent.
|
||
We store accesses in one of the two lists: PBEFORE_SP, and PNO_SP. If this
|
||
expression or its only operand forces a sequence point, then everything up
|
||
to the sequence point is stored in PBEFORE_SP. Everything else gets stored
|
||
in PNO_SP.
|
||
Once we return, we will have emitted warnings if any subexpression before
|
||
such a sequence point could be undefined. On a higher level, however, the
|
||
sequence point may not be relevant, and we'll merge the two lists.
|
||
|
||
Example: (b++, a) + b;
|
||
The call that processes the COMPOUND_EXPR will store the increment of B
|
||
in PBEFORE_SP, and the use of A in PNO_SP. The higher-level call that
|
||
processes the PLUS_EXPR will need to merge the two lists so that
|
||
eventually, all accesses end up on the same list (and we'll warn about the
|
||
unordered subexpressions b++ and b.
|
||
|
||
A note on merging. If we modify the former example so that our expression
|
||
becomes
|
||
(b++, b) + a
|
||
care must be taken not simply to add all three expressions into the final
|
||
PNO_SP list. The function merge_tlist takes care of that by merging the
|
||
before-SP list of the COMPOUND_EXPR into its after-SP list in a special
|
||
way, so that no more than one access to B is recorded. */
|
||
|
||
static void
|
||
verify_tree (tree x, struct tlist **pbefore_sp, struct tlist **pno_sp,
|
||
tree writer)
|
||
{
|
||
struct tlist *tmp_before, *tmp_nosp, *tmp_list2, *tmp_list3;
|
||
enum tree_code code;
|
||
enum tree_code_class cl;
|
||
|
||
/* X may be NULL if it is the operand of an empty statement expression
|
||
({ }). */
|
||
if (x == NULL)
|
||
return;
|
||
|
||
restart:
|
||
code = TREE_CODE (x);
|
||
cl = TREE_CODE_CLASS (code);
|
||
|
||
if (warning_candidate_p (x))
|
||
{
|
||
*pno_sp = new_tlist (*pno_sp, x, writer);
|
||
return;
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case CONSTRUCTOR:
|
||
return;
|
||
|
||
case COMPOUND_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
tmp_before = tmp_nosp = tmp_list3 = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
warn_for_collisions (tmp_nosp);
|
||
merge_tlist (pbefore_sp, tmp_before, 0);
|
||
merge_tlist (pbefore_sp, tmp_nosp, 0);
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_list3, pno_sp, NULL_TREE);
|
||
merge_tlist (pbefore_sp, tmp_list3, 0);
|
||
return;
|
||
|
||
case COND_EXPR:
|
||
tmp_before = tmp_list2 = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_list2, NULL_TREE);
|
||
warn_for_collisions (tmp_list2);
|
||
merge_tlist (pbefore_sp, tmp_before, 0);
|
||
merge_tlist (pbefore_sp, tmp_list2, 1);
|
||
|
||
tmp_list3 = tmp_nosp = 0;
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_nosp, NULL_TREE);
|
||
warn_for_collisions (tmp_nosp);
|
||
merge_tlist (pbefore_sp, tmp_list3, 0);
|
||
|
||
tmp_list3 = tmp_list2 = 0;
|
||
verify_tree (TREE_OPERAND (x, 2), &tmp_list3, &tmp_list2, NULL_TREE);
|
||
warn_for_collisions (tmp_list2);
|
||
merge_tlist (pbefore_sp, tmp_list3, 0);
|
||
/* Rather than add both tmp_nosp and tmp_list2, we have to merge the
|
||
two first, to avoid warning for (a ? b++ : b++). */
|
||
merge_tlist (&tmp_nosp, tmp_list2, 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
|
||
return;
|
||
|
||
case PREDECREMENT_EXPR:
|
||
case PREINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
verify_tree (TREE_OPERAND (x, 0), pno_sp, pno_sp, x);
|
||
return;
|
||
|
||
case MODIFY_EXPR:
|
||
tmp_before = tmp_nosp = tmp_list3 = 0;
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_list3, &tmp_list3, x);
|
||
/* Expressions inside the LHS are not ordered wrt. the sequence points
|
||
in the RHS. Example:
|
||
*a = (a++, 2)
|
||
Despite the fact that the modification of "a" is in the before_sp
|
||
list (tmp_before), it conflicts with the use of "a" in the LHS.
|
||
We can handle this by adding the contents of tmp_list3
|
||
to those of tmp_before, and redoing the collision warnings for that
|
||
list. */
|
||
add_tlist (&tmp_before, tmp_list3, x, 1);
|
||
warn_for_collisions (tmp_before);
|
||
/* Exclude the LHS itself here; we first have to merge it into the
|
||
tmp_nosp list. This is done to avoid warning for "a = a"; if we
|
||
didn't exclude the LHS, we'd get it twice, once as a read and once
|
||
as a write. */
|
||
add_tlist (pno_sp, tmp_list3, x, 0);
|
||
warn_for_collisions_1 (TREE_OPERAND (x, 0), x, tmp_nosp, 1);
|
||
|
||
merge_tlist (pbefore_sp, tmp_before, 0);
|
||
if (warning_candidate_p (TREE_OPERAND (x, 0)))
|
||
merge_tlist (&tmp_nosp, new_tlist (NULL, TREE_OPERAND (x, 0), x), 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 1);
|
||
return;
|
||
|
||
case CALL_EXPR:
|
||
/* We need to warn about conflicts among arguments and conflicts between
|
||
args and the function address. Side effects of the function address,
|
||
however, are not ordered by the sequence point of the call. */
|
||
tmp_before = tmp_nosp = tmp_list2 = tmp_list3 = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
if (TREE_OPERAND (x, 1))
|
||
verify_tree (TREE_OPERAND (x, 1), &tmp_list2, &tmp_list3, NULL_TREE);
|
||
merge_tlist (&tmp_list3, tmp_list2, 0);
|
||
add_tlist (&tmp_before, tmp_list3, NULL_TREE, 0);
|
||
add_tlist (&tmp_before, tmp_nosp, NULL_TREE, 0);
|
||
warn_for_collisions (tmp_before);
|
||
add_tlist (pbefore_sp, tmp_before, NULL_TREE, 0);
|
||
return;
|
||
|
||
case TREE_LIST:
|
||
/* Scan all the list, e.g. indices of multi dimensional array. */
|
||
while (x)
|
||
{
|
||
tmp_before = tmp_nosp = 0;
|
||
verify_tree (TREE_VALUE (x), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
merge_tlist (&tmp_nosp, tmp_before, 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
|
||
x = TREE_CHAIN (x);
|
||
}
|
||
return;
|
||
|
||
case SAVE_EXPR:
|
||
{
|
||
struct tlist_cache *t;
|
||
for (t = save_expr_cache; t; t = t->next)
|
||
if (t->expr == x)
|
||
break;
|
||
|
||
if (!t)
|
||
{
|
||
t = XOBNEW (&tlist_obstack, struct tlist_cache);
|
||
t->next = save_expr_cache;
|
||
t->expr = x;
|
||
save_expr_cache = t;
|
||
|
||
tmp_before = tmp_nosp = 0;
|
||
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
|
||
warn_for_collisions (tmp_nosp);
|
||
|
||
tmp_list3 = 0;
|
||
while (tmp_nosp)
|
||
{
|
||
struct tlist *t = tmp_nosp;
|
||
tmp_nosp = t->next;
|
||
merge_tlist (&tmp_list3, t, 0);
|
||
}
|
||
t->cache_before_sp = tmp_before;
|
||
t->cache_after_sp = tmp_list3;
|
||
}
|
||
merge_tlist (pbefore_sp, t->cache_before_sp, 1);
|
||
add_tlist (pno_sp, t->cache_after_sp, NULL_TREE, 1);
|
||
return;
|
||
}
|
||
|
||
default:
|
||
/* For other expressions, simply recurse on their operands.
|
||
Manual tail recursion for unary expressions.
|
||
Other non-expressions need not be processed. */
|
||
if (cl == tcc_unary)
|
||
{
|
||
x = TREE_OPERAND (x, 0);
|
||
writer = 0;
|
||
goto restart;
|
||
}
|
||
else if (IS_EXPR_CODE_CLASS (cl))
|
||
{
|
||
int lp;
|
||
int max = TREE_CODE_LENGTH (TREE_CODE (x));
|
||
for (lp = 0; lp < max; lp++)
|
||
{
|
||
tmp_before = tmp_nosp = 0;
|
||
verify_tree (TREE_OPERAND (x, lp), &tmp_before, &tmp_nosp, 0);
|
||
merge_tlist (&tmp_nosp, tmp_before, 0);
|
||
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Try to warn for undefined behavior in EXPR due to missing sequence
|
||
points. */
|
||
|
||
void
|
||
verify_sequence_points (tree expr)
|
||
{
|
||
struct tlist *before_sp = 0, *after_sp = 0;
|
||
|
||
warned_ids = 0;
|
||
save_expr_cache = 0;
|
||
if (tlist_firstobj == 0)
|
||
{
|
||
gcc_obstack_init (&tlist_obstack);
|
||
tlist_firstobj = (char *) obstack_alloc (&tlist_obstack, 0);
|
||
}
|
||
|
||
verify_tree (expr, &before_sp, &after_sp, 0);
|
||
warn_for_collisions (after_sp);
|
||
obstack_free (&tlist_obstack, tlist_firstobj);
|
||
}
|
||
|
||
/* Validate the expression after `case' and apply default promotions. */
|
||
|
||
static tree
|
||
check_case_value (tree value)
|
||
{
|
||
if (value == NULL_TREE)
|
||
return value;
|
||
|
||
/* ??? Can we ever get nops here for a valid case value? We
|
||
shouldn't for C. */
|
||
STRIP_TYPE_NOPS (value);
|
||
/* In C++, the following is allowed:
|
||
|
||
const int i = 3;
|
||
switch (...) { case i: ... }
|
||
|
||
So, we try to reduce the VALUE to a constant that way. */
|
||
if (c_dialect_cxx ())
|
||
{
|
||
value = decl_constant_value (value);
|
||
STRIP_TYPE_NOPS (value);
|
||
value = fold (value);
|
||
}
|
||
|
||
if (TREE_CODE (value) == INTEGER_CST)
|
||
/* Promote char or short to int. */
|
||
value = perform_integral_promotions (value);
|
||
else if (value != error_mark_node)
|
||
{
|
||
error ("case label does not reduce to an integer constant");
|
||
value = error_mark_node;
|
||
}
|
||
|
||
constant_expression_warning (value);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* See if the case values LOW and HIGH are in the range of the original
|
||
type (i.e. before the default conversion to int) of the switch testing
|
||
expression.
|
||
TYPE is the promoted type of the testing expression, and ORIG_TYPE is
|
||
the type before promoting it. CASE_LOW_P is a pointer to the lower
|
||
bound of the case label, and CASE_HIGH_P is the upper bound or NULL
|
||
if the case is not a case range.
|
||
The caller has to make sure that we are not called with NULL for
|
||
CASE_LOW_P (i.e. the default case).
|
||
Returns true if the case label is in range of ORIG_TYPE (saturated or
|
||
untouched) or false if the label is out of range. */
|
||
|
||
static bool
|
||
check_case_bounds (tree type, tree orig_type,
|
||
tree *case_low_p, tree *case_high_p)
|
||
{
|
||
tree min_value, max_value;
|
||
tree case_low = *case_low_p;
|
||
tree case_high = case_high_p ? *case_high_p : case_low;
|
||
|
||
/* If there was a problem with the original type, do nothing. */
|
||
if (orig_type == error_mark_node)
|
||
return true;
|
||
|
||
min_value = TYPE_MIN_VALUE (orig_type);
|
||
max_value = TYPE_MAX_VALUE (orig_type);
|
||
|
||
/* Case label is less than minimum for type. */
|
||
if (tree_int_cst_compare (case_low, min_value) < 0
|
||
&& tree_int_cst_compare (case_high, min_value) < 0)
|
||
{
|
||
warning (0, "case label value is less than minimum value for type");
|
||
return false;
|
||
}
|
||
|
||
/* Case value is greater than maximum for type. */
|
||
if (tree_int_cst_compare (case_low, max_value) > 0
|
||
&& tree_int_cst_compare (case_high, max_value) > 0)
|
||
{
|
||
warning (0, "case label value exceeds maximum value for type");
|
||
return false;
|
||
}
|
||
|
||
/* Saturate lower case label value to minimum. */
|
||
if (tree_int_cst_compare (case_high, min_value) >= 0
|
||
&& tree_int_cst_compare (case_low, min_value) < 0)
|
||
{
|
||
warning (0, "lower value in case label range"
|
||
" less than minimum value for type");
|
||
case_low = min_value;
|
||
}
|
||
|
||
/* Saturate upper case label value to maximum. */
|
||
if (tree_int_cst_compare (case_low, max_value) <= 0
|
||
&& tree_int_cst_compare (case_high, max_value) > 0)
|
||
{
|
||
warning (0, "upper value in case label range"
|
||
" exceeds maximum value for type");
|
||
case_high = max_value;
|
||
}
|
||
|
||
if (*case_low_p != case_low)
|
||
*case_low_p = convert (type, case_low);
|
||
if (case_high_p && *case_high_p != case_high)
|
||
*case_high_p = convert (type, case_high);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return an integer type with BITS bits of precision,
|
||
that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
|
||
|
||
tree
|
||
c_common_type_for_size (unsigned int bits, int unsignedp)
|
||
{
|
||
if (bits == TYPE_PRECISION (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
|
||
if (bits == TYPE_PRECISION (long_long_integer_type_node))
|
||
return (unsignedp ? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
|
||
if (bits == TYPE_PRECISION (widest_integer_literal_type_node))
|
||
return (unsignedp ? widest_unsigned_literal_type_node
|
||
: widest_integer_literal_type_node);
|
||
|
||
if (bits <= TYPE_PRECISION (intQI_type_node))
|
||
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
|
||
|
||
if (bits <= TYPE_PRECISION (intHI_type_node))
|
||
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
|
||
|
||
if (bits <= TYPE_PRECISION (intSI_type_node))
|
||
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
|
||
|
||
if (bits <= TYPE_PRECISION (intDI_type_node))
|
||
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Used for communication between c_common_type_for_mode and
|
||
c_register_builtin_type. */
|
||
static GTY(()) tree registered_builtin_types;
|
||
|
||
/* Return a data type that has machine mode MODE.
|
||
If the mode is an integer,
|
||
then UNSIGNEDP selects between signed and unsigned types. */
|
||
|
||
tree
|
||
c_common_type_for_mode (enum machine_mode mode, int unsignedp)
|
||
{
|
||
tree t;
|
||
|
||
if (mode == TYPE_MODE (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
|
||
if (mode == TYPE_MODE (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (long_long_integer_type_node))
|
||
return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;
|
||
|
||
if (mode == TYPE_MODE (widest_integer_literal_type_node))
|
||
return unsignedp ? widest_unsigned_literal_type_node
|
||
: widest_integer_literal_type_node;
|
||
|
||
if (mode == QImode)
|
||
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
|
||
|
||
if (mode == HImode)
|
||
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
|
||
|
||
if (mode == SImode)
|
||
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
|
||
|
||
if (mode == DImode)
|
||
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
|
||
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (mode == TYPE_MODE (intTI_type_node))
|
||
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
|
||
#endif
|
||
|
||
if (mode == TYPE_MODE (float_type_node))
|
||
return float_type_node;
|
||
|
||
if (mode == TYPE_MODE (double_type_node))
|
||
return double_type_node;
|
||
|
||
if (mode == TYPE_MODE (long_double_type_node))
|
||
return long_double_type_node;
|
||
|
||
if (mode == TYPE_MODE (void_type_node))
|
||
return void_type_node;
|
||
|
||
if (mode == TYPE_MODE (build_pointer_type (char_type_node)))
|
||
return (unsignedp
|
||
? make_unsigned_type (GET_MODE_PRECISION (mode))
|
||
: make_signed_type (GET_MODE_PRECISION (mode)));
|
||
|
||
if (mode == TYPE_MODE (build_pointer_type (integer_type_node)))
|
||
return (unsignedp
|
||
? make_unsigned_type (GET_MODE_PRECISION (mode))
|
||
: make_signed_type (GET_MODE_PRECISION (mode)));
|
||
|
||
if (COMPLEX_MODE_P (mode))
|
||
{
|
||
enum machine_mode inner_mode;
|
||
tree inner_type;
|
||
|
||
if (mode == TYPE_MODE (complex_float_type_node))
|
||
return complex_float_type_node;
|
||
if (mode == TYPE_MODE (complex_double_type_node))
|
||
return complex_double_type_node;
|
||
if (mode == TYPE_MODE (complex_long_double_type_node))
|
||
return complex_long_double_type_node;
|
||
|
||
if (mode == TYPE_MODE (complex_integer_type_node) && !unsignedp)
|
||
return complex_integer_type_node;
|
||
|
||
inner_mode = GET_MODE_INNER (mode);
|
||
inner_type = c_common_type_for_mode (inner_mode, unsignedp);
|
||
if (inner_type != NULL_TREE)
|
||
return build_complex_type (inner_type);
|
||
}
|
||
else if (VECTOR_MODE_P (mode))
|
||
{
|
||
enum machine_mode inner_mode = GET_MODE_INNER (mode);
|
||
tree inner_type = c_common_type_for_mode (inner_mode, unsignedp);
|
||
if (inner_type != NULL_TREE)
|
||
return build_vector_type_for_mode (inner_type, mode);
|
||
}
|
||
|
||
if (mode == TYPE_MODE (dfloat32_type_node))
|
||
return dfloat32_type_node;
|
||
if (mode == TYPE_MODE (dfloat64_type_node))
|
||
return dfloat64_type_node;
|
||
if (mode == TYPE_MODE (dfloat128_type_node))
|
||
return dfloat128_type_node;
|
||
|
||
for (t = registered_builtin_types; t; t = TREE_CHAIN (t))
|
||
if (TYPE_MODE (TREE_VALUE (t)) == mode)
|
||
return TREE_VALUE (t);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return an unsigned type the same as TYPE in other respects. */
|
||
tree
|
||
c_common_unsigned_type (tree type)
|
||
{
|
||
tree type1 = TYPE_MAIN_VARIANT (type);
|
||
if (type1 == signed_char_type_node || type1 == char_type_node)
|
||
return unsigned_char_type_node;
|
||
if (type1 == integer_type_node)
|
||
return unsigned_type_node;
|
||
if (type1 == short_integer_type_node)
|
||
return short_unsigned_type_node;
|
||
if (type1 == long_integer_type_node)
|
||
return long_unsigned_type_node;
|
||
if (type1 == long_long_integer_type_node)
|
||
return long_long_unsigned_type_node;
|
||
if (type1 == widest_integer_literal_type_node)
|
||
return widest_unsigned_literal_type_node;
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (type1 == intTI_type_node)
|
||
return unsigned_intTI_type_node;
|
||
#endif
|
||
if (type1 == intDI_type_node)
|
||
return unsigned_intDI_type_node;
|
||
if (type1 == intSI_type_node)
|
||
return unsigned_intSI_type_node;
|
||
if (type1 == intHI_type_node)
|
||
return unsigned_intHI_type_node;
|
||
if (type1 == intQI_type_node)
|
||
return unsigned_intQI_type_node;
|
||
|
||
return c_common_signed_or_unsigned_type (1, type);
|
||
}
|
||
|
||
/* Return a signed type the same as TYPE in other respects. */
|
||
|
||
tree
|
||
c_common_signed_type (tree type)
|
||
{
|
||
tree type1 = TYPE_MAIN_VARIANT (type);
|
||
if (type1 == unsigned_char_type_node || type1 == char_type_node)
|
||
return signed_char_type_node;
|
||
if (type1 == unsigned_type_node)
|
||
return integer_type_node;
|
||
if (type1 == short_unsigned_type_node)
|
||
return short_integer_type_node;
|
||
if (type1 == long_unsigned_type_node)
|
||
return long_integer_type_node;
|
||
if (type1 == long_long_unsigned_type_node)
|
||
return long_long_integer_type_node;
|
||
if (type1 == widest_unsigned_literal_type_node)
|
||
return widest_integer_literal_type_node;
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (type1 == unsigned_intTI_type_node)
|
||
return intTI_type_node;
|
||
#endif
|
||
if (type1 == unsigned_intDI_type_node)
|
||
return intDI_type_node;
|
||
if (type1 == unsigned_intSI_type_node)
|
||
return intSI_type_node;
|
||
if (type1 == unsigned_intHI_type_node)
|
||
return intHI_type_node;
|
||
if (type1 == unsigned_intQI_type_node)
|
||
return intQI_type_node;
|
||
|
||
return c_common_signed_or_unsigned_type (0, type);
|
||
}
|
||
|
||
/* Return a type the same as TYPE except unsigned or
|
||
signed according to UNSIGNEDP. */
|
||
|
||
tree
|
||
c_common_signed_or_unsigned_type (int unsignedp, tree type)
|
||
{
|
||
if (!INTEGRAL_TYPE_P (type)
|
||
|| TYPE_UNSIGNED (type) == unsignedp)
|
||
return type;
|
||
|
||
/* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
|
||
the precision; they have precision set to match their range, but
|
||
may use a wider mode to match an ABI. If we change modes, we may
|
||
wind up with bad conversions. For INTEGER_TYPEs in C, must check
|
||
the precision as well, so as to yield correct results for
|
||
bit-field types. C++ does not have these separate bit-field
|
||
types, and producing a signed or unsigned variant of an
|
||
ENUMERAL_TYPE may cause other problems as well. */
|
||
|
||
#define TYPE_OK(node) \
|
||
(TYPE_MODE (type) == TYPE_MODE (node) \
|
||
&& (c_dialect_cxx () || TYPE_PRECISION (type) == TYPE_PRECISION (node)))
|
||
if (TYPE_OK (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
if (TYPE_OK (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
if (TYPE_OK (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
if (TYPE_OK (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
if (TYPE_OK (long_long_integer_type_node))
|
||
return (unsignedp ? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
if (TYPE_OK (widest_integer_literal_type_node))
|
||
return (unsignedp ? widest_unsigned_literal_type_node
|
||
: widest_integer_literal_type_node);
|
||
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (TYPE_OK (intTI_type_node))
|
||
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
|
||
#endif
|
||
if (TYPE_OK (intDI_type_node))
|
||
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
|
||
if (TYPE_OK (intSI_type_node))
|
||
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
|
||
if (TYPE_OK (intHI_type_node))
|
||
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
|
||
if (TYPE_OK (intQI_type_node))
|
||
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
|
||
#undef TYPE_OK
|
||
|
||
if (c_dialect_cxx ())
|
||
return type;
|
||
else
|
||
return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
|
||
}
|
||
|
||
/* Build a bit-field integer type for the given WIDTH and UNSIGNEDP. */
|
||
|
||
tree
|
||
c_build_bitfield_integer_type (unsigned HOST_WIDE_INT width, int unsignedp)
|
||
{
|
||
/* Extended integer types of the same width as a standard type have
|
||
lesser rank, so those of the same width as int promote to int or
|
||
unsigned int and are valid for printf formats expecting int or
|
||
unsigned int. To avoid such special cases, avoid creating
|
||
extended integer types for bit-fields if a standard integer type
|
||
is available. */
|
||
if (width == TYPE_PRECISION (integer_type_node))
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
if (width == TYPE_PRECISION (signed_char_type_node))
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
if (width == TYPE_PRECISION (short_integer_type_node))
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
if (width == TYPE_PRECISION (long_integer_type_node))
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
if (width == TYPE_PRECISION (long_long_integer_type_node))
|
||
return (unsignedp ? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
return build_nonstandard_integer_type (width, unsignedp);
|
||
}
|
||
|
||
/* The C version of the register_builtin_type langhook. */
|
||
|
||
void
|
||
c_register_builtin_type (tree type, const char* name)
|
||
{
|
||
tree decl;
|
||
|
||
decl = build_decl (TYPE_DECL, get_identifier (name), type);
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
if (!TYPE_NAME (type))
|
||
TYPE_NAME (type) = decl;
|
||
pushdecl (decl);
|
||
|
||
registered_builtin_types = tree_cons (0, type, registered_builtin_types);
|
||
}
|
||
|
||
|
||
/* Return the minimum number of bits needed to represent VALUE in a
|
||
signed or unsigned type, UNSIGNEDP says which. */
|
||
|
||
unsigned int
|
||
min_precision (tree value, int unsignedp)
|
||
{
|
||
int log;
|
||
|
||
/* If the value is negative, compute its negative minus 1. The latter
|
||
adjustment is because the absolute value of the largest negative value
|
||
is one larger than the largest positive value. This is equivalent to
|
||
a bit-wise negation, so use that operation instead. */
|
||
|
||
if (tree_int_cst_sgn (value) < 0)
|
||
value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
|
||
|
||
/* Return the number of bits needed, taking into account the fact
|
||
that we need one more bit for a signed than unsigned type. */
|
||
|
||
if (integer_zerop (value))
|
||
log = 0;
|
||
else
|
||
log = tree_floor_log2 (value);
|
||
|
||
return log + 1 + !unsignedp;
|
||
}
|
||
|
||
/* Print an error message for invalid operands to arith operation
|
||
CODE. */
|
||
|
||
void
|
||
binary_op_error (enum tree_code code)
|
||
{
|
||
const char *opname;
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
opname = "+"; break;
|
||
case MINUS_EXPR:
|
||
opname = "-"; break;
|
||
case MULT_EXPR:
|
||
opname = "*"; break;
|
||
case MAX_EXPR:
|
||
opname = "max"; break;
|
||
case MIN_EXPR:
|
||
opname = "min"; break;
|
||
case EQ_EXPR:
|
||
opname = "=="; break;
|
||
case NE_EXPR:
|
||
opname = "!="; break;
|
||
case LE_EXPR:
|
||
opname = "<="; break;
|
||
case GE_EXPR:
|
||
opname = ">="; break;
|
||
case LT_EXPR:
|
||
opname = "<"; break;
|
||
case GT_EXPR:
|
||
opname = ">"; break;
|
||
case LSHIFT_EXPR:
|
||
opname = "<<"; break;
|
||
case RSHIFT_EXPR:
|
||
opname = ">>"; break;
|
||
case TRUNC_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
opname = "%"; break;
|
||
case TRUNC_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
opname = "/"; break;
|
||
case BIT_AND_EXPR:
|
||
opname = "&"; break;
|
||
case BIT_IOR_EXPR:
|
||
opname = "|"; break;
|
||
case TRUTH_ANDIF_EXPR:
|
||
opname = "&&"; break;
|
||
case TRUTH_ORIF_EXPR:
|
||
opname = "||"; break;
|
||
case BIT_XOR_EXPR:
|
||
opname = "^"; break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
error ("invalid operands to binary %s", opname);
|
||
}
|
||
|
||
/* Subroutine of build_binary_op, used for comparison operations.
|
||
See if the operands have both been converted from subword integer types
|
||
and, if so, perhaps change them both back to their original type.
|
||
This function is also responsible for converting the two operands
|
||
to the proper common type for comparison.
|
||
|
||
The arguments of this function are all pointers to local variables
|
||
of build_binary_op: OP0_PTR is &OP0, OP1_PTR is &OP1,
|
||
RESTYPE_PTR is &RESULT_TYPE and RESCODE_PTR is &RESULTCODE.
|
||
|
||
If this function returns nonzero, it means that the comparison has
|
||
a constant value. What this function returns is an expression for
|
||
that value. */
|
||
|
||
tree
|
||
shorten_compare (tree *op0_ptr, tree *op1_ptr, tree *restype_ptr,
|
||
enum tree_code *rescode_ptr)
|
||
{
|
||
tree type;
|
||
tree op0 = *op0_ptr;
|
||
tree op1 = *op1_ptr;
|
||
int unsignedp0, unsignedp1;
|
||
int real1, real2;
|
||
tree primop0, primop1;
|
||
enum tree_code code = *rescode_ptr;
|
||
|
||
/* Throw away any conversions to wider types
|
||
already present in the operands. */
|
||
|
||
primop0 = get_narrower (op0, &unsignedp0);
|
||
primop1 = get_narrower (op1, &unsignedp1);
|
||
|
||
/* Handle the case that OP0 does not *contain* a conversion
|
||
but it *requires* conversion to FINAL_TYPE. */
|
||
|
||
if (op0 == primop0 && TREE_TYPE (op0) != *restype_ptr)
|
||
unsignedp0 = TYPE_UNSIGNED (TREE_TYPE (op0));
|
||
if (op1 == primop1 && TREE_TYPE (op1) != *restype_ptr)
|
||
unsignedp1 = TYPE_UNSIGNED (TREE_TYPE (op1));
|
||
|
||
/* If one of the operands must be floated, we cannot optimize. */
|
||
real1 = TREE_CODE (TREE_TYPE (primop0)) == REAL_TYPE;
|
||
real2 = TREE_CODE (TREE_TYPE (primop1)) == REAL_TYPE;
|
||
|
||
/* If first arg is constant, swap the args (changing operation
|
||
so value is preserved), for canonicalization. Don't do this if
|
||
the second arg is 0. */
|
||
|
||
if (TREE_CONSTANT (primop0)
|
||
&& !integer_zerop (primop1) && !real_zerop (primop1))
|
||
{
|
||
tree tem = primop0;
|
||
int temi = unsignedp0;
|
||
primop0 = primop1;
|
||
primop1 = tem;
|
||
tem = op0;
|
||
op0 = op1;
|
||
op1 = tem;
|
||
*op0_ptr = op0;
|
||
*op1_ptr = op1;
|
||
unsignedp0 = unsignedp1;
|
||
unsignedp1 = temi;
|
||
temi = real1;
|
||
real1 = real2;
|
||
real2 = temi;
|
||
|
||
switch (code)
|
||
{
|
||
case LT_EXPR:
|
||
code = GT_EXPR;
|
||
break;
|
||
case GT_EXPR:
|
||
code = LT_EXPR;
|
||
break;
|
||
case LE_EXPR:
|
||
code = GE_EXPR;
|
||
break;
|
||
case GE_EXPR:
|
||
code = LE_EXPR;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
*rescode_ptr = code;
|
||
}
|
||
|
||
/* If comparing an integer against a constant more bits wide,
|
||
maybe we can deduce a value of 1 or 0 independent of the data.
|
||
Or else truncate the constant now
|
||
rather than extend the variable at run time.
|
||
|
||
This is only interesting if the constant is the wider arg.
|
||
Also, it is not safe if the constant is unsigned and the
|
||
variable arg is signed, since in this case the variable
|
||
would be sign-extended and then regarded as unsigned.
|
||
Our technique fails in this case because the lowest/highest
|
||
possible unsigned results don't follow naturally from the
|
||
lowest/highest possible values of the variable operand.
|
||
For just EQ_EXPR and NE_EXPR there is another technique that
|
||
could be used: see if the constant can be faithfully represented
|
||
in the other operand's type, by truncating it and reextending it
|
||
and see if that preserves the constant's value. */
|
||
|
||
if (!real1 && !real2
|
||
&& TREE_CODE (primop1) == INTEGER_CST
|
||
&& TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr))
|
||
{
|
||
int min_gt, max_gt, min_lt, max_lt;
|
||
tree maxval, minval;
|
||
/* 1 if comparison is nominally unsigned. */
|
||
int unsignedp = TYPE_UNSIGNED (*restype_ptr);
|
||
tree val;
|
||
|
||
type = c_common_signed_or_unsigned_type (unsignedp0,
|
||
TREE_TYPE (primop0));
|
||
|
||
maxval = TYPE_MAX_VALUE (type);
|
||
minval = TYPE_MIN_VALUE (type);
|
||
|
||
if (unsignedp && !unsignedp0)
|
||
*restype_ptr = c_common_signed_type (*restype_ptr);
|
||
|
||
if (TREE_TYPE (primop1) != *restype_ptr)
|
||
{
|
||
/* Convert primop1 to target type, but do not introduce
|
||
additional overflow. We know primop1 is an int_cst. */
|
||
tree tmp = build_int_cst_wide (*restype_ptr,
|
||
TREE_INT_CST_LOW (primop1),
|
||
TREE_INT_CST_HIGH (primop1));
|
||
|
||
primop1 = force_fit_type (tmp, 0, TREE_OVERFLOW (primop1),
|
||
TREE_CONSTANT_OVERFLOW (primop1));
|
||
}
|
||
if (type != *restype_ptr)
|
||
{
|
||
minval = convert (*restype_ptr, minval);
|
||
maxval = convert (*restype_ptr, maxval);
|
||
}
|
||
|
||
if (unsignedp && unsignedp0)
|
||
{
|
||
min_gt = INT_CST_LT_UNSIGNED (primop1, minval);
|
||
max_gt = INT_CST_LT_UNSIGNED (primop1, maxval);
|
||
min_lt = INT_CST_LT_UNSIGNED (minval, primop1);
|
||
max_lt = INT_CST_LT_UNSIGNED (maxval, primop1);
|
||
}
|
||
else
|
||
{
|
||
min_gt = INT_CST_LT (primop1, minval);
|
||
max_gt = INT_CST_LT (primop1, maxval);
|
||
min_lt = INT_CST_LT (minval, primop1);
|
||
max_lt = INT_CST_LT (maxval, primop1);
|
||
}
|
||
|
||
val = 0;
|
||
/* This used to be a switch, but Genix compiler can't handle that. */
|
||
if (code == NE_EXPR)
|
||
{
|
||
if (max_lt || min_gt)
|
||
val = truthvalue_true_node;
|
||
}
|
||
else if (code == EQ_EXPR)
|
||
{
|
||
if (max_lt || min_gt)
|
||
val = truthvalue_false_node;
|
||
}
|
||
else if (code == LT_EXPR)
|
||
{
|
||
if (max_lt)
|
||
val = truthvalue_true_node;
|
||
if (!min_lt)
|
||
val = truthvalue_false_node;
|
||
}
|
||
else if (code == GT_EXPR)
|
||
{
|
||
if (min_gt)
|
||
val = truthvalue_true_node;
|
||
if (!max_gt)
|
||
val = truthvalue_false_node;
|
||
}
|
||
else if (code == LE_EXPR)
|
||
{
|
||
if (!max_gt)
|
||
val = truthvalue_true_node;
|
||
if (min_gt)
|
||
val = truthvalue_false_node;
|
||
}
|
||
else if (code == GE_EXPR)
|
||
{
|
||
if (!min_lt)
|
||
val = truthvalue_true_node;
|
||
if (max_lt)
|
||
val = truthvalue_false_node;
|
||
}
|
||
|
||
/* If primop0 was sign-extended and unsigned comparison specd,
|
||
we did a signed comparison above using the signed type bounds.
|
||
But the comparison we output must be unsigned.
|
||
|
||
Also, for inequalities, VAL is no good; but if the signed
|
||
comparison had *any* fixed result, it follows that the
|
||
unsigned comparison just tests the sign in reverse
|
||
(positive values are LE, negative ones GE).
|
||
So we can generate an unsigned comparison
|
||
against an extreme value of the signed type. */
|
||
|
||
if (unsignedp && !unsignedp0)
|
||
{
|
||
if (val != 0)
|
||
switch (code)
|
||
{
|
||
case LT_EXPR:
|
||
case GE_EXPR:
|
||
primop1 = TYPE_MIN_VALUE (type);
|
||
val = 0;
|
||
break;
|
||
|
||
case LE_EXPR:
|
||
case GT_EXPR:
|
||
primop1 = TYPE_MAX_VALUE (type);
|
||
val = 0;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
type = c_common_unsigned_type (type);
|
||
}
|
||
|
||
if (TREE_CODE (primop0) != INTEGER_CST)
|
||
{
|
||
if (val == truthvalue_false_node)
|
||
warning (0, "comparison is always false due to limited range of data type");
|
||
if (val == truthvalue_true_node)
|
||
warning (0, "comparison is always true due to limited range of data type");
|
||
}
|
||
|
||
if (val != 0)
|
||
{
|
||
/* Don't forget to evaluate PRIMOP0 if it has side effects. */
|
||
if (TREE_SIDE_EFFECTS (primop0))
|
||
return build2 (COMPOUND_EXPR, TREE_TYPE (val), primop0, val);
|
||
return val;
|
||
}
|
||
|
||
/* Value is not predetermined, but do the comparison
|
||
in the type of the operand that is not constant.
|
||
TYPE is already properly set. */
|
||
}
|
||
|
||
/* If either arg is decimal float and the other is float, find the
|
||
proper common type to use for comparison. */
|
||
else if (real1 && real2
|
||
&& (DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop0)))
|
||
|| DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop1)))))
|
||
type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
|
||
|
||
else if (real1 && real2
|
||
&& (TYPE_PRECISION (TREE_TYPE (primop0))
|
||
== TYPE_PRECISION (TREE_TYPE (primop1))))
|
||
type = TREE_TYPE (primop0);
|
||
|
||
/* If args' natural types are both narrower than nominal type
|
||
and both extend in the same manner, compare them
|
||
in the type of the wider arg.
|
||
Otherwise must actually extend both to the nominal
|
||
common type lest different ways of extending
|
||
alter the result.
|
||
(eg, (short)-1 == (unsigned short)-1 should be 0.) */
|
||
|
||
else if (unsignedp0 == unsignedp1 && real1 == real2
|
||
&& TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr)
|
||
&& TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (*restype_ptr))
|
||
{
|
||
type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
|
||
type = c_common_signed_or_unsigned_type (unsignedp0
|
||
|| TYPE_UNSIGNED (*restype_ptr),
|
||
type);
|
||
/* Make sure shorter operand is extended the right way
|
||
to match the longer operand. */
|
||
primop0
|
||
= convert (c_common_signed_or_unsigned_type (unsignedp0,
|
||
TREE_TYPE (primop0)),
|
||
primop0);
|
||
primop1
|
||
= convert (c_common_signed_or_unsigned_type (unsignedp1,
|
||
TREE_TYPE (primop1)),
|
||
primop1);
|
||
}
|
||
else
|
||
{
|
||
/* Here we must do the comparison on the nominal type
|
||
using the args exactly as we received them. */
|
||
type = *restype_ptr;
|
||
primop0 = op0;
|
||
primop1 = op1;
|
||
|
||
if (!real1 && !real2 && integer_zerop (primop1)
|
||
&& TYPE_UNSIGNED (*restype_ptr))
|
||
{
|
||
tree value = 0;
|
||
switch (code)
|
||
{
|
||
case GE_EXPR:
|
||
/* All unsigned values are >= 0, so we warn if extra warnings
|
||
are requested. However, if OP0 is a constant that is
|
||
>= 0, the signedness of the comparison isn't an issue,
|
||
so suppress the warning. */
|
||
if (extra_warnings && !in_system_header
|
||
&& !(TREE_CODE (primop0) == INTEGER_CST
|
||
&& !TREE_OVERFLOW (convert (c_common_signed_type (type),
|
||
primop0))))
|
||
warning (0, "comparison of unsigned expression >= 0 is always true");
|
||
value = truthvalue_true_node;
|
||
break;
|
||
|
||
case LT_EXPR:
|
||
if (extra_warnings && !in_system_header
|
||
&& !(TREE_CODE (primop0) == INTEGER_CST
|
||
&& !TREE_OVERFLOW (convert (c_common_signed_type (type),
|
||
primop0))))
|
||
warning (0, "comparison of unsigned expression < 0 is always false");
|
||
value = truthvalue_false_node;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (value != 0)
|
||
{
|
||
/* Don't forget to evaluate PRIMOP0 if it has side effects. */
|
||
if (TREE_SIDE_EFFECTS (primop0))
|
||
return build2 (COMPOUND_EXPR, TREE_TYPE (value),
|
||
primop0, value);
|
||
return value;
|
||
}
|
||
}
|
||
}
|
||
|
||
*op0_ptr = convert (type, primop0);
|
||
*op1_ptr = convert (type, primop1);
|
||
|
||
*restype_ptr = truthvalue_type_node;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return a tree for the sum or difference (RESULTCODE says which)
|
||
of pointer PTROP and integer INTOP. */
|
||
|
||
tree
|
||
pointer_int_sum (enum tree_code resultcode, tree ptrop, tree intop)
|
||
{
|
||
tree size_exp, ret;
|
||
|
||
/* The result is a pointer of the same type that is being added. */
|
||
|
||
tree result_type = TREE_TYPE (ptrop);
|
||
|
||
if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer of type %<void *%> used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer to a function used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else if (TREE_CODE (TREE_TYPE (result_type)) == METHOD_TYPE)
|
||
{
|
||
if (pedantic || warn_pointer_arith)
|
||
pedwarn ("pointer to member function used in arithmetic");
|
||
size_exp = integer_one_node;
|
||
}
|
||
else
|
||
size_exp = size_in_bytes (TREE_TYPE (result_type));
|
||
|
||
/* We are manipulating pointer values, so we don't need to warn
|
||
about relying on undefined signed overflow. We disable the
|
||
warning here because we use integer types so fold won't know that
|
||
they are really pointers. */
|
||
fold_defer_overflow_warnings ();
|
||
|
||
/* If what we are about to multiply by the size of the elements
|
||
contains a constant term, apply distributive law
|
||
and multiply that constant term separately.
|
||
This helps produce common subexpressions. */
|
||
|
||
if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
|
||
&& !TREE_CONSTANT (intop)
|
||
&& TREE_CONSTANT (TREE_OPERAND (intop, 1))
|
||
&& TREE_CONSTANT (size_exp)
|
||
/* If the constant comes from pointer subtraction,
|
||
skip this optimization--it would cause an error. */
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
|
||
/* If the constant is unsigned, and smaller than the pointer size,
|
||
then we must skip this optimization. This is because it could cause
|
||
an overflow error if the constant is negative but INTOP is not. */
|
||
&& (!TYPE_UNSIGNED (TREE_TYPE (intop))
|
||
|| (TYPE_PRECISION (TREE_TYPE (intop))
|
||
== TYPE_PRECISION (TREE_TYPE (ptrop)))))
|
||
{
|
||
enum tree_code subcode = resultcode;
|
||
tree int_type = TREE_TYPE (intop);
|
||
if (TREE_CODE (intop) == MINUS_EXPR)
|
||
subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
|
||
/* Convert both subexpression types to the type of intop,
|
||
because weird cases involving pointer arithmetic
|
||
can result in a sum or difference with different type args. */
|
||
ptrop = build_binary_op (subcode, ptrop,
|
||
convert (int_type, TREE_OPERAND (intop, 1)), 1);
|
||
intop = convert (int_type, TREE_OPERAND (intop, 0));
|
||
}
|
||
|
||
/* Convert the integer argument to a type the same size as sizetype
|
||
so the multiply won't overflow spuriously. */
|
||
|
||
if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
|
||
|| TYPE_UNSIGNED (TREE_TYPE (intop)) != TYPE_UNSIGNED (sizetype))
|
||
intop = convert (c_common_type_for_size (TYPE_PRECISION (sizetype),
|
||
TYPE_UNSIGNED (sizetype)), intop);
|
||
|
||
/* Replace the integer argument with a suitable product by the object size.
|
||
Do this multiplication as signed, then convert to the appropriate
|
||
pointer type (actually unsigned integral). */
|
||
|
||
intop = convert (result_type,
|
||
build_binary_op (MULT_EXPR, intop,
|
||
convert (TREE_TYPE (intop), size_exp), 1));
|
||
|
||
/* Create the sum or difference. */
|
||
ret = fold_build2 (resultcode, result_type, ptrop, intop);
|
||
|
||
fold_undefer_and_ignore_overflow_warnings ();
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Prepare expr to be an argument of a TRUTH_NOT_EXPR,
|
||
or for an `if' or `while' statement or ?..: exp. It should already
|
||
have been validated to be of suitable type; otherwise, a bad
|
||
diagnostic may result.
|
||
|
||
This preparation consists of taking the ordinary
|
||
representation of an expression expr and producing a valid tree
|
||
boolean expression describing whether expr is nonzero. We could
|
||
simply always do build_binary_op (NE_EXPR, expr, truthvalue_false_node, 1),
|
||
but we optimize comparisons, &&, ||, and !.
|
||
|
||
The resulting type should always be `truthvalue_type_node'. */
|
||
|
||
tree
|
||
c_common_truthvalue_conversion (tree expr)
|
||
{
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case EQ_EXPR: case NE_EXPR: case UNEQ_EXPR: case LTGT_EXPR:
|
||
case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR:
|
||
case UNLE_EXPR: case UNGE_EXPR: case UNLT_EXPR: case UNGT_EXPR:
|
||
case ORDERED_EXPR: case UNORDERED_EXPR:
|
||
if (TREE_TYPE (expr) == truthvalue_type_node)
|
||
return expr;
|
||
return build2 (TREE_CODE (expr), truthvalue_type_node,
|
||
TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1));
|
||
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
if (TREE_TYPE (expr) == truthvalue_type_node)
|
||
return expr;
|
||
return build2 (TREE_CODE (expr), truthvalue_type_node,
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)),
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)));
|
||
|
||
case TRUTH_NOT_EXPR:
|
||
if (TREE_TYPE (expr) == truthvalue_type_node)
|
||
return expr;
|
||
return build1 (TREE_CODE (expr), truthvalue_type_node,
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)));
|
||
|
||
case ERROR_MARK:
|
||
return expr;
|
||
|
||
case INTEGER_CST:
|
||
/* Avoid integer_zerop to ignore TREE_CONSTANT_OVERFLOW. */
|
||
return (TREE_INT_CST_LOW (expr) != 0 || TREE_INT_CST_HIGH (expr) != 0)
|
||
? truthvalue_true_node
|
||
: truthvalue_false_node;
|
||
|
||
case REAL_CST:
|
||
return real_compare (NE_EXPR, &TREE_REAL_CST (expr), &dconst0)
|
||
? truthvalue_true_node
|
||
: truthvalue_false_node;
|
||
|
||
case FUNCTION_DECL:
|
||
expr = build_unary_op (ADDR_EXPR, expr, 0);
|
||
/* Fall through. */
|
||
|
||
case ADDR_EXPR:
|
||
{
|
||
tree inner = TREE_OPERAND (expr, 0);
|
||
if (DECL_P (inner)
|
||
&& (TREE_CODE (inner) == PARM_DECL
|
||
|| TREE_CODE (inner) == LABEL_DECL
|
||
|| !DECL_WEAK (inner)))
|
||
{
|
||
/* Common Ada/Pascal programmer's mistake. We always warn
|
||
about this since it is so bad. */
|
||
warning (OPT_Waddress,
|
||
"the address of %qD will always evaluate as %<true%>",
|
||
inner);
|
||
return truthvalue_true_node;
|
||
}
|
||
|
||
/* If we are taking the address of an external decl, it might be
|
||
zero if it is weak, so we cannot optimize. */
|
||
if (DECL_P (inner)
|
||
&& DECL_EXTERNAL (inner))
|
||
break;
|
||
|
||
if (TREE_SIDE_EFFECTS (inner))
|
||
return build2 (COMPOUND_EXPR, truthvalue_type_node,
|
||
inner, truthvalue_true_node);
|
||
else
|
||
return truthvalue_true_node;
|
||
}
|
||
|
||
case COMPLEX_EXPR:
|
||
return build_binary_op ((TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
|
||
? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)),
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)),
|
||
0);
|
||
|
||
case NEGATE_EXPR:
|
||
case ABS_EXPR:
|
||
case FLOAT_EXPR:
|
||
/* These don't change whether an object is nonzero or zero. */
|
||
return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
|
||
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
/* These don't change whether an object is zero or nonzero, but
|
||
we can't ignore them if their second arg has side-effects. */
|
||
if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
|
||
return build2 (COMPOUND_EXPR, truthvalue_type_node,
|
||
TREE_OPERAND (expr, 1),
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)));
|
||
else
|
||
return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
|
||
|
||
case COND_EXPR:
|
||
/* Distribute the conversion into the arms of a COND_EXPR. */
|
||
return fold_build3 (COND_EXPR, truthvalue_type_node,
|
||
TREE_OPERAND (expr, 0),
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)),
|
||
c_common_truthvalue_conversion (TREE_OPERAND (expr, 2)));
|
||
|
||
case CONVERT_EXPR:
|
||
case NOP_EXPR:
|
||
/* Don't cancel the effect of a CONVERT_EXPR from a REFERENCE_TYPE,
|
||
since that affects how `default_conversion' will behave. */
|
||
if (TREE_CODE (TREE_TYPE (expr)) == REFERENCE_TYPE
|
||
|| TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == REFERENCE_TYPE)
|
||
break;
|
||
/* If this is widening the argument, we can ignore it. */
|
||
if (TYPE_PRECISION (TREE_TYPE (expr))
|
||
>= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
|
||
return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
|
||
break;
|
||
|
||
case MODIFY_EXPR:
|
||
if (!TREE_NO_WARNING (expr))
|
||
warning (OPT_Wparentheses,
|
||
"suggest parentheses around assignment used as truth value");
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
|
||
{
|
||
tree t = save_expr (expr);
|
||
return (build_binary_op
|
||
((TREE_SIDE_EFFECTS (expr)
|
||
? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
|
||
c_common_truthvalue_conversion (build_unary_op (REALPART_EXPR, t, 0)),
|
||
c_common_truthvalue_conversion (build_unary_op (IMAGPART_EXPR, t, 0)),
|
||
0));
|
||
}
|
||
|
||
return build_binary_op (NE_EXPR, expr, integer_zero_node, 1);
|
||
}
|
||
|
||
static void def_builtin_1 (enum built_in_function fncode,
|
||
const char *name,
|
||
enum built_in_class fnclass,
|
||
tree fntype, tree libtype,
|
||
bool both_p, bool fallback_p, bool nonansi_p,
|
||
tree fnattrs, bool implicit_p);
|
||
|
||
/* Make a variant type in the proper way for C/C++, propagating qualifiers
|
||
down to the element type of an array. */
|
||
|
||
tree
|
||
c_build_qualified_type (tree type, int type_quals)
|
||
{
|
||
if (type == error_mark_node)
|
||
return type;
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
tree t;
|
||
tree element_type = c_build_qualified_type (TREE_TYPE (type),
|
||
type_quals);
|
||
|
||
/* See if we already have an identically qualified type. */
|
||
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
||
{
|
||
if (TYPE_QUALS (strip_array_types (t)) == type_quals
|
||
&& TYPE_NAME (t) == TYPE_NAME (type)
|
||
&& TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
|
||
&& attribute_list_equal (TYPE_ATTRIBUTES (t),
|
||
TYPE_ATTRIBUTES (type)))
|
||
break;
|
||
}
|
||
if (!t)
|
||
{
|
||
t = build_variant_type_copy (type);
|
||
TREE_TYPE (t) = element_type;
|
||
}
|
||
return t;
|
||
}
|
||
|
||
/* A restrict-qualified pointer type must be a pointer to object or
|
||
incomplete type. Note that the use of POINTER_TYPE_P also allows
|
||
REFERENCE_TYPEs, which is appropriate for C++. */
|
||
if ((type_quals & TYPE_QUAL_RESTRICT)
|
||
&& (!POINTER_TYPE_P (type)
|
||
|| !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
|
||
{
|
||
error ("invalid use of %<restrict%>");
|
||
type_quals &= ~TYPE_QUAL_RESTRICT;
|
||
}
|
||
|
||
return build_qualified_type (type, type_quals);
|
||
}
|
||
|
||
/* Apply the TYPE_QUALS to the new DECL. */
|
||
|
||
void
|
||
c_apply_type_quals_to_decl (int type_quals, tree decl)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
if (type == error_mark_node)
|
||
return;
|
||
|
||
if (((type_quals & TYPE_QUAL_CONST)
|
||
|| (type && TREE_CODE (type) == REFERENCE_TYPE))
|
||
/* An object declared 'const' is only readonly after it is
|
||
initialized. We don't have any way of expressing this currently,
|
||
so we need to be conservative and unset TREE_READONLY for types
|
||
with constructors. Otherwise aliasing code will ignore stores in
|
||
an inline constructor. */
|
||
&& !(type && TYPE_NEEDS_CONSTRUCTING (type)))
|
||
TREE_READONLY (decl) = 1;
|
||
if (type_quals & TYPE_QUAL_VOLATILE)
|
||
{
|
||
TREE_SIDE_EFFECTS (decl) = 1;
|
||
TREE_THIS_VOLATILE (decl) = 1;
|
||
}
|
||
if (type_quals & TYPE_QUAL_RESTRICT)
|
||
{
|
||
while (type && TREE_CODE (type) == ARRAY_TYPE)
|
||
/* Allow 'restrict' on arrays of pointers.
|
||
FIXME currently we just ignore it. */
|
||
type = TREE_TYPE (type);
|
||
if (!type
|
||
|| !POINTER_TYPE_P (type)
|
||
|| !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type)))
|
||
error ("invalid use of %<restrict%>");
|
||
else if (flag_strict_aliasing && type == TREE_TYPE (decl))
|
||
/* Indicate we need to make a unique alias set for this pointer.
|
||
We can't do it here because it might be pointing to an
|
||
incomplete type. */
|
||
DECL_POINTER_ALIAS_SET (decl) = -2;
|
||
}
|
||
}
|
||
|
||
/* Hash function for the problem of multiple type definitions in
|
||
different files. This must hash all types that will compare
|
||
equal via comptypes to the same value. In practice it hashes
|
||
on some of the simple stuff and leaves the details to comptypes. */
|
||
|
||
static hashval_t
|
||
c_type_hash (const void *p)
|
||
{
|
||
int i = 0;
|
||
int shift, size;
|
||
tree t = (tree) p;
|
||
tree t2;
|
||
switch (TREE_CODE (t))
|
||
{
|
||
/* For pointers, hash on pointee type plus some swizzling. */
|
||
case POINTER_TYPE:
|
||
return c_type_hash (TREE_TYPE (t)) ^ 0x3003003;
|
||
/* Hash on number of elements and total size. */
|
||
case ENUMERAL_TYPE:
|
||
shift = 3;
|
||
t2 = TYPE_VALUES (t);
|
||
break;
|
||
case RECORD_TYPE:
|
||
shift = 0;
|
||
t2 = TYPE_FIELDS (t);
|
||
break;
|
||
case QUAL_UNION_TYPE:
|
||
shift = 1;
|
||
t2 = TYPE_FIELDS (t);
|
||
break;
|
||
case UNION_TYPE:
|
||
shift = 2;
|
||
t2 = TYPE_FIELDS (t);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
for (; t2; t2 = TREE_CHAIN (t2))
|
||
i++;
|
||
size = TREE_INT_CST_LOW (TYPE_SIZE (t));
|
||
return ((size << 24) | (i << shift));
|
||
}
|
||
|
||
static GTY((param_is (union tree_node))) htab_t type_hash_table;
|
||
|
||
/* Return the typed-based alias set for T, which may be an expression
|
||
or a type. Return -1 if we don't do anything special. */
|
||
|
||
HOST_WIDE_INT
|
||
c_common_get_alias_set (tree t)
|
||
{
|
||
tree u;
|
||
PTR *slot;
|
||
|
||
/* Permit type-punning when accessing a union, provided the access
|
||
is directly through the union. For example, this code does not
|
||
permit taking the address of a union member and then storing
|
||
through it. Even the type-punning allowed here is a GCC
|
||
extension, albeit a common and useful one; the C standard says
|
||
that such accesses have implementation-defined behavior. */
|
||
for (u = t;
|
||
TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
|
||
u = TREE_OPERAND (u, 0))
|
||
if (TREE_CODE (u) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
|
||
return 0;
|
||
|
||
/* That's all the expressions we handle specially. */
|
||
if (!TYPE_P (t))
|
||
return -1;
|
||
|
||
/* The C standard guarantees that any object may be accessed via an
|
||
lvalue that has character type. */
|
||
if (t == char_type_node
|
||
|| t == signed_char_type_node
|
||
|| t == unsigned_char_type_node)
|
||
return 0;
|
||
|
||
/* If it has the may_alias attribute, it can alias anything. */
|
||
if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (t)))
|
||
return 0;
|
||
|
||
/* The C standard specifically allows aliasing between signed and
|
||
unsigned variants of the same type. We treat the signed
|
||
variant as canonical. */
|
||
if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
|
||
{
|
||
tree t1 = c_common_signed_type (t);
|
||
|
||
/* t1 == t can happen for boolean nodes which are always unsigned. */
|
||
if (t1 != t)
|
||
return get_alias_set (t1);
|
||
}
|
||
else if (POINTER_TYPE_P (t))
|
||
{
|
||
tree t1;
|
||
|
||
/* Unfortunately, there is no canonical form of a pointer type.
|
||
In particular, if we have `typedef int I', then `int *', and
|
||
`I *' are different types. So, we have to pick a canonical
|
||
representative. We do this below.
|
||
|
||
Technically, this approach is actually more conservative that
|
||
it needs to be. In particular, `const int *' and `int *'
|
||
should be in different alias sets, according to the C and C++
|
||
standard, since their types are not the same, and so,
|
||
technically, an `int **' and `const int **' cannot point at
|
||
the same thing.
|
||
|
||
But, the standard is wrong. In particular, this code is
|
||
legal C++:
|
||
|
||
int *ip;
|
||
int **ipp = &ip;
|
||
const int* const* cipp = ipp;
|
||
|
||
And, it doesn't make sense for that to be legal unless you
|
||
can dereference IPP and CIPP. So, we ignore cv-qualifiers on
|
||
the pointed-to types. This issue has been reported to the
|
||
C++ committee. */
|
||
t1 = build_type_no_quals (t);
|
||
if (t1 != t)
|
||
return get_alias_set (t1);
|
||
}
|
||
|
||
/* Handle the case of multiple type nodes referring to "the same" type,
|
||
which occurs with IMA. These share an alias set. FIXME: Currently only
|
||
C90 is handled. (In C99 type compatibility is not transitive, which
|
||
complicates things mightily. The alias set splay trees can theoretically
|
||
represent this, but insertion is tricky when you consider all the
|
||
different orders things might arrive in.) */
|
||
|
||
if (c_language != clk_c || flag_isoc99)
|
||
return -1;
|
||
|
||
/* Save time if there's only one input file. */
|
||
if (num_in_fnames == 1)
|
||
return -1;
|
||
|
||
/* Pointers need special handling if they point to any type that
|
||
needs special handling (below). */
|
||
if (TREE_CODE (t) == POINTER_TYPE)
|
||
{
|
||
tree t2;
|
||
/* Find bottom type under any nested POINTERs. */
|
||
for (t2 = TREE_TYPE (t);
|
||
TREE_CODE (t2) == POINTER_TYPE;
|
||
t2 = TREE_TYPE (t2))
|
||
;
|
||
if (TREE_CODE (t2) != RECORD_TYPE
|
||
&& TREE_CODE (t2) != ENUMERAL_TYPE
|
||
&& TREE_CODE (t2) != QUAL_UNION_TYPE
|
||
&& TREE_CODE (t2) != UNION_TYPE)
|
||
return -1;
|
||
if (TYPE_SIZE (t2) == 0)
|
||
return -1;
|
||
}
|
||
/* These are the only cases that need special handling. */
|
||
if (TREE_CODE (t) != RECORD_TYPE
|
||
&& TREE_CODE (t) != ENUMERAL_TYPE
|
||
&& TREE_CODE (t) != QUAL_UNION_TYPE
|
||
&& TREE_CODE (t) != UNION_TYPE
|
||
&& TREE_CODE (t) != POINTER_TYPE)
|
||
return -1;
|
||
/* Undefined? */
|
||
if (TYPE_SIZE (t) == 0)
|
||
return -1;
|
||
|
||
/* Look up t in hash table. Only one of the compatible types within each
|
||
alias set is recorded in the table. */
|
||
if (!type_hash_table)
|
||
type_hash_table = htab_create_ggc (1021, c_type_hash,
|
||
(htab_eq) lang_hooks.types_compatible_p,
|
||
NULL);
|
||
slot = htab_find_slot (type_hash_table, t, INSERT);
|
||
if (*slot != NULL)
|
||
{
|
||
TYPE_ALIAS_SET (t) = TYPE_ALIAS_SET ((tree)*slot);
|
||
return TYPE_ALIAS_SET ((tree)*slot);
|
||
}
|
||
else
|
||
/* Our caller will assign and record (in t) a new alias set; all we need
|
||
to do is remember t in the hash table. */
|
||
*slot = t;
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Compute the value of 'sizeof (TYPE)' or '__alignof__ (TYPE)', where the
|
||
second parameter indicates which OPERATOR is being applied. The COMPLAIN
|
||
flag controls whether we should diagnose possibly ill-formed
|
||
constructs or not. */
|
||
|
||
tree
|
||
c_sizeof_or_alignof_type (tree type, bool is_sizeof, int complain)
|
||
{
|
||
const char *op_name;
|
||
tree value = NULL;
|
||
enum tree_code type_code = TREE_CODE (type);
|
||
|
||
op_name = is_sizeof ? "sizeof" : "__alignof__";
|
||
|
||
if (type_code == FUNCTION_TYPE)
|
||
{
|
||
if (is_sizeof)
|
||
{
|
||
if (complain && (pedantic || warn_pointer_arith))
|
||
pedwarn ("invalid application of %<sizeof%> to a function type");
|
||
value = size_one_node;
|
||
}
|
||
else
|
||
value = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
|
||
}
|
||
else if (type_code == VOID_TYPE || type_code == ERROR_MARK)
|
||
{
|
||
if (type_code == VOID_TYPE
|
||
&& complain && (pedantic || warn_pointer_arith))
|
||
pedwarn ("invalid application of %qs to a void type", op_name);
|
||
value = size_one_node;
|
||
}
|
||
else if (!COMPLETE_TYPE_P (type))
|
||
{
|
||
if (complain)
|
||
error ("invalid application of %qs to incomplete type %qT ",
|
||
op_name, type);
|
||
value = size_zero_node;
|
||
}
|
||
else
|
||
{
|
||
if (is_sizeof)
|
||
/* Convert in case a char is more than one unit. */
|
||
value = size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
|
||
size_int (TYPE_PRECISION (char_type_node)
|
||
/ BITS_PER_UNIT));
|
||
else
|
||
value = size_int (TYPE_ALIGN_UNIT (type));
|
||
}
|
||
|
||
/* VALUE will have an integer type with TYPE_IS_SIZETYPE set.
|
||
TYPE_IS_SIZETYPE means that certain things (like overflow) will
|
||
never happen. However, this node should really have type
|
||
`size_t', which is just a typedef for an ordinary integer type. */
|
||
value = fold_convert (size_type_node, value);
|
||
gcc_assert (!TYPE_IS_SIZETYPE (TREE_TYPE (value)));
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Implement the __alignof keyword: Return the minimum required
|
||
alignment of EXPR, measured in bytes. For VAR_DECL's and
|
||
FIELD_DECL's return DECL_ALIGN (which can be set from an
|
||
"aligned" __attribute__ specification). */
|
||
|
||
tree
|
||
c_alignof_expr (tree expr)
|
||
{
|
||
tree t;
|
||
|
||
if (TREE_CODE (expr) == VAR_DECL)
|
||
t = size_int (DECL_ALIGN_UNIT (expr));
|
||
|
||
else if (TREE_CODE (expr) == COMPONENT_REF
|
||
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
|
||
{
|
||
error ("%<__alignof%> applied to a bit-field");
|
||
t = size_one_node;
|
||
}
|
||
else if (TREE_CODE (expr) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
|
||
t = size_int (DECL_ALIGN_UNIT (TREE_OPERAND (expr, 1)));
|
||
|
||
else if (TREE_CODE (expr) == INDIRECT_REF)
|
||
{
|
||
tree t = TREE_OPERAND (expr, 0);
|
||
tree best = t;
|
||
int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
|
||
|
||
while ((TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR)
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
|
||
{
|
||
int thisalign;
|
||
|
||
t = TREE_OPERAND (t, 0);
|
||
thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
|
||
if (thisalign > bestalign)
|
||
best = t, bestalign = thisalign;
|
||
}
|
||
return c_alignof (TREE_TYPE (TREE_TYPE (best)));
|
||
}
|
||
else
|
||
return c_alignof (TREE_TYPE (expr));
|
||
|
||
return fold_convert (size_type_node, t);
|
||
}
|
||
|
||
/* Handle C and C++ default attributes. */
|
||
|
||
enum built_in_attribute
|
||
{
|
||
#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
|
||
#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
|
||
#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
|
||
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
|
||
#include "builtin-attrs.def"
|
||
#undef DEF_ATTR_NULL_TREE
|
||
#undef DEF_ATTR_INT
|
||
#undef DEF_ATTR_IDENT
|
||
#undef DEF_ATTR_TREE_LIST
|
||
ATTR_LAST
|
||
};
|
||
|
||
static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
|
||
|
||
static void c_init_attributes (void);
|
||
|
||
enum c_builtin_type
|
||
{
|
||
#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
|
||
#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
|
||
#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
|
||
#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
|
||
#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
|
||
#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
|
||
#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
|
||
#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6) NAME,
|
||
#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
|
||
#define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG6) \
|
||
NAME,
|
||
#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
|
||
#include "builtin-types.def"
|
||
#undef DEF_PRIMITIVE_TYPE
|
||
#undef DEF_FUNCTION_TYPE_0
|
||
#undef DEF_FUNCTION_TYPE_1
|
||
#undef DEF_FUNCTION_TYPE_2
|
||
#undef DEF_FUNCTION_TYPE_3
|
||
#undef DEF_FUNCTION_TYPE_4
|
||
#undef DEF_FUNCTION_TYPE_5
|
||
#undef DEF_FUNCTION_TYPE_6
|
||
#undef DEF_FUNCTION_TYPE_7
|
||
#undef DEF_FUNCTION_TYPE_VAR_0
|
||
#undef DEF_FUNCTION_TYPE_VAR_1
|
||
#undef DEF_FUNCTION_TYPE_VAR_2
|
||
#undef DEF_FUNCTION_TYPE_VAR_3
|
||
#undef DEF_FUNCTION_TYPE_VAR_4
|
||
#undef DEF_FUNCTION_TYPE_VAR_5
|
||
#undef DEF_POINTER_TYPE
|
||
BT_LAST
|
||
};
|
||
|
||
typedef enum c_builtin_type builtin_type;
|
||
|
||
/* A temporary array for c_common_nodes_and_builtins. Used in
|
||
communication with def_fn_type. */
|
||
static tree builtin_types[(int) BT_LAST + 1];
|
||
|
||
/* A helper function for c_common_nodes_and_builtins. Build function type
|
||
for DEF with return type RET and N arguments. If VAR is true, then the
|
||
function should be variadic after those N arguments.
|
||
|
||
Takes special care not to ICE if any of the types involved are
|
||
error_mark_node, which indicates that said type is not in fact available
|
||
(see builtin_type_for_size). In which case the function type as a whole
|
||
should be error_mark_node. */
|
||
|
||
static void
|
||
def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
|
||
{
|
||
tree args = NULL, t;
|
||
va_list list;
|
||
int i;
|
||
|
||
va_start (list, n);
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
builtin_type a = va_arg (list, builtin_type);
|
||
t = builtin_types[a];
|
||
if (t == error_mark_node)
|
||
goto egress;
|
||
args = tree_cons (NULL_TREE, t, args);
|
||
}
|
||
va_end (list);
|
||
|
||
args = nreverse (args);
|
||
if (!var)
|
||
args = chainon (args, void_list_node);
|
||
|
||
t = builtin_types[ret];
|
||
if (t == error_mark_node)
|
||
goto egress;
|
||
t = build_function_type (t, args);
|
||
|
||
egress:
|
||
builtin_types[def] = t;
|
||
}
|
||
|
||
/* Build tree nodes and builtin functions common to both C and C++ language
|
||
frontends. */
|
||
|
||
void
|
||
c_common_nodes_and_builtins (void)
|
||
{
|
||
int wchar_type_size;
|
||
tree array_domain_type;
|
||
tree va_list_ref_type_node;
|
||
tree va_list_arg_type_node;
|
||
|
||
/* Define `int' and `char' first so that dbx will output them first. */
|
||
record_builtin_type (RID_INT, NULL, integer_type_node);
|
||
record_builtin_type (RID_CHAR, "char", char_type_node);
|
||
|
||
/* `signed' is the same as `int'. FIXME: the declarations of "signed",
|
||
"unsigned long", "long long unsigned" and "unsigned short" were in C++
|
||
but not C. Are the conditionals here needed? */
|
||
if (c_dialect_cxx ())
|
||
record_builtin_type (RID_SIGNED, NULL, integer_type_node);
|
||
record_builtin_type (RID_LONG, "long int", long_integer_type_node);
|
||
record_builtin_type (RID_UNSIGNED, "unsigned int", unsigned_type_node);
|
||
record_builtin_type (RID_MAX, "long unsigned int",
|
||
long_unsigned_type_node);
|
||
if (c_dialect_cxx ())
|
||
record_builtin_type (RID_MAX, "unsigned long", long_unsigned_type_node);
|
||
record_builtin_type (RID_MAX, "long long int",
|
||
long_long_integer_type_node);
|
||
record_builtin_type (RID_MAX, "long long unsigned int",
|
||
long_long_unsigned_type_node);
|
||
if (c_dialect_cxx ())
|
||
record_builtin_type (RID_MAX, "long long unsigned",
|
||
long_long_unsigned_type_node);
|
||
record_builtin_type (RID_SHORT, "short int", short_integer_type_node);
|
||
record_builtin_type (RID_MAX, "short unsigned int",
|
||
short_unsigned_type_node);
|
||
if (c_dialect_cxx ())
|
||
record_builtin_type (RID_MAX, "unsigned short",
|
||
short_unsigned_type_node);
|
||
|
||
/* Define both `signed char' and `unsigned char'. */
|
||
record_builtin_type (RID_MAX, "signed char", signed_char_type_node);
|
||
record_builtin_type (RID_MAX, "unsigned char", unsigned_char_type_node);
|
||
|
||
/* These are types that c_common_type_for_size and
|
||
c_common_type_for_mode use. */
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
intQI_type_node));
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
intHI_type_node));
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
intSI_type_node));
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
intDI_type_node));
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (targetm.scalar_mode_supported_p (TImode))
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
|
||
get_identifier ("__int128_t"),
|
||
intTI_type_node));
|
||
#endif
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
unsigned_intQI_type_node));
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
unsigned_intHI_type_node));
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
unsigned_intSI_type_node));
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
unsigned_intDI_type_node));
|
||
#if HOST_BITS_PER_WIDE_INT >= 64
|
||
if (targetm.scalar_mode_supported_p (TImode))
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
|
||
get_identifier ("__uint128_t"),
|
||
unsigned_intTI_type_node));
|
||
#endif
|
||
|
||
/* Create the widest literal types. */
|
||
widest_integer_literal_type_node
|
||
= make_signed_type (HOST_BITS_PER_WIDE_INT * 2);
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
widest_integer_literal_type_node));
|
||
|
||
widest_unsigned_literal_type_node
|
||
= make_unsigned_type (HOST_BITS_PER_WIDE_INT * 2);
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
|
||
widest_unsigned_literal_type_node));
|
||
|
||
/* `unsigned long' is the standard type for sizeof.
|
||
Note that stddef.h uses `unsigned long',
|
||
and this must agree, even if long and int are the same size. */
|
||
size_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (SIZE_TYPE)));
|
||
signed_size_type_node = c_common_signed_type (size_type_node);
|
||
set_sizetype (size_type_node);
|
||
|
||
pid_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (PID_TYPE)));
|
||
|
||
build_common_tree_nodes_2 (flag_short_double);
|
||
|
||
record_builtin_type (RID_FLOAT, NULL, float_type_node);
|
||
record_builtin_type (RID_DOUBLE, NULL, double_type_node);
|
||
record_builtin_type (RID_MAX, "long double", long_double_type_node);
|
||
|
||
/* Only supported decimal floating point extension if the target
|
||
actually supports underlying modes. */
|
||
if (targetm.scalar_mode_supported_p (SDmode)
|
||
&& targetm.scalar_mode_supported_p (DDmode)
|
||
&& targetm.scalar_mode_supported_p (TDmode))
|
||
{
|
||
record_builtin_type (RID_DFLOAT32, NULL, dfloat32_type_node);
|
||
record_builtin_type (RID_DFLOAT64, NULL, dfloat64_type_node);
|
||
record_builtin_type (RID_DFLOAT128, NULL, dfloat128_type_node);
|
||
}
|
||
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
|
||
get_identifier ("complex int"),
|
||
complex_integer_type_node));
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
|
||
get_identifier ("complex float"),
|
||
complex_float_type_node));
|
||
lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
|
||
get_identifier ("complex double"),
|
||
complex_double_type_node));
|
||
lang_hooks.decls.pushdecl
|
||
(build_decl (TYPE_DECL, get_identifier ("complex long double"),
|
||
complex_long_double_type_node));
|
||
|
||
if (c_dialect_cxx ())
|
||
/* For C++, make fileptr_type_node a distinct void * type until
|
||
FILE type is defined. */
|
||
fileptr_type_node = build_variant_type_copy (ptr_type_node);
|
||
|
||
record_builtin_type (RID_VOID, NULL, void_type_node);
|
||
|
||
/* This node must not be shared. */
|
||
void_zero_node = make_node (INTEGER_CST);
|
||
TREE_TYPE (void_zero_node) = void_type_node;
|
||
|
||
void_list_node = build_void_list_node ();
|
||
|
||
/* Make a type to be the domain of a few array types
|
||
whose domains don't really matter.
|
||
200 is small enough that it always fits in size_t
|
||
and large enough that it can hold most function names for the
|
||
initializations of __FUNCTION__ and __PRETTY_FUNCTION__. */
|
||
array_domain_type = build_index_type (size_int (200));
|
||
|
||
/* Make a type for arrays of characters.
|
||
With luck nothing will ever really depend on the length of this
|
||
array type. */
|
||
char_array_type_node
|
||
= build_array_type (char_type_node, array_domain_type);
|
||
|
||
/* Likewise for arrays of ints. */
|
||
int_array_type_node
|
||
= build_array_type (integer_type_node, array_domain_type);
|
||
|
||
string_type_node = build_pointer_type (char_type_node);
|
||
const_string_type_node
|
||
= build_pointer_type (build_qualified_type
|
||
(char_type_node, TYPE_QUAL_CONST));
|
||
|
||
/* This is special for C++ so functions can be overloaded. */
|
||
wchar_type_node = get_identifier (MODIFIED_WCHAR_TYPE);
|
||
wchar_type_node = TREE_TYPE (identifier_global_value (wchar_type_node));
|
||
wchar_type_size = TYPE_PRECISION (wchar_type_node);
|
||
if (c_dialect_cxx ())
|
||
{
|
||
if (TYPE_UNSIGNED (wchar_type_node))
|
||
wchar_type_node = make_unsigned_type (wchar_type_size);
|
||
else
|
||
wchar_type_node = make_signed_type (wchar_type_size);
|
||
record_builtin_type (RID_WCHAR, "wchar_t", wchar_type_node);
|
||
}
|
||
else
|
||
{
|
||
signed_wchar_type_node = c_common_signed_type (wchar_type_node);
|
||
unsigned_wchar_type_node = c_common_unsigned_type (wchar_type_node);
|
||
}
|
||
|
||
/* This is for wide string constants. */
|
||
wchar_array_type_node
|
||
= build_array_type (wchar_type_node, array_domain_type);
|
||
|
||
wint_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (WINT_TYPE)));
|
||
|
||
intmax_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (INTMAX_TYPE)));
|
||
uintmax_type_node =
|
||
TREE_TYPE (identifier_global_value (get_identifier (UINTMAX_TYPE)));
|
||
|
||
default_function_type = build_function_type (integer_type_node, NULL_TREE);
|
||
ptrdiff_type_node
|
||
= TREE_TYPE (identifier_global_value (get_identifier (PTRDIFF_TYPE)));
|
||
unsigned_ptrdiff_type_node = c_common_unsigned_type (ptrdiff_type_node);
|
||
|
||
lang_hooks.decls.pushdecl
|
||
(build_decl (TYPE_DECL, get_identifier ("__builtin_va_list"),
|
||
va_list_type_node));
|
||
|
||
if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
|
||
{
|
||
va_list_arg_type_node = va_list_ref_type_node =
|
||
build_pointer_type (TREE_TYPE (va_list_type_node));
|
||
}
|
||
else
|
||
{
|
||
va_list_arg_type_node = va_list_type_node;
|
||
va_list_ref_type_node = build_reference_type (va_list_type_node);
|
||
}
|
||
|
||
#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
|
||
builtin_types[ENUM] = VALUE;
|
||
#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
|
||
def_fn_type (ENUM, RETURN, 0, 0);
|
||
#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
|
||
def_fn_type (ENUM, RETURN, 0, 1, ARG1);
|
||
#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
|
||
def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
|
||
#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
|
||
def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
|
||
#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
|
||
def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
|
||
#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
|
||
def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
|
||
#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
|
||
ARG6) \
|
||
def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
|
||
#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
|
||
ARG6, ARG7) \
|
||
def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
|
||
#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
|
||
def_fn_type (ENUM, RETURN, 1, 0);
|
||
#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
|
||
def_fn_type (ENUM, RETURN, 1, 1, ARG1);
|
||
#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
|
||
def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
|
||
#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
|
||
def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
|
||
#define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
|
||
def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
|
||
#define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
|
||
def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
|
||
#define DEF_POINTER_TYPE(ENUM, TYPE) \
|
||
builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);
|
||
|
||
#include "builtin-types.def"
|
||
|
||
#undef DEF_PRIMITIVE_TYPE
|
||
#undef DEF_FUNCTION_TYPE_1
|
||
#undef DEF_FUNCTION_TYPE_2
|
||
#undef DEF_FUNCTION_TYPE_3
|
||
#undef DEF_FUNCTION_TYPE_4
|
||
#undef DEF_FUNCTION_TYPE_5
|
||
#undef DEF_FUNCTION_TYPE_6
|
||
#undef DEF_FUNCTION_TYPE_VAR_0
|
||
#undef DEF_FUNCTION_TYPE_VAR_1
|
||
#undef DEF_FUNCTION_TYPE_VAR_2
|
||
#undef DEF_FUNCTION_TYPE_VAR_3
|
||
#undef DEF_FUNCTION_TYPE_VAR_4
|
||
#undef DEF_FUNCTION_TYPE_VAR_5
|
||
#undef DEF_POINTER_TYPE
|
||
builtin_types[(int) BT_LAST] = NULL_TREE;
|
||
|
||
c_init_attributes ();
|
||
|
||
#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
|
||
NONANSI_P, ATTRS, IMPLICIT, COND) \
|
||
if (NAME && COND) \
|
||
def_builtin_1 (ENUM, NAME, CLASS, \
|
||
builtin_types[(int) TYPE], \
|
||
builtin_types[(int) LIBTYPE], \
|
||
BOTH_P, FALLBACK_P, NONANSI_P, \
|
||
built_in_attributes[(int) ATTRS], IMPLICIT);
|
||
#include "builtins.def"
|
||
#undef DEF_BUILTIN
|
||
|
||
build_common_builtin_nodes ();
|
||
|
||
targetm.init_builtins ();
|
||
if (flag_mudflap)
|
||
mudflap_init ();
|
||
|
||
main_identifier_node = get_identifier ("main");
|
||
|
||
/* Create the built-in __null node. It is important that this is
|
||
not shared. */
|
||
null_node = make_node (INTEGER_CST);
|
||
TREE_TYPE (null_node) = c_common_type_for_size (POINTER_SIZE, 0);
|
||
|
||
/* Since builtin_types isn't gc'ed, don't export these nodes. */
|
||
memset (builtin_types, 0, sizeof (builtin_types));
|
||
}
|
||
|
||
/* Look up the function in built_in_decls that corresponds to DECL
|
||
and set ASMSPEC as its user assembler name. DECL must be a
|
||
function decl that declares a builtin. */
|
||
|
||
void
|
||
set_builtin_user_assembler_name (tree decl, const char *asmspec)
|
||
{
|
||
tree builtin;
|
||
gcc_assert (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
|
||
&& asmspec != 0);
|
||
|
||
builtin = built_in_decls [DECL_FUNCTION_CODE (decl)];
|
||
set_user_assembler_name (builtin, asmspec);
|
||
if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MEMCPY)
|
||
init_block_move_fn (asmspec);
|
||
else if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MEMSET)
|
||
init_block_clear_fn (asmspec);
|
||
}
|
||
|
||
/* The number of named compound-literals generated thus far. */
|
||
static GTY(()) int compound_literal_number;
|
||
|
||
/* Set DECL_NAME for DECL, a VAR_DECL for a compound-literal. */
|
||
|
||
void
|
||
set_compound_literal_name (tree decl)
|
||
{
|
||
char *name;
|
||
ASM_FORMAT_PRIVATE_NAME (name, "__compound_literal",
|
||
compound_literal_number);
|
||
compound_literal_number++;
|
||
DECL_NAME (decl) = get_identifier (name);
|
||
}
|
||
|
||
tree
|
||
build_va_arg (tree expr, tree type)
|
||
{
|
||
return build1 (VA_ARG_EXPR, type, expr);
|
||
}
|
||
|
||
|
||
/* Linked list of disabled built-in functions. */
|
||
|
||
typedef struct disabled_builtin
|
||
{
|
||
const char *name;
|
||
struct disabled_builtin *next;
|
||
} disabled_builtin;
|
||
static disabled_builtin *disabled_builtins = NULL;
|
||
|
||
static bool builtin_function_disabled_p (const char *);
|
||
|
||
/* Disable a built-in function specified by -fno-builtin-NAME. If NAME
|
||
begins with "__builtin_", give an error. */
|
||
|
||
void
|
||
disable_builtin_function (const char *name)
|
||
{
|
||
if (strncmp (name, "__builtin_", strlen ("__builtin_")) == 0)
|
||
error ("cannot disable built-in function %qs", name);
|
||
else
|
||
{
|
||
disabled_builtin *new_disabled_builtin = XNEW (disabled_builtin);
|
||
new_disabled_builtin->name = name;
|
||
new_disabled_builtin->next = disabled_builtins;
|
||
disabled_builtins = new_disabled_builtin;
|
||
}
|
||
}
|
||
|
||
|
||
/* Return true if the built-in function NAME has been disabled, false
|
||
otherwise. */
|
||
|
||
static bool
|
||
builtin_function_disabled_p (const char *name)
|
||
{
|
||
disabled_builtin *p;
|
||
for (p = disabled_builtins; p != NULL; p = p->next)
|
||
{
|
||
if (strcmp (name, p->name) == 0)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Worker for DEF_BUILTIN.
|
||
Possibly define a builtin function with one or two names.
|
||
Does not declare a non-__builtin_ function if flag_no_builtin, or if
|
||
nonansi_p and flag_no_nonansi_builtin. */
|
||
|
||
static void
|
||
def_builtin_1 (enum built_in_function fncode,
|
||
const char *name,
|
||
enum built_in_class fnclass,
|
||
tree fntype, tree libtype,
|
||
bool both_p, bool fallback_p, bool nonansi_p,
|
||
tree fnattrs, bool implicit_p)
|
||
{
|
||
tree decl;
|
||
const char *libname;
|
||
|
||
if (fntype == error_mark_node)
|
||
return;
|
||
|
||
gcc_assert ((!both_p && !fallback_p)
|
||
|| !strncmp (name, "__builtin_",
|
||
strlen ("__builtin_")));
|
||
|
||
libname = name + strlen ("__builtin_");
|
||
decl = lang_hooks.builtin_function (name, fntype, fncode, fnclass,
|
||
(fallback_p ? libname : NULL),
|
||
fnattrs);
|
||
if (both_p
|
||
&& !flag_no_builtin && !builtin_function_disabled_p (libname)
|
||
&& !(nonansi_p && flag_no_nonansi_builtin))
|
||
lang_hooks.builtin_function (libname, libtype, fncode, fnclass,
|
||
NULL, fnattrs);
|
||
|
||
built_in_decls[(int) fncode] = decl;
|
||
if (implicit_p)
|
||
implicit_built_in_decls[(int) fncode] = decl;
|
||
}
|
||
|
||
/* Nonzero if the type T promotes to int. This is (nearly) the
|
||
integral promotions defined in ISO C99 6.3.1.1/2. */
|
||
|
||
bool
|
||
c_promoting_integer_type_p (tree t)
|
||
{
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case INTEGER_TYPE:
|
||
return (TYPE_MAIN_VARIANT (t) == char_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == signed_char_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == unsigned_char_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == short_integer_type_node
|
||
|| TYPE_MAIN_VARIANT (t) == short_unsigned_type_node
|
||
|| TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node));
|
||
|
||
case ENUMERAL_TYPE:
|
||
/* ??? Technically all enumerations not larger than an int
|
||
promote to an int. But this is used along code paths
|
||
that only want to notice a size change. */
|
||
return TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node);
|
||
|
||
case BOOLEAN_TYPE:
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if PARMS specifies a fixed number of parameters
|
||
and none of their types is affected by default promotions. */
|
||
|
||
int
|
||
self_promoting_args_p (tree parms)
|
||
{
|
||
tree t;
|
||
for (t = parms; t; t = TREE_CHAIN (t))
|
||
{
|
||
tree type = TREE_VALUE (t);
|
||
|
||
if (type == error_mark_node)
|
||
continue;
|
||
|
||
if (TREE_CHAIN (t) == 0 && type != void_type_node)
|
||
return 0;
|
||
|
||
if (type == 0)
|
||
return 0;
|
||
|
||
if (TYPE_MAIN_VARIANT (type) == float_type_node)
|
||
return 0;
|
||
|
||
if (c_promoting_integer_type_p (type))
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Recursively examines the array elements of TYPE, until a non-array
|
||
element type is found. */
|
||
|
||
tree
|
||
strip_array_types (tree type)
|
||
{
|
||
while (TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Recursively remove any '*' or '&' operator from TYPE. */
|
||
tree
|
||
strip_pointer_operator (tree t)
|
||
{
|
||
while (POINTER_TYPE_P (t))
|
||
t = TREE_TYPE (t);
|
||
return t;
|
||
}
|
||
|
||
/* Used to compare case labels. K1 and K2 are actually tree nodes
|
||
representing case labels, or NULL_TREE for a `default' label.
|
||
Returns -1 if K1 is ordered before K2, -1 if K1 is ordered after
|
||
K2, and 0 if K1 and K2 are equal. */
|
||
|
||
int
|
||
case_compare (splay_tree_key k1, splay_tree_key k2)
|
||
{
|
||
/* Consider a NULL key (such as arises with a `default' label) to be
|
||
smaller than anything else. */
|
||
if (!k1)
|
||
return k2 ? -1 : 0;
|
||
else if (!k2)
|
||
return k1 ? 1 : 0;
|
||
|
||
return tree_int_cst_compare ((tree) k1, (tree) k2);
|
||
}
|
||
|
||
/* Process a case label for the range LOW_VALUE ... HIGH_VALUE. If
|
||
LOW_VALUE and HIGH_VALUE are both NULL_TREE then this case label is
|
||
actually a `default' label. If only HIGH_VALUE is NULL_TREE, then
|
||
case label was declared using the usual C/C++ syntax, rather than
|
||
the GNU case range extension. CASES is a tree containing all the
|
||
case ranges processed so far; COND is the condition for the
|
||
switch-statement itself. Returns the CASE_LABEL_EXPR created, or
|
||
ERROR_MARK_NODE if no CASE_LABEL_EXPR is created. */
|
||
|
||
tree
|
||
c_add_case_label (splay_tree cases, tree cond, tree orig_type,
|
||
tree low_value, tree high_value)
|
||
{
|
||
tree type;
|
||
tree label;
|
||
tree case_label;
|
||
splay_tree_node node;
|
||
|
||
/* Create the LABEL_DECL itself. */
|
||
label = create_artificial_label ();
|
||
|
||
/* If there was an error processing the switch condition, bail now
|
||
before we get more confused. */
|
||
if (!cond || cond == error_mark_node)
|
||
goto error_out;
|
||
|
||
if ((low_value && TREE_TYPE (low_value)
|
||
&& POINTER_TYPE_P (TREE_TYPE (low_value)))
|
||
|| (high_value && TREE_TYPE (high_value)
|
||
&& POINTER_TYPE_P (TREE_TYPE (high_value))))
|
||
{
|
||
error ("pointers are not permitted as case values");
|
||
goto error_out;
|
||
}
|
||
|
||
/* Case ranges are a GNU extension. */
|
||
if (high_value && pedantic)
|
||
pedwarn ("range expressions in switch statements are non-standard");
|
||
|
||
type = TREE_TYPE (cond);
|
||
if (low_value)
|
||
{
|
||
low_value = check_case_value (low_value);
|
||
low_value = convert_and_check (type, low_value);
|
||
if (low_value == error_mark_node)
|
||
goto error_out;
|
||
}
|
||
if (high_value)
|
||
{
|
||
high_value = check_case_value (high_value);
|
||
high_value = convert_and_check (type, high_value);
|
||
if (high_value == error_mark_node)
|
||
goto error_out;
|
||
}
|
||
|
||
if (low_value && high_value)
|
||
{
|
||
/* If the LOW_VALUE and HIGH_VALUE are the same, then this isn't
|
||
really a case range, even though it was written that way.
|
||
Remove the HIGH_VALUE to simplify later processing. */
|
||
if (tree_int_cst_equal (low_value, high_value))
|
||
high_value = NULL_TREE;
|
||
else if (!tree_int_cst_lt (low_value, high_value))
|
||
warning (0, "empty range specified");
|
||
}
|
||
|
||
/* See if the case is in range of the type of the original testing
|
||
expression. If both low_value and high_value are out of range,
|
||
don't insert the case label and return NULL_TREE. */
|
||
if (low_value
|
||
&& !check_case_bounds (type, orig_type,
|
||
&low_value, high_value ? &high_value : NULL))
|
||
return NULL_TREE;
|
||
|
||
/* Look up the LOW_VALUE in the table of case labels we already
|
||
have. */
|
||
node = splay_tree_lookup (cases, (splay_tree_key) low_value);
|
||
/* If there was not an exact match, check for overlapping ranges.
|
||
There's no need to do this if there's no LOW_VALUE or HIGH_VALUE;
|
||
that's a `default' label and the only overlap is an exact match. */
|
||
if (!node && (low_value || high_value))
|
||
{
|
||
splay_tree_node low_bound;
|
||
splay_tree_node high_bound;
|
||
|
||
/* Even though there wasn't an exact match, there might be an
|
||
overlap between this case range and another case range.
|
||
Since we've (inductively) not allowed any overlapping case
|
||
ranges, we simply need to find the greatest low case label
|
||
that is smaller that LOW_VALUE, and the smallest low case
|
||
label that is greater than LOW_VALUE. If there is an overlap
|
||
it will occur in one of these two ranges. */
|
||
low_bound = splay_tree_predecessor (cases,
|
||
(splay_tree_key) low_value);
|
||
high_bound = splay_tree_successor (cases,
|
||
(splay_tree_key) low_value);
|
||
|
||
/* Check to see if the LOW_BOUND overlaps. It is smaller than
|
||
the LOW_VALUE, so there is no need to check unless the
|
||
LOW_BOUND is in fact itself a case range. */
|
||
if (low_bound
|
||
&& CASE_HIGH ((tree) low_bound->value)
|
||
&& tree_int_cst_compare (CASE_HIGH ((tree) low_bound->value),
|
||
low_value) >= 0)
|
||
node = low_bound;
|
||
/* Check to see if the HIGH_BOUND overlaps. The low end of that
|
||
range is bigger than the low end of the current range, so we
|
||
are only interested if the current range is a real range, and
|
||
not an ordinary case label. */
|
||
else if (high_bound
|
||
&& high_value
|
||
&& (tree_int_cst_compare ((tree) high_bound->key,
|
||
high_value)
|
||
<= 0))
|
||
node = high_bound;
|
||
}
|
||
/* If there was an overlap, issue an error. */
|
||
if (node)
|
||
{
|
||
tree duplicate = CASE_LABEL ((tree) node->value);
|
||
|
||
if (high_value)
|
||
{
|
||
error ("duplicate (or overlapping) case value");
|
||
error ("%Jthis is the first entry overlapping that value", duplicate);
|
||
}
|
||
else if (low_value)
|
||
{
|
||
error ("duplicate case value") ;
|
||
error ("%Jpreviously used here", duplicate);
|
||
}
|
||
else
|
||
{
|
||
error ("multiple default labels in one switch");
|
||
error ("%Jthis is the first default label", duplicate);
|
||
}
|
||
goto error_out;
|
||
}
|
||
|
||
/* Add a CASE_LABEL to the statement-tree. */
|
||
case_label = add_stmt (build_case_label (low_value, high_value, label));
|
||
/* Register this case label in the splay tree. */
|
||
splay_tree_insert (cases,
|
||
(splay_tree_key) low_value,
|
||
(splay_tree_value) case_label);
|
||
|
||
return case_label;
|
||
|
||
error_out:
|
||
/* Add a label so that the back-end doesn't think that the beginning of
|
||
the switch is unreachable. Note that we do not add a case label, as
|
||
that just leads to duplicates and thence to failure later on. */
|
||
if (!cases->root)
|
||
{
|
||
tree t = create_artificial_label ();
|
||
add_stmt (build_stmt (LABEL_EXPR, t));
|
||
}
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Subroutines of c_do_switch_warnings, called via splay_tree_foreach.
|
||
Used to verify that case values match up with enumerator values. */
|
||
|
||
static void
|
||
match_case_to_enum_1 (tree key, tree type, tree label)
|
||
{
|
||
char buf[2 + 2*HOST_BITS_PER_WIDE_INT/4 + 1];
|
||
|
||
/* ??? Not working too hard to print the double-word value.
|
||
Should perhaps be done with %lwd in the diagnostic routines? */
|
||
if (TREE_INT_CST_HIGH (key) == 0)
|
||
snprintf (buf, sizeof (buf), HOST_WIDE_INT_PRINT_UNSIGNED,
|
||
TREE_INT_CST_LOW (key));
|
||
else if (!TYPE_UNSIGNED (type)
|
||
&& TREE_INT_CST_HIGH (key) == -1
|
||
&& TREE_INT_CST_LOW (key) != 0)
|
||
snprintf (buf, sizeof (buf), "-" HOST_WIDE_INT_PRINT_UNSIGNED,
|
||
-TREE_INT_CST_LOW (key));
|
||
else
|
||
snprintf (buf, sizeof (buf), HOST_WIDE_INT_PRINT_DOUBLE_HEX,
|
||
TREE_INT_CST_HIGH (key), TREE_INT_CST_LOW (key));
|
||
|
||
if (TYPE_NAME (type) == 0)
|
||
warning (0, "%Jcase value %qs not in enumerated type",
|
||
CASE_LABEL (label), buf);
|
||
else
|
||
warning (0, "%Jcase value %qs not in enumerated type %qT",
|
||
CASE_LABEL (label), buf, type);
|
||
}
|
||
|
||
/* Subroutine of c_do_switch_warnings, called via splay_tree_foreach.
|
||
Used to verify that case values match up with enumerator values. */
|
||
|
||
static int
|
||
match_case_to_enum (splay_tree_node node, void *data)
|
||
{
|
||
tree label = (tree) node->value;
|
||
tree type = (tree) data;
|
||
|
||
/* Skip default case. */
|
||
if (!CASE_LOW (label))
|
||
return 0;
|
||
|
||
/* If CASE_LOW_SEEN is not set, that means CASE_LOW did not appear
|
||
when we did our enum->case scan. Reset our scratch bit after. */
|
||
if (!CASE_LOW_SEEN (label))
|
||
match_case_to_enum_1 (CASE_LOW (label), type, label);
|
||
else
|
||
CASE_LOW_SEEN (label) = 0;
|
||
|
||
/* If CASE_HIGH is non-null, we have a range. If CASE_HIGH_SEEN is
|
||
not set, that means that CASE_HIGH did not appear when we did our
|
||
enum->case scan. Reset our scratch bit after. */
|
||
if (CASE_HIGH (label))
|
||
{
|
||
if (!CASE_HIGH_SEEN (label))
|
||
match_case_to_enum_1 (CASE_HIGH (label), type, label);
|
||
else
|
||
CASE_HIGH_SEEN (label) = 0;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Handle -Wswitch*. Called from the front end after parsing the
|
||
switch construct. */
|
||
/* ??? Should probably be somewhere generic, since other languages
|
||
besides C and C++ would want this. At the moment, however, C/C++
|
||
are the only tree-ssa languages that support enumerations at all,
|
||
so the point is moot. */
|
||
|
||
void
|
||
c_do_switch_warnings (splay_tree cases, location_t switch_location,
|
||
tree type, tree cond)
|
||
{
|
||
splay_tree_node default_node;
|
||
splay_tree_node node;
|
||
tree chain;
|
||
|
||
if (!warn_switch && !warn_switch_enum && !warn_switch_default)
|
||
return;
|
||
|
||
default_node = splay_tree_lookup (cases, (splay_tree_key) NULL);
|
||
if (!default_node)
|
||
warning (OPT_Wswitch_default, "%Hswitch missing default case",
|
||
&switch_location);
|
||
|
||
/* From here on, we only care about about enumerated types. */
|
||
if (!type || TREE_CODE (type) != ENUMERAL_TYPE)
|
||
return;
|
||
|
||
/* If the switch expression was an enumerated type, check that
|
||
exactly all enumeration literals are covered by the cases.
|
||
The check is made when -Wswitch was specified and there is no
|
||
default case, or when -Wswitch-enum was specified. */
|
||
|
||
if (!warn_switch_enum
|
||
&& !(warn_switch && !default_node))
|
||
return;
|
||
|
||
/* Clearing COND if it is not an integer constant simplifies
|
||
the tests inside the loop below. */
|
||
if (TREE_CODE (cond) != INTEGER_CST)
|
||
cond = NULL_TREE;
|
||
|
||
/* The time complexity here is O(N*lg(N)) worst case, but for the
|
||
common case of monotonically increasing enumerators, it is
|
||
O(N), since the nature of the splay tree will keep the next
|
||
element adjacent to the root at all times. */
|
||
|
||
for (chain = TYPE_VALUES (type); chain; chain = TREE_CHAIN (chain))
|
||
{
|
||
tree value = TREE_VALUE (chain);
|
||
node = splay_tree_lookup (cases, (splay_tree_key) value);
|
||
if (node)
|
||
{
|
||
/* Mark the CASE_LOW part of the case entry as seen. */
|
||
tree label = (tree) node->value;
|
||
CASE_LOW_SEEN (label) = 1;
|
||
continue;
|
||
}
|
||
|
||
/* Even though there wasn't an exact match, there might be a
|
||
case range which includes the enumator's value. */
|
||
node = splay_tree_predecessor (cases, (splay_tree_key) value);
|
||
if (node && CASE_HIGH ((tree) node->value))
|
||
{
|
||
tree label = (tree) node->value;
|
||
int cmp = tree_int_cst_compare (CASE_HIGH (label), value);
|
||
if (cmp >= 0)
|
||
{
|
||
/* If we match the upper bound exactly, mark the CASE_HIGH
|
||
part of the case entry as seen. */
|
||
if (cmp == 0)
|
||
CASE_HIGH_SEEN (label) = 1;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* We've now determined that this enumerated literal isn't
|
||
handled by the case labels of the switch statement. */
|
||
|
||
/* If the switch expression is a constant, we only really care
|
||
about whether that constant is handled by the switch. */
|
||
if (cond && tree_int_cst_compare (cond, value))
|
||
continue;
|
||
|
||
warning (0, "%Henumeration value %qE not handled in switch",
|
||
&switch_location, TREE_PURPOSE (chain));
|
||
}
|
||
|
||
/* Warn if there are case expressions that don't correspond to
|
||
enumerators. This can occur since C and C++ don't enforce
|
||
type-checking of assignments to enumeration variables.
|
||
|
||
The time complexity here is now always O(N) worst case, since
|
||
we should have marked both the lower bound and upper bound of
|
||
every disjoint case label, with CASE_LOW_SEEN and CASE_HIGH_SEEN
|
||
above. This scan also resets those fields. */
|
||
splay_tree_foreach (cases, match_case_to_enum, type);
|
||
}
|
||
|
||
/* Finish an expression taking the address of LABEL (an
|
||
IDENTIFIER_NODE). Returns an expression for the address. */
|
||
|
||
tree
|
||
finish_label_address_expr (tree label)
|
||
{
|
||
tree result;
|
||
|
||
if (pedantic)
|
||
pedwarn ("taking the address of a label is non-standard");
|
||
|
||
if (label == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
label = lookup_label (label);
|
||
if (label == NULL_TREE)
|
||
result = null_pointer_node;
|
||
else
|
||
{
|
||
TREE_USED (label) = 1;
|
||
result = build1 (ADDR_EXPR, ptr_type_node, label);
|
||
/* The current function in not necessarily uninlinable.
|
||
Computed gotos are incompatible with inlining, but the value
|
||
here could be used only in a diagnostic, for example. */
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Hook used by expand_expr to expand language-specific tree codes. */
|
||
/* The only things that should go here are bits needed to expand
|
||
constant initializers. Everything else should be handled by the
|
||
gimplification routines. */
|
||
|
||
rtx
|
||
c_expand_expr (tree exp, rtx target, enum machine_mode tmode,
|
||
int modifier /* Actually enum_modifier. */,
|
||
rtx *alt_rtl)
|
||
{
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case COMPOUND_LITERAL_EXPR:
|
||
{
|
||
/* Initialize the anonymous variable declared in the compound
|
||
literal, then return the variable. */
|
||
tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
|
||
emit_local_var (decl);
|
||
return expand_expr_real (decl, target, tmode, modifier, alt_rtl);
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Hook used by staticp to handle language-specific tree codes. */
|
||
|
||
tree
|
||
c_staticp (tree exp)
|
||
{
|
||
return (TREE_CODE (exp) == COMPOUND_LITERAL_EXPR
|
||
&& TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp))
|
||
? exp : NULL);
|
||
}
|
||
|
||
|
||
/* Given a boolean expression ARG, return a tree representing an increment
|
||
or decrement (as indicated by CODE) of ARG. The front end must check for
|
||
invalid cases (e.g., decrement in C++). */
|
||
tree
|
||
boolean_increment (enum tree_code code, tree arg)
|
||
{
|
||
tree val;
|
||
tree true_res = boolean_true_node;
|
||
|
||
arg = stabilize_reference (arg);
|
||
switch (code)
|
||
{
|
||
case PREINCREMENT_EXPR:
|
||
val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
|
||
break;
|
||
case POSTINCREMENT_EXPR:
|
||
val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
|
||
arg = save_expr (arg);
|
||
val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
|
||
val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
|
||
break;
|
||
case PREDECREMENT_EXPR:
|
||
val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
|
||
invert_truthvalue (arg));
|
||
break;
|
||
case POSTDECREMENT_EXPR:
|
||
val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
|
||
invert_truthvalue (arg));
|
||
arg = save_expr (arg);
|
||
val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
|
||
val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
TREE_SIDE_EFFECTS (val) = 1;
|
||
return val;
|
||
}
|
||
|
||
/* Built-in macros for stddef.h, that require macros defined in this
|
||
file. */
|
||
void
|
||
c_stddef_cpp_builtins(void)
|
||
{
|
||
builtin_define_with_value ("__SIZE_TYPE__", SIZE_TYPE, 0);
|
||
builtin_define_with_value ("__PTRDIFF_TYPE__", PTRDIFF_TYPE, 0);
|
||
builtin_define_with_value ("__WCHAR_TYPE__", MODIFIED_WCHAR_TYPE, 0);
|
||
builtin_define_with_value ("__WINT_TYPE__", WINT_TYPE, 0);
|
||
builtin_define_with_value ("__INTMAX_TYPE__", INTMAX_TYPE, 0);
|
||
builtin_define_with_value ("__UINTMAX_TYPE__", UINTMAX_TYPE, 0);
|
||
}
|
||
|
||
static void
|
||
c_init_attributes (void)
|
||
{
|
||
/* Fill in the built_in_attributes array. */
|
||
#define DEF_ATTR_NULL_TREE(ENUM) \
|
||
built_in_attributes[(int) ENUM] = NULL_TREE;
|
||
#define DEF_ATTR_INT(ENUM, VALUE) \
|
||
built_in_attributes[(int) ENUM] = build_int_cst (NULL_TREE, VALUE);
|
||
#define DEF_ATTR_IDENT(ENUM, STRING) \
|
||
built_in_attributes[(int) ENUM] = get_identifier (STRING);
|
||
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
|
||
built_in_attributes[(int) ENUM] \
|
||
= tree_cons (built_in_attributes[(int) PURPOSE], \
|
||
built_in_attributes[(int) VALUE], \
|
||
built_in_attributes[(int) CHAIN]);
|
||
#include "builtin-attrs.def"
|
||
#undef DEF_ATTR_NULL_TREE
|
||
#undef DEF_ATTR_INT
|
||
#undef DEF_ATTR_IDENT
|
||
#undef DEF_ATTR_TREE_LIST
|
||
}
|
||
|
||
/* Attribute handlers common to C front ends. */
|
||
|
||
/* Handle a "packed" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_packed_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
||
int flags, bool *no_add_attrs)
|
||
{
|
||
if (TYPE_P (*node))
|
||
{
|
||
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
*node = build_variant_type_copy (*node);
|
||
TYPE_PACKED (*node) = 1;
|
||
}
|
||
else if (TREE_CODE (*node) == FIELD_DECL)
|
||
{
|
||
if (TYPE_ALIGN (TREE_TYPE (*node)) <= BITS_PER_UNIT)
|
||
warning (OPT_Wattributes,
|
||
"%qE attribute ignored for field of type %qT",
|
||
name, TREE_TYPE (*node));
|
||
else
|
||
DECL_PACKED (*node) = 1;
|
||
}
|
||
/* We can't set DECL_PACKED for a VAR_DECL, because the bit is
|
||
used for DECL_REGISTER. It wouldn't mean anything anyway.
|
||
We can't set DECL_PACKED on the type of a TYPE_DECL, because
|
||
that changes what the typedef is typing. */
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "nocommon" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_nocommon_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
if (TREE_CODE (*node) == VAR_DECL)
|
||
DECL_COMMON (*node) = 0;
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "common" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_common_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
if (TREE_CODE (*node) == VAR_DECL)
|
||
DECL_COMMON (*node) = 1;
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "noreturn" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_noreturn_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
tree type = TREE_TYPE (*node);
|
||
|
||
/* See FIXME comment in c_common_attribute_table. */
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
TREE_THIS_VOLATILE (*node) = 1;
|
||
else if (TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
|
||
TREE_TYPE (*node)
|
||
= build_pointer_type
|
||
(build_type_variant (TREE_TYPE (type),
|
||
TYPE_READONLY (TREE_TYPE (type)), 1));
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "noinline" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_noinline_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
DECL_UNINLINABLE (*node) = 1;
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "always_inline" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_always_inline_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags),
|
||
bool *no_add_attrs)
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
{
|
||
/* Do nothing else, just set the attribute. We'll get at
|
||
it later with lookup_attribute. */
|
||
}
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "gnu_inline" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_gnu_inline_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags),
|
||
bool *no_add_attrs)
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL && DECL_DECLARED_INLINE_P (*node))
|
||
{
|
||
/* Do nothing else, just set the attribute. We'll get at
|
||
it later with lookup_attribute. */
|
||
}
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "flatten" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_flatten_attribute (tree *node, tree name,
|
||
tree args ATTRIBUTE_UNUSED,
|
||
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
/* Do nothing else, just set the attribute. We'll get at
|
||
it later with lookup_attribute. */
|
||
;
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
/* Handle a "used" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_used_attribute (tree *pnode, tree name, tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
tree node = *pnode;
|
||
|
||
if (TREE_CODE (node) == FUNCTION_DECL
|
||
|| (TREE_CODE (node) == VAR_DECL && TREE_STATIC (node)))
|
||
{
|
||
TREE_USED (node) = 1;
|
||
DECL_PRESERVE_P (node) = 1;
|
||
}
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "unused" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_unused_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
||
int flags, bool *no_add_attrs)
|
||
{
|
||
if (DECL_P (*node))
|
||
{
|
||
tree decl = *node;
|
||
|
||
if (TREE_CODE (decl) == PARM_DECL
|
||
|| TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == FUNCTION_DECL
|
||
|| TREE_CODE (decl) == LABEL_DECL
|
||
|| TREE_CODE (decl) == TYPE_DECL)
|
||
TREE_USED (decl) = 1;
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
*node = build_variant_type_copy (*node);
|
||
TREE_USED (*node) = 1;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "externally_visible" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_externally_visible_attribute (tree *pnode, tree name,
|
||
tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags),
|
||
bool *no_add_attrs)
|
||
{
|
||
tree node = *pnode;
|
||
|
||
if (TREE_CODE (node) == FUNCTION_DECL || TREE_CODE (node) == VAR_DECL)
|
||
{
|
||
if ((!TREE_STATIC (node) && TREE_CODE (node) != FUNCTION_DECL
|
||
&& !DECL_EXTERNAL (node)) || !TREE_PUBLIC (node))
|
||
{
|
||
warning (OPT_Wattributes,
|
||
"%qE attribute have effect only on public objects", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "const" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_const_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
tree type = TREE_TYPE (*node);
|
||
|
||
/* See FIXME comment on noreturn in c_common_attribute_table. */
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
TREE_READONLY (*node) = 1;
|
||
else if (TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
|
||
TREE_TYPE (*node)
|
||
= build_pointer_type
|
||
(build_type_variant (TREE_TYPE (type), 1,
|
||
TREE_THIS_VOLATILE (TREE_TYPE (type))));
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "transparent_union" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_transparent_union_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args), int flags,
|
||
bool *no_add_attrs)
|
||
{
|
||
tree type = NULL;
|
||
|
||
*no_add_attrs = true;
|
||
|
||
if (DECL_P (*node))
|
||
{
|
||
if (TREE_CODE (*node) != TYPE_DECL)
|
||
goto ignored;
|
||
node = &TREE_TYPE (*node);
|
||
type = *node;
|
||
}
|
||
else if (TYPE_P (*node))
|
||
type = *node;
|
||
else
|
||
goto ignored;
|
||
|
||
if (TREE_CODE (type) == UNION_TYPE)
|
||
{
|
||
/* When IN_PLACE is set, leave the check for FIELDS and MODE to
|
||
the code in finish_struct. */
|
||
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
{
|
||
if (TYPE_FIELDS (type) == NULL_TREE
|
||
|| TYPE_MODE (type) != DECL_MODE (TYPE_FIELDS (type)))
|
||
goto ignored;
|
||
|
||
/* A type variant isn't good enough, since we don't a cast
|
||
to such a type removed as a no-op. */
|
||
*node = type = build_duplicate_type (type);
|
||
}
|
||
|
||
TYPE_TRANSPARENT_UNION (type) = 1;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
ignored:
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "constructor" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_constructor_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags),
|
||
bool *no_add_attrs)
|
||
{
|
||
tree decl = *node;
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& TREE_CODE (type) == FUNCTION_TYPE
|
||
&& decl_function_context (decl) == 0)
|
||
{
|
||
DECL_STATIC_CONSTRUCTOR (decl) = 1;
|
||
TREE_USED (decl) = 1;
|
||
}
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "destructor" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_destructor_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags),
|
||
bool *no_add_attrs)
|
||
{
|
||
tree decl = *node;
|
||
tree type = TREE_TYPE (decl);
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL
|
||
&& TREE_CODE (type) == FUNCTION_TYPE
|
||
&& decl_function_context (decl) == 0)
|
||
{
|
||
DECL_STATIC_DESTRUCTOR (decl) = 1;
|
||
TREE_USED (decl) = 1;
|
||
}
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "mode" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_mode_attribute (tree *node, tree name, tree args,
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
tree type = *node;
|
||
|
||
*no_add_attrs = true;
|
||
|
||
if (TREE_CODE (TREE_VALUE (args)) != IDENTIFIER_NODE)
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
else
|
||
{
|
||
int j;
|
||
const char *p = IDENTIFIER_POINTER (TREE_VALUE (args));
|
||
int len = strlen (p);
|
||
enum machine_mode mode = VOIDmode;
|
||
tree typefm;
|
||
bool valid_mode;
|
||
|
||
if (len > 4 && p[0] == '_' && p[1] == '_'
|
||
&& p[len - 1] == '_' && p[len - 2] == '_')
|
||
{
|
||
char *newp = (char *) alloca (len - 1);
|
||
|
||
strcpy (newp, &p[2]);
|
||
newp[len - 4] = '\0';
|
||
p = newp;
|
||
}
|
||
|
||
/* Change this type to have a type with the specified mode.
|
||
First check for the special modes. */
|
||
if (!strcmp (p, "byte"))
|
||
mode = byte_mode;
|
||
else if (!strcmp (p, "word"))
|
||
mode = word_mode;
|
||
else if (!strcmp (p, "pointer"))
|
||
mode = ptr_mode;
|
||
else
|
||
for (j = 0; j < NUM_MACHINE_MODES; j++)
|
||
if (!strcmp (p, GET_MODE_NAME (j)))
|
||
{
|
||
mode = (enum machine_mode) j;
|
||
break;
|
||
}
|
||
|
||
if (mode == VOIDmode)
|
||
{
|
||
error ("unknown machine mode %qs", p);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
valid_mode = false;
|
||
switch (GET_MODE_CLASS (mode))
|
||
{
|
||
case MODE_INT:
|
||
case MODE_PARTIAL_INT:
|
||
case MODE_FLOAT:
|
||
case MODE_DECIMAL_FLOAT:
|
||
valid_mode = targetm.scalar_mode_supported_p (mode);
|
||
break;
|
||
|
||
case MODE_COMPLEX_INT:
|
||
case MODE_COMPLEX_FLOAT:
|
||
valid_mode = targetm.scalar_mode_supported_p (GET_MODE_INNER (mode));
|
||
break;
|
||
|
||
case MODE_VECTOR_INT:
|
||
case MODE_VECTOR_FLOAT:
|
||
warning (OPT_Wattributes, "specifying vector types with "
|
||
"__attribute__ ((mode)) is deprecated");
|
||
warning (OPT_Wattributes,
|
||
"use __attribute__ ((vector_size)) instead");
|
||
valid_mode = vector_mode_valid_p (mode);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
if (!valid_mode)
|
||
{
|
||
error ("unable to emulate %qs", p);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (POINTER_TYPE_P (type))
|
||
{
|
||
tree (*fn)(tree, enum machine_mode, bool);
|
||
|
||
if (!targetm.valid_pointer_mode (mode))
|
||
{
|
||
error ("invalid pointer mode %qs", p);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
fn = build_pointer_type_for_mode;
|
||
else
|
||
fn = build_reference_type_for_mode;
|
||
typefm = fn (TREE_TYPE (type), mode, false);
|
||
}
|
||
else
|
||
typefm = lang_hooks.types.type_for_mode (mode, TYPE_UNSIGNED (type));
|
||
|
||
if (typefm == NULL_TREE)
|
||
{
|
||
error ("no data type for mode %qs", p);
|
||
return NULL_TREE;
|
||
}
|
||
else if (TREE_CODE (type) == ENUMERAL_TYPE)
|
||
{
|
||
/* For enumeral types, copy the precision from the integer
|
||
type returned above. If not an INTEGER_TYPE, we can't use
|
||
this mode for this type. */
|
||
if (TREE_CODE (typefm) != INTEGER_TYPE)
|
||
{
|
||
error ("cannot use mode %qs for enumeral types", p);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (flags & ATTR_FLAG_TYPE_IN_PLACE)
|
||
{
|
||
TYPE_PRECISION (type) = TYPE_PRECISION (typefm);
|
||
typefm = type;
|
||
}
|
||
else
|
||
{
|
||
/* We cannot build a type variant, as there's code that assumes
|
||
that TYPE_MAIN_VARIANT has the same mode. This includes the
|
||
debug generators. Instead, create a subrange type. This
|
||
results in all of the enumeral values being emitted only once
|
||
in the original, and the subtype gets them by reference. */
|
||
if (TYPE_UNSIGNED (type))
|
||
typefm = make_unsigned_type (TYPE_PRECISION (typefm));
|
||
else
|
||
typefm = make_signed_type (TYPE_PRECISION (typefm));
|
||
TREE_TYPE (typefm) = type;
|
||
}
|
||
}
|
||
else if (VECTOR_MODE_P (mode)
|
||
? TREE_CODE (type) != TREE_CODE (TREE_TYPE (typefm))
|
||
: TREE_CODE (type) != TREE_CODE (typefm))
|
||
{
|
||
error ("mode %qs applied to inappropriate type", p);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
*node = typefm;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "section" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_section_attribute (tree *node, tree ARG_UNUSED (name), tree args,
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
tree decl = *node;
|
||
|
||
if (targetm.have_named_sections)
|
||
{
|
||
user_defined_section_attribute = true;
|
||
|
||
if ((TREE_CODE (decl) == FUNCTION_DECL
|
||
|| TREE_CODE (decl) == VAR_DECL)
|
||
&& TREE_CODE (TREE_VALUE (args)) == STRING_CST)
|
||
{
|
||
if (TREE_CODE (decl) == VAR_DECL
|
||
&& current_function_decl != NULL_TREE
|
||
&& !TREE_STATIC (decl))
|
||
{
|
||
error ("%Jsection attribute cannot be specified for "
|
||
"local variables", decl);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
/* The decl may have already been given a section attribute
|
||
from a previous declaration. Ensure they match. */
|
||
else if (DECL_SECTION_NAME (decl) != NULL_TREE
|
||
&& strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (decl)),
|
||
TREE_STRING_POINTER (TREE_VALUE (args))) != 0)
|
||
{
|
||
error ("section of %q+D conflicts with previous declaration",
|
||
*node);
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
DECL_SECTION_NAME (decl) = TREE_VALUE (args);
|
||
}
|
||
else
|
||
{
|
||
error ("section attribute not allowed for %q+D", *node);
|
||
*no_add_attrs = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
error ("%Jsection attributes are not supported for this target", *node);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "aligned" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_aligned_attribute (tree *node, tree ARG_UNUSED (name), tree args,
|
||
int flags, bool *no_add_attrs)
|
||
{
|
||
tree decl = NULL_TREE;
|
||
tree *type = NULL;
|
||
int is_type = 0;
|
||
tree align_expr = (args ? TREE_VALUE (args)
|
||
: size_int (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
|
||
int i;
|
||
|
||
if (DECL_P (*node))
|
||
{
|
||
decl = *node;
|
||
type = &TREE_TYPE (decl);
|
||
is_type = TREE_CODE (*node) == TYPE_DECL;
|
||
}
|
||
else if (TYPE_P (*node))
|
||
type = node, is_type = 1;
|
||
|
||
if (TREE_CODE (align_expr) != INTEGER_CST)
|
||
{
|
||
error ("requested alignment is not a constant");
|
||
*no_add_attrs = true;
|
||
}
|
||
else if ((i = tree_log2 (align_expr)) == -1)
|
||
{
|
||
error ("requested alignment is not a power of 2");
|
||
*no_add_attrs = true;
|
||
}
|
||
else if (i > HOST_BITS_PER_INT - 2)
|
||
{
|
||
error ("requested alignment is too large");
|
||
*no_add_attrs = true;
|
||
}
|
||
else if (is_type)
|
||
{
|
||
/* If we have a TYPE_DECL, then copy the type, so that we
|
||
don't accidentally modify a builtin type. See pushdecl. */
|
||
if (decl && TREE_TYPE (decl) != error_mark_node
|
||
&& DECL_ORIGINAL_TYPE (decl) == NULL_TREE)
|
||
{
|
||
tree tt = TREE_TYPE (decl);
|
||
*type = build_variant_type_copy (*type);
|
||
DECL_ORIGINAL_TYPE (decl) = tt;
|
||
TYPE_NAME (*type) = decl;
|
||
TREE_USED (*type) = TREE_USED (decl);
|
||
TREE_TYPE (decl) = *type;
|
||
}
|
||
else if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
*type = build_variant_type_copy (*type);
|
||
|
||
TYPE_ALIGN (*type) = (1 << i) * BITS_PER_UNIT;
|
||
TYPE_USER_ALIGN (*type) = 1;
|
||
}
|
||
else if (TREE_CODE (decl) != VAR_DECL
|
||
&& TREE_CODE (decl) != FIELD_DECL)
|
||
{
|
||
error ("alignment may not be specified for %q+D", decl);
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
{
|
||
DECL_ALIGN (decl) = (1 << i) * BITS_PER_UNIT;
|
||
DECL_USER_ALIGN (decl) = 1;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "weak" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_weak_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags),
|
||
bool * ARG_UNUSED (no_add_attrs))
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL
|
||
|| TREE_CODE (*node) == VAR_DECL)
|
||
declare_weak (*node);
|
||
else
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle an "alias" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_alias_attribute (tree *node, tree name, tree args,
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
tree decl = *node;
|
||
|
||
if ((TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
|
||
|| (TREE_CODE (decl) != FUNCTION_DECL
|
||
&& TREE_PUBLIC (decl) && !DECL_EXTERNAL (decl))
|
||
/* A static variable declaration is always a tentative definition,
|
||
but the alias is a non-tentative definition which overrides. */
|
||
|| (TREE_CODE (decl) != FUNCTION_DECL
|
||
&& ! TREE_PUBLIC (decl) && DECL_INITIAL (decl)))
|
||
{
|
||
error ("%q+D defined both normally and as an alias", decl);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
/* Note that the very first time we process a nested declaration,
|
||
decl_function_context will not be set. Indeed, *would* never
|
||
be set except for the DECL_INITIAL/DECL_EXTERNAL frobbery that
|
||
we do below. After such frobbery, pushdecl would set the context.
|
||
In any case, this is never what we want. */
|
||
else if (decl_function_context (decl) == 0 && current_function_decl == NULL)
|
||
{
|
||
tree id;
|
||
|
||
id = TREE_VALUE (args);
|
||
if (TREE_CODE (id) != STRING_CST)
|
||
{
|
||
error ("alias argument not a string");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
id = get_identifier (TREE_STRING_POINTER (id));
|
||
/* This counts as a use of the object pointed to. */
|
||
TREE_USED (id) = 1;
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
DECL_INITIAL (decl) = error_mark_node;
|
||
else
|
||
{
|
||
if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
|
||
DECL_EXTERNAL (decl) = 1;
|
||
else
|
||
DECL_EXTERNAL (decl) = 0;
|
||
TREE_STATIC (decl) = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "weakref" attribute; arguments as in struct
|
||
attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_weakref_attribute (tree *node, tree ARG_UNUSED (name), tree args,
|
||
int flags, bool *no_add_attrs)
|
||
{
|
||
tree attr = NULL_TREE;
|
||
|
||
/* We must ignore the attribute when it is associated with
|
||
local-scoped decls, since attribute alias is ignored and many
|
||
such symbols do not even have a DECL_WEAK field. */
|
||
if (decl_function_context (*node) || current_function_decl)
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* The idea here is that `weakref("name")' mutates into `weakref,
|
||
alias("name")', and weakref without arguments, in turn,
|
||
implicitly adds weak. */
|
||
|
||
if (args)
|
||
{
|
||
attr = tree_cons (get_identifier ("alias"), args, attr);
|
||
attr = tree_cons (get_identifier ("weakref"), NULL_TREE, attr);
|
||
|
||
*no_add_attrs = true;
|
||
|
||
decl_attributes (node, attr, flags);
|
||
}
|
||
else
|
||
{
|
||
if (lookup_attribute ("alias", DECL_ATTRIBUTES (*node)))
|
||
error ("%Jweakref attribute must appear before alias attribute",
|
||
*node);
|
||
|
||
/* Can't call declare_weak because it wants this to be TREE_PUBLIC,
|
||
and that isn't supported; and because it wants to add it to
|
||
the list of weak decls, which isn't helpful. */
|
||
DECL_WEAK (*node) = 1;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle an "visibility" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_visibility_attribute (tree *node, tree name, tree args,
|
||
int ARG_UNUSED (flags),
|
||
bool *ARG_UNUSED (no_add_attrs))
|
||
{
|
||
tree decl = *node;
|
||
tree id = TREE_VALUE (args);
|
||
enum symbol_visibility vis;
|
||
|
||
if (TYPE_P (*node))
|
||
{
|
||
if (TREE_CODE (*node) == ENUMERAL_TYPE)
|
||
/* OK */;
|
||
else if (TREE_CODE (*node) != RECORD_TYPE && TREE_CODE (*node) != UNION_TYPE)
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored on non-class types",
|
||
name);
|
||
return NULL_TREE;
|
||
}
|
||
else if (TYPE_FIELDS (*node))
|
||
{
|
||
error ("%qE attribute ignored because %qT is already defined",
|
||
name, *node);
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
else if (decl_function_context (decl) != 0 || !TREE_PUBLIC (decl))
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (id) != STRING_CST)
|
||
{
|
||
error ("visibility argument not a string");
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* If this is a type, set the visibility on the type decl. */
|
||
if (TYPE_P (decl))
|
||
{
|
||
decl = TYPE_NAME (decl);
|
||
if (!decl)
|
||
return NULL_TREE;
|
||
if (TREE_CODE (decl) == IDENTIFIER_NODE)
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored on types",
|
||
name);
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
if (strcmp (TREE_STRING_POINTER (id), "default") == 0)
|
||
vis = VISIBILITY_DEFAULT;
|
||
else if (strcmp (TREE_STRING_POINTER (id), "internal") == 0)
|
||
vis = VISIBILITY_INTERNAL;
|
||
else if (strcmp (TREE_STRING_POINTER (id), "hidden") == 0)
|
||
vis = VISIBILITY_HIDDEN;
|
||
else if (strcmp (TREE_STRING_POINTER (id), "protected") == 0)
|
||
vis = VISIBILITY_PROTECTED;
|
||
else
|
||
{
|
||
error ("visibility argument must be one of \"default\", \"hidden\", \"protected\" or \"internal\"");
|
||
vis = VISIBILITY_DEFAULT;
|
||
}
|
||
|
||
if (DECL_VISIBILITY_SPECIFIED (decl)
|
||
&& vis != DECL_VISIBILITY (decl)
|
||
&& lookup_attribute ("visibility", (TYPE_P (*node)
|
||
? TYPE_ATTRIBUTES (*node)
|
||
: DECL_ATTRIBUTES (decl))))
|
||
error ("%qD redeclared with different visibility", decl);
|
||
|
||
DECL_VISIBILITY (decl) = vis;
|
||
DECL_VISIBILITY_SPECIFIED (decl) = 1;
|
||
|
||
/* Go ahead and attach the attribute to the node as well. This is needed
|
||
so we can determine whether we have VISIBILITY_DEFAULT because the
|
||
visibility was not specified, or because it was explicitly overridden
|
||
from the containing scope. */
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Determine the ELF symbol visibility for DECL, which is either a
|
||
variable or a function. It is an error to use this function if a
|
||
definition of DECL is not available in this translation unit.
|
||
Returns true if the final visibility has been determined by this
|
||
function; false if the caller is free to make additional
|
||
modifications. */
|
||
|
||
bool
|
||
c_determine_visibility (tree decl)
|
||
{
|
||
gcc_assert (TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == FUNCTION_DECL);
|
||
|
||
/* If the user explicitly specified the visibility with an
|
||
attribute, honor that. DECL_VISIBILITY will have been set during
|
||
the processing of the attribute. We check for an explicit
|
||
attribute, rather than just checking DECL_VISIBILITY_SPECIFIED,
|
||
to distinguish the use of an attribute from the use of a "#pragma
|
||
GCC visibility push(...)"; in the latter case we still want other
|
||
considerations to be able to overrule the #pragma. */
|
||
if (lookup_attribute ("visibility", DECL_ATTRIBUTES (decl)))
|
||
return true;
|
||
|
||
/* Anything that is exported must have default visibility. */
|
||
if (TARGET_DLLIMPORT_DECL_ATTRIBUTES
|
||
&& lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl)))
|
||
{
|
||
DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
|
||
DECL_VISIBILITY_SPECIFIED (decl) = 1;
|
||
return true;
|
||
}
|
||
|
||
/* Set default visibility to whatever the user supplied with
|
||
visibility_specified depending on #pragma GCC visibility. */
|
||
if (!DECL_VISIBILITY_SPECIFIED (decl))
|
||
{
|
||
DECL_VISIBILITY (decl) = default_visibility;
|
||
DECL_VISIBILITY_SPECIFIED (decl) = visibility_options.inpragma;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Handle an "tls_model" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_tls_model_attribute (tree *node, tree name, tree args,
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
tree id;
|
||
tree decl = *node;
|
||
enum tls_model kind;
|
||
|
||
*no_add_attrs = true;
|
||
|
||
if (!DECL_THREAD_LOCAL_P (decl))
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
kind = DECL_TLS_MODEL (decl);
|
||
id = TREE_VALUE (args);
|
||
if (TREE_CODE (id) != STRING_CST)
|
||
{
|
||
error ("tls_model argument not a string");
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (!strcmp (TREE_STRING_POINTER (id), "local-exec"))
|
||
kind = TLS_MODEL_LOCAL_EXEC;
|
||
else if (!strcmp (TREE_STRING_POINTER (id), "initial-exec"))
|
||
kind = TLS_MODEL_INITIAL_EXEC;
|
||
else if (!strcmp (TREE_STRING_POINTER (id), "local-dynamic"))
|
||
kind = optimize ? TLS_MODEL_LOCAL_DYNAMIC : TLS_MODEL_GLOBAL_DYNAMIC;
|
||
else if (!strcmp (TREE_STRING_POINTER (id), "global-dynamic"))
|
||
kind = TLS_MODEL_GLOBAL_DYNAMIC;
|
||
else
|
||
error ("tls_model argument must be one of \"local-exec\", \"initial-exec\", \"local-dynamic\" or \"global-dynamic\"");
|
||
|
||
DECL_TLS_MODEL (decl) = kind;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "no_instrument_function" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_no_instrument_function_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags),
|
||
bool *no_add_attrs)
|
||
{
|
||
tree decl = *node;
|
||
|
||
if (TREE_CODE (decl) != FUNCTION_DECL)
|
||
{
|
||
error ("%J%qE attribute applies only to functions", decl, name);
|
||
*no_add_attrs = true;
|
||
}
|
||
else if (DECL_INITIAL (decl))
|
||
{
|
||
error ("%Jcan%'t set %qE attribute after definition", decl, name);
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (decl) = 1;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "malloc" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_malloc_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL
|
||
&& POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
|
||
DECL_IS_MALLOC (*node) = 1;
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "returns_twice" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_returns_twice_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
DECL_IS_RETURNS_TWICE (*node) = 1;
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "no_limit_stack" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_no_limit_stack_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags),
|
||
bool *no_add_attrs)
|
||
{
|
||
tree decl = *node;
|
||
|
||
if (TREE_CODE (decl) != FUNCTION_DECL)
|
||
{
|
||
error ("%J%qE attribute applies only to functions", decl, name);
|
||
*no_add_attrs = true;
|
||
}
|
||
else if (DECL_INITIAL (decl))
|
||
{
|
||
error ("%Jcan%'t set %qE attribute after definition", decl, name);
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
DECL_NO_LIMIT_STACK (decl) = 1;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "pure" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_pure_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
DECL_IS_PURE (*node) = 1;
|
||
/* ??? TODO: Support types. */
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "no vops" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_novops_attribute (tree *node, tree ARG_UNUSED (name),
|
||
tree ARG_UNUSED (args), int ARG_UNUSED (flags),
|
||
bool *ARG_UNUSED (no_add_attrs))
|
||
{
|
||
gcc_assert (TREE_CODE (*node) == FUNCTION_DECL);
|
||
DECL_IS_NOVOPS (*node) = 1;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "deprecated" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_deprecated_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args), int flags,
|
||
bool *no_add_attrs)
|
||
{
|
||
tree type = NULL_TREE;
|
||
int warn = 0;
|
||
tree what = NULL_TREE;
|
||
|
||
if (DECL_P (*node))
|
||
{
|
||
tree decl = *node;
|
||
type = TREE_TYPE (decl);
|
||
|
||
if (TREE_CODE (decl) == TYPE_DECL
|
||
|| TREE_CODE (decl) == PARM_DECL
|
||
|| TREE_CODE (decl) == VAR_DECL
|
||
|| TREE_CODE (decl) == FUNCTION_DECL
|
||
|| TREE_CODE (decl) == FIELD_DECL)
|
||
TREE_DEPRECATED (decl) = 1;
|
||
else
|
||
warn = 1;
|
||
}
|
||
else if (TYPE_P (*node))
|
||
{
|
||
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
*node = build_variant_type_copy (*node);
|
||
TREE_DEPRECATED (*node) = 1;
|
||
type = *node;
|
||
}
|
||
else
|
||
warn = 1;
|
||
|
||
if (warn)
|
||
{
|
||
*no_add_attrs = true;
|
||
if (type && TYPE_NAME (type))
|
||
{
|
||
if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
|
||
what = TYPE_NAME (*node);
|
||
else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
||
&& DECL_NAME (TYPE_NAME (type)))
|
||
what = DECL_NAME (TYPE_NAME (type));
|
||
}
|
||
if (what)
|
||
warning (OPT_Wattributes, "%qE attribute ignored for %qE", name, what);
|
||
else
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "vector_size" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_vector_size_attribute (tree *node, tree name, tree args,
|
||
int ARG_UNUSED (flags),
|
||
bool *no_add_attrs)
|
||
{
|
||
unsigned HOST_WIDE_INT vecsize, nunits;
|
||
enum machine_mode orig_mode;
|
||
tree type = *node, new_type, size;
|
||
|
||
*no_add_attrs = true;
|
||
|
||
size = TREE_VALUE (args);
|
||
|
||
if (!host_integerp (size, 1))
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Get the vector size (in bytes). */
|
||
vecsize = tree_low_cst (size, 1);
|
||
|
||
/* We need to provide for vector pointers, vector arrays, and
|
||
functions returning vectors. For example:
|
||
|
||
__attribute__((vector_size(16))) short *foo;
|
||
|
||
In this case, the mode is SI, but the type being modified is
|
||
HI, so we need to look further. */
|
||
|
||
while (POINTER_TYPE_P (type)
|
||
|| TREE_CODE (type) == FUNCTION_TYPE
|
||
|| TREE_CODE (type) == METHOD_TYPE
|
||
|| TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
/* Get the mode of the type being modified. */
|
||
orig_mode = TYPE_MODE (type);
|
||
|
||
if (TREE_CODE (type) == RECORD_TYPE
|
||
|| TREE_CODE (type) == UNION_TYPE
|
||
|| TREE_CODE (type) == VECTOR_TYPE
|
||
|| (!SCALAR_FLOAT_MODE_P (orig_mode)
|
||
&& GET_MODE_CLASS (orig_mode) != MODE_INT)
|
||
|| !host_integerp (TYPE_SIZE_UNIT (type), 1))
|
||
{
|
||
error ("invalid vector type for attribute %qE", name);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (vecsize % tree_low_cst (TYPE_SIZE_UNIT (type), 1))
|
||
{
|
||
error ("vector size not an integral multiple of component size");
|
||
return NULL;
|
||
}
|
||
|
||
if (vecsize == 0)
|
||
{
|
||
error ("zero vector size");
|
||
return NULL;
|
||
}
|
||
|
||
/* Calculate how many units fit in the vector. */
|
||
nunits = vecsize / tree_low_cst (TYPE_SIZE_UNIT (type), 1);
|
||
if (nunits & (nunits - 1))
|
||
{
|
||
error ("number of components of the vector not a power of two");
|
||
return NULL_TREE;
|
||
}
|
||
|
||
new_type = build_vector_type (type, nunits);
|
||
|
||
/* Build back pointers if needed. */
|
||
*node = reconstruct_complex_type (*node, new_type);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle the "nonnull" attribute. */
|
||
static tree
|
||
handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name),
|
||
tree args, int ARG_UNUSED (flags),
|
||
bool *no_add_attrs)
|
||
{
|
||
tree type = *node;
|
||
unsigned HOST_WIDE_INT attr_arg_num;
|
||
|
||
/* If no arguments are specified, all pointer arguments should be
|
||
non-null. Verify a full prototype is given so that the arguments
|
||
will have the correct types when we actually check them later. */
|
||
if (!args)
|
||
{
|
||
if (!TYPE_ARG_TYPES (type))
|
||
{
|
||
error ("nonnull attribute without arguments on a non-prototype");
|
||
*no_add_attrs = true;
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Argument list specified. Verify that each argument number references
|
||
a pointer argument. */
|
||
for (attr_arg_num = 1; args; args = TREE_CHAIN (args))
|
||
{
|
||
tree argument;
|
||
unsigned HOST_WIDE_INT arg_num = 0, ck_num;
|
||
|
||
if (!get_nonnull_operand (TREE_VALUE (args), &arg_num))
|
||
{
|
||
error ("nonnull argument has invalid operand number (argument %lu)",
|
||
(unsigned long) attr_arg_num);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
argument = TYPE_ARG_TYPES (type);
|
||
if (argument)
|
||
{
|
||
for (ck_num = 1; ; ck_num++)
|
||
{
|
||
if (!argument || ck_num == arg_num)
|
||
break;
|
||
argument = TREE_CHAIN (argument);
|
||
}
|
||
|
||
if (!argument
|
||
|| TREE_CODE (TREE_VALUE (argument)) == VOID_TYPE)
|
||
{
|
||
error ("nonnull argument with out-of-range operand number (argument %lu, operand %lu)",
|
||
(unsigned long) attr_arg_num, (unsigned long) arg_num);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (TREE_VALUE (argument)) != POINTER_TYPE)
|
||
{
|
||
error ("nonnull argument references non-pointer operand (argument %lu, operand %lu)",
|
||
(unsigned long) attr_arg_num, (unsigned long) arg_num);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Check the argument list of a function call for null in argument slots
|
||
that are marked as requiring a non-null pointer argument. */
|
||
|
||
static void
|
||
check_function_nonnull (tree attrs, tree params)
|
||
{
|
||
tree a, args, param;
|
||
int param_num;
|
||
|
||
for (a = attrs; a; a = TREE_CHAIN (a))
|
||
{
|
||
if (is_attribute_p ("nonnull", TREE_PURPOSE (a)))
|
||
{
|
||
args = TREE_VALUE (a);
|
||
|
||
/* Walk the argument list. If we encounter an argument number we
|
||
should check for non-null, do it. If the attribute has no args,
|
||
then every pointer argument is checked (in which case the check
|
||
for pointer type is done in check_nonnull_arg). */
|
||
for (param = params, param_num = 1; ;
|
||
param_num++, param = TREE_CHAIN (param))
|
||
{
|
||
if (!param)
|
||
break;
|
||
if (!args || nonnull_check_p (args, param_num))
|
||
check_function_arguments_recurse (check_nonnull_arg, NULL,
|
||
TREE_VALUE (param),
|
||
param_num);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check that the Nth argument of a function call (counting backwards
|
||
from the end) is a (pointer)0. */
|
||
|
||
static void
|
||
check_function_sentinel (tree attrs, tree params, tree typelist)
|
||
{
|
||
tree attr = lookup_attribute ("sentinel", attrs);
|
||
|
||
if (attr)
|
||
{
|
||
/* Skip over the named arguments. */
|
||
while (typelist && params)
|
||
{
|
||
typelist = TREE_CHAIN (typelist);
|
||
params = TREE_CHAIN (params);
|
||
}
|
||
|
||
if (typelist || !params)
|
||
warning (OPT_Wformat,
|
||
"not enough variable arguments to fit a sentinel");
|
||
else
|
||
{
|
||
tree sentinel, end;
|
||
unsigned pos = 0;
|
||
|
||
if (TREE_VALUE (attr))
|
||
{
|
||
tree p = TREE_VALUE (TREE_VALUE (attr));
|
||
pos = TREE_INT_CST_LOW (p);
|
||
}
|
||
|
||
sentinel = end = params;
|
||
|
||
/* Advance `end' ahead of `sentinel' by `pos' positions. */
|
||
while (pos > 0 && TREE_CHAIN (end))
|
||
{
|
||
pos--;
|
||
end = TREE_CHAIN (end);
|
||
}
|
||
if (pos > 0)
|
||
{
|
||
warning (OPT_Wformat,
|
||
"not enough variable arguments to fit a sentinel");
|
||
return;
|
||
}
|
||
|
||
/* Now advance both until we find the last parameter. */
|
||
while (TREE_CHAIN (end))
|
||
{
|
||
end = TREE_CHAIN (end);
|
||
sentinel = TREE_CHAIN (sentinel);
|
||
}
|
||
|
||
/* Validate the sentinel. */
|
||
if ((!POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (sentinel)))
|
||
|| !integer_zerop (TREE_VALUE (sentinel)))
|
||
/* Although __null (in C++) is only an integer we allow it
|
||
nevertheless, as we are guaranteed that it's exactly
|
||
as wide as a pointer, and we don't want to force
|
||
users to cast the NULL they have written there.
|
||
We warn with -Wstrict-null-sentinel, though. */
|
||
&& (warn_strict_null_sentinel
|
||
|| null_node != TREE_VALUE (sentinel)))
|
||
warning (OPT_Wformat, "missing sentinel in function call");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Helper for check_function_nonnull; given a list of operands which
|
||
must be non-null in ARGS, determine if operand PARAM_NUM should be
|
||
checked. */
|
||
|
||
static bool
|
||
nonnull_check_p (tree args, unsigned HOST_WIDE_INT param_num)
|
||
{
|
||
unsigned HOST_WIDE_INT arg_num = 0;
|
||
|
||
for (; args; args = TREE_CHAIN (args))
|
||
{
|
||
bool found = get_nonnull_operand (TREE_VALUE (args), &arg_num);
|
||
|
||
gcc_assert (found);
|
||
|
||
if (arg_num == param_num)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Check that the function argument PARAM (which is operand number
|
||
PARAM_NUM) is non-null. This is called by check_function_nonnull
|
||
via check_function_arguments_recurse. */
|
||
|
||
static void
|
||
check_nonnull_arg (void * ARG_UNUSED (ctx), tree param,
|
||
unsigned HOST_WIDE_INT param_num)
|
||
{
|
||
/* Just skip checking the argument if it's not a pointer. This can
|
||
happen if the "nonnull" attribute was given without an operand
|
||
list (which means to check every pointer argument). */
|
||
|
||
if (TREE_CODE (TREE_TYPE (param)) != POINTER_TYPE)
|
||
return;
|
||
|
||
if (integer_zerop (param))
|
||
warning (OPT_Wnonnull, "null argument where non-null required "
|
||
"(argument %lu)", (unsigned long) param_num);
|
||
}
|
||
|
||
/* Helper for nonnull attribute handling; fetch the operand number
|
||
from the attribute argument list. */
|
||
|
||
static bool
|
||
get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
|
||
{
|
||
/* Verify the arg number is a constant. */
|
||
if (TREE_CODE (arg_num_expr) != INTEGER_CST
|
||
|| TREE_INT_CST_HIGH (arg_num_expr) != 0)
|
||
return false;
|
||
|
||
*valp = TREE_INT_CST_LOW (arg_num_expr);
|
||
return true;
|
||
}
|
||
|
||
/* Handle a "nothrow" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_nothrow_attribute (tree *node, tree name, tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
if (TREE_CODE (*node) == FUNCTION_DECL)
|
||
TREE_NOTHROW (*node) = 1;
|
||
/* ??? TODO: Support types. */
|
||
else
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "cleanup" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
|
||
static tree
|
||
handle_cleanup_attribute (tree *node, tree name, tree args,
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
tree decl = *node;
|
||
tree cleanup_id, cleanup_decl;
|
||
|
||
/* ??? Could perhaps support cleanups on TREE_STATIC, much like we do
|
||
for global destructors in C++. This requires infrastructure that
|
||
we don't have generically at the moment. It's also not a feature
|
||
we'd be missing too much, since we do have attribute constructor. */
|
||
if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl))
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Verify that the argument is a function in scope. */
|
||
/* ??? We could support pointers to functions here as well, if
|
||
that was considered desirable. */
|
||
cleanup_id = TREE_VALUE (args);
|
||
if (TREE_CODE (cleanup_id) != IDENTIFIER_NODE)
|
||
{
|
||
error ("cleanup argument not an identifier");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
cleanup_decl = lookup_name (cleanup_id);
|
||
if (!cleanup_decl || TREE_CODE (cleanup_decl) != FUNCTION_DECL)
|
||
{
|
||
error ("cleanup argument not a function");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* That the function has proper type is checked with the
|
||
eventual call to build_function_call. */
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "warn_unused_result" attribute. No special handling. */
|
||
|
||
static tree
|
||
handle_warn_unused_result_attribute (tree *node, tree name,
|
||
tree ARG_UNUSED (args),
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
/* Ignore the attribute for functions not returning any value. */
|
||
if (VOID_TYPE_P (TREE_TYPE (*node)))
|
||
{
|
||
warning (OPT_Wattributes, "%qE attribute ignored", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "sentinel" attribute. */
|
||
|
||
static tree
|
||
handle_sentinel_attribute (tree *node, tree name, tree args,
|
||
int ARG_UNUSED (flags), bool *no_add_attrs)
|
||
{
|
||
tree params = TYPE_ARG_TYPES (*node);
|
||
|
||
if (!params)
|
||
{
|
||
warning (OPT_Wattributes,
|
||
"%qE attribute requires prototypes with named arguments", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
{
|
||
while (TREE_CHAIN (params))
|
||
params = TREE_CHAIN (params);
|
||
|
||
if (VOID_TYPE_P (TREE_VALUE (params)))
|
||
{
|
||
warning (OPT_Wattributes,
|
||
"%qE attribute only applies to variadic functions", name);
|
||
*no_add_attrs = true;
|
||
}
|
||
}
|
||
|
||
if (args)
|
||
{
|
||
tree position = TREE_VALUE (args);
|
||
|
||
if (TREE_CODE (position) != INTEGER_CST)
|
||
{
|
||
warning (0, "requested position is not an integer constant");
|
||
*no_add_attrs = true;
|
||
}
|
||
else
|
||
{
|
||
if (tree_int_cst_lt (position, integer_zero_node))
|
||
{
|
||
warning (0, "requested position is less than zero");
|
||
*no_add_attrs = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Check for valid arguments being passed to a function. */
|
||
void
|
||
check_function_arguments (tree attrs, tree params, tree typelist)
|
||
{
|
||
/* Check for null being passed in a pointer argument that must be
|
||
non-null. We also need to do this if format checking is enabled. */
|
||
|
||
if (warn_nonnull)
|
||
check_function_nonnull (attrs, params);
|
||
|
||
/* Check for errors in format strings. */
|
||
|
||
if (warn_format || warn_missing_format_attribute)
|
||
check_function_format (attrs, params);
|
||
|
||
if (warn_format)
|
||
check_function_sentinel (attrs, params, typelist);
|
||
}
|
||
|
||
/* Generic argument checking recursion routine. PARAM is the argument to
|
||
be checked. PARAM_NUM is the number of the argument. CALLBACK is invoked
|
||
once the argument is resolved. CTX is context for the callback. */
|
||
void
|
||
check_function_arguments_recurse (void (*callback)
|
||
(void *, tree, unsigned HOST_WIDE_INT),
|
||
void *ctx, tree param,
|
||
unsigned HOST_WIDE_INT param_num)
|
||
{
|
||
if ((TREE_CODE (param) == NOP_EXPR || TREE_CODE (param) == CONVERT_EXPR)
|
||
&& (TYPE_PRECISION (TREE_TYPE (param))
|
||
== TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (param, 0)))))
|
||
{
|
||
/* Strip coercion. */
|
||
check_function_arguments_recurse (callback, ctx,
|
||
TREE_OPERAND (param, 0), param_num);
|
||
return;
|
||
}
|
||
|
||
if (TREE_CODE (param) == CALL_EXPR)
|
||
{
|
||
tree type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (param, 0)));
|
||
tree attrs;
|
||
bool found_format_arg = false;
|
||
|
||
/* See if this is a call to a known internationalization function
|
||
that modifies a format arg. Such a function may have multiple
|
||
format_arg attributes (for example, ngettext). */
|
||
|
||
for (attrs = TYPE_ATTRIBUTES (type);
|
||
attrs;
|
||
attrs = TREE_CHAIN (attrs))
|
||
if (is_attribute_p ("format_arg", TREE_PURPOSE (attrs)))
|
||
{
|
||
tree inner_args;
|
||
tree format_num_expr;
|
||
int format_num;
|
||
int i;
|
||
|
||
/* Extract the argument number, which was previously checked
|
||
to be valid. */
|
||
format_num_expr = TREE_VALUE (TREE_VALUE (attrs));
|
||
|
||
gcc_assert (TREE_CODE (format_num_expr) == INTEGER_CST
|
||
&& !TREE_INT_CST_HIGH (format_num_expr));
|
||
|
||
format_num = TREE_INT_CST_LOW (format_num_expr);
|
||
|
||
for (inner_args = TREE_OPERAND (param, 1), i = 1;
|
||
inner_args != 0;
|
||
inner_args = TREE_CHAIN (inner_args), i++)
|
||
if (i == format_num)
|
||
{
|
||
check_function_arguments_recurse (callback, ctx,
|
||
TREE_VALUE (inner_args),
|
||
param_num);
|
||
found_format_arg = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we found a format_arg attribute and did a recursive check,
|
||
we are done with checking this argument. Otherwise, we continue
|
||
and this will be considered a non-literal. */
|
||
if (found_format_arg)
|
||
return;
|
||
}
|
||
|
||
if (TREE_CODE (param) == COND_EXPR)
|
||
{
|
||
/* Check both halves of the conditional expression. */
|
||
check_function_arguments_recurse (callback, ctx,
|
||
TREE_OPERAND (param, 1), param_num);
|
||
check_function_arguments_recurse (callback, ctx,
|
||
TREE_OPERAND (param, 2), param_num);
|
||
return;
|
||
}
|
||
|
||
(*callback) (ctx, param, param_num);
|
||
}
|
||
|
||
/* Function to help qsort sort FIELD_DECLs by name order. */
|
||
|
||
int
|
||
field_decl_cmp (const void *x_p, const void *y_p)
|
||
{
|
||
const tree *const x = (const tree *const) x_p;
|
||
const tree *const y = (const tree *const) y_p;
|
||
|
||
if (DECL_NAME (*x) == DECL_NAME (*y))
|
||
/* A nontype is "greater" than a type. */
|
||
return (TREE_CODE (*y) == TYPE_DECL) - (TREE_CODE (*x) == TYPE_DECL);
|
||
if (DECL_NAME (*x) == NULL_TREE)
|
||
return -1;
|
||
if (DECL_NAME (*y) == NULL_TREE)
|
||
return 1;
|
||
if (DECL_NAME (*x) < DECL_NAME (*y))
|
||
return -1;
|
||
return 1;
|
||
}
|
||
|
||
static struct {
|
||
gt_pointer_operator new_value;
|
||
void *cookie;
|
||
} resort_data;
|
||
|
||
/* This routine compares two fields like field_decl_cmp but using the
|
||
pointer operator in resort_data. */
|
||
|
||
static int
|
||
resort_field_decl_cmp (const void *x_p, const void *y_p)
|
||
{
|
||
const tree *const x = (const tree *const) x_p;
|
||
const tree *const y = (const tree *const) y_p;
|
||
|
||
if (DECL_NAME (*x) == DECL_NAME (*y))
|
||
/* A nontype is "greater" than a type. */
|
||
return (TREE_CODE (*y) == TYPE_DECL) - (TREE_CODE (*x) == TYPE_DECL);
|
||
if (DECL_NAME (*x) == NULL_TREE)
|
||
return -1;
|
||
if (DECL_NAME (*y) == NULL_TREE)
|
||
return 1;
|
||
{
|
||
tree d1 = DECL_NAME (*x);
|
||
tree d2 = DECL_NAME (*y);
|
||
resort_data.new_value (&d1, resort_data.cookie);
|
||
resort_data.new_value (&d2, resort_data.cookie);
|
||
if (d1 < d2)
|
||
return -1;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Resort DECL_SORTED_FIELDS because pointers have been reordered. */
|
||
|
||
void
|
||
resort_sorted_fields (void *obj,
|
||
void * ARG_UNUSED (orig_obj),
|
||
gt_pointer_operator new_value,
|
||
void *cookie)
|
||
{
|
||
struct sorted_fields_type *sf = (struct sorted_fields_type *) obj;
|
||
resort_data.new_value = new_value;
|
||
resort_data.cookie = cookie;
|
||
qsort (&sf->elts[0], sf->len, sizeof (tree),
|
||
resort_field_decl_cmp);
|
||
}
|
||
|
||
/* Subroutine of c_parse_error.
|
||
Return the result of concatenating LHS and RHS. RHS is really
|
||
a string literal, its first character is indicated by RHS_START and
|
||
RHS_SIZE is its length (including the terminating NUL character).
|
||
|
||
The caller is responsible for deleting the returned pointer. */
|
||
|
||
static char *
|
||
catenate_strings (const char *lhs, const char *rhs_start, int rhs_size)
|
||
{
|
||
const int lhs_size = strlen (lhs);
|
||
char *result = XNEWVEC (char, lhs_size + rhs_size);
|
||
strncpy (result, lhs, lhs_size);
|
||
strncpy (result + lhs_size, rhs_start, rhs_size);
|
||
return result;
|
||
}
|
||
|
||
/* Issue the error given by GMSGID, indicating that it occurred before
|
||
TOKEN, which had the associated VALUE. */
|
||
|
||
void
|
||
c_parse_error (const char *gmsgid, enum cpp_ttype token, tree value)
|
||
{
|
||
#define catenate_messages(M1, M2) catenate_strings ((M1), (M2), sizeof (M2))
|
||
|
||
char *message = NULL;
|
||
|
||
if (token == CPP_EOF)
|
||
message = catenate_messages (gmsgid, " at end of input");
|
||
else if (token == CPP_CHAR || token == CPP_WCHAR)
|
||
{
|
||
unsigned int val = TREE_INT_CST_LOW (value);
|
||
const char *const ell = (token == CPP_CHAR) ? "" : "L";
|
||
if (val <= UCHAR_MAX && ISGRAPH (val))
|
||
message = catenate_messages (gmsgid, " before %s'%c'");
|
||
else
|
||
message = catenate_messages (gmsgid, " before %s'\\x%x'");
|
||
|
||
error (message, ell, val);
|
||
free (message);
|
||
message = NULL;
|
||
}
|
||
else if (token == CPP_STRING || token == CPP_WSTRING)
|
||
message = catenate_messages (gmsgid, " before string constant");
|
||
else if (token == CPP_NUMBER)
|
||
message = catenate_messages (gmsgid, " before numeric constant");
|
||
else if (token == CPP_NAME)
|
||
{
|
||
message = catenate_messages (gmsgid, " before %qE");
|
||
error (message, value);
|
||
free (message);
|
||
message = NULL;
|
||
}
|
||
else if (token == CPP_PRAGMA)
|
||
message = catenate_messages (gmsgid, " before %<#pragma%>");
|
||
else if (token == CPP_PRAGMA_EOL)
|
||
message = catenate_messages (gmsgid, " before end of line");
|
||
else if (token < N_TTYPES)
|
||
{
|
||
message = catenate_messages (gmsgid, " before %qs token");
|
||
error (message, cpp_type2name (token));
|
||
free (message);
|
||
message = NULL;
|
||
}
|
||
else
|
||
error (gmsgid);
|
||
|
||
if (message)
|
||
{
|
||
error (message);
|
||
free (message);
|
||
}
|
||
#undef catenate_messages
|
||
}
|
||
|
||
/* Walk a gimplified function and warn for functions whose return value is
|
||
ignored and attribute((warn_unused_result)) is set. This is done before
|
||
inlining, so we don't have to worry about that. */
|
||
|
||
void
|
||
c_warn_unused_result (tree *top_p)
|
||
{
|
||
tree t = *top_p;
|
||
tree_stmt_iterator i;
|
||
tree fdecl, ftype;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case STATEMENT_LIST:
|
||
for (i = tsi_start (*top_p); !tsi_end_p (i); tsi_next (&i))
|
||
c_warn_unused_result (tsi_stmt_ptr (i));
|
||
break;
|
||
|
||
case COND_EXPR:
|
||
c_warn_unused_result (&COND_EXPR_THEN (t));
|
||
c_warn_unused_result (&COND_EXPR_ELSE (t));
|
||
break;
|
||
case BIND_EXPR:
|
||
c_warn_unused_result (&BIND_EXPR_BODY (t));
|
||
break;
|
||
case TRY_FINALLY_EXPR:
|
||
case TRY_CATCH_EXPR:
|
||
c_warn_unused_result (&TREE_OPERAND (t, 0));
|
||
c_warn_unused_result (&TREE_OPERAND (t, 1));
|
||
break;
|
||
case CATCH_EXPR:
|
||
c_warn_unused_result (&CATCH_BODY (t));
|
||
break;
|
||
case EH_FILTER_EXPR:
|
||
c_warn_unused_result (&EH_FILTER_FAILURE (t));
|
||
break;
|
||
|
||
case CALL_EXPR:
|
||
if (TREE_USED (t))
|
||
break;
|
||
|
||
/* This is a naked call, as opposed to a CALL_EXPR nested inside
|
||
a MODIFY_EXPR. All calls whose value is ignored should be
|
||
represented like this. Look for the attribute. */
|
||
fdecl = get_callee_fndecl (t);
|
||
if (fdecl)
|
||
ftype = TREE_TYPE (fdecl);
|
||
else
|
||
{
|
||
ftype = TREE_TYPE (TREE_OPERAND (t, 0));
|
||
/* Look past pointer-to-function to the function type itself. */
|
||
ftype = TREE_TYPE (ftype);
|
||
}
|
||
|
||
if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
|
||
{
|
||
if (fdecl)
|
||
warning (0, "%Hignoring return value of %qD, "
|
||
"declared with attribute warn_unused_result",
|
||
EXPR_LOCUS (t), fdecl);
|
||
else
|
||
warning (0, "%Hignoring return value of function "
|
||
"declared with attribute warn_unused_result",
|
||
EXPR_LOCUS (t));
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* Not a container, not a call, or a call whose value is used. */
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Convert a character from the host to the target execution character
|
||
set. cpplib handles this, mostly. */
|
||
|
||
HOST_WIDE_INT
|
||
c_common_to_target_charset (HOST_WIDE_INT c)
|
||
{
|
||
/* Character constants in GCC proper are sign-extended under -fsigned-char,
|
||
zero-extended under -fno-signed-char. cpplib insists that characters
|
||
and character constants are always unsigned. Hence we must convert
|
||
back and forth. */
|
||
cppchar_t uc = ((cppchar_t)c) & ((((cppchar_t)1) << CHAR_BIT)-1);
|
||
|
||
uc = cpp_host_to_exec_charset (parse_in, uc);
|
||
|
||
if (flag_signed_char)
|
||
return ((HOST_WIDE_INT)uc) << (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE)
|
||
>> (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE);
|
||
else
|
||
return uc;
|
||
}
|
||
|
||
/* Build the result of __builtin_offsetof. EXPR is a nested sequence of
|
||
component references, with STOP_REF, or alternatively an INDIRECT_REF of
|
||
NULL, at the bottom; much like the traditional rendering of offsetof as a
|
||
macro. Returns the folded and properly cast result. */
|
||
|
||
static tree
|
||
fold_offsetof_1 (tree expr, tree stop_ref)
|
||
{
|
||
enum tree_code code = PLUS_EXPR;
|
||
tree base, off, t;
|
||
|
||
if (expr == stop_ref && TREE_CODE (expr) != ERROR_MARK)
|
||
return size_zero_node;
|
||
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case ERROR_MARK:
|
||
return expr;
|
||
|
||
case VAR_DECL:
|
||
error ("cannot apply %<offsetof%> to static data member %qD", expr);
|
||
return error_mark_node;
|
||
|
||
case CALL_EXPR:
|
||
error ("cannot apply %<offsetof%> when %<operator[]%> is overloaded");
|
||
return error_mark_node;
|
||
|
||
case INTEGER_CST:
|
||
gcc_assert (integer_zerop (expr));
|
||
return size_zero_node;
|
||
|
||
case NOP_EXPR:
|
||
case INDIRECT_REF:
|
||
base = fold_offsetof_1 (TREE_OPERAND (expr, 0), stop_ref);
|
||
gcc_assert (base == error_mark_node || base == size_zero_node);
|
||
return base;
|
||
|
||
case COMPONENT_REF:
|
||
base = fold_offsetof_1 (TREE_OPERAND (expr, 0), stop_ref);
|
||
if (base == error_mark_node)
|
||
return base;
|
||
|
||
t = TREE_OPERAND (expr, 1);
|
||
if (DECL_C_BIT_FIELD (t))
|
||
{
|
||
error ("attempt to take address of bit-field structure "
|
||
"member %qD", t);
|
||
return error_mark_node;
|
||
}
|
||
off = size_binop (PLUS_EXPR, DECL_FIELD_OFFSET (t),
|
||
size_int (tree_low_cst (DECL_FIELD_BIT_OFFSET (t), 1)
|
||
/ BITS_PER_UNIT));
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
base = fold_offsetof_1 (TREE_OPERAND (expr, 0), stop_ref);
|
||
if (base == error_mark_node)
|
||
return base;
|
||
|
||
t = TREE_OPERAND (expr, 1);
|
||
if (TREE_CODE (t) == INTEGER_CST && tree_int_cst_sgn (t) < 0)
|
||
{
|
||
code = MINUS_EXPR;
|
||
t = fold_build1 (NEGATE_EXPR, TREE_TYPE (t), t);
|
||
}
|
||
t = convert (sizetype, t);
|
||
off = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (TREE_TYPE (expr)), t);
|
||
break;
|
||
|
||
case COMPOUND_EXPR:
|
||
/* Handle static members of volatile structs. */
|
||
t = TREE_OPERAND (expr, 1);
|
||
gcc_assert (TREE_CODE (t) == VAR_DECL);
|
||
return fold_offsetof_1 (t, stop_ref);
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return size_binop (code, base, off);
|
||
}
|
||
|
||
tree
|
||
fold_offsetof (tree expr, tree stop_ref)
|
||
{
|
||
/* Convert back from the internal sizetype to size_t. */
|
||
return convert (size_type_node, fold_offsetof_1 (expr, stop_ref));
|
||
}
|
||
|
||
/* Print an error message for an invalid lvalue. USE says
|
||
how the lvalue is being used and so selects the error message. */
|
||
|
||
void
|
||
lvalue_error (enum lvalue_use use)
|
||
{
|
||
switch (use)
|
||
{
|
||
case lv_assign:
|
||
error ("lvalue required as left operand of assignment");
|
||
break;
|
||
case lv_increment:
|
||
error ("lvalue required as increment operand");
|
||
break;
|
||
case lv_decrement:
|
||
error ("lvalue required as decrement operand");
|
||
break;
|
||
case lv_addressof:
|
||
error ("lvalue required as unary %<&%> operand");
|
||
break;
|
||
case lv_asm:
|
||
error ("lvalue required in asm statement");
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* *PTYPE is an incomplete array. Complete it with a domain based on
|
||
INITIAL_VALUE. If INITIAL_VALUE is not present, use 1 if DO_DEFAULT
|
||
is true. Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered,
|
||
2 if INITIAL_VALUE was NULL, and 3 if INITIAL_VALUE was empty. */
|
||
|
||
int
|
||
complete_array_type (tree *ptype, tree initial_value, bool do_default)
|
||
{
|
||
tree maxindex, type, main_type, elt, unqual_elt;
|
||
int failure = 0, quals;
|
||
|
||
maxindex = size_zero_node;
|
||
if (initial_value)
|
||
{
|
||
if (TREE_CODE (initial_value) == STRING_CST)
|
||
{
|
||
int eltsize
|
||
= int_size_in_bytes (TREE_TYPE (TREE_TYPE (initial_value)));
|
||
maxindex = size_int (TREE_STRING_LENGTH (initial_value)/eltsize - 1);
|
||
}
|
||
else if (TREE_CODE (initial_value) == CONSTRUCTOR)
|
||
{
|
||
VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (initial_value);
|
||
|
||
if (VEC_empty (constructor_elt, v))
|
||
{
|
||
if (pedantic)
|
||
failure = 3;
|
||
maxindex = integer_minus_one_node;
|
||
}
|
||
else
|
||
{
|
||
tree curindex;
|
||
unsigned HOST_WIDE_INT cnt;
|
||
constructor_elt *ce;
|
||
|
||
if (VEC_index (constructor_elt, v, 0)->index)
|
||
maxindex = fold_convert (sizetype,
|
||
VEC_index (constructor_elt,
|
||
v, 0)->index);
|
||
curindex = maxindex;
|
||
|
||
for (cnt = 1;
|
||
VEC_iterate (constructor_elt, v, cnt, ce);
|
||
cnt++)
|
||
{
|
||
if (ce->index)
|
||
curindex = fold_convert (sizetype, ce->index);
|
||
else
|
||
curindex = size_binop (PLUS_EXPR, curindex, size_one_node);
|
||
|
||
if (tree_int_cst_lt (maxindex, curindex))
|
||
maxindex = curindex;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Make an error message unless that happened already. */
|
||
if (initial_value != error_mark_node)
|
||
failure = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
failure = 2;
|
||
if (!do_default)
|
||
return failure;
|
||
}
|
||
|
||
type = *ptype;
|
||
elt = TREE_TYPE (type);
|
||
quals = TYPE_QUALS (strip_array_types (elt));
|
||
if (quals == 0)
|
||
unqual_elt = elt;
|
||
else
|
||
unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
|
||
|
||
/* Using build_distinct_type_copy and modifying things afterward instead
|
||
of using build_array_type to create a new type preserves all of the
|
||
TYPE_LANG_FLAG_? bits that the front end may have set. */
|
||
main_type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
|
||
TREE_TYPE (main_type) = unqual_elt;
|
||
TYPE_DOMAIN (main_type) = build_index_type (maxindex);
|
||
layout_type (main_type);
|
||
|
||
if (quals == 0)
|
||
type = main_type;
|
||
else
|
||
type = c_build_qualified_type (main_type, quals);
|
||
|
||
*ptype = type;
|
||
return failure;
|
||
}
|
||
|
||
|
||
/* Used to help initialize the builtin-types.def table. When a type of
|
||
the correct size doesn't exist, use error_mark_node instead of NULL.
|
||
The later results in segfaults even when a decl using the type doesn't
|
||
get invoked. */
|
||
|
||
tree
|
||
builtin_type_for_size (int size, bool unsignedp)
|
||
{
|
||
tree type = lang_hooks.types.type_for_size (size, unsignedp);
|
||
return type ? type : error_mark_node;
|
||
}
|
||
|
||
/* A helper function for resolve_overloaded_builtin in resolving the
|
||
overloaded __sync_ builtins. Returns a positive power of 2 if the
|
||
first operand of PARAMS is a pointer to a supported data type.
|
||
Returns 0 if an error is encountered. */
|
||
|
||
static int
|
||
sync_resolve_size (tree function, tree params)
|
||
{
|
||
tree type;
|
||
int size;
|
||
|
||
if (params == NULL)
|
||
{
|
||
error ("too few arguments to function %qE", function);
|
||
return 0;
|
||
}
|
||
|
||
type = TREE_TYPE (TREE_VALUE (params));
|
||
if (TREE_CODE (type) != POINTER_TYPE)
|
||
goto incompatible;
|
||
|
||
type = TREE_TYPE (type);
|
||
if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
|
||
goto incompatible;
|
||
|
||
size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
|
||
if (size == 1 || size == 2 || size == 4 || size == 8 || size == 16)
|
||
return size;
|
||
|
||
incompatible:
|
||
error ("incompatible type for argument %d of %qE", 1, function);
|
||
return 0;
|
||
}
|
||
|
||
/* A helper function for resolve_overloaded_builtin. Adds casts to
|
||
PARAMS to make arguments match up with those of FUNCTION. Drops
|
||
the variadic arguments at the end. Returns false if some error
|
||
was encountered; true on success. */
|
||
|
||
static bool
|
||
sync_resolve_params (tree orig_function, tree function, tree params)
|
||
{
|
||
tree arg_types = TYPE_ARG_TYPES (TREE_TYPE (function));
|
||
tree ptype;
|
||
int number;
|
||
|
||
/* We've declared the implementation functions to use "volatile void *"
|
||
as the pointer parameter, so we shouldn't get any complaints from the
|
||
call to check_function_arguments what ever type the user used. */
|
||
arg_types = TREE_CHAIN (arg_types);
|
||
ptype = TREE_TYPE (TREE_TYPE (TREE_VALUE (params)));
|
||
number = 2;
|
||
|
||
/* For the rest of the values, we need to cast these to FTYPE, so that we
|
||
don't get warnings for passing pointer types, etc. */
|
||
while (arg_types != void_list_node)
|
||
{
|
||
tree val;
|
||
|
||
params = TREE_CHAIN (params);
|
||
if (params == NULL)
|
||
{
|
||
error ("too few arguments to function %qE", orig_function);
|
||
return false;
|
||
}
|
||
|
||
/* ??? Ideally for the first conversion we'd use convert_for_assignment
|
||
so that we get warnings for anything that doesn't match the pointer
|
||
type. This isn't portable across the C and C++ front ends atm. */
|
||
val = TREE_VALUE (params);
|
||
val = convert (ptype, val);
|
||
val = convert (TREE_VALUE (arg_types), val);
|
||
TREE_VALUE (params) = val;
|
||
|
||
arg_types = TREE_CHAIN (arg_types);
|
||
number++;
|
||
}
|
||
|
||
/* The definition of these primitives is variadic, with the remaining
|
||
being "an optional list of variables protected by the memory barrier".
|
||
No clue what that's supposed to mean, precisely, but we consider all
|
||
call-clobbered variables to be protected so we're safe. */
|
||
TREE_CHAIN (params) = NULL;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* A helper function for resolve_overloaded_builtin. Adds a cast to
|
||
RESULT to make it match the type of the first pointer argument in
|
||
PARAMS. */
|
||
|
||
static tree
|
||
sync_resolve_return (tree params, tree result)
|
||
{
|
||
tree ptype = TREE_TYPE (TREE_TYPE (TREE_VALUE (params)));
|
||
ptype = TYPE_MAIN_VARIANT (ptype);
|
||
return convert (ptype, result);
|
||
}
|
||
|
||
/* Some builtin functions are placeholders for other expressions. This
|
||
function should be called immediately after parsing the call expression
|
||
before surrounding code has committed to the type of the expression.
|
||
|
||
FUNCTION is the DECL that has been invoked; it is known to be a builtin.
|
||
PARAMS is the argument list for the call. The return value is non-null
|
||
when expansion is complete, and null if normal processing should
|
||
continue. */
|
||
|
||
tree
|
||
resolve_overloaded_builtin (tree function, tree params)
|
||
{
|
||
enum built_in_function orig_code = DECL_FUNCTION_CODE (function);
|
||
switch (DECL_BUILT_IN_CLASS (function))
|
||
{
|
||
case BUILT_IN_NORMAL:
|
||
break;
|
||
case BUILT_IN_MD:
|
||
if (targetm.resolve_overloaded_builtin)
|
||
return targetm.resolve_overloaded_builtin (function, params);
|
||
else
|
||
return NULL_TREE;
|
||
default:
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle BUILT_IN_NORMAL here. */
|
||
switch (orig_code)
|
||
{
|
||
case BUILT_IN_FETCH_AND_ADD_N:
|
||
case BUILT_IN_FETCH_AND_SUB_N:
|
||
case BUILT_IN_FETCH_AND_OR_N:
|
||
case BUILT_IN_FETCH_AND_AND_N:
|
||
case BUILT_IN_FETCH_AND_XOR_N:
|
||
case BUILT_IN_FETCH_AND_NAND_N:
|
||
case BUILT_IN_ADD_AND_FETCH_N:
|
||
case BUILT_IN_SUB_AND_FETCH_N:
|
||
case BUILT_IN_OR_AND_FETCH_N:
|
||
case BUILT_IN_AND_AND_FETCH_N:
|
||
case BUILT_IN_XOR_AND_FETCH_N:
|
||
case BUILT_IN_NAND_AND_FETCH_N:
|
||
case BUILT_IN_BOOL_COMPARE_AND_SWAP_N:
|
||
case BUILT_IN_VAL_COMPARE_AND_SWAP_N:
|
||
case BUILT_IN_LOCK_TEST_AND_SET_N:
|
||
case BUILT_IN_LOCK_RELEASE_N:
|
||
{
|
||
int n = sync_resolve_size (function, params);
|
||
tree new_function, result;
|
||
|
||
if (n == 0)
|
||
return error_mark_node;
|
||
|
||
new_function = built_in_decls[orig_code + exact_log2 (n) + 1];
|
||
if (!sync_resolve_params (function, new_function, params))
|
||
return error_mark_node;
|
||
|
||
result = build_function_call (new_function, params);
|
||
if (orig_code != BUILT_IN_BOOL_COMPARE_AND_SWAP_N
|
||
&& orig_code != BUILT_IN_LOCK_RELEASE_N)
|
||
result = sync_resolve_return (params, result);
|
||
|
||
return result;
|
||
}
|
||
|
||
default:
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Ignoring their sign, return true if two scalar types are the same. */
|
||
bool
|
||
same_scalar_type_ignoring_signedness (tree t1, tree t2)
|
||
{
|
||
enum tree_code c1 = TREE_CODE (t1), c2 = TREE_CODE (t2);
|
||
|
||
gcc_assert ((c1 == INTEGER_TYPE || c1 == REAL_TYPE)
|
||
&& (c2 == INTEGER_TYPE || c2 == REAL_TYPE));
|
||
|
||
/* Equality works here because c_common_signed_type uses
|
||
TYPE_MAIN_VARIANT. */
|
||
return lang_hooks.types.signed_type (t1)
|
||
== lang_hooks.types.signed_type (t2);
|
||
}
|
||
|
||
/* Check for missing format attributes on function pointers. LTYPE is
|
||
the new type or left-hand side type. RTYPE is the old type or
|
||
right-hand side type. Returns TRUE if LTYPE is missing the desired
|
||
attribute. */
|
||
|
||
bool
|
||
check_missing_format_attribute (tree ltype, tree rtype)
|
||
{
|
||
tree const ttr = TREE_TYPE (rtype), ttl = TREE_TYPE (ltype);
|
||
tree ra;
|
||
|
||
for (ra = TYPE_ATTRIBUTES (ttr); ra; ra = TREE_CHAIN (ra))
|
||
if (is_attribute_p ("format", TREE_PURPOSE (ra)))
|
||
break;
|
||
if (ra)
|
||
{
|
||
tree la;
|
||
for (la = TYPE_ATTRIBUTES (ttl); la; la = TREE_CHAIN (la))
|
||
if (is_attribute_p ("format", TREE_PURPOSE (la)))
|
||
break;
|
||
return !la;
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Subscripting with type char is likely to lose on a machine where
|
||
chars are signed. So warn on any machine, but optionally. Don't
|
||
warn for unsigned char since that type is safe. Don't warn for
|
||
signed char because anyone who uses that must have done so
|
||
deliberately. Furthermore, we reduce the false positive load by
|
||
warning only for non-constant value of type char. */
|
||
|
||
void
|
||
warn_array_subscript_with_type_char (tree index)
|
||
{
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node
|
||
&& TREE_CODE (index) != INTEGER_CST)
|
||
warning (OPT_Wchar_subscripts, "array subscript has type %<char%>");
|
||
}
|
||
|
||
|
||
#include "gt-c-common.h"
|