9d204116ad
Submitted by: jkim
2736 lines
76 KiB
C
2736 lines
76 KiB
C
/*-
|
|
* Copyright (c) 1997, 1998, 1999
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
|
|
* Programming manual is available from:
|
|
* http://download.adaptec.com/pdfs/user_guides/aic6915_pg.pdf.
|
|
*
|
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
|
* Department of Electical Engineering
|
|
* Columbia University, New York City
|
|
*/
|
|
/*
|
|
* The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
|
|
* controller designed with flexibility and reducing CPU load in mind.
|
|
* The Starfire offers high and low priority buffer queues, a
|
|
* producer/consumer index mechanism and several different buffer
|
|
* queue and completion queue descriptor types. Any one of a number
|
|
* of different driver designs can be used, depending on system and
|
|
* OS requirements. This driver makes use of type2 transmit frame
|
|
* descriptors to take full advantage of fragmented packets buffers
|
|
* and two RX buffer queues prioritized on size (one queue for small
|
|
* frames that will fit into a single mbuf, another with full size
|
|
* mbuf clusters for everything else). The producer/consumer indexes
|
|
* and completion queues are also used.
|
|
*
|
|
* One downside to the Starfire has to do with alignment: buffer
|
|
* queues must be aligned on 256-byte boundaries, and receive buffers
|
|
* must be aligned on longword boundaries. The receive buffer alignment
|
|
* causes problems on the strict alignment architecture, where the
|
|
* packet payload should be longword aligned. There is no simple way
|
|
* around this.
|
|
*
|
|
* For receive filtering, the Starfire offers 16 perfect filter slots
|
|
* and a 512-bit hash table.
|
|
*
|
|
* The Starfire has no internal transceiver, relying instead on an
|
|
* external MII-based transceiver. Accessing registers on external
|
|
* PHYs is done through a special register map rather than with the
|
|
* usual bitbang MDIO method.
|
|
*
|
|
* Acesssing the registers on the Starfire is a little tricky. The
|
|
* Starfire has a 512K internal register space. When programmed for
|
|
* PCI memory mapped mode, the entire register space can be accessed
|
|
* directly. However in I/O space mode, only 256 bytes are directly
|
|
* mapped into PCI I/O space. The other registers can be accessed
|
|
* indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
|
|
* registers inside the 256-byte I/O window.
|
|
*/
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/sf/if_sfreg.h>
|
|
#include <dev/sf/starfire_rx.h>
|
|
#include <dev/sf/starfire_tx.h>
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
MODULE_DEPEND(sf, pci, 1, 1, 1);
|
|
MODULE_DEPEND(sf, ether, 1, 1, 1);
|
|
MODULE_DEPEND(sf, miibus, 1, 1, 1);
|
|
|
|
#undef SF_GFP_DEBUG
|
|
#define SF_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
|
|
/* Define this to activate partial TCP/UDP checksum offload. */
|
|
#undef SF_PARTIAL_CSUM_SUPPORT
|
|
|
|
static struct sf_type sf_devs[] = {
|
|
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
|
|
AD_SUBSYSID_62011_REV0, "Adaptec ANA-62011 (rev 0) 10/100BaseTX" },
|
|
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
|
|
AD_SUBSYSID_62011_REV1, "Adaptec ANA-62011 (rev 1) 10/100BaseTX" },
|
|
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
|
|
AD_SUBSYSID_62022, "Adaptec ANA-62022 10/100BaseTX" },
|
|
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
|
|
AD_SUBSYSID_62044_REV0, "Adaptec ANA-62044 (rev 0) 10/100BaseTX" },
|
|
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
|
|
AD_SUBSYSID_62044_REV1, "Adaptec ANA-62044 (rev 1) 10/100BaseTX" },
|
|
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
|
|
AD_SUBSYSID_62020, "Adaptec ANA-62020 10/100BaseFX" },
|
|
{ AD_VENDORID, AD_DEVICEID_STARFIRE, "Adaptec AIC-6915 10/100BaseTX",
|
|
AD_SUBSYSID_69011, "Adaptec ANA-69011 10/100BaseTX" },
|
|
};
|
|
|
|
static int sf_probe(device_t);
|
|
static int sf_attach(device_t);
|
|
static int sf_detach(device_t);
|
|
static int sf_shutdown(device_t);
|
|
static int sf_suspend(device_t);
|
|
static int sf_resume(device_t);
|
|
static void sf_intr(void *);
|
|
static void sf_tick(void *);
|
|
static void sf_stats_update(struct sf_softc *);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static __inline void sf_fixup_rx(struct mbuf *);
|
|
#endif
|
|
static int sf_rxeof(struct sf_softc *);
|
|
static void sf_txeof(struct sf_softc *);
|
|
static int sf_encap(struct sf_softc *, struct mbuf **);
|
|
static void sf_start(struct ifnet *);
|
|
static void sf_start_locked(struct ifnet *);
|
|
static int sf_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void sf_download_fw(struct sf_softc *);
|
|
static void sf_init(void *);
|
|
static void sf_init_locked(struct sf_softc *);
|
|
static void sf_stop(struct sf_softc *);
|
|
static void sf_watchdog(struct sf_softc *);
|
|
static int sf_ifmedia_upd(struct ifnet *);
|
|
static int sf_ifmedia_upd_locked(struct ifnet *);
|
|
static void sf_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
static void sf_reset(struct sf_softc *);
|
|
static int sf_dma_alloc(struct sf_softc *);
|
|
static void sf_dma_free(struct sf_softc *);
|
|
static int sf_init_rx_ring(struct sf_softc *);
|
|
static void sf_init_tx_ring(struct sf_softc *);
|
|
static int sf_newbuf(struct sf_softc *, int);
|
|
static void sf_rxfilter(struct sf_softc *);
|
|
static int sf_setperf(struct sf_softc *, int, uint8_t *);
|
|
static int sf_sethash(struct sf_softc *, caddr_t, int);
|
|
#ifdef notdef
|
|
static int sf_setvlan(struct sf_softc *, int, uint32_t);
|
|
#endif
|
|
|
|
static uint8_t sf_read_eeprom(struct sf_softc *, int);
|
|
|
|
static int sf_miibus_readreg(device_t, int, int);
|
|
static int sf_miibus_writereg(device_t, int, int, int);
|
|
static void sf_miibus_statchg(device_t);
|
|
#ifdef DEVICE_POLLING
|
|
static int sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
|
|
#endif
|
|
|
|
static uint32_t csr_read_4(struct sf_softc *, int);
|
|
static void csr_write_4(struct sf_softc *, int, uint32_t);
|
|
static void sf_txthresh_adjust(struct sf_softc *);
|
|
static int sf_sysctl_stats(SYSCTL_HANDLER_ARGS);
|
|
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
|
|
static int sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS);
|
|
|
|
static device_method_t sf_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, sf_probe),
|
|
DEVMETHOD(device_attach, sf_attach),
|
|
DEVMETHOD(device_detach, sf_detach),
|
|
DEVMETHOD(device_shutdown, sf_shutdown),
|
|
DEVMETHOD(device_suspend, sf_suspend),
|
|
DEVMETHOD(device_resume, sf_resume),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, sf_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, sf_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, sf_miibus_statchg),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t sf_driver = {
|
|
"sf",
|
|
sf_methods,
|
|
sizeof(struct sf_softc),
|
|
};
|
|
|
|
static devclass_t sf_devclass;
|
|
|
|
DRIVER_MODULE(sf, pci, sf_driver, sf_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
#define SF_SETBIT(sc, reg, x) \
|
|
csr_write_4(sc, reg, csr_read_4(sc, reg) | (x))
|
|
|
|
#define SF_CLRBIT(sc, reg, x) \
|
|
csr_write_4(sc, reg, csr_read_4(sc, reg) & ~(x))
|
|
|
|
static uint32_t
|
|
csr_read_4(struct sf_softc *sc, int reg)
|
|
{
|
|
uint32_t val;
|
|
|
|
if (sc->sf_restype == SYS_RES_MEMORY)
|
|
val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
|
|
else {
|
|
CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
|
|
val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
|
|
}
|
|
|
|
return (val);
|
|
}
|
|
|
|
static uint8_t
|
|
sf_read_eeprom(struct sf_softc *sc, int reg)
|
|
{
|
|
uint8_t val;
|
|
|
|
val = (csr_read_4(sc, SF_EEADDR_BASE +
|
|
(reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
|
|
|
|
return (val);
|
|
}
|
|
|
|
static void
|
|
csr_write_4(struct sf_softc *sc, int reg, uint32_t val)
|
|
{
|
|
|
|
if (sc->sf_restype == SYS_RES_MEMORY)
|
|
CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
|
|
else {
|
|
CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
|
|
CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy the address 'mac' into the perfect RX filter entry at
|
|
* offset 'idx.' The perfect filter only has 16 entries so do
|
|
* some sanity tests.
|
|
*/
|
|
static int
|
|
sf_setperf(struct sf_softc *sc, int idx, uint8_t *mac)
|
|
{
|
|
|
|
if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
|
|
return (EINVAL);
|
|
|
|
if (mac == NULL)
|
|
return (EINVAL);
|
|
|
|
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
|
|
(idx * SF_RXFILT_PERFECT_SKIP) + 0, mac[5] | (mac[4] << 8));
|
|
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
|
|
(idx * SF_RXFILT_PERFECT_SKIP) + 4, mac[3] | (mac[2] << 8));
|
|
csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
|
|
(idx * SF_RXFILT_PERFECT_SKIP) + 8, mac[1] | (mac[0] << 8));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set the bit in the 512-bit hash table that corresponds to the
|
|
* specified mac address 'mac.' If 'prio' is nonzero, update the
|
|
* priority hash table instead of the filter hash table.
|
|
*/
|
|
static int
|
|
sf_sethash(struct sf_softc *sc, caddr_t mac, int prio)
|
|
{
|
|
uint32_t h;
|
|
|
|
if (mac == NULL)
|
|
return (EINVAL);
|
|
|
|
h = ether_crc32_be(mac, ETHER_ADDR_LEN) >> 23;
|
|
|
|
if (prio) {
|
|
SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
|
|
(SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
|
|
} else {
|
|
SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
|
|
(SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef notdef
|
|
/*
|
|
* Set a VLAN tag in the receive filter.
|
|
*/
|
|
static int
|
|
sf_setvlan(struct sf_softc *sc, int idx, uint32_t vlan)
|
|
{
|
|
|
|
if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
|
|
return (EINVAL);
|
|
|
|
csr_write_4(sc, SF_RXFILT_HASH_BASE +
|
|
(idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
|
|
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
sf_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct sf_softc *sc;
|
|
int i;
|
|
uint32_t val = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
for (i = 0; i < SF_TIMEOUT; i++) {
|
|
val = csr_read_4(sc, SF_PHY_REG(phy, reg));
|
|
if ((val & SF_MII_DATAVALID) != 0)
|
|
break;
|
|
}
|
|
|
|
if (i == SF_TIMEOUT)
|
|
return (0);
|
|
|
|
val &= SF_MII_DATAPORT;
|
|
if (val == 0xffff)
|
|
return (0);
|
|
|
|
return (val);
|
|
}
|
|
|
|
static int
|
|
sf_miibus_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct sf_softc *sc;
|
|
int i;
|
|
int busy;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
csr_write_4(sc, SF_PHY_REG(phy, reg), val);
|
|
|
|
for (i = 0; i < SF_TIMEOUT; i++) {
|
|
busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
|
|
if ((busy & SF_MII_BUSY) == 0)
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sf_miibus_statchg(device_t dev)
|
|
{
|
|
struct sf_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
uint32_t val;
|
|
|
|
sc = device_get_softc(dev);
|
|
mii = device_get_softc(sc->sf_miibus);
|
|
ifp = sc->sf_ifp;
|
|
if (mii == NULL || ifp == NULL ||
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
|
|
sc->sf_link = 0;
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
|
|
(IFM_ACTIVE | IFM_AVALID)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
case IFM_100_FX:
|
|
sc->sf_link = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (sc->sf_link == 0)
|
|
return;
|
|
|
|
val = csr_read_4(sc, SF_MACCFG_1);
|
|
val &= ~SF_MACCFG1_FULLDUPLEX;
|
|
val &= ~(SF_MACCFG1_RX_FLOWENB | SF_MACCFG1_TX_FLOWENB);
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
|
|
val |= SF_MACCFG1_FULLDUPLEX;
|
|
csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
|
|
#ifdef notyet
|
|
/* Configure flow-control bits. */
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
|
|
IFM_ETH_RXPAUSE) != 0)
|
|
val |= SF_MACCFG1_RX_FLOWENB;
|
|
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
|
|
IFM_ETH_TXPAUSE) != 0)
|
|
val |= SF_MACCFG1_TX_FLOWENB;
|
|
#endif
|
|
} else
|
|
csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
|
|
|
|
/* Make sure to reset MAC to take changes effect. */
|
|
csr_write_4(sc, SF_MACCFG_1, val | SF_MACCFG1_SOFTRESET);
|
|
DELAY(1000);
|
|
csr_write_4(sc, SF_MACCFG_1, val);
|
|
|
|
val = csr_read_4(sc, SF_TIMER_CTL);
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
|
|
val |= SF_TIMER_TIMES_TEN;
|
|
else
|
|
val &= ~SF_TIMER_TIMES_TEN;
|
|
csr_write_4(sc, SF_TIMER_CTL, val);
|
|
}
|
|
|
|
static void
|
|
sf_rxfilter(struct sf_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
int i;
|
|
struct ifmultiaddr *ifma;
|
|
uint8_t dummy[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
|
|
uint32_t rxfilt;
|
|
|
|
ifp = sc->sf_ifp;
|
|
|
|
/* First zot all the existing filters. */
|
|
for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
|
|
sf_setperf(sc, i, dummy);
|
|
for (i = SF_RXFILT_HASH_BASE; i < (SF_RXFILT_HASH_MAX + 1);
|
|
i += sizeof(uint32_t))
|
|
csr_write_4(sc, i, 0);
|
|
|
|
rxfilt = csr_read_4(sc, SF_RXFILT);
|
|
rxfilt &= ~(SF_RXFILT_PROMISC | SF_RXFILT_ALLMULTI | SF_RXFILT_BROAD);
|
|
if ((ifp->if_flags & IFF_BROADCAST) != 0)
|
|
rxfilt |= SF_RXFILT_BROAD;
|
|
if ((ifp->if_flags & IFF_ALLMULTI) != 0 ||
|
|
(ifp->if_flags & IFF_PROMISC) != 0) {
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
rxfilt |= SF_RXFILT_PROMISC;
|
|
if ((ifp->if_flags & IFF_ALLMULTI) != 0)
|
|
rxfilt |= SF_RXFILT_ALLMULTI;
|
|
goto done;
|
|
}
|
|
|
|
/* Now program new ones. */
|
|
i = 1;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
|
|
ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
/*
|
|
* Program the first 15 multicast groups
|
|
* into the perfect filter. For all others,
|
|
* use the hash table.
|
|
*/
|
|
if (i < SF_RXFILT_PERFECT_CNT) {
|
|
sf_setperf(sc, i,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
sf_sethash(sc,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
done:
|
|
csr_write_4(sc, SF_RXFILT, rxfilt);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
sf_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct sf_softc *sc;
|
|
int error;
|
|
|
|
sc = ifp->if_softc;
|
|
SF_LOCK(sc);
|
|
error = sf_ifmedia_upd_locked(ifp);
|
|
SF_UNLOCK(sc);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sf_ifmedia_upd_locked(struct ifnet *ifp)
|
|
{
|
|
struct sf_softc *sc;
|
|
struct mii_data *mii;
|
|
struct mii_softc *miisc;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->sf_miibus);
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
PHY_RESET(miisc);
|
|
return (mii_mediachg(mii));
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
sf_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct sf_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
SF_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
SF_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
mii = device_get_softc(sc->sf_miibus);
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
SF_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
sf_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct sf_softc *sc;
|
|
struct ifreq *ifr;
|
|
struct mii_data *mii;
|
|
int error, mask;
|
|
|
|
sc = ifp->if_softc;
|
|
ifr = (struct ifreq *)data;
|
|
error = 0;
|
|
|
|
switch (command) {
|
|
case SIOCSIFFLAGS:
|
|
SF_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
if ((ifp->if_flags ^ sc->sf_if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI))
|
|
sf_rxfilter(sc);
|
|
} else {
|
|
if (sc->sf_detach == 0)
|
|
sf_init_locked(sc);
|
|
}
|
|
} else {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
sf_stop(sc);
|
|
}
|
|
sc->sf_if_flags = ifp->if_flags;
|
|
SF_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
SF_LOCK(sc);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
sf_rxfilter(sc);
|
|
SF_UNLOCK(sc);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc->sf_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
#ifdef DEVICE_POLLING
|
|
if ((mask & IFCAP_POLLING) != 0) {
|
|
if ((ifr->ifr_reqcap & IFCAP_POLLING) != 0) {
|
|
error = ether_poll_register(sf_poll, ifp);
|
|
if (error != 0)
|
|
break;
|
|
SF_LOCK(sc);
|
|
/* Disable interrupts. */
|
|
csr_write_4(sc, SF_IMR, 0);
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
SF_UNLOCK(sc);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
/* Enable interrupts. */
|
|
SF_LOCK(sc);
|
|
csr_write_4(sc, SF_IMR, SF_INTRS);
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
SF_UNLOCK(sc);
|
|
}
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
if ((mask & IFCAP_TXCSUM) != 0) {
|
|
if ((IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
|
|
SF_LOCK(sc);
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0) {
|
|
ifp->if_hwassist |= SF_CSUM_FEATURES;
|
|
SF_SETBIT(sc, SF_GEN_ETH_CTL,
|
|
SF_ETHCTL_TXGFP_ENB);
|
|
} else {
|
|
ifp->if_hwassist &= ~SF_CSUM_FEATURES;
|
|
SF_CLRBIT(sc, SF_GEN_ETH_CTL,
|
|
SF_ETHCTL_TXGFP_ENB);
|
|
}
|
|
SF_UNLOCK(sc);
|
|
}
|
|
}
|
|
if ((mask & IFCAP_RXCSUM) != 0) {
|
|
if ((IFCAP_RXCSUM & ifp->if_capabilities) != 0) {
|
|
SF_LOCK(sc);
|
|
ifp->if_capenable ^= IFCAP_RXCSUM;
|
|
if ((IFCAP_RXCSUM & ifp->if_capenable) != 0)
|
|
SF_SETBIT(sc, SF_GEN_ETH_CTL,
|
|
SF_ETHCTL_RXGFP_ENB);
|
|
else
|
|
SF_CLRBIT(sc, SF_GEN_ETH_CTL,
|
|
SF_ETHCTL_RXGFP_ENB);
|
|
SF_UNLOCK(sc);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
sf_reset(struct sf_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
csr_write_4(sc, SF_GEN_ETH_CTL, 0);
|
|
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
|
|
DELAY(1000);
|
|
SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
|
|
|
|
SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
|
|
|
|
for (i = 0; i < SF_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
|
|
break;
|
|
}
|
|
|
|
if (i == SF_TIMEOUT)
|
|
device_printf(sc->sf_dev, "reset never completed!\n");
|
|
|
|
/* Wait a little while for the chip to get its brains in order. */
|
|
DELAY(1000);
|
|
}
|
|
|
|
/*
|
|
* Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
* We also check the subsystem ID so that we can identify exactly which
|
|
* NIC has been found, if possible.
|
|
*/
|
|
static int
|
|
sf_probe(device_t dev)
|
|
{
|
|
struct sf_type *t;
|
|
uint16_t vid;
|
|
uint16_t did;
|
|
uint16_t sdid;
|
|
int i;
|
|
|
|
vid = pci_get_vendor(dev);
|
|
did = pci_get_device(dev);
|
|
sdid = pci_get_subdevice(dev);
|
|
|
|
t = sf_devs;
|
|
for (i = 0; i < sizeof(sf_devs) / sizeof(sf_devs[0]); i++, t++) {
|
|
if (vid == t->sf_vid && did == t->sf_did) {
|
|
if (sdid == t->sf_sdid) {
|
|
device_set_desc(dev, t->sf_sname);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (vid == AD_VENDORID && did == AD_DEVICEID_STARFIRE) {
|
|
/* unkown subdevice */
|
|
device_set_desc(dev, sf_devs[0].sf_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
sf_attach(device_t dev)
|
|
{
|
|
int i;
|
|
struct sf_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint32_t reg;
|
|
int rid, error = 0;
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->sf_dev = dev;
|
|
|
|
mtx_init(&sc->sf_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
callout_init_mtx(&sc->sf_co, &sc->sf_mtx, 0);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
|
|
/*
|
|
* Prefer memory space register mapping over I/O space as the
|
|
* hardware requires lots of register access to get various
|
|
* producer/consumer index during Tx/Rx operation. However this
|
|
* requires large memory space(512K) to map the entire register
|
|
* space.
|
|
*/
|
|
sc->sf_rid = PCIR_BAR(0);
|
|
sc->sf_restype = SYS_RES_MEMORY;
|
|
sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype, &sc->sf_rid,
|
|
RF_ACTIVE);
|
|
if (sc->sf_res == NULL) {
|
|
reg = pci_read_config(dev, PCIR_BAR(0), 4);
|
|
if ((reg & PCIM_BAR_MEM_64) == PCIM_BAR_MEM_64)
|
|
sc->sf_rid = PCIR_BAR(2);
|
|
else
|
|
sc->sf_rid = PCIR_BAR(1);
|
|
sc->sf_restype = SYS_RES_IOPORT;
|
|
sc->sf_res = bus_alloc_resource_any(dev, sc->sf_restype,
|
|
&sc->sf_rid, RF_ACTIVE);
|
|
if (sc->sf_res == NULL) {
|
|
device_printf(dev, "couldn't allocate resources\n");
|
|
mtx_destroy(&sc->sf_mtx);
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
if (bootverbose)
|
|
device_printf(dev, "using %s space register mapping\n",
|
|
sc->sf_restype == SYS_RES_MEMORY ? "memory" : "I/O");
|
|
|
|
reg = pci_read_config(dev, PCIR_CACHELNSZ, 1);
|
|
if (reg == 0) {
|
|
/*
|
|
* If cache line size is 0, MWI is not used at all, so set
|
|
* reasonable default. AIC-6915 supports 0, 4, 8, 16, 32
|
|
* and 64.
|
|
*/
|
|
reg = 16;
|
|
device_printf(dev, "setting PCI cache line size to %u\n", reg);
|
|
pci_write_config(dev, PCIR_CACHELNSZ, reg, 1);
|
|
} else {
|
|
if (bootverbose)
|
|
device_printf(dev, "PCI cache line size : %u\n", reg);
|
|
}
|
|
/* Enable MWI. */
|
|
reg = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
reg |= PCIM_CMD_MWRICEN;
|
|
pci_write_config(dev, PCIR_COMMAND, reg, 2);
|
|
|
|
/* Allocate interrupt. */
|
|
rid = 0;
|
|
sc->sf_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->sf_irq == NULL) {
|
|
device_printf(dev, "couldn't map interrupt\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
sf_sysctl_stats, "I", "Statistics");
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "int_mod", CTLTYPE_INT | CTLFLAG_RW,
|
|
&sc->sf_int_mod, 0, sysctl_hw_sf_int_mod, "I",
|
|
"sf interrupt moderation");
|
|
/* Pull in device tunables. */
|
|
sc->sf_int_mod = SF_IM_DEFAULT;
|
|
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"int_mod", &sc->sf_int_mod);
|
|
if (error == 0) {
|
|
if (sc->sf_int_mod < SF_IM_MIN ||
|
|
sc->sf_int_mod > SF_IM_MAX) {
|
|
device_printf(dev, "int_mod value out of range; "
|
|
"using default: %d\n", SF_IM_DEFAULT);
|
|
sc->sf_int_mod = SF_IM_DEFAULT;
|
|
}
|
|
}
|
|
|
|
/* Reset the adapter. */
|
|
sf_reset(sc);
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
eaddr[i] =
|
|
sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
|
|
|
|
/* Allocate DMA resources. */
|
|
if (sf_dma_alloc(sc) != 0) {
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
|
|
sc->sf_txthresh = SF_MIN_TX_THRESHOLD;
|
|
|
|
ifp = sc->sf_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not allocate ifnet structure\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
|
|
/* Do MII setup. */
|
|
error = mii_attach(dev, &sc->sf_miibus, ifp, sf_ifmedia_upd,
|
|
sf_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
|
|
if (error != 0) {
|
|
device_printf(dev, "attaching PHYs failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = sf_ioctl;
|
|
ifp->if_start = sf_start;
|
|
ifp->if_init = sf_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1);
|
|
ifp->if_snd.ifq_drv_maxlen = SF_TX_DLIST_CNT - 1;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
/*
|
|
* With the help of firmware, AIC-6915 supports
|
|
* Tx/Rx TCP/UDP checksum offload.
|
|
*/
|
|
ifp->if_hwassist = SF_CSUM_FEATURES;
|
|
ifp->if_capabilities = IFCAP_HWCSUM;
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, eaddr);
|
|
|
|
/* VLAN capability setup. */
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
* Must appear after the call to ether_ifattach() because
|
|
* ether_ifattach() sets ifi_hdrlen to the default value.
|
|
*/
|
|
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
/* Hook interrupt last to avoid having to lock softc */
|
|
error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET | INTR_MPSAFE,
|
|
NULL, sf_intr, sc, &sc->sf_intrhand);
|
|
|
|
if (error) {
|
|
device_printf(dev, "couldn't set up irq\n");
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
sf_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown hardware and free up resources. This can be called any
|
|
* time after the mutex has been initialized. It is called in both
|
|
* the error case in attach and the normal detach case so it needs
|
|
* to be careful about only freeing resources that have actually been
|
|
* allocated.
|
|
*/
|
|
static int
|
|
sf_detach(device_t dev)
|
|
{
|
|
struct sf_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->sf_ifp;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
/* These should only be active if attach succeeded */
|
|
if (device_is_attached(dev)) {
|
|
SF_LOCK(sc);
|
|
sc->sf_detach = 1;
|
|
sf_stop(sc);
|
|
SF_UNLOCK(sc);
|
|
callout_drain(&sc->sf_co);
|
|
if (ifp != NULL)
|
|
ether_ifdetach(ifp);
|
|
}
|
|
if (sc->sf_miibus) {
|
|
device_delete_child(dev, sc->sf_miibus);
|
|
sc->sf_miibus = NULL;
|
|
}
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->sf_intrhand != NULL)
|
|
bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
|
|
if (sc->sf_irq != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
|
|
if (sc->sf_res != NULL)
|
|
bus_release_resource(dev, sc->sf_restype, sc->sf_rid,
|
|
sc->sf_res);
|
|
|
|
sf_dma_free(sc);
|
|
if (ifp != NULL)
|
|
if_free(ifp);
|
|
|
|
mtx_destroy(&sc->sf_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
struct sf_dmamap_arg {
|
|
bus_addr_t sf_busaddr;
|
|
};
|
|
|
|
static void
|
|
sf_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct sf_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
ctx = arg;
|
|
ctx->sf_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
sf_dma_alloc(struct sf_softc *sc)
|
|
{
|
|
struct sf_dmamap_arg ctx;
|
|
struct sf_txdesc *txd;
|
|
struct sf_rxdesc *rxd;
|
|
bus_addr_t lowaddr;
|
|
bus_addr_t rx_ring_end, rx_cring_end;
|
|
bus_addr_t tx_ring_end, tx_cring_end;
|
|
int error, i;
|
|
|
|
lowaddr = BUS_SPACE_MAXADDR;
|
|
|
|
again:
|
|
/* Create parent DMA tag. */
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc->sf_dev), /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
lowaddr, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sf_cdata.sf_parent_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev, "failed to create parent DMA tag\n");
|
|
goto fail;
|
|
}
|
|
/* Create tag for Tx ring. */
|
|
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
|
|
SF_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SF_TX_DLIST_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
SF_TX_DLIST_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sf_cdata.sf_tx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev, "failed to create Tx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Tx completion ring. */
|
|
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
|
|
SF_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SF_TX_CLIST_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
SF_TX_CLIST_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sf_cdata.sf_tx_cring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to create Tx completion ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx ring. */
|
|
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
|
|
SF_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SF_RX_DLIST_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
SF_RX_DLIST_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sf_cdata.sf_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to create Rx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx completion ring. */
|
|
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
|
|
SF_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SF_RX_CLIST_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
SF_RX_CLIST_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sf_cdata.sf_rx_cring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to create Rx completion ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Tx buffers. */
|
|
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES * SF_MAXTXSEGS, /* maxsize */
|
|
SF_MAXTXSEGS, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sf_cdata.sf_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev, "failed to create Tx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx buffers. */
|
|
error = bus_dma_tag_create(sc->sf_cdata.sf_parent_tag,/* parent */
|
|
SF_RX_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sf_cdata.sf_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev, "failed to create Rx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
|
|
error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_ring_tag,
|
|
(void **)&sc->sf_rdata.sf_tx_ring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to allocate DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.sf_busaddr = 0;
|
|
error = bus_dmamap_load(sc->sf_cdata.sf_tx_ring_tag,
|
|
sc->sf_cdata.sf_tx_ring_map, sc->sf_rdata.sf_tx_ring,
|
|
SF_TX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.sf_busaddr == 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to load DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
sc->sf_rdata.sf_tx_ring_paddr = ctx.sf_busaddr;
|
|
|
|
/*
|
|
* Allocate DMA'able memory and load the DMA map for Tx completion ring.
|
|
*/
|
|
error = bus_dmamem_alloc(sc->sf_cdata.sf_tx_cring_tag,
|
|
(void **)&sc->sf_rdata.sf_tx_cring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_tx_cring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to allocate DMA'able memory for "
|
|
"Tx completion ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.sf_busaddr = 0;
|
|
error = bus_dmamap_load(sc->sf_cdata.sf_tx_cring_tag,
|
|
sc->sf_cdata.sf_tx_cring_map, sc->sf_rdata.sf_tx_cring,
|
|
SF_TX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.sf_busaddr == 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to load DMA'able memory for Tx completion ring\n");
|
|
goto fail;
|
|
}
|
|
sc->sf_rdata.sf_tx_cring_paddr = ctx.sf_busaddr;
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
|
|
error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_ring_tag,
|
|
(void **)&sc->sf_rdata.sf_rx_ring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to allocate DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.sf_busaddr = 0;
|
|
error = bus_dmamap_load(sc->sf_cdata.sf_rx_ring_tag,
|
|
sc->sf_cdata.sf_rx_ring_map, sc->sf_rdata.sf_rx_ring,
|
|
SF_RX_DLIST_SIZE, sf_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.sf_busaddr == 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to load DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
sc->sf_rdata.sf_rx_ring_paddr = ctx.sf_busaddr;
|
|
|
|
/*
|
|
* Allocate DMA'able memory and load the DMA map for Rx completion ring.
|
|
*/
|
|
error = bus_dmamem_alloc(sc->sf_cdata.sf_rx_cring_tag,
|
|
(void **)&sc->sf_rdata.sf_rx_cring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sf_cdata.sf_rx_cring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to allocate DMA'able memory for "
|
|
"Rx completion ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.sf_busaddr = 0;
|
|
error = bus_dmamap_load(sc->sf_cdata.sf_rx_cring_tag,
|
|
sc->sf_cdata.sf_rx_cring_map, sc->sf_rdata.sf_rx_cring,
|
|
SF_RX_CLIST_SIZE, sf_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.sf_busaddr == 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to load DMA'able memory for Rx completion ring\n");
|
|
goto fail;
|
|
}
|
|
sc->sf_rdata.sf_rx_cring_paddr = ctx.sf_busaddr;
|
|
|
|
/*
|
|
* Tx desciptor ring and Tx completion ring should be addressed in
|
|
* the same 4GB space. The same rule applys to Rx ring and Rx
|
|
* completion ring. Unfortunately there is no way to specify this
|
|
* boundary restriction with bus_dma(9). So just try to allocate
|
|
* without the restriction and check the restriction was satisfied.
|
|
* If not, fall back to 32bit dma addressing mode which always
|
|
* guarantees the restriction.
|
|
*/
|
|
tx_ring_end = sc->sf_rdata.sf_tx_ring_paddr + SF_TX_DLIST_SIZE;
|
|
tx_cring_end = sc->sf_rdata.sf_tx_cring_paddr + SF_TX_CLIST_SIZE;
|
|
rx_ring_end = sc->sf_rdata.sf_rx_ring_paddr + SF_RX_DLIST_SIZE;
|
|
rx_cring_end = sc->sf_rdata.sf_rx_cring_paddr + SF_RX_CLIST_SIZE;
|
|
if ((SF_ADDR_HI(sc->sf_rdata.sf_tx_ring_paddr) !=
|
|
SF_ADDR_HI(tx_cring_end)) ||
|
|
(SF_ADDR_HI(sc->sf_rdata.sf_tx_cring_paddr) !=
|
|
SF_ADDR_HI(tx_ring_end)) ||
|
|
(SF_ADDR_HI(sc->sf_rdata.sf_rx_ring_paddr) !=
|
|
SF_ADDR_HI(rx_cring_end)) ||
|
|
(SF_ADDR_HI(sc->sf_rdata.sf_rx_cring_paddr) !=
|
|
SF_ADDR_HI(rx_ring_end))) {
|
|
device_printf(sc->sf_dev,
|
|
"switching to 32bit DMA mode\n");
|
|
sf_dma_free(sc);
|
|
/* Limit DMA address space to 32bit and try again. */
|
|
lowaddr = BUS_SPACE_MAXADDR_32BIT;
|
|
goto again;
|
|
}
|
|
|
|
/* Create DMA maps for Tx buffers. */
|
|
for (i = 0; i < SF_TX_DLIST_CNT; i++) {
|
|
txd = &sc->sf_cdata.sf_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->ndesc = 0;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->sf_cdata.sf_tx_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to create Tx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
/* Create DMA maps for Rx buffers. */
|
|
if ((error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
|
|
&sc->sf_cdata.sf_rx_sparemap)) != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to create spare Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
|
|
rxd = &sc->sf_cdata.sf_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->sf_cdata.sf_rx_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"failed to create Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
sf_dma_free(struct sf_softc *sc)
|
|
{
|
|
struct sf_txdesc *txd;
|
|
struct sf_rxdesc *rxd;
|
|
int i;
|
|
|
|
/* Tx ring. */
|
|
if (sc->sf_cdata.sf_tx_ring_tag) {
|
|
if (sc->sf_rdata.sf_tx_ring_paddr)
|
|
bus_dmamap_unload(sc->sf_cdata.sf_tx_ring_tag,
|
|
sc->sf_cdata.sf_tx_ring_map);
|
|
if (sc->sf_rdata.sf_tx_ring)
|
|
bus_dmamem_free(sc->sf_cdata.sf_tx_ring_tag,
|
|
sc->sf_rdata.sf_tx_ring,
|
|
sc->sf_cdata.sf_tx_ring_map);
|
|
sc->sf_rdata.sf_tx_ring = NULL;
|
|
sc->sf_rdata.sf_tx_ring_paddr = 0;
|
|
bus_dma_tag_destroy(sc->sf_cdata.sf_tx_ring_tag);
|
|
sc->sf_cdata.sf_tx_ring_tag = NULL;
|
|
}
|
|
/* Tx completion ring. */
|
|
if (sc->sf_cdata.sf_tx_cring_tag) {
|
|
if (sc->sf_rdata.sf_tx_cring_paddr)
|
|
bus_dmamap_unload(sc->sf_cdata.sf_tx_cring_tag,
|
|
sc->sf_cdata.sf_tx_cring_map);
|
|
if (sc->sf_rdata.sf_tx_cring)
|
|
bus_dmamem_free(sc->sf_cdata.sf_tx_cring_tag,
|
|
sc->sf_rdata.sf_tx_cring,
|
|
sc->sf_cdata.sf_tx_cring_map);
|
|
sc->sf_rdata.sf_tx_cring = NULL;
|
|
sc->sf_rdata.sf_tx_cring_paddr = 0;
|
|
bus_dma_tag_destroy(sc->sf_cdata.sf_tx_cring_tag);
|
|
sc->sf_cdata.sf_tx_cring_tag = NULL;
|
|
}
|
|
/* Rx ring. */
|
|
if (sc->sf_cdata.sf_rx_ring_tag) {
|
|
if (sc->sf_rdata.sf_rx_ring_paddr)
|
|
bus_dmamap_unload(sc->sf_cdata.sf_rx_ring_tag,
|
|
sc->sf_cdata.sf_rx_ring_map);
|
|
if (sc->sf_rdata.sf_rx_ring)
|
|
bus_dmamem_free(sc->sf_cdata.sf_rx_ring_tag,
|
|
sc->sf_rdata.sf_rx_ring,
|
|
sc->sf_cdata.sf_rx_ring_map);
|
|
sc->sf_rdata.sf_rx_ring = NULL;
|
|
sc->sf_rdata.sf_rx_ring_paddr = 0;
|
|
bus_dma_tag_destroy(sc->sf_cdata.sf_rx_ring_tag);
|
|
sc->sf_cdata.sf_rx_ring_tag = NULL;
|
|
}
|
|
/* Rx completion ring. */
|
|
if (sc->sf_cdata.sf_rx_cring_tag) {
|
|
if (sc->sf_rdata.sf_rx_cring_paddr)
|
|
bus_dmamap_unload(sc->sf_cdata.sf_rx_cring_tag,
|
|
sc->sf_cdata.sf_rx_cring_map);
|
|
if (sc->sf_rdata.sf_rx_cring)
|
|
bus_dmamem_free(sc->sf_cdata.sf_rx_cring_tag,
|
|
sc->sf_rdata.sf_rx_cring,
|
|
sc->sf_cdata.sf_rx_cring_map);
|
|
sc->sf_rdata.sf_rx_cring = NULL;
|
|
sc->sf_rdata.sf_rx_cring_paddr = 0;
|
|
bus_dma_tag_destroy(sc->sf_cdata.sf_rx_cring_tag);
|
|
sc->sf_cdata.sf_rx_cring_tag = NULL;
|
|
}
|
|
/* Tx buffers. */
|
|
if (sc->sf_cdata.sf_tx_tag) {
|
|
for (i = 0; i < SF_TX_DLIST_CNT; i++) {
|
|
txd = &sc->sf_cdata.sf_txdesc[i];
|
|
if (txd->tx_dmamap) {
|
|
bus_dmamap_destroy(sc->sf_cdata.sf_tx_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(sc->sf_cdata.sf_tx_tag);
|
|
sc->sf_cdata.sf_tx_tag = NULL;
|
|
}
|
|
/* Rx buffers. */
|
|
if (sc->sf_cdata.sf_rx_tag) {
|
|
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
|
|
rxd = &sc->sf_cdata.sf_rxdesc[i];
|
|
if (rxd->rx_dmamap) {
|
|
bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc->sf_cdata.sf_rx_sparemap) {
|
|
bus_dmamap_destroy(sc->sf_cdata.sf_rx_tag,
|
|
sc->sf_cdata.sf_rx_sparemap);
|
|
sc->sf_cdata.sf_rx_sparemap = 0;
|
|
}
|
|
bus_dma_tag_destroy(sc->sf_cdata.sf_rx_tag);
|
|
sc->sf_cdata.sf_rx_tag = NULL;
|
|
}
|
|
|
|
if (sc->sf_cdata.sf_parent_tag) {
|
|
bus_dma_tag_destroy(sc->sf_cdata.sf_parent_tag);
|
|
sc->sf_cdata.sf_parent_tag = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
sf_init_rx_ring(struct sf_softc *sc)
|
|
{
|
|
struct sf_ring_data *rd;
|
|
int i;
|
|
|
|
sc->sf_cdata.sf_rxc_cons = 0;
|
|
|
|
rd = &sc->sf_rdata;
|
|
bzero(rd->sf_rx_ring, SF_RX_DLIST_SIZE);
|
|
bzero(rd->sf_rx_cring, SF_RX_CLIST_SIZE);
|
|
|
|
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
|
|
if (sf_newbuf(sc, i) != 0)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
|
|
sc->sf_cdata.sf_rx_cring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
|
|
sc->sf_cdata.sf_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sf_init_tx_ring(struct sf_softc *sc)
|
|
{
|
|
struct sf_ring_data *rd;
|
|
int i;
|
|
|
|
sc->sf_cdata.sf_tx_prod = 0;
|
|
sc->sf_cdata.sf_tx_cnt = 0;
|
|
sc->sf_cdata.sf_txc_cons = 0;
|
|
|
|
rd = &sc->sf_rdata;
|
|
bzero(rd->sf_tx_ring, SF_TX_DLIST_SIZE);
|
|
bzero(rd->sf_tx_cring, SF_TX_CLIST_SIZE);
|
|
for (i = 0; i < SF_TX_DLIST_CNT; i++) {
|
|
rd->sf_tx_ring[i].sf_tx_ctrl = htole32(SF_TX_DESC_ID);
|
|
sc->sf_cdata.sf_txdesc[i].tx_m = NULL;
|
|
sc->sf_cdata.sf_txdesc[i].ndesc = 0;
|
|
}
|
|
rd->sf_tx_ring[i].sf_tx_ctrl |= htole32(SF_TX_DESC_END);
|
|
|
|
bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
|
|
sc->sf_cdata.sf_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
|
|
sc->sf_cdata.sf_tx_cring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
/*
|
|
* Initialize an RX descriptor and attach an MBUF cluster.
|
|
*/
|
|
static int
|
|
sf_newbuf(struct sf_softc *sc, int idx)
|
|
{
|
|
struct sf_rx_rdesc *desc;
|
|
struct sf_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, sizeof(uint32_t));
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_rx_tag,
|
|
sc->sf_cdata.sf_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc->sf_cdata.sf_rxdesc[idx];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc->sf_cdata.sf_rx_sparemap;
|
|
sc->sf_cdata.sf_rx_sparemap = map;
|
|
bus_dmamap_sync(sc->sf_cdata.sf_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
desc = &sc->sf_rdata.sf_rx_ring[idx];
|
|
desc->sf_addr = htole64(segs[0].ds_addr);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static __inline void
|
|
sf_fixup_rx(struct mbuf *m)
|
|
{
|
|
int i;
|
|
uint16_t *src, *dst;
|
|
|
|
src = mtod(m, uint16_t *);
|
|
dst = src - 1;
|
|
|
|
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
|
|
*dst++ = *src++;
|
|
|
|
m->m_data -= ETHER_ALIGN;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The starfire is programmed to use 'normal' mode for packet reception,
|
|
* which means we use the consumer/producer model for both the buffer
|
|
* descriptor queue and the completion descriptor queue. The only problem
|
|
* with this is that it involves a lot of register accesses: we have to
|
|
* read the RX completion consumer and producer indexes and the RX buffer
|
|
* producer index, plus the RX completion consumer and RX buffer producer
|
|
* indexes have to be updated. It would have been easier if Adaptec had
|
|
* put each index in a separate register, especially given that the damn
|
|
* NIC has a 512K register space.
|
|
*
|
|
* In spite of all the lovely features that Adaptec crammed into the 6915,
|
|
* it is marred by one truly stupid design flaw, which is that receive
|
|
* buffer addresses must be aligned on a longword boundary. This forces
|
|
* the packet payload to be unaligned, which is suboptimal on the x86 and
|
|
* completely unuseable on the Alpha. Our only recourse is to copy received
|
|
* packets into properly aligned buffers before handing them off.
|
|
*/
|
|
static int
|
|
sf_rxeof(struct sf_softc *sc)
|
|
{
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct sf_rxdesc *rxd;
|
|
struct sf_rx_rcdesc *cur_cmp;
|
|
int cons, eidx, prog, rx_npkts;
|
|
uint32_t status, status2;
|
|
|
|
SF_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sf_ifp;
|
|
rx_npkts = 0;
|
|
|
|
bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
|
|
sc->sf_cdata.sf_rx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
|
|
sc->sf_cdata.sf_rx_cring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
/*
|
|
* To reduce register access, directly read Receive completion
|
|
* queue entry.
|
|
*/
|
|
eidx = 0;
|
|
prog = 0;
|
|
for (cons = sc->sf_cdata.sf_rxc_cons;
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
|
|
SF_INC(cons, SF_RX_CLIST_CNT)) {
|
|
cur_cmp = &sc->sf_rdata.sf_rx_cring[cons];
|
|
status = le32toh(cur_cmp->sf_rx_status1);
|
|
if (status == 0)
|
|
break;
|
|
#ifdef DEVICE_POLLING
|
|
if ((ifp->if_capenable & IFCAP_POLLING) != 0) {
|
|
if (sc->rxcycles <= 0)
|
|
break;
|
|
sc->rxcycles--;
|
|
}
|
|
#endif
|
|
prog++;
|
|
eidx = (status & SF_RX_CMPDESC_EIDX) >> 16;
|
|
rxd = &sc->sf_cdata.sf_rxdesc[eidx];
|
|
m = rxd->rx_m;
|
|
|
|
/*
|
|
* Note, IFCOUNTER_IPACKETS and IFCOUNTER_IERRORS
|
|
* are handled in sf_stats_update().
|
|
*/
|
|
if ((status & SF_RXSTAT1_OK) == 0) {
|
|
cur_cmp->sf_rx_status1 = 0;
|
|
continue;
|
|
}
|
|
|
|
if (sf_newbuf(sc, eidx) != 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
|
|
cur_cmp->sf_rx_status1 = 0;
|
|
continue;
|
|
}
|
|
|
|
/* AIC-6915 supports TCP/UDP checksum offload. */
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
|
|
status2 = le32toh(cur_cmp->sf_rx_status2);
|
|
/*
|
|
* Sometimes AIC-6915 generates an interrupt to
|
|
* warn RxGFP stall with bad checksum bit set
|
|
* in status word. I'm not sure what conditioan
|
|
* triggers it but recevied packet's checksum
|
|
* was correct even though AIC-6915 does not
|
|
* agree on this. This may be an indication of
|
|
* firmware bug. To fix the issue, do not rely
|
|
* on bad checksum bit in status word and let
|
|
* upper layer verify integrity of received
|
|
* frame.
|
|
* Another nice feature of AIC-6915 is hardware
|
|
* assistance of checksum calculation by
|
|
* providing partial checksum value for received
|
|
* frame. The partial checksum value can be used
|
|
* to accelerate checksum computation for
|
|
* fragmented TCP/UDP packets. Upper network
|
|
* stack already takes advantage of the partial
|
|
* checksum value in IP reassembly stage. But
|
|
* I'm not sure the correctness of the partial
|
|
* hardware checksum assistance as frequent
|
|
* RxGFP stalls are seen on non-fragmented
|
|
* frames. Due to the nature of the complexity
|
|
* of checksum computation code in firmware it's
|
|
* possible to see another bug in RxGFP so
|
|
* ignore checksum assistance for fragmented
|
|
* frames. This can be changed in future.
|
|
*/
|
|
if ((status2 & SF_RXSTAT2_FRAG) == 0) {
|
|
if ((status2 & (SF_RXSTAT2_TCP |
|
|
SF_RXSTAT2_UDP)) != 0) {
|
|
if ((status2 & SF_RXSTAT2_CSUM_OK)) {
|
|
m->m_pkthdr.csum_flags =
|
|
CSUM_DATA_VALID |
|
|
CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
}
|
|
#ifdef SF_PARTIAL_CSUM_SUPPORT
|
|
else if ((status2 & SF_RXSTAT2_FRAG) != 0) {
|
|
if ((status2 & (SF_RXSTAT2_TCP |
|
|
SF_RXSTAT2_UDP)) != 0) {
|
|
if ((status2 & SF_RXSTAT2_PCSUM_OK)) {
|
|
m->m_pkthdr.csum_flags =
|
|
CSUM_DATA_VALID;
|
|
m->m_pkthdr.csum_data =
|
|
(status &
|
|
SF_RX_CMPDESC_CSUM2);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
m->m_pkthdr.len = m->m_len = status & SF_RX_CMPDESC_LEN;
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
sf_fixup_rx(m);
|
|
#endif
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
SF_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
SF_LOCK(sc);
|
|
rx_npkts++;
|
|
|
|
/* Clear completion status. */
|
|
cur_cmp->sf_rx_status1 = 0;
|
|
}
|
|
|
|
if (prog > 0) {
|
|
sc->sf_cdata.sf_rxc_cons = cons;
|
|
bus_dmamap_sync(sc->sf_cdata.sf_rx_ring_tag,
|
|
sc->sf_cdata.sf_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sf_cdata.sf_rx_cring_tag,
|
|
sc->sf_cdata.sf_rx_cring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Update Rx completion Q1 consumer index. */
|
|
csr_write_4(sc, SF_CQ_CONSIDX,
|
|
(csr_read_4(sc, SF_CQ_CONSIDX) & ~SF_CQ_CONSIDX_RXQ1) |
|
|
(cons & SF_CQ_CONSIDX_RXQ1));
|
|
/* Update Rx descriptor Q1 ptr. */
|
|
csr_write_4(sc, SF_RXDQ_PTR_Q1,
|
|
(csr_read_4(sc, SF_RXDQ_PTR_Q1) & ~SF_RXDQ_PRODIDX) |
|
|
(eidx & SF_RXDQ_PRODIDX));
|
|
}
|
|
return (rx_npkts);
|
|
}
|
|
|
|
/*
|
|
* Read the transmit status from the completion queue and release
|
|
* mbufs. Note that the buffer descriptor index in the completion
|
|
* descriptor is an offset from the start of the transmit buffer
|
|
* descriptor list in bytes. This is important because the manual
|
|
* gives the impression that it should match the producer/consumer
|
|
* index, which is the offset in 8 byte blocks.
|
|
*/
|
|
static void
|
|
sf_txeof(struct sf_softc *sc)
|
|
{
|
|
struct sf_txdesc *txd;
|
|
struct sf_tx_rcdesc *cur_cmp;
|
|
struct ifnet *ifp;
|
|
uint32_t status;
|
|
int cons, idx, prod;
|
|
|
|
SF_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sf_ifp;
|
|
|
|
bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
|
|
sc->sf_cdata.sf_tx_cring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
cons = sc->sf_cdata.sf_txc_cons;
|
|
prod = (csr_read_4(sc, SF_CQ_PRODIDX) & SF_TXDQ_PRODIDX_HIPRIO) >> 16;
|
|
if (prod == cons)
|
|
return;
|
|
|
|
for (; cons != prod; SF_INC(cons, SF_TX_CLIST_CNT)) {
|
|
cur_cmp = &sc->sf_rdata.sf_tx_cring[cons];
|
|
status = le32toh(cur_cmp->sf_tx_status1);
|
|
if (status == 0)
|
|
break;
|
|
switch (status & SF_TX_CMPDESC_TYPE) {
|
|
case SF_TXCMPTYPE_TX:
|
|
/* Tx complete entry. */
|
|
break;
|
|
case SF_TXCMPTYPE_DMA:
|
|
/* DMA complete entry. */
|
|
idx = status & SF_TX_CMPDESC_IDX;
|
|
idx = idx / sizeof(struct sf_tx_rdesc);
|
|
/*
|
|
* We don't need to check Tx status here.
|
|
* SF_ISR_TX_LOFIFO intr would handle this.
|
|
* Note, IFCOUNTER_OPACKETS, IFCOUNTER_COLLISIONS
|
|
* and IFCOUNTER_OERROR are handled in
|
|
* sf_stats_update().
|
|
*/
|
|
txd = &sc->sf_cdata.sf_txdesc[idx];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
|
|
txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
sc->sf_cdata.sf_tx_cnt -= txd->ndesc;
|
|
KASSERT(sc->sf_cdata.sf_tx_cnt >= 0,
|
|
("%s: Active Tx desc counter was garbled\n",
|
|
__func__));
|
|
txd->ndesc = 0;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
break;
|
|
default:
|
|
/* It should not happen. */
|
|
device_printf(sc->sf_dev,
|
|
"unknown Tx completion type : 0x%08x : %d : %d\n",
|
|
status, cons, prod);
|
|
break;
|
|
}
|
|
cur_cmp->sf_tx_status1 = 0;
|
|
}
|
|
|
|
sc->sf_cdata.sf_txc_cons = cons;
|
|
bus_dmamap_sync(sc->sf_cdata.sf_tx_cring_tag,
|
|
sc->sf_cdata.sf_tx_cring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
if (sc->sf_cdata.sf_tx_cnt == 0)
|
|
sc->sf_watchdog_timer = 0;
|
|
|
|
/* Update Tx completion consumer index. */
|
|
csr_write_4(sc, SF_CQ_CONSIDX,
|
|
(csr_read_4(sc, SF_CQ_CONSIDX) & 0xffff) |
|
|
((cons << 16) & 0xffff0000));
|
|
}
|
|
|
|
static void
|
|
sf_txthresh_adjust(struct sf_softc *sc)
|
|
{
|
|
uint32_t txfctl;
|
|
|
|
device_printf(sc->sf_dev, "Tx underrun -- ");
|
|
if (sc->sf_txthresh < SF_MAX_TX_THRESHOLD) {
|
|
txfctl = csr_read_4(sc, SF_TX_FRAMCTL);
|
|
/* Increase Tx threshold 256 bytes. */
|
|
sc->sf_txthresh += 16;
|
|
if (sc->sf_txthresh > SF_MAX_TX_THRESHOLD)
|
|
sc->sf_txthresh = SF_MAX_TX_THRESHOLD;
|
|
txfctl &= ~SF_TXFRMCTL_TXTHRESH;
|
|
txfctl |= sc->sf_txthresh;
|
|
printf("increasing Tx threshold to %d bytes\n",
|
|
sc->sf_txthresh * SF_TX_THRESHOLD_UNIT);
|
|
csr_write_4(sc, SF_TX_FRAMCTL, txfctl);
|
|
} else
|
|
printf("\n");
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static int
|
|
sf_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct sf_softc *sc;
|
|
uint32_t status;
|
|
int rx_npkts;
|
|
|
|
sc = ifp->if_softc;
|
|
rx_npkts = 0;
|
|
SF_LOCK(sc);
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
SF_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
|
|
sc->rxcycles = count;
|
|
rx_npkts = sf_rxeof(sc);
|
|
sf_txeof(sc);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
sf_start_locked(ifp);
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
|
/* Reading the ISR register clears all interrrupts. */
|
|
status = csr_read_4(sc, SF_ISR);
|
|
|
|
if ((status & SF_ISR_ABNORMALINTR) != 0) {
|
|
if ((status & SF_ISR_STATSOFLOW) != 0)
|
|
sf_stats_update(sc);
|
|
else if ((status & SF_ISR_TX_LOFIFO) != 0)
|
|
sf_txthresh_adjust(sc);
|
|
else if ((status & SF_ISR_DMAERR) != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"DMA error, resetting\n");
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
sf_init_locked(sc);
|
|
SF_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
} else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
|
|
sc->sf_statistics.sf_tx_gfp_stall++;
|
|
#ifdef SF_GFP_DEBUG
|
|
device_printf(sc->sf_dev,
|
|
"TxGFP is not responding!\n");
|
|
#endif
|
|
} else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
|
|
sc->sf_statistics.sf_rx_gfp_stall++;
|
|
#ifdef SF_GFP_DEBUG
|
|
device_printf(sc->sf_dev,
|
|
"RxGFP is not responding!\n");
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
SF_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
static void
|
|
sf_intr(void *arg)
|
|
{
|
|
struct sf_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint32_t status;
|
|
int cnt;
|
|
|
|
sc = (struct sf_softc *)arg;
|
|
SF_LOCK(sc);
|
|
|
|
if (sc->sf_suspended != 0)
|
|
goto done_locked;
|
|
|
|
/* Reading the ISR register clears all interrrupts. */
|
|
status = csr_read_4(sc, SF_ISR);
|
|
if (status == 0 || status == 0xffffffff ||
|
|
(status & SF_ISR_PCIINT_ASSERTED) == 0)
|
|
goto done_locked;
|
|
|
|
ifp = sc->sf_ifp;
|
|
#ifdef DEVICE_POLLING
|
|
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
|
|
goto done_locked;
|
|
#endif
|
|
|
|
/* Disable interrupts. */
|
|
csr_write_4(sc, SF_IMR, 0x00000000);
|
|
|
|
for (cnt = 32; (status & SF_INTRS) != 0;) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
if ((status & SF_ISR_RXDQ1_DMADONE) != 0)
|
|
sf_rxeof(sc);
|
|
|
|
if ((status & (SF_ISR_TX_TXDONE | SF_ISR_TX_DMADONE |
|
|
SF_ISR_TX_QUEUEDONE)) != 0)
|
|
sf_txeof(sc);
|
|
|
|
if ((status & SF_ISR_ABNORMALINTR) != 0) {
|
|
if ((status & SF_ISR_STATSOFLOW) != 0)
|
|
sf_stats_update(sc);
|
|
else if ((status & SF_ISR_TX_LOFIFO) != 0)
|
|
sf_txthresh_adjust(sc);
|
|
else if ((status & SF_ISR_DMAERR) != 0) {
|
|
device_printf(sc->sf_dev,
|
|
"DMA error, resetting\n");
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
sf_init_locked(sc);
|
|
SF_UNLOCK(sc);
|
|
return;
|
|
} else if ((status & SF_ISR_NO_TX_CSUM) != 0) {
|
|
sc->sf_statistics.sf_tx_gfp_stall++;
|
|
#ifdef SF_GFP_DEBUG
|
|
device_printf(sc->sf_dev,
|
|
"TxGFP is not responding!\n");
|
|
#endif
|
|
}
|
|
else if ((status & SF_ISR_RXGFP_NORESP) != 0) {
|
|
sc->sf_statistics.sf_rx_gfp_stall++;
|
|
#ifdef SF_GFP_DEBUG
|
|
device_printf(sc->sf_dev,
|
|
"RxGFP is not responding!\n");
|
|
#endif
|
|
}
|
|
}
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
sf_start_locked(ifp);
|
|
if (--cnt <= 0)
|
|
break;
|
|
/* Reading the ISR register clears all interrrupts. */
|
|
status = csr_read_4(sc, SF_ISR);
|
|
}
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
/* Re-enable interrupts. */
|
|
csr_write_4(sc, SF_IMR, SF_INTRS);
|
|
}
|
|
|
|
done_locked:
|
|
SF_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
sf_download_fw(struct sf_softc *sc)
|
|
{
|
|
uint32_t gfpinst;
|
|
int i, ndx;
|
|
uint8_t *p;
|
|
|
|
/*
|
|
* A FP instruction is composed of 48bits so we have to
|
|
* write it with two parts.
|
|
*/
|
|
p = txfwdata;
|
|
ndx = 0;
|
|
for (i = 0; i < sizeof(txfwdata) / SF_GFP_INST_BYTES; i++) {
|
|
gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
|
|
csr_write_4(sc, SF_TXGFP_MEM_BASE + ndx * 4, gfpinst);
|
|
gfpinst = p[0] << 8 | p[1];
|
|
csr_write_4(sc, SF_TXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
|
|
p += SF_GFP_INST_BYTES;
|
|
ndx += 2;
|
|
}
|
|
if (bootverbose)
|
|
device_printf(sc->sf_dev, "%d Tx instructions downloaded\n", i);
|
|
|
|
p = rxfwdata;
|
|
ndx = 0;
|
|
for (i = 0; i < sizeof(rxfwdata) / SF_GFP_INST_BYTES; i++) {
|
|
gfpinst = p[2] << 24 | p[3] << 16 | p[4] << 8 | p[5];
|
|
csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx * 4), gfpinst);
|
|
gfpinst = p[0] << 8 | p[1];
|
|
csr_write_4(sc, SF_RXGFP_MEM_BASE + (ndx + 1) * 4, gfpinst);
|
|
p += SF_GFP_INST_BYTES;
|
|
ndx += 2;
|
|
}
|
|
if (bootverbose)
|
|
device_printf(sc->sf_dev, "%d Rx instructions downloaded\n", i);
|
|
}
|
|
|
|
static void
|
|
sf_init(void *xsc)
|
|
{
|
|
struct sf_softc *sc;
|
|
|
|
sc = (struct sf_softc *)xsc;
|
|
SF_LOCK(sc);
|
|
sf_init_locked(sc);
|
|
SF_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
sf_init_locked(struct sf_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
SF_LOCK_ASSERT(sc);
|
|
ifp = sc->sf_ifp;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
return;
|
|
|
|
sf_stop(sc);
|
|
/* Reset the hardware to a known state. */
|
|
sf_reset(sc);
|
|
|
|
/* Init all the receive filter registers */
|
|
for (i = SF_RXFILT_PERFECT_BASE;
|
|
i < (SF_RXFILT_HASH_MAX + 1); i += sizeof(uint32_t))
|
|
csr_write_4(sc, i, 0);
|
|
|
|
/* Empty stats counter registers. */
|
|
for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
|
|
csr_write_4(sc, i, 0);
|
|
|
|
/* Init our MAC address. */
|
|
bcopy(IF_LLADDR(sc->sf_ifp), eaddr, sizeof(eaddr));
|
|
csr_write_4(sc, SF_PAR0,
|
|
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
|
|
csr_write_4(sc, SF_PAR1, eaddr[0] << 8 | eaddr[1]);
|
|
sf_setperf(sc, 0, eaddr);
|
|
|
|
if (sf_init_rx_ring(sc) == ENOBUFS) {
|
|
device_printf(sc->sf_dev,
|
|
"initialization failed: no memory for rx buffers\n");
|
|
sf_stop(sc);
|
|
return;
|
|
}
|
|
|
|
sf_init_tx_ring(sc);
|
|
|
|
/*
|
|
* 16 perfect address filtering.
|
|
* Hash only multicast destination address, Accept matching
|
|
* frames regardless of VLAN ID.
|
|
*/
|
|
csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL | SF_HASHMODE_ANYVLAN);
|
|
|
|
/*
|
|
* Set Rx filter.
|
|
*/
|
|
sf_rxfilter(sc);
|
|
|
|
/* Init the completion queue indexes. */
|
|
csr_write_4(sc, SF_CQ_CONSIDX, 0);
|
|
csr_write_4(sc, SF_CQ_PRODIDX, 0);
|
|
|
|
/* Init the RX completion queue. */
|
|
addr = sc->sf_rdata.sf_rx_cring_paddr;
|
|
csr_write_4(sc, SF_CQ_ADDR_HI, SF_ADDR_HI(addr));
|
|
csr_write_4(sc, SF_RXCQ_CTL_1, SF_ADDR_LO(addr) & SF_RXCQ_ADDR);
|
|
if (SF_ADDR_HI(addr) != 0)
|
|
SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQ_USE_64BIT);
|
|
/* Set RX completion queue type 2. */
|
|
SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_2);
|
|
csr_write_4(sc, SF_RXCQ_CTL_2, 0);
|
|
|
|
/*
|
|
* Init RX DMA control.
|
|
* default RxHighPriority Threshold,
|
|
* default RxBurstSize, 128bytes.
|
|
*/
|
|
SF_SETBIT(sc, SF_RXDMA_CTL,
|
|
SF_RXDMA_REPORTBADPKTS |
|
|
(SF_RXDMA_HIGHPRIO_THRESH << 8) |
|
|
SF_RXDMA_BURST);
|
|
|
|
/* Init the RX buffer descriptor queue. */
|
|
addr = sc->sf_rdata.sf_rx_ring_paddr;
|
|
csr_write_4(sc, SF_RXDQ_ADDR_HI, SF_ADDR_HI(addr));
|
|
csr_write_4(sc, SF_RXDQ_ADDR_Q1, SF_ADDR_LO(addr));
|
|
|
|
/* Set RX queue buffer length. */
|
|
csr_write_4(sc, SF_RXDQ_CTL_1,
|
|
((MCLBYTES - sizeof(uint32_t)) << 16) |
|
|
SF_RXDQCTL_64BITBADDR | SF_RXDQCTL_VARIABLE);
|
|
|
|
if (SF_ADDR_HI(addr) != 0)
|
|
SF_SETBIT(sc, SF_RXDQ_CTL_1, SF_RXDQCTL_64BITDADDR);
|
|
csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
|
|
csr_write_4(sc, SF_RXDQ_CTL_2, 0);
|
|
|
|
/* Init the TX completion queue */
|
|
addr = sc->sf_rdata.sf_tx_cring_paddr;
|
|
csr_write_4(sc, SF_TXCQ_CTL, SF_ADDR_LO(addr) & SF_TXCQ_ADDR);
|
|
if (SF_ADDR_HI(addr) != 0)
|
|
SF_SETBIT(sc, SF_TXCQ_CTL, SF_TXCQ_USE_64BIT);
|
|
|
|
/* Init the TX buffer descriptor queue. */
|
|
addr = sc->sf_rdata.sf_tx_ring_paddr;
|
|
csr_write_4(sc, SF_TXDQ_ADDR_HI, SF_ADDR_HI(addr));
|
|
csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
|
|
csr_write_4(sc, SF_TXDQ_ADDR_LOPRIO, SF_ADDR_LO(addr));
|
|
csr_write_4(sc, SF_TX_FRAMCTL,
|
|
SF_TXFRMCTL_CPLAFTERTX | sc->sf_txthresh);
|
|
csr_write_4(sc, SF_TXDQ_CTL,
|
|
SF_TXDMA_HIPRIO_THRESH << 24 |
|
|
SF_TXSKIPLEN_0BYTES << 16 |
|
|
SF_TXDDMA_BURST << 8 |
|
|
SF_TXBUFDESC_TYPE2 | SF_TXMINSPACE_UNLIMIT);
|
|
if (SF_ADDR_HI(addr) != 0)
|
|
SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_64BITADDR);
|
|
|
|
/* Set VLAN Type register. */
|
|
csr_write_4(sc, SF_VLANTYPE, ETHERTYPE_VLAN);
|
|
|
|
/* Set TxPause Timer. */
|
|
csr_write_4(sc, SF_TXPAUSETIMER, 0xffff);
|
|
|
|
/* Enable autopadding of short TX frames. */
|
|
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
|
|
SF_SETBIT(sc, SF_MACCFG_2, SF_MACCFG2_AUTOVLANPAD);
|
|
/* Make sure to reset MAC to take changes effect. */
|
|
SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
|
|
DELAY(1000);
|
|
SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
|
|
|
|
/* Enable PCI bus master. */
|
|
SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_PCIMEN);
|
|
|
|
/* Load StarFire firmware. */
|
|
sf_download_fw(sc);
|
|
|
|
/* Intialize interrupt moderation. */
|
|
csr_write_4(sc, SF_TIMER_CTL, SF_TIMER_IMASK_MODE | SF_TIMER_TIMES_TEN |
|
|
(sc->sf_int_mod & SF_TIMER_IMASK_INTERVAL));
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/* Disable interrupts if we are polling. */
|
|
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
|
|
csr_write_4(sc, SF_IMR, 0x00000000);
|
|
else
|
|
#endif
|
|
/* Enable interrupts. */
|
|
csr_write_4(sc, SF_IMR, SF_INTRS);
|
|
SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
|
|
|
|
/* Enable the RX and TX engines. */
|
|
csr_write_4(sc, SF_GEN_ETH_CTL,
|
|
SF_ETHCTL_RX_ENB | SF_ETHCTL_RXDMA_ENB |
|
|
SF_ETHCTL_TX_ENB | SF_ETHCTL_TXDMA_ENB);
|
|
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
|
|
SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
|
|
else
|
|
SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TXGFP_ENB);
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
|
|
else
|
|
SF_CLRBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RXGFP_ENB);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
sc->sf_link = 0;
|
|
sf_ifmedia_upd_locked(ifp);
|
|
|
|
callout_reset(&sc->sf_co, hz, sf_tick, sc);
|
|
}
|
|
|
|
static int
|
|
sf_encap(struct sf_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct sf_txdesc *txd;
|
|
struct sf_tx_rdesc *desc;
|
|
struct mbuf *m;
|
|
bus_dmamap_t map;
|
|
bus_dma_segment_t txsegs[SF_MAXTXSEGS];
|
|
int error, i, nsegs, prod, si;
|
|
int avail, nskip;
|
|
|
|
SF_LOCK_ASSERT(sc);
|
|
|
|
m = *m_head;
|
|
prod = sc->sf_cdata.sf_tx_prod;
|
|
txd = &sc->sf_cdata.sf_txdesc[prod];
|
|
map = txd->tx_dmamap;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag, map,
|
|
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m_head, M_NOWAIT, SF_MAXTXSEGS);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sf_cdata.sf_tx_tag,
|
|
map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
if (nsegs == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
/* Check number of available descriptors. */
|
|
avail = (SF_TX_DLIST_CNT - 1) - sc->sf_cdata.sf_tx_cnt;
|
|
if (avail < nsegs) {
|
|
bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
nskip = 0;
|
|
if (prod + nsegs >= SF_TX_DLIST_CNT) {
|
|
nskip = SF_TX_DLIST_CNT - prod - 1;
|
|
if (avail < nsegs + nskip) {
|
|
bus_dmamap_unload(sc->sf_cdata.sf_tx_tag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sf_cdata.sf_tx_tag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
si = prod;
|
|
for (i = 0; i < nsegs; i++) {
|
|
desc = &sc->sf_rdata.sf_tx_ring[prod];
|
|
desc->sf_tx_ctrl = htole32(SF_TX_DESC_ID |
|
|
(txsegs[i].ds_len & SF_TX_DESC_FRAGLEN));
|
|
desc->sf_tx_reserved = 0;
|
|
desc->sf_addr = htole64(txsegs[i].ds_addr);
|
|
if (i == 0 && prod + nsegs >= SF_TX_DLIST_CNT) {
|
|
/* Queue wraps! */
|
|
desc->sf_tx_ctrl |= htole32(SF_TX_DESC_END);
|
|
prod = 0;
|
|
} else
|
|
SF_INC(prod, SF_TX_DLIST_CNT);
|
|
}
|
|
/* Update producer index. */
|
|
sc->sf_cdata.sf_tx_prod = prod;
|
|
sc->sf_cdata.sf_tx_cnt += nsegs + nskip;
|
|
|
|
desc = &sc->sf_rdata.sf_tx_ring[si];
|
|
/* Check TDP/UDP checksum offload request. */
|
|
if ((m->m_pkthdr.csum_flags & SF_CSUM_FEATURES) != 0)
|
|
desc->sf_tx_ctrl |= htole32(SF_TX_DESC_CALTCP);
|
|
desc->sf_tx_ctrl |=
|
|
htole32(SF_TX_DESC_CRCEN | SF_TX_DESC_INTR | (nsegs << 16));
|
|
|
|
txd->tx_dmamap = map;
|
|
txd->tx_m = m;
|
|
txd->ndesc = nsegs + nskip;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sf_start(struct ifnet *ifp)
|
|
{
|
|
struct sf_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
SF_LOCK(sc);
|
|
sf_start_locked(ifp);
|
|
SF_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
sf_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct sf_softc *sc;
|
|
struct mbuf *m_head;
|
|
int enq;
|
|
|
|
sc = ifp->if_softc;
|
|
SF_LOCK_ASSERT(sc);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || sc->sf_link == 0)
|
|
return;
|
|
|
|
/*
|
|
* Since we don't know when descriptor wrap occurrs in advance
|
|
* limit available number of active Tx descriptor counter to be
|
|
* higher than maximum number of DMA segments allowed in driver.
|
|
*/
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
|
|
sc->sf_cdata.sf_tx_cnt < SF_TX_DLIST_CNT - SF_MAXTXSEGS; ) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (sf_encap(sc, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
enq++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
bus_dmamap_sync(sc->sf_cdata.sf_tx_ring_tag,
|
|
sc->sf_cdata.sf_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
/* Kick transmit. */
|
|
csr_write_4(sc, SF_TXDQ_PRODIDX,
|
|
sc->sf_cdata.sf_tx_prod * (sizeof(struct sf_tx_rdesc) / 8));
|
|
|
|
/* Set a timeout in case the chip goes out to lunch. */
|
|
sc->sf_watchdog_timer = 5;
|
|
}
|
|
}
|
|
|
|
static void
|
|
sf_stop(struct sf_softc *sc)
|
|
{
|
|
struct sf_txdesc *txd;
|
|
struct sf_rxdesc *rxd;
|
|
struct ifnet *ifp;
|
|
int i;
|
|
|
|
SF_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sf_ifp;
|
|
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
sc->sf_link = 0;
|
|
callout_stop(&sc->sf_co);
|
|
sc->sf_watchdog_timer = 0;
|
|
|
|
/* Reading the ISR register clears all interrrupts. */
|
|
csr_read_4(sc, SF_ISR);
|
|
/* Disable further interrupts. */
|
|
csr_write_4(sc, SF_IMR, 0);
|
|
|
|
/* Disable Tx/Rx egine. */
|
|
csr_write_4(sc, SF_GEN_ETH_CTL, 0);
|
|
|
|
/* Give hardware chance to drain active DMA cycles. */
|
|
DELAY(1000);
|
|
|
|
csr_write_4(sc, SF_CQ_CONSIDX, 0);
|
|
csr_write_4(sc, SF_CQ_PRODIDX, 0);
|
|
csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
|
|
csr_write_4(sc, SF_RXDQ_CTL_1, 0);
|
|
csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
|
|
csr_write_4(sc, SF_TXCQ_CTL, 0);
|
|
csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
|
|
csr_write_4(sc, SF_TXDQ_CTL, 0);
|
|
|
|
/*
|
|
* Free RX and TX mbufs still in the queues.
|
|
*/
|
|
for (i = 0; i < SF_RX_DLIST_CNT; i++) {
|
|
rxd = &sc->sf_cdata.sf_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->sf_cdata.sf_rx_tag,
|
|
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sf_cdata.sf_rx_tag,
|
|
rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < SF_TX_DLIST_CNT; i++) {
|
|
txd = &sc->sf_cdata.sf_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc->sf_cdata.sf_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sf_cdata.sf_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
txd->ndesc = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
sf_tick(void *xsc)
|
|
{
|
|
struct sf_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = xsc;
|
|
SF_LOCK_ASSERT(sc);
|
|
mii = device_get_softc(sc->sf_miibus);
|
|
mii_tick(mii);
|
|
sf_stats_update(sc);
|
|
sf_watchdog(sc);
|
|
callout_reset(&sc->sf_co, hz, sf_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* Note: it is important that this function not be interrupted. We
|
|
* use a two-stage register access scheme: if we are interrupted in
|
|
* between setting the indirect address register and reading from the
|
|
* indirect data register, the contents of the address register could
|
|
* be changed out from under us.
|
|
*/
|
|
static void
|
|
sf_stats_update(struct sf_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct sf_stats now, *stats, *nstats;
|
|
int i;
|
|
|
|
SF_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sf_ifp;
|
|
stats = &now;
|
|
|
|
stats->sf_tx_frames =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAMES);
|
|
stats->sf_tx_single_colls =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_SINGLE_COL);
|
|
stats->sf_tx_multi_colls =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI_COL);
|
|
stats->sf_tx_crcerrs =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CRC_ERRS);
|
|
stats->sf_tx_bytes =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BYTES);
|
|
stats->sf_tx_deferred =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_DEFERRED);
|
|
stats->sf_tx_late_colls =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_LATE_COL);
|
|
stats->sf_tx_pause_frames =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_PAUSE);
|
|
stats->sf_tx_control_frames =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_CTL_FRAME);
|
|
stats->sf_tx_excess_colls =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_COL);
|
|
stats->sf_tx_excess_defer =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_EXCESS_DEF);
|
|
stats->sf_tx_mcast_frames =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_MULTI);
|
|
stats->sf_tx_bcast_frames =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_BCAST);
|
|
stats->sf_tx_frames_lost =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_FRAME_LOST);
|
|
stats->sf_rx_frames =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAMES);
|
|
stats->sf_rx_crcerrs =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CRC_ERRS);
|
|
stats->sf_rx_alignerrs =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_ALIGN_ERRS);
|
|
stats->sf_rx_bytes =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_BYTES);
|
|
stats->sf_rx_pause_frames =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_PAUSE);
|
|
stats->sf_rx_control_frames =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_CTL_FRAME);
|
|
stats->sf_rx_unsup_control_frames =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_UNSUP_FRAME);
|
|
stats->sf_rx_giants =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_GIANTS);
|
|
stats->sf_rx_runts =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_RUNTS);
|
|
stats->sf_rx_jabbererrs =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_JABBER);
|
|
stats->sf_rx_fragments =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAGMENTS);
|
|
stats->sf_rx_pkts_64 =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_64);
|
|
stats->sf_rx_pkts_65_127 =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_65_127);
|
|
stats->sf_rx_pkts_128_255 =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_128_255);
|
|
stats->sf_rx_pkts_256_511 =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_256_511);
|
|
stats->sf_rx_pkts_512_1023 =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_512_1023);
|
|
stats->sf_rx_pkts_1024_1518 =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_1024_1518);
|
|
stats->sf_rx_frames_lost =
|
|
csr_read_4(sc, SF_STATS_BASE + SF_STATS_RX_FRAME_LOST);
|
|
/* Lower 16bits are valid. */
|
|
stats->sf_tx_underruns =
|
|
(csr_read_4(sc, SF_STATS_BASE + SF_STATS_TX_UNDERRUN) & 0xffff);
|
|
|
|
/* Empty stats counter registers. */
|
|
for (i = SF_STATS_BASE; i < (SF_STATS_END + 1); i += sizeof(uint32_t))
|
|
csr_write_4(sc, i, 0);
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_OPACKETS, (u_long)stats->sf_tx_frames);
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
|
|
(u_long)stats->sf_tx_single_colls +
|
|
(u_long)stats->sf_tx_multi_colls);
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS,
|
|
(u_long)stats->sf_tx_excess_colls +
|
|
(u_long)stats->sf_tx_excess_defer +
|
|
(u_long)stats->sf_tx_frames_lost);
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, (u_long)stats->sf_rx_frames);
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS,
|
|
(u_long)stats->sf_rx_crcerrs +
|
|
(u_long)stats->sf_rx_alignerrs +
|
|
(u_long)stats->sf_rx_giants +
|
|
(u_long)stats->sf_rx_runts +
|
|
(u_long)stats->sf_rx_jabbererrs +
|
|
(u_long)stats->sf_rx_frames_lost);
|
|
|
|
nstats = &sc->sf_statistics;
|
|
|
|
nstats->sf_tx_frames += stats->sf_tx_frames;
|
|
nstats->sf_tx_single_colls += stats->sf_tx_single_colls;
|
|
nstats->sf_tx_multi_colls += stats->sf_tx_multi_colls;
|
|
nstats->sf_tx_crcerrs += stats->sf_tx_crcerrs;
|
|
nstats->sf_tx_bytes += stats->sf_tx_bytes;
|
|
nstats->sf_tx_deferred += stats->sf_tx_deferred;
|
|
nstats->sf_tx_late_colls += stats->sf_tx_late_colls;
|
|
nstats->sf_tx_pause_frames += stats->sf_tx_pause_frames;
|
|
nstats->sf_tx_control_frames += stats->sf_tx_control_frames;
|
|
nstats->sf_tx_excess_colls += stats->sf_tx_excess_colls;
|
|
nstats->sf_tx_excess_defer += stats->sf_tx_excess_defer;
|
|
nstats->sf_tx_mcast_frames += stats->sf_tx_mcast_frames;
|
|
nstats->sf_tx_bcast_frames += stats->sf_tx_bcast_frames;
|
|
nstats->sf_tx_frames_lost += stats->sf_tx_frames_lost;
|
|
nstats->sf_rx_frames += stats->sf_rx_frames;
|
|
nstats->sf_rx_crcerrs += stats->sf_rx_crcerrs;
|
|
nstats->sf_rx_alignerrs += stats->sf_rx_alignerrs;
|
|
nstats->sf_rx_bytes += stats->sf_rx_bytes;
|
|
nstats->sf_rx_pause_frames += stats->sf_rx_pause_frames;
|
|
nstats->sf_rx_control_frames += stats->sf_rx_control_frames;
|
|
nstats->sf_rx_unsup_control_frames += stats->sf_rx_unsup_control_frames;
|
|
nstats->sf_rx_giants += stats->sf_rx_giants;
|
|
nstats->sf_rx_runts += stats->sf_rx_runts;
|
|
nstats->sf_rx_jabbererrs += stats->sf_rx_jabbererrs;
|
|
nstats->sf_rx_fragments += stats->sf_rx_fragments;
|
|
nstats->sf_rx_pkts_64 += stats->sf_rx_pkts_64;
|
|
nstats->sf_rx_pkts_65_127 += stats->sf_rx_pkts_65_127;
|
|
nstats->sf_rx_pkts_128_255 += stats->sf_rx_pkts_128_255;
|
|
nstats->sf_rx_pkts_256_511 += stats->sf_rx_pkts_256_511;
|
|
nstats->sf_rx_pkts_512_1023 += stats->sf_rx_pkts_512_1023;
|
|
nstats->sf_rx_pkts_1024_1518 += stats->sf_rx_pkts_1024_1518;
|
|
nstats->sf_rx_frames_lost += stats->sf_rx_frames_lost;
|
|
nstats->sf_tx_underruns += stats->sf_tx_underruns;
|
|
}
|
|
|
|
static void
|
|
sf_watchdog(struct sf_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
SF_LOCK_ASSERT(sc);
|
|
|
|
if (sc->sf_watchdog_timer == 0 || --sc->sf_watchdog_timer)
|
|
return;
|
|
|
|
ifp = sc->sf_ifp;
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
if (sc->sf_link == 0) {
|
|
if (bootverbose)
|
|
if_printf(sc->sf_ifp, "watchdog timeout "
|
|
"(missed link)\n");
|
|
} else
|
|
if_printf(ifp, "watchdog timeout, %d Tx descs are active\n",
|
|
sc->sf_cdata.sf_tx_cnt);
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
sf_init_locked(sc);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
sf_start_locked(ifp);
|
|
}
|
|
|
|
static int
|
|
sf_shutdown(device_t dev)
|
|
{
|
|
struct sf_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
SF_LOCK(sc);
|
|
sf_stop(sc);
|
|
SF_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sf_suspend(device_t dev)
|
|
{
|
|
struct sf_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
SF_LOCK(sc);
|
|
sf_stop(sc);
|
|
sc->sf_suspended = 1;
|
|
bus_generic_suspend(dev);
|
|
SF_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sf_resume(device_t dev)
|
|
{
|
|
struct sf_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
SF_LOCK(sc);
|
|
bus_generic_resume(dev);
|
|
ifp = sc->sf_ifp;
|
|
if ((ifp->if_flags & IFF_UP) != 0)
|
|
sf_init_locked(sc);
|
|
|
|
sc->sf_suspended = 0;
|
|
SF_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sf_sysctl_stats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sf_softc *sc;
|
|
struct sf_stats *stats;
|
|
int error;
|
|
int result;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
|
|
if (result != 1)
|
|
return (error);
|
|
|
|
sc = (struct sf_softc *)arg1;
|
|
stats = &sc->sf_statistics;
|
|
|
|
printf("%s statistics:\n", device_get_nameunit(sc->sf_dev));
|
|
printf("Transmit good frames : %ju\n",
|
|
(uintmax_t)stats->sf_tx_frames);
|
|
printf("Transmit good octets : %ju\n",
|
|
(uintmax_t)stats->sf_tx_bytes);
|
|
printf("Transmit single collisions : %u\n",
|
|
stats->sf_tx_single_colls);
|
|
printf("Transmit multiple collisions : %u\n",
|
|
stats->sf_tx_multi_colls);
|
|
printf("Transmit late collisions : %u\n",
|
|
stats->sf_tx_late_colls);
|
|
printf("Transmit abort due to excessive collisions : %u\n",
|
|
stats->sf_tx_excess_colls);
|
|
printf("Transmit CRC errors : %u\n",
|
|
stats->sf_tx_crcerrs);
|
|
printf("Transmit deferrals : %u\n",
|
|
stats->sf_tx_deferred);
|
|
printf("Transmit abort due to excessive deferrals : %u\n",
|
|
stats->sf_tx_excess_defer);
|
|
printf("Transmit pause control frames : %u\n",
|
|
stats->sf_tx_pause_frames);
|
|
printf("Transmit control frames : %u\n",
|
|
stats->sf_tx_control_frames);
|
|
printf("Transmit good multicast frames : %u\n",
|
|
stats->sf_tx_mcast_frames);
|
|
printf("Transmit good broadcast frames : %u\n",
|
|
stats->sf_tx_bcast_frames);
|
|
printf("Transmit frames lost due to internal transmit errors : %u\n",
|
|
stats->sf_tx_frames_lost);
|
|
printf("Transmit FIFO underflows : %u\n",
|
|
stats->sf_tx_underruns);
|
|
printf("Transmit GFP stalls : %u\n", stats->sf_tx_gfp_stall);
|
|
printf("Receive good frames : %ju\n",
|
|
(uint64_t)stats->sf_rx_frames);
|
|
printf("Receive good octets : %ju\n",
|
|
(uint64_t)stats->sf_rx_bytes);
|
|
printf("Receive CRC errors : %u\n",
|
|
stats->sf_rx_crcerrs);
|
|
printf("Receive alignment errors : %u\n",
|
|
stats->sf_rx_alignerrs);
|
|
printf("Receive pause frames : %u\n",
|
|
stats->sf_rx_pause_frames);
|
|
printf("Receive control frames : %u\n",
|
|
stats->sf_rx_control_frames);
|
|
printf("Receive control frames with unsupported opcode : %u\n",
|
|
stats->sf_rx_unsup_control_frames);
|
|
printf("Receive frames too long : %u\n",
|
|
stats->sf_rx_giants);
|
|
printf("Receive frames too short : %u\n",
|
|
stats->sf_rx_runts);
|
|
printf("Receive frames jabber errors : %u\n",
|
|
stats->sf_rx_jabbererrs);
|
|
printf("Receive frames fragments : %u\n",
|
|
stats->sf_rx_fragments);
|
|
printf("Receive packets 64 bytes : %ju\n",
|
|
(uint64_t)stats->sf_rx_pkts_64);
|
|
printf("Receive packets 65 to 127 bytes : %ju\n",
|
|
(uint64_t)stats->sf_rx_pkts_65_127);
|
|
printf("Receive packets 128 to 255 bytes : %ju\n",
|
|
(uint64_t)stats->sf_rx_pkts_128_255);
|
|
printf("Receive packets 256 to 511 bytes : %ju\n",
|
|
(uint64_t)stats->sf_rx_pkts_256_511);
|
|
printf("Receive packets 512 to 1023 bytes : %ju\n",
|
|
(uint64_t)stats->sf_rx_pkts_512_1023);
|
|
printf("Receive packets 1024 to 1518 bytes : %ju\n",
|
|
(uint64_t)stats->sf_rx_pkts_1024_1518);
|
|
printf("Receive frames lost due to internal receive errors : %u\n",
|
|
stats->sf_rx_frames_lost);
|
|
printf("Receive GFP stalls : %u\n", stats->sf_rx_gfp_stall);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
|
|
{
|
|
int error, value;
|
|
|
|
if (!arg1)
|
|
return (EINVAL);
|
|
value = *(int *)arg1;
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
if (value < low || value > high)
|
|
return (EINVAL);
|
|
*(int *)arg1 = value;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_sf_int_mod(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
|
|
return (sysctl_int_range(oidp, arg1, arg2, req, SF_IM_MIN, SF_IM_MAX));
|
|
}
|