fbbd9655e5
Renumber cluase 4 to 3, per what everybody else did when BSD granted them permission to remove clause 3. My insistance on keeping the same numbering for legal reasons is too pedantic, so give up on that point. Submitted by: Jan Schaumann <jschauma@stevens.edu> Pull Request: https://github.com/freebsd/freebsd/pull/96
633 lines
17 KiB
C
633 lines
17 KiB
C
/*-
|
|
* Copyright (c) 1989, 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software developed by the Computer Systems
|
|
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
|
|
* BG 91-66 and contributed to Berkeley.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/fnv_hash.h>
|
|
|
|
#define _WANT_VNET
|
|
|
|
#include <sys/user.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <net/vnet.h>
|
|
|
|
#include <assert.h>
|
|
#include <fcntl.h>
|
|
#include <kvm.h>
|
|
#include <limits.h>
|
|
#include <paths.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <stdarg.h>
|
|
|
|
#include "kvm_private.h"
|
|
|
|
/*
|
|
* Routines private to libkvm.
|
|
*/
|
|
|
|
/* from src/lib/libc/gen/nlist.c */
|
|
int __fdnlist(int, struct nlist *);
|
|
|
|
/*
|
|
* Report an error using printf style arguments. "program" is kd->program
|
|
* on hard errors, and 0 on soft errors, so that under sun error emulation,
|
|
* only hard errors are printed out (otherwise, programs like gdb will
|
|
* generate tons of error messages when trying to access bogus pointers).
|
|
*/
|
|
void
|
|
_kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
if (program != NULL) {
|
|
(void)fprintf(stderr, "%s: ", program);
|
|
(void)vfprintf(stderr, fmt, ap);
|
|
(void)fputc('\n', stderr);
|
|
} else
|
|
(void)vsnprintf(kd->errbuf,
|
|
sizeof(kd->errbuf), fmt, ap);
|
|
|
|
va_end(ap);
|
|
}
|
|
|
|
void
|
|
_kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
int n;
|
|
|
|
va_start(ap, fmt);
|
|
if (program != NULL) {
|
|
(void)fprintf(stderr, "%s: ", program);
|
|
(void)vfprintf(stderr, fmt, ap);
|
|
(void)fprintf(stderr, ": %s\n", strerror(errno));
|
|
} else {
|
|
char *cp = kd->errbuf;
|
|
|
|
(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
|
|
n = strlen(cp);
|
|
(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
|
|
strerror(errno));
|
|
}
|
|
va_end(ap);
|
|
}
|
|
|
|
void *
|
|
_kvm_malloc(kvm_t *kd, size_t n)
|
|
{
|
|
void *p;
|
|
|
|
if ((p = calloc(n, sizeof(char))) == NULL)
|
|
_kvm_err(kd, kd->program, "can't allocate %zu bytes: %s",
|
|
n, strerror(errno));
|
|
return (p);
|
|
}
|
|
|
|
int
|
|
_kvm_probe_elf_kernel(kvm_t *kd, int class, int machine)
|
|
{
|
|
|
|
return (kd->nlehdr.e_ident[EI_CLASS] == class &&
|
|
kd->nlehdr.e_type == ET_EXEC &&
|
|
kd->nlehdr.e_machine == machine);
|
|
}
|
|
|
|
int
|
|
_kvm_is_minidump(kvm_t *kd)
|
|
{
|
|
char minihdr[8];
|
|
|
|
if (kd->rawdump)
|
|
return (0);
|
|
if (pread(kd->pmfd, &minihdr, 8, 0) == 8 &&
|
|
memcmp(&minihdr, "minidump", 8) == 0)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The powerpc backend has a hack to strip a leading kerneldump
|
|
* header from the core before treating it as an ELF header.
|
|
*
|
|
* We can add that here if we can get a change to libelf to support
|
|
* an initial offset into the file. Alternatively we could patch
|
|
* savecore to extract cores from a regular file instead.
|
|
*/
|
|
int
|
|
_kvm_read_core_phdrs(kvm_t *kd, size_t *phnump, GElf_Phdr **phdrp)
|
|
{
|
|
GElf_Ehdr ehdr;
|
|
GElf_Phdr *phdr;
|
|
Elf *elf;
|
|
size_t i, phnum;
|
|
|
|
elf = elf_begin(kd->pmfd, ELF_C_READ, NULL);
|
|
if (elf == NULL) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
return (-1);
|
|
}
|
|
if (elf_kind(elf) != ELF_K_ELF) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
if (gelf_getclass(elf) != kd->nlehdr.e_ident[EI_CLASS]) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
if (gelf_getehdr(elf, &ehdr) == NULL) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
goto bad;
|
|
}
|
|
if (ehdr.e_type != ET_CORE) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
if (ehdr.e_machine != kd->nlehdr.e_machine) {
|
|
_kvm_err(kd, kd->program, "invalid core");
|
|
goto bad;
|
|
}
|
|
|
|
if (elf_getphdrnum(elf, &phnum) == -1) {
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
goto bad;
|
|
}
|
|
|
|
phdr = calloc(phnum, sizeof(*phdr));
|
|
if (phdr == NULL) {
|
|
_kvm_err(kd, kd->program, "failed to allocate phdrs");
|
|
goto bad;
|
|
}
|
|
|
|
for (i = 0; i < phnum; i++) {
|
|
if (gelf_getphdr(elf, i, &phdr[i]) == NULL) {
|
|
free(phdr);
|
|
_kvm_err(kd, kd->program, "%s", elf_errmsg(0));
|
|
goto bad;
|
|
}
|
|
}
|
|
elf_end(elf);
|
|
*phnump = phnum;
|
|
*phdrp = phdr;
|
|
return (0);
|
|
|
|
bad:
|
|
elf_end(elf);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Transform v such that only bits [bit0, bitN) may be set. Generates a
|
|
* bitmask covering the number of bits, then shifts so +bit0+ is the first.
|
|
*/
|
|
static uint64_t
|
|
bitmask_range(uint64_t v, uint64_t bit0, uint64_t bitN)
|
|
{
|
|
if (bit0 == 0 && bitN == BITS_IN(v))
|
|
return (v);
|
|
|
|
return (v & (((1ULL << (bitN - bit0)) - 1ULL) << bit0));
|
|
}
|
|
|
|
/*
|
|
* Returns the number of bits in a given byte array range starting at a
|
|
* given base, from bit0 to bitN. bit0 may be non-zero in the case of
|
|
* counting backwards from bitN.
|
|
*/
|
|
static uint64_t
|
|
popcount_bytes(uint64_t *addr, uint32_t bit0, uint32_t bitN)
|
|
{
|
|
uint32_t res = bitN - bit0;
|
|
uint64_t count = 0;
|
|
uint32_t bound;
|
|
|
|
/* Align to 64-bit boundary on the left side if needed. */
|
|
if ((bit0 % BITS_IN(*addr)) != 0) {
|
|
bound = MIN(bitN, roundup2(bit0, BITS_IN(*addr)));
|
|
count += __bitcount64(bitmask_range(*addr, bit0, bound));
|
|
res -= (bound - bit0);
|
|
addr++;
|
|
}
|
|
|
|
while (res > 0) {
|
|
bound = MIN(res, BITS_IN(*addr));
|
|
count += __bitcount64(bitmask_range(*addr, 0, bound));
|
|
res -= bound;
|
|
addr++;
|
|
}
|
|
|
|
return (count);
|
|
}
|
|
|
|
int
|
|
_kvm_pt_init(kvm_t *kd, size_t map_len, off_t map_off, off_t sparse_off,
|
|
int page_size, int word_size)
|
|
{
|
|
uint64_t *addr;
|
|
uint32_t *popcount_bin;
|
|
int bin_popcounts = 0;
|
|
uint64_t pc_bins, res;
|
|
ssize_t rd;
|
|
|
|
/*
|
|
* Map the bitmap specified by the arguments.
|
|
*/
|
|
kd->pt_map = _kvm_malloc(kd, map_len);
|
|
if (kd->pt_map == NULL) {
|
|
_kvm_err(kd, kd->program, "cannot allocate %zu bytes for bitmap",
|
|
map_len);
|
|
return (-1);
|
|
}
|
|
rd = pread(kd->pmfd, kd->pt_map, map_len, map_off);
|
|
if (rd < 0 || rd != (ssize_t)map_len) {
|
|
_kvm_err(kd, kd->program, "cannot read %zu bytes for bitmap",
|
|
map_len);
|
|
return (-1);
|
|
}
|
|
kd->pt_map_size = map_len;
|
|
|
|
/*
|
|
* Generate a popcount cache for every POPCOUNT_BITS in the bitmap,
|
|
* so lookups only have to calculate the number of bits set between
|
|
* a cache point and their bit. This reduces lookups to O(1),
|
|
* without significantly increasing memory requirements.
|
|
*
|
|
* Round up the number of bins so that 'upper half' lookups work for
|
|
* the final bin, if needed. The first popcount is 0, since no bits
|
|
* precede bit 0, so add 1 for that also. Without this, extra work
|
|
* would be needed to handle the first PTEs in _kvm_pt_find().
|
|
*/
|
|
addr = kd->pt_map;
|
|
res = map_len;
|
|
pc_bins = 1 + (res * NBBY + POPCOUNT_BITS / 2) / POPCOUNT_BITS;
|
|
kd->pt_popcounts = calloc(pc_bins, sizeof(uint32_t));
|
|
if (kd->pt_popcounts == NULL)
|
|
return (-1);
|
|
|
|
for (popcount_bin = &kd->pt_popcounts[1]; res > 0;
|
|
addr++, res -= sizeof(*addr)) {
|
|
*popcount_bin += popcount_bytes(addr, 0,
|
|
MIN(res * NBBY, BITS_IN(*addr)));
|
|
if (++bin_popcounts == POPCOUNTS_IN(*addr)) {
|
|
popcount_bin++;
|
|
*popcount_bin = *(popcount_bin - 1);
|
|
bin_popcounts = 0;
|
|
}
|
|
}
|
|
|
|
assert(pc_bins * sizeof(*popcount_bin) ==
|
|
((uintptr_t)popcount_bin - (uintptr_t)kd->pt_popcounts));
|
|
|
|
kd->pt_sparse_off = sparse_off;
|
|
kd->pt_sparse_size = (uint64_t)*popcount_bin * PAGE_SIZE;
|
|
kd->pt_page_size = page_size;
|
|
kd->pt_word_size = word_size;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Find the offset for the given physical page address; returns -1 otherwise.
|
|
*
|
|
* A page's offset is represented by the sparse page base offset plus the
|
|
* number of bits set before its bit multiplied by PAGE_SIZE. This means
|
|
* that if a page exists in the dump, it's necessary to know how many pages
|
|
* in the dump precede it. Reduce this O(n) counting to O(1) by caching the
|
|
* number of bits set at POPCOUNT_BITS intervals.
|
|
*
|
|
* Then to find the number of pages before the requested address, simply
|
|
* index into the cache and count the number of bits set between that cache
|
|
* bin and the page's bit. Halve the number of bytes that have to be
|
|
* checked by also counting down from the next higher bin if it's closer.
|
|
*/
|
|
off_t
|
|
_kvm_pt_find(kvm_t *kd, uint64_t pa)
|
|
{
|
|
uint64_t *bitmap = kd->pt_map;
|
|
uint64_t pte_bit_id = pa / PAGE_SIZE;
|
|
uint64_t pte_u64 = pte_bit_id / BITS_IN(*bitmap);
|
|
uint64_t popcount_id = pte_bit_id / POPCOUNT_BITS;
|
|
uint64_t pte_mask = 1ULL << (pte_bit_id % BITS_IN(*bitmap));
|
|
uint64_t bitN;
|
|
uint32_t count;
|
|
|
|
/* Check whether the page address requested is in the dump. */
|
|
if (pte_bit_id >= (kd->pt_map_size * NBBY) ||
|
|
(bitmap[pte_u64] & pte_mask) == 0)
|
|
return (-1);
|
|
|
|
/*
|
|
* Add/sub popcounts from the bitmap until the PTE's bit is reached.
|
|
* For bits that are in the upper half between the calculated
|
|
* popcount id and the next one, use the next one and subtract to
|
|
* minimize the number of popcounts required.
|
|
*/
|
|
if ((pte_bit_id % POPCOUNT_BITS) < (POPCOUNT_BITS / 2)) {
|
|
count = kd->pt_popcounts[popcount_id] + popcount_bytes(
|
|
bitmap + popcount_id * POPCOUNTS_IN(*bitmap),
|
|
0, pte_bit_id - popcount_id * POPCOUNT_BITS);
|
|
} else {
|
|
/*
|
|
* Counting in reverse is trickier, since we must avoid
|
|
* reading from bytes that are not in range, and invert.
|
|
*/
|
|
uint64_t pte_u64_bit_off = pte_u64 * BITS_IN(*bitmap);
|
|
|
|
popcount_id++;
|
|
bitN = MIN(popcount_id * POPCOUNT_BITS,
|
|
kd->pt_map_size * BITS_IN(uint8_t));
|
|
count = kd->pt_popcounts[popcount_id] - popcount_bytes(
|
|
bitmap + pte_u64,
|
|
pte_bit_id - pte_u64_bit_off, bitN - pte_u64_bit_off);
|
|
}
|
|
|
|
/*
|
|
* This can only happen if the core is truncated. Treat these
|
|
* entries as if they don't exist, since their backing doesn't.
|
|
*/
|
|
if (count >= (kd->pt_sparse_size / PAGE_SIZE))
|
|
return (-1);
|
|
|
|
return (kd->pt_sparse_off + (uint64_t)count * PAGE_SIZE);
|
|
}
|
|
|
|
static int
|
|
kvm_fdnlist(kvm_t *kd, struct kvm_nlist *list)
|
|
{
|
|
kvaddr_t addr;
|
|
int error, nfail;
|
|
|
|
if (kd->resolve_symbol == NULL) {
|
|
struct nlist *nl;
|
|
int count, i;
|
|
|
|
for (count = 0; list[count].n_name != NULL &&
|
|
list[count].n_name[0] != '\0'; count++)
|
|
;
|
|
nl = calloc(count + 1, sizeof(*nl));
|
|
for (i = 0; i < count; i++)
|
|
nl[i].n_name = list[i].n_name;
|
|
nfail = __fdnlist(kd->nlfd, nl);
|
|
for (i = 0; i < count; i++) {
|
|
list[i].n_type = nl[i].n_type;
|
|
list[i].n_value = nl[i].n_value;
|
|
}
|
|
free(nl);
|
|
return (nfail);
|
|
}
|
|
|
|
nfail = 0;
|
|
while (list->n_name != NULL && list->n_name[0] != '\0') {
|
|
error = kd->resolve_symbol(list->n_name, &addr);
|
|
if (error != 0) {
|
|
nfail++;
|
|
list->n_value = 0;
|
|
list->n_type = 0;
|
|
} else {
|
|
list->n_value = addr;
|
|
list->n_type = N_DATA | N_EXT;
|
|
}
|
|
list++;
|
|
}
|
|
return (nfail);
|
|
}
|
|
|
|
/*
|
|
* Walk the list of unresolved symbols, generate a new list and prefix the
|
|
* symbol names, try again, and merge back what we could resolve.
|
|
*/
|
|
static int
|
|
kvm_fdnlist_prefix(kvm_t *kd, struct kvm_nlist *nl, int missing,
|
|
const char *prefix, kvaddr_t (*validate_fn)(kvm_t *, kvaddr_t))
|
|
{
|
|
struct kvm_nlist *n, *np, *p;
|
|
char *cp, *ce;
|
|
const char *ccp;
|
|
size_t len;
|
|
int slen, unresolved;
|
|
|
|
/*
|
|
* Calculate the space we need to malloc for nlist and names.
|
|
* We are going to store the name twice for later lookups: once
|
|
* with the prefix and once the unmodified name delmited by \0.
|
|
*/
|
|
len = 0;
|
|
unresolved = 0;
|
|
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
len += sizeof(struct kvm_nlist) + strlen(prefix) +
|
|
2 * (strlen(p->n_name) + 1);
|
|
unresolved++;
|
|
}
|
|
if (unresolved == 0)
|
|
return (unresolved);
|
|
/* Add space for the terminating nlist entry. */
|
|
len += sizeof(struct kvm_nlist);
|
|
unresolved++;
|
|
|
|
/* Alloc one chunk for (nlist, [names]) and setup pointers. */
|
|
n = np = malloc(len);
|
|
bzero(n, len);
|
|
if (n == NULL)
|
|
return (missing);
|
|
cp = ce = (char *)np;
|
|
cp += unresolved * sizeof(struct kvm_nlist);
|
|
ce += len;
|
|
|
|
/* Generate shortened nlist with special prefix. */
|
|
unresolved = 0;
|
|
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
*np = *p;
|
|
/* Save the new\0orig. name so we can later match it again. */
|
|
slen = snprintf(cp, ce - cp, "%s%s%c%s", prefix,
|
|
(prefix[0] != '\0' && p->n_name[0] == '_') ?
|
|
(p->n_name + 1) : p->n_name, '\0', p->n_name);
|
|
if (slen < 0 || slen >= ce - cp)
|
|
continue;
|
|
np->n_name = cp;
|
|
cp += slen + 1;
|
|
np++;
|
|
unresolved++;
|
|
}
|
|
|
|
/* Do lookup on the reduced list. */
|
|
np = n;
|
|
unresolved = kvm_fdnlist(kd, np);
|
|
|
|
/* Check if we could resolve further symbols and update the list. */
|
|
if (unresolved >= 0 && unresolved < missing) {
|
|
/* Find the first freshly resolved entry. */
|
|
for (; np->n_name && np->n_name[0]; np++)
|
|
if (np->n_type != N_UNDF)
|
|
break;
|
|
/*
|
|
* The lists are both in the same order,
|
|
* so we can walk them in parallel.
|
|
*/
|
|
for (p = nl; np->n_name && np->n_name[0] &&
|
|
p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
/* Skip expanded name and compare to orig. one. */
|
|
ccp = np->n_name + strlen(np->n_name) + 1;
|
|
if (strcmp(ccp, p->n_name) != 0)
|
|
continue;
|
|
/* Update nlist with new, translated results. */
|
|
p->n_type = np->n_type;
|
|
if (validate_fn)
|
|
p->n_value = (*validate_fn)(kd, np->n_value);
|
|
else
|
|
p->n_value = np->n_value;
|
|
missing--;
|
|
/* Find next freshly resolved entry. */
|
|
for (np++; np->n_name && np->n_name[0]; np++)
|
|
if (np->n_type != N_UNDF)
|
|
break;
|
|
}
|
|
}
|
|
/* We could assert missing = unresolved here. */
|
|
|
|
free(n);
|
|
return (unresolved);
|
|
}
|
|
|
|
int
|
|
_kvm_nlist(kvm_t *kd, struct kvm_nlist *nl, int initialize)
|
|
{
|
|
struct kvm_nlist *p;
|
|
int nvalid;
|
|
struct kld_sym_lookup lookup;
|
|
int error;
|
|
const char *prefix = "";
|
|
char symname[1024]; /* XXX-BZ symbol name length limit? */
|
|
int tried_vnet, tried_dpcpu;
|
|
|
|
/*
|
|
* If we can't use the kld symbol lookup, revert to the
|
|
* slow library call.
|
|
*/
|
|
if (!ISALIVE(kd)) {
|
|
error = kvm_fdnlist(kd, nl);
|
|
if (error <= 0) /* Hard error or success. */
|
|
return (error);
|
|
|
|
if (_kvm_vnet_initialized(kd, initialize))
|
|
error = kvm_fdnlist_prefix(kd, nl, error,
|
|
VNET_SYMPREFIX, _kvm_vnet_validaddr);
|
|
|
|
if (error > 0 && _kvm_dpcpu_initialized(kd, initialize))
|
|
error = kvm_fdnlist_prefix(kd, nl, error,
|
|
DPCPU_SYMPREFIX, _kvm_dpcpu_validaddr);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* We can use the kld lookup syscall. Go through each nlist entry
|
|
* and look it up with a kldsym(2) syscall.
|
|
*/
|
|
nvalid = 0;
|
|
tried_vnet = 0;
|
|
tried_dpcpu = 0;
|
|
again:
|
|
for (p = nl; p->n_name && p->n_name[0]; ++p) {
|
|
if (p->n_type != N_UNDF)
|
|
continue;
|
|
|
|
lookup.version = sizeof(lookup);
|
|
lookup.symvalue = 0;
|
|
lookup.symsize = 0;
|
|
|
|
error = snprintf(symname, sizeof(symname), "%s%s", prefix,
|
|
(prefix[0] != '\0' && p->n_name[0] == '_') ?
|
|
(p->n_name + 1) : p->n_name);
|
|
if (error < 0 || error >= (int)sizeof(symname))
|
|
continue;
|
|
lookup.symname = symname;
|
|
if (lookup.symname[0] == '_')
|
|
lookup.symname++;
|
|
|
|
if (kldsym(0, KLDSYM_LOOKUP, &lookup) != -1) {
|
|
p->n_type = N_TEXT;
|
|
if (_kvm_vnet_initialized(kd, initialize) &&
|
|
strcmp(prefix, VNET_SYMPREFIX) == 0)
|
|
p->n_value =
|
|
_kvm_vnet_validaddr(kd, lookup.symvalue);
|
|
else if (_kvm_dpcpu_initialized(kd, initialize) &&
|
|
strcmp(prefix, DPCPU_SYMPREFIX) == 0)
|
|
p->n_value =
|
|
_kvm_dpcpu_validaddr(kd, lookup.symvalue);
|
|
else
|
|
p->n_value = lookup.symvalue;
|
|
++nvalid;
|
|
/* lookup.symsize */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the number of entries that weren't found. If they exist,
|
|
* try again with a prefix for virtualized or DPCPU symbol names.
|
|
*/
|
|
error = ((p - nl) - nvalid);
|
|
if (error && _kvm_vnet_initialized(kd, initialize) && !tried_vnet) {
|
|
tried_vnet = 1;
|
|
prefix = VNET_SYMPREFIX;
|
|
goto again;
|
|
}
|
|
if (error && _kvm_dpcpu_initialized(kd, initialize) && !tried_dpcpu) {
|
|
tried_dpcpu = 1;
|
|
prefix = DPCPU_SYMPREFIX;
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* Return the number of entries that weren't found. If they exist,
|
|
* also fill internal error buffer.
|
|
*/
|
|
error = ((p - nl) - nvalid);
|
|
if (error)
|
|
_kvm_syserr(kd, kd->program, "kvm_nlist");
|
|
return (error);
|
|
}
|