freebsd-dev/sys/x86/x86/nexus.c
John Baldwin 10544b0951 Implement support for RF_UNMAPPED and bus_map/unmap_resource on x86.
Add implementations of bus_map/unmap_resource to the x86 nexus driver.
Change bus_activate/deactivate_resource to honor RF_UNMAPPED and to
use bus_map/unmap_resource to create/destroy the implicit mapping when
RF_UNMAPPED is not set.

Reviewed by:	cem
Differential Revision:	https://reviews.freebsd.org/D5237
2016-05-20 18:00:10 +00:00

939 lines
25 KiB
C

/*-
* Copyright 1998 Massachusetts Institute of Technology
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby
* granted, provided that both the above copyright notice and this
* permission notice appear in all copies, that both the above
* copyright notice and this permission notice appear in all
* supporting documentation, and that the name of M.I.T. not be used
* in advertising or publicity pertaining to distribution of the
* software without specific, written prior permission. M.I.T. makes
* no representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied
* warranty.
*
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* This code implements a `root nexus' for Intel Architecture
* machines. The function of the root nexus is to serve as an
* attachment point for both processors and buses, and to manage
* resources which are common to all of them. In particular,
* this code implements the core resource managers for interrupt
* requests, DMA requests (which rightfully should be a part of the
* ISA code but it's easier to do it here for now), I/O port addresses,
* and I/O memory address space.
*/
#ifdef __amd64__
#define DEV_APIC
#else
#include "opt_apic.h"
#endif
#include "opt_isa.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/linker.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <machine/bus.h>
#include <machine/intr_machdep.h>
#include <sys/rman.h>
#include <sys/interrupt.h>
#include <machine/vmparam.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/metadata.h>
#include <machine/nexusvar.h>
#include <machine/resource.h>
#include <machine/pc/bios.h>
#ifdef DEV_APIC
#include "pcib_if.h"
#endif
#ifdef DEV_ISA
#include <isa/isavar.h>
#ifdef PC98
#include <pc98/cbus/cbus.h>
#else
#include <isa/isareg.h>
#endif
#endif
#include <sys/rtprio.h>
#define ELF_KERN_STR ("elf"__XSTRING(__ELF_WORD_SIZE)" kernel")
static MALLOC_DEFINE(M_NEXUSDEV, "nexusdev", "Nexus device");
#define DEVTONX(dev) ((struct nexus_device *)device_get_ivars(dev))
struct rman irq_rman, drq_rman, port_rman, mem_rman;
static int nexus_probe(device_t);
static int nexus_attach(device_t);
static int nexus_print_all_resources(device_t dev);
static int nexus_print_child(device_t, device_t);
static device_t nexus_add_child(device_t bus, u_int order, const char *name,
int unit);
static struct resource *nexus_alloc_resource(device_t, device_t, int, int *,
rman_res_t, rman_res_t, rman_res_t,
u_int);
static int nexus_adjust_resource(device_t, device_t, int, struct resource *,
rman_res_t, rman_res_t);
#ifdef SMP
static int nexus_bind_intr(device_t, device_t, struct resource *, int);
#endif
static int nexus_config_intr(device_t, int, enum intr_trigger,
enum intr_polarity);
static int nexus_describe_intr(device_t dev, device_t child,
struct resource *irq, void *cookie,
const char *descr);
static int nexus_activate_resource(device_t, device_t, int, int,
struct resource *);
static int nexus_deactivate_resource(device_t, device_t, int, int,
struct resource *);
static int nexus_map_resource(device_t bus, device_t child, int type,
struct resource *r,
struct resource_map_request *argsp,
struct resource_map *map);
static int nexus_unmap_resource(device_t bus, device_t child, int type,
struct resource *r, struct resource_map *map);
static int nexus_release_resource(device_t, device_t, int, int,
struct resource *);
static int nexus_setup_intr(device_t, device_t, struct resource *, int flags,
driver_filter_t filter, void (*)(void *), void *,
void **);
static int nexus_teardown_intr(device_t, device_t, struct resource *,
void *);
static struct resource_list *nexus_get_reslist(device_t dev, device_t child);
static int nexus_set_resource(device_t, device_t, int, int,
rman_res_t, rman_res_t);
static int nexus_get_resource(device_t, device_t, int, int,
rman_res_t *, rman_res_t *);
static void nexus_delete_resource(device_t, device_t, int, int);
static int nexus_get_cpus(device_t, device_t, enum cpu_sets, size_t,
cpuset_t *);
#ifdef DEV_APIC
static int nexus_alloc_msi(device_t pcib, device_t dev, int count, int maxcount, int *irqs);
static int nexus_release_msi(device_t pcib, device_t dev, int count, int *irqs);
static int nexus_alloc_msix(device_t pcib, device_t dev, int *irq);
static int nexus_release_msix(device_t pcib, device_t dev, int irq);
static int nexus_map_msi(device_t pcib, device_t dev, int irq, uint64_t *addr, uint32_t *data);
#endif
static device_method_t nexus_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, nexus_probe),
DEVMETHOD(device_attach, nexus_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
/* Bus interface */
DEVMETHOD(bus_print_child, nexus_print_child),
DEVMETHOD(bus_add_child, nexus_add_child),
DEVMETHOD(bus_alloc_resource, nexus_alloc_resource),
DEVMETHOD(bus_adjust_resource, nexus_adjust_resource),
DEVMETHOD(bus_release_resource, nexus_release_resource),
DEVMETHOD(bus_activate_resource, nexus_activate_resource),
DEVMETHOD(bus_deactivate_resource, nexus_deactivate_resource),
DEVMETHOD(bus_map_resource, nexus_map_resource),
DEVMETHOD(bus_unmap_resource, nexus_unmap_resource),
DEVMETHOD(bus_setup_intr, nexus_setup_intr),
DEVMETHOD(bus_teardown_intr, nexus_teardown_intr),
#ifdef SMP
DEVMETHOD(bus_bind_intr, nexus_bind_intr),
#endif
DEVMETHOD(bus_config_intr, nexus_config_intr),
DEVMETHOD(bus_describe_intr, nexus_describe_intr),
DEVMETHOD(bus_get_resource_list, nexus_get_reslist),
DEVMETHOD(bus_set_resource, nexus_set_resource),
DEVMETHOD(bus_get_resource, nexus_get_resource),
DEVMETHOD(bus_delete_resource, nexus_delete_resource),
DEVMETHOD(bus_get_cpus, nexus_get_cpus),
/* pcib interface */
#ifdef DEV_APIC
DEVMETHOD(pcib_alloc_msi, nexus_alloc_msi),
DEVMETHOD(pcib_release_msi, nexus_release_msi),
DEVMETHOD(pcib_alloc_msix, nexus_alloc_msix),
DEVMETHOD(pcib_release_msix, nexus_release_msix),
DEVMETHOD(pcib_map_msi, nexus_map_msi),
#endif
{ 0, 0 }
};
DEFINE_CLASS_0(nexus, nexus_driver, nexus_methods, 1);
static devclass_t nexus_devclass;
DRIVER_MODULE(nexus, root, nexus_driver, nexus_devclass, 0, 0);
static int
nexus_probe(device_t dev)
{
device_quiet(dev); /* suppress attach message for neatness */
return (BUS_PROBE_GENERIC);
}
void
nexus_init_resources(void)
{
int irq;
/*
* XXX working notes:
*
* - IRQ resource creation should be moved to the PIC/APIC driver.
* - DRQ resource creation should be moved to the DMAC driver.
* - The above should be sorted to probe earlier than any child busses.
*
* - Leave I/O and memory creation here, as child probes may need them.
* (especially eg. ACPI)
*/
/*
* IRQ's are on the mainboard on old systems, but on the ISA part
* of PCI->ISA bridges. There would be multiple sets of IRQs on
* multi-ISA-bus systems. PCI interrupts are routed to the ISA
* component, so in a way, PCI can be a partial child of an ISA bus(!).
* APIC interrupts are global though.
*/
irq_rman.rm_start = 0;
irq_rman.rm_type = RMAN_ARRAY;
irq_rman.rm_descr = "Interrupt request lines";
irq_rman.rm_end = NUM_IO_INTS - 1;
if (rman_init(&irq_rman))
panic("nexus_init_resources irq_rman");
/*
* We search for regions of existing IRQs and add those to the IRQ
* resource manager.
*/
for (irq = 0; irq < NUM_IO_INTS; irq++)
if (intr_lookup_source(irq) != NULL)
if (rman_manage_region(&irq_rman, irq, irq) != 0)
panic("nexus_init_resources irq_rman add");
/*
* ISA DMA on PCI systems is implemented in the ISA part of each
* PCI->ISA bridge and the channels can be duplicated if there are
* multiple bridges. (eg: laptops with docking stations)
*/
drq_rman.rm_start = 0;
#ifdef PC98
drq_rman.rm_end = 3;
#else
drq_rman.rm_end = 7;
#endif
drq_rman.rm_type = RMAN_ARRAY;
drq_rman.rm_descr = "DMA request lines";
/* XXX drq 0 not available on some machines */
if (rman_init(&drq_rman)
|| rman_manage_region(&drq_rman,
drq_rman.rm_start, drq_rman.rm_end))
panic("nexus_init_resources drq_rman");
/*
* However, IO ports and Memory truely are global at this level,
* as are APIC interrupts (however many IO APICS there turn out
* to be on large systems..)
*/
port_rman.rm_start = 0;
port_rman.rm_end = 0xffff;
port_rman.rm_type = RMAN_ARRAY;
port_rman.rm_descr = "I/O ports";
if (rman_init(&port_rman)
|| rman_manage_region(&port_rman, 0, 0xffff))
panic("nexus_init_resources port_rman");
mem_rman.rm_start = 0;
#ifndef PAE
mem_rman.rm_end = BUS_SPACE_MAXADDR;
#else
mem_rman.rm_end = ((1ULL << cpu_maxphyaddr) - 1);
#endif
mem_rman.rm_type = RMAN_ARRAY;
mem_rman.rm_descr = "I/O memory addresses";
if (rman_init(&mem_rman)
|| rman_manage_region(&mem_rman, 0, mem_rman.rm_end))
panic("nexus_init_resources mem_rman");
}
static int
nexus_attach(device_t dev)
{
nexus_init_resources();
bus_generic_probe(dev);
/*
* Explicitly add the legacy0 device here. Other platform
* types (such as ACPI), use their own nexus(4) subclass
* driver to override this routine and add their own root bus.
*/
if (BUS_ADD_CHILD(dev, 10, "legacy", 0) == NULL)
panic("legacy: could not attach");
bus_generic_attach(dev);
return 0;
}
static int
nexus_print_all_resources(device_t dev)
{
struct nexus_device *ndev = DEVTONX(dev);
struct resource_list *rl = &ndev->nx_resources;
int retval = 0;
if (STAILQ_FIRST(rl))
retval += printf(" at");
retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx");
retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
return retval;
}
static int
nexus_print_child(device_t bus, device_t child)
{
int retval = 0;
retval += bus_print_child_header(bus, child);
retval += nexus_print_all_resources(child);
if (device_get_flags(child))
retval += printf(" flags %#x", device_get_flags(child));
retval += printf(" on motherboard\n"); /* XXX "motherboard", ick */
return (retval);
}
static device_t
nexus_add_child(device_t bus, u_int order, const char *name, int unit)
{
device_t child;
struct nexus_device *ndev;
ndev = malloc(sizeof(struct nexus_device), M_NEXUSDEV, M_NOWAIT|M_ZERO);
if (!ndev)
return(0);
resource_list_init(&ndev->nx_resources);
child = device_add_child_ordered(bus, order, name, unit);
/* should we free this in nexus_child_detached? */
device_set_ivars(child, ndev);
return(child);
}
static struct rman *
nexus_rman(int type)
{
switch (type) {
case SYS_RES_IRQ:
return (&irq_rman);
case SYS_RES_DRQ:
return (&drq_rman);
case SYS_RES_IOPORT:
return (&port_rman);
case SYS_RES_MEMORY:
return (&mem_rman);
default:
return (NULL);
}
}
/*
* Allocate a resource on behalf of child. NB: child is usually going to be a
* child of one of our descendants, not a direct child of nexus0.
* (Exceptions include npx.)
*/
static struct resource *
nexus_alloc_resource(device_t bus, device_t child, int type, int *rid,
rman_res_t start, rman_res_t end, rman_res_t count,
u_int flags)
{
struct nexus_device *ndev = DEVTONX(child);
struct resource *rv;
struct resource_list_entry *rle;
struct rman *rm;
int needactivate = flags & RF_ACTIVE;
/*
* If this is an allocation of the "default" range for a given
* RID, and we know what the resources for this device are
* (ie. they aren't maintained by a child bus), then work out
* the start/end values.
*/
if (RMAN_IS_DEFAULT_RANGE(start, end) && (count == 1)) {
if (device_get_parent(child) != bus || ndev == NULL)
return(NULL);
rle = resource_list_find(&ndev->nx_resources, type, *rid);
if (rle == NULL)
return(NULL);
start = rle->start;
end = rle->end;
count = rle->count;
}
flags &= ~RF_ACTIVE;
rm = nexus_rman(type);
if (rm == NULL)
return (NULL);
rv = rman_reserve_resource(rm, start, end, count, flags, child);
if (rv == NULL)
return 0;
rman_set_rid(rv, *rid);
if (needactivate) {
if (bus_activate_resource(child, type, *rid, rv)) {
rman_release_resource(rv);
return 0;
}
}
return rv;
}
static int
nexus_adjust_resource(device_t bus, device_t child, int type,
struct resource *r, rman_res_t start, rman_res_t end)
{
struct rman *rm;
rm = nexus_rman(type);
if (rm == NULL)
return (ENXIO);
if (!rman_is_region_manager(r, rm))
return (EINVAL);
return (rman_adjust_resource(r, start, end));
}
static int
nexus_activate_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
struct resource_map map;
int error;
error = rman_activate_resource(r);
if (error != 0)
return (error);
if (!(rman_get_flags(r) & RF_UNMAPPED) &&
(type == SYS_RES_MEMORY || type == SYS_RES_IOPORT)) {
error = nexus_map_resource(bus, child, type, r, NULL, &map);
if (error) {
rman_deactivate_resource(r);
return (error);
}
rman_set_mapping(r,&map);
}
return (0);
}
static int
nexus_deactivate_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
struct resource_map map;
int error;
error = rman_deactivate_resource(r);
if (error)
return (error);
if (!(rman_get_flags(r) & RF_UNMAPPED) &&
(type == SYS_RES_MEMORY || type == SYS_RES_IOPORT)) {
rman_get_mapping(r, &map);
nexus_unmap_resource(bus, child, type, r, &map);
}
return (0);
}
static int
nexus_map_resource(device_t bus, device_t child, int type, struct resource *r,
struct resource_map_request *argsp, struct resource_map *map)
{
struct resource_map_request args;
rman_res_t end, length, start;
#ifdef PC98
int error;
#endif
/* Resources must be active to be mapped. */
if (!(rman_get_flags(r) & RF_ACTIVE))
return (ENXIO);
/* Mappings are only supported on I/O and memory resources. */
switch (type) {
case SYS_RES_IOPORT:
case SYS_RES_MEMORY:
break;
default:
return (EINVAL);
}
resource_init_map_request(&args);
if (argsp != NULL)
bcopy(argsp, &args, imin(argsp->size, args.size));
start = rman_get_start(r) + args.offset;
if (args.length == 0)
length = rman_get_size(r);
else
length = args.length;
end = start + length - 1;
if (start > rman_get_end(r) || start < rman_get_start(r))
return (EINVAL);
if (end > rman_get_end(r) || end < start)
return (EINVAL);
/*
* If this is a memory resource, map it into the kernel.
*/
switch (type) {
case SYS_RES_IOPORT:
#ifdef PC98
error = i386_bus_space_handle_alloc(X86_BUS_SPACE_IO,
start, length, &map->r_bushandle);
if (error)
return (error);
#else
map->r_bushandle = start;
#endif
map->r_bustag = X86_BUS_SPACE_IO;
map->r_size = length;
map->r_vaddr = NULL;
break;
case SYS_RES_MEMORY:
#ifdef PC98
error = i386_bus_space_handle_alloc(X86_BUS_SPACE_MEM,
start, length, &map->r_bushandle);
if (error)
return (error);
#endif
map->r_vaddr = pmap_mapdev_attr(start, length, args.memattr);
map->r_bustag = X86_BUS_SPACE_MEM;
map->r_size = length;
/*
* PC-98 stores the virtual address as a member of the
* structure in the handle. On plain x86, the handle is
* the virtual address.
*/
#ifdef PC98
map->r_bushandle->bsh_base = (bus_addr_t)map->r_vaddr;
#else
map->r_bushandle = (bus_space_handle_t)map->r_vaddr;
#endif
break;
}
return (0);
}
static int
nexus_unmap_resource(device_t bus, device_t child, int type, struct resource *r,
struct resource_map *map)
{
/*
* If this is a memory resource, unmap it.
*/
switch (type) {
case SYS_RES_MEMORY:
pmap_unmapdev((vm_offset_t)map->r_vaddr, map->r_size);
/* FALLTHROUGH */
case SYS_RES_IOPORT:
#ifdef PC98
i386_bus_space_handle_free(map->r_bustag, map->r_bushandle,
map->r_bushandle->bsh_sz);
#endif
break;
default:
return (EINVAL);
}
return (0);
}
static int
nexus_release_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
if (rman_get_flags(r) & RF_ACTIVE) {
int error = bus_deactivate_resource(child, type, rid, r);
if (error)
return error;
}
return (rman_release_resource(r));
}
/*
* Currently this uses the really grody interface from kern/kern_intr.c
* (which really doesn't belong in kern/anything.c). Eventually, all of
* the code in kern_intr.c and machdep_intr.c should get moved here, since
* this is going to be the official interface.
*/
static int
nexus_setup_intr(device_t bus, device_t child, struct resource *irq,
int flags, driver_filter_t filter, void (*ihand)(void *),
void *arg, void **cookiep)
{
int error;
/* somebody tried to setup an irq that failed to allocate! */
if (irq == NULL)
panic("nexus_setup_intr: NULL irq resource!");
*cookiep = NULL;
if ((rman_get_flags(irq) & RF_SHAREABLE) == 0)
flags |= INTR_EXCL;
/*
* We depend here on rman_activate_resource() being idempotent.
*/
error = rman_activate_resource(irq);
if (error)
return (error);
error = intr_add_handler(device_get_nameunit(child),
rman_get_start(irq), filter, ihand, arg, flags, cookiep);
return (error);
}
static int
nexus_teardown_intr(device_t dev, device_t child, struct resource *r, void *ih)
{
return (intr_remove_handler(ih));
}
#ifdef SMP
static int
nexus_bind_intr(device_t dev, device_t child, struct resource *irq, int cpu)
{
return (intr_bind(rman_get_start(irq), cpu));
}
#endif
static int
nexus_config_intr(device_t dev, int irq, enum intr_trigger trig,
enum intr_polarity pol)
{
return (intr_config_intr(irq, trig, pol));
}
static int
nexus_describe_intr(device_t dev, device_t child, struct resource *irq,
void *cookie, const char *descr)
{
return (intr_describe(rman_get_start(irq), cookie, descr));
}
static struct resource_list *
nexus_get_reslist(device_t dev, device_t child)
{
struct nexus_device *ndev = DEVTONX(child);
return (&ndev->nx_resources);
}
static int
nexus_set_resource(device_t dev, device_t child, int type, int rid,
rman_res_t start, rman_res_t count)
{
struct nexus_device *ndev = DEVTONX(child);
struct resource_list *rl = &ndev->nx_resources;
/* XXX this should return a success/failure indicator */
resource_list_add(rl, type, rid, start, start + count - 1, count);
return(0);
}
static int
nexus_get_resource(device_t dev, device_t child, int type, int rid,
rman_res_t *startp, rman_res_t *countp)
{
struct nexus_device *ndev = DEVTONX(child);
struct resource_list *rl = &ndev->nx_resources;
struct resource_list_entry *rle;
rle = resource_list_find(rl, type, rid);
if (!rle)
return(ENOENT);
if (startp)
*startp = rle->start;
if (countp)
*countp = rle->count;
return(0);
}
static void
nexus_delete_resource(device_t dev, device_t child, int type, int rid)
{
struct nexus_device *ndev = DEVTONX(child);
struct resource_list *rl = &ndev->nx_resources;
resource_list_delete(rl, type, rid);
}
static int
nexus_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
cpuset_t *cpuset)
{
switch (op) {
#ifdef SMP
case INTR_CPUS:
if (setsize != sizeof(cpuset_t))
return (EINVAL);
*cpuset = intr_cpus;
return (0);
#endif
default:
return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
}
}
/* Called from the MSI code to add new IRQs to the IRQ rman. */
void
nexus_add_irq(u_long irq)
{
if (rman_manage_region(&irq_rman, irq, irq) != 0)
panic("%s: failed", __func__);
}
#ifdef DEV_APIC
static int
nexus_alloc_msix(device_t pcib, device_t dev, int *irq)
{
return (msix_alloc(dev, irq));
}
static int
nexus_release_msix(device_t pcib, device_t dev, int irq)
{
return (msix_release(irq));
}
static int
nexus_alloc_msi(device_t pcib, device_t dev, int count, int maxcount, int *irqs)
{
return (msi_alloc(dev, count, maxcount, irqs));
}
static int
nexus_release_msi(device_t pcib, device_t dev, int count, int *irqs)
{
return (msi_release(irqs, count));
}
static int
nexus_map_msi(device_t pcib, device_t dev, int irq, uint64_t *addr, uint32_t *data)
{
return (msi_map(irq, addr, data));
}
#endif
/* Placeholder for system RAM. */
static void
ram_identify(driver_t *driver, device_t parent)
{
if (resource_disabled("ram", 0))
return;
if (BUS_ADD_CHILD(parent, 0, "ram", 0) == NULL)
panic("ram_identify");
}
static int
ram_probe(device_t dev)
{
device_quiet(dev);
device_set_desc(dev, "System RAM");
return (0);
}
static int
ram_attach(device_t dev)
{
struct bios_smap *smapbase, *smap, *smapend;
struct resource *res;
vm_paddr_t *p;
caddr_t kmdp;
uint32_t smapsize;
int error, rid;
/* Retrieve the system memory map from the loader. */
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type(ELF_KERN_STR);
smapbase = (struct bios_smap *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_SMAP);
if (smapbase != NULL) {
smapsize = *((u_int32_t *)smapbase - 1);
smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
rid = 0;
for (smap = smapbase; smap < smapend; smap++) {
if (smap->type != SMAP_TYPE_MEMORY ||
smap->length == 0)
continue;
#ifdef __i386__
/*
* Resources use long's to track resources, so
* we can't include memory regions above 4GB.
*/
if (smap->base > ~0ul)
continue;
#endif
error = bus_set_resource(dev, SYS_RES_MEMORY, rid,
smap->base, smap->length);
if (error)
panic(
"ram_attach: resource %d failed set with %d",
rid, error);
res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
0);
if (res == NULL)
panic("ram_attach: resource %d failed to attach",
rid);
rid++;
}
return (0);
}
/*
* If the system map is not available, fall back to using
* dump_avail[]. We use the dump_avail[] array rather than
* phys_avail[] for the memory map as phys_avail[] contains
* holes for kernel memory, page 0, the message buffer, and
* the dcons buffer. We test the end address in the loop
* instead of the start since the start address for the first
* segment is 0.
*/
for (rid = 0, p = dump_avail; p[1] != 0; rid++, p += 2) {
#ifdef PAE
/*
* Resources use long's to track resources, so we can't
* include memory regions above 4GB.
*/
if (p[0] > ~0ul)
break;
#endif
error = bus_set_resource(dev, SYS_RES_MEMORY, rid, p[0],
p[1] - p[0]);
if (error)
panic("ram_attach: resource %d failed set with %d", rid,
error);
res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, 0);
if (res == NULL)
panic("ram_attach: resource %d failed to attach", rid);
}
return (0);
}
static device_method_t ram_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, ram_identify),
DEVMETHOD(device_probe, ram_probe),
DEVMETHOD(device_attach, ram_attach),
{ 0, 0 }
};
static driver_t ram_driver = {
"ram",
ram_methods,
1, /* no softc */
};
static devclass_t ram_devclass;
DRIVER_MODULE(ram, nexus, ram_driver, ram_devclass, 0, 0);
#ifdef DEV_ISA
/*
* Placeholder which claims PnP 'devices' which describe system
* resources.
*/
static struct isa_pnp_id sysresource_ids[] = {
{ 0x010cd041 /* PNP0c01 */, "System Memory" },
{ 0x020cd041 /* PNP0c02 */, "System Resource" },
{ 0 }
};
static int
sysresource_probe(device_t dev)
{
int result;
if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, sysresource_ids)) <= 0) {
device_quiet(dev);
}
return(result);
}
static int
sysresource_attach(device_t dev)
{
return(0);
}
static device_method_t sysresource_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, sysresource_probe),
DEVMETHOD(device_attach, sysresource_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
{ 0, 0 }
};
static driver_t sysresource_driver = {
"sysresource",
sysresource_methods,
1, /* no softc */
};
static devclass_t sysresource_devclass;
DRIVER_MODULE(sysresource, isa, sysresource_driver, sysresource_devclass, 0, 0);
#endif /* DEV_ISA */