freebsd-dev/contrib/netbsd-tests/lib/libm/t_cos.c
Alex Richardson 1ec3feb648 Update libm tests from NetBSD
I did this without a full vendor update since that would cause too many
conflicts. Since these files now almost match the NetBSD sources the
next git subtree merge should work just fine.

Reviewed By:	lwhsu
Differential Revision: https://reviews.freebsd.org/D28797
2021-02-22 17:41:04 +00:00

400 lines
8.9 KiB
C

/* $NetBSD: t_cos.c,v 1.9 2019/05/27 00:10:36 maya Exp $ */
/*-
* Copyright (c) 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jukka Ruohonen.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <atf-c.h>
#include <float.h>
#include <math.h>
static const struct {
int angle;
double x;
double y;
float fy;
} angles[] = {
{ -180, -3.141592653589793, -1.0000000000000000, 999 },
{ -135, -2.356194490192345, -0.7071067811865476, 999 },
{ -90, -1.5707963267948966, 6.123233995736766e-17, -4.3711388e-08 },
{ -90, -1.5707963267948968, -1.6081226496766366e-16, -4.3711388e-08 },
{ -45, -0.785398163397448, 0.7071067811865478, 999 },
{ 0, 0.000000000000000, 1.0000000000000000, 999 },
{ 30, 0.523598775598299, 0.8660254037844386, 999 },
{ 45, 0.785398163397448, 0.7071067811865478, 999 },
{ 60, 1.0471975511965976, 0.5000000000000001, 999 },
{ 60, 1.0471975511965979, 0.4999999999999999, 999 },
{ 90, 1.570796326794897, -3.8285686989269494e-16, -4.3711388e-08 },
{ 120, 2.0943951023931953, -0.4999999999999998, 999 },
{ 120, 2.0943951023931957, -0.5000000000000002, 999 },
{ 135, 2.356194490192345, -0.7071067811865476, 999 },
{ 150, 2.617993877991494, -0.8660254037844386, 999 },
{ 180, 3.141592653589793, -1.0000000000000000, 999 },
{ 270, 4.712388980384690, -1.8369701987210297e-16, 1.1924881e-08 },
{ 360, 6.283185307179586, 1.0000000000000000, 999 },
};
#ifdef __HAVE_LONG_DOUBLE
/*
* cosl(3)
*/
ATF_TC(cosl_angles);
ATF_TC_HEAD(cosl_angles, tc)
{
atf_tc_set_md_var(tc, "descr", "Test some selected angles");
}
ATF_TC_BODY(cosl_angles, tc)
{
/*
* XXX The given data is for double, so take that
* into account and expect less precise results..
*/
const long double eps = DBL_EPSILON;
size_t i;
for (i = 0; i < __arraycount(angles); i++) {
int deg = angles[i].angle;
long double theta = angles[i].x;
long double cos_theta = angles[i].y;
assert(cos_theta != 0);
if (!(fabsl((cosl(theta) - cos_theta)/cos_theta) <= eps)) {
atf_tc_fail_nonfatal("cos(%d deg = %.17Lg) = %.17Lg"
" != %.17Lg",
deg, theta, cosl(theta), cos_theta);
}
}
}
ATF_TC(cosl_nan);
ATF_TC_HEAD(cosl_nan, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cosl(NaN) == NaN");
}
ATF_TC_BODY(cosl_nan, tc)
{
const long double x = 0.0L / 0.0L;
ATF_CHECK(isnan(x) != 0);
ATF_CHECK(isnan(cosl(x)) != 0);
}
ATF_TC(cosl_inf_neg);
ATF_TC_HEAD(cosl_inf_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cosl(-Inf) == NaN");
}
ATF_TC_BODY(cosl_inf_neg, tc)
{
const long double x = -1.0L / 0.0L;
ATF_CHECK(isnan(cosl(x)) != 0);
}
ATF_TC(cosl_inf_pos);
ATF_TC_HEAD(cosl_inf_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cosl(+Inf) == NaN");
}
ATF_TC_BODY(cosl_inf_pos, tc)
{
const long double x = 1.0L / 0.0L;
ATF_CHECK(isnan(cosl(x)) != 0);
}
ATF_TC(cosl_zero_neg);
ATF_TC_HEAD(cosl_zero_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cosl(-0.0) == 1.0");
}
ATF_TC_BODY(cosl_zero_neg, tc)
{
const long double x = -0.0L;
ATF_CHECK(cosl(x) == 1.0);
}
ATF_TC(cosl_zero_pos);
ATF_TC_HEAD(cosl_zero_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cosl(+0.0) == 1.0");
}
ATF_TC_BODY(cosl_zero_pos, tc)
{
const long double x = 0.0L;
ATF_CHECK(cosl(x) == 1.0);
}
#endif
/*
* cos(3)
*/
ATF_TC(cos_angles);
ATF_TC_HEAD(cos_angles, tc)
{
atf_tc_set_md_var(tc, "descr", "Test some selected angles");
}
ATF_TC_BODY(cos_angles, tc)
{
const double eps = DBL_EPSILON;
size_t i;
for (i = 0; i < __arraycount(angles); i++) {
int deg = angles[i].angle;
double theta = angles[i].x;
double cos_theta = angles[i].y;
assert(cos_theta != 0);
if (!(fabs((cos(theta) - cos_theta)/cos_theta) <= eps)) {
atf_tc_fail_nonfatal("cos(%d deg = %.17g) = %.17g"
" != %.17g",
deg, theta, cos(theta), cos_theta);
}
}
}
ATF_TC(cos_nan);
ATF_TC_HEAD(cos_nan, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cos(NaN) == NaN");
}
ATF_TC_BODY(cos_nan, tc)
{
const double x = 0.0L / 0.0L;
ATF_CHECK(isnan(x) != 0);
ATF_CHECK(isnan(cos(x)) != 0);
}
ATF_TC(cos_inf_neg);
ATF_TC_HEAD(cos_inf_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cos(-Inf) == NaN");
}
ATF_TC_BODY(cos_inf_neg, tc)
{
const double x = -1.0L / 0.0L;
ATF_CHECK(isnan(cos(x)) != 0);
}
ATF_TC(cos_inf_pos);
ATF_TC_HEAD(cos_inf_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cos(+Inf) == NaN");
}
ATF_TC_BODY(cos_inf_pos, tc)
{
const double x = 1.0L / 0.0L;
ATF_CHECK(isnan(cos(x)) != 0);
}
ATF_TC(cos_zero_neg);
ATF_TC_HEAD(cos_zero_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cos(-0.0) == 1.0");
}
ATF_TC_BODY(cos_zero_neg, tc)
{
const double x = -0.0L;
ATF_CHECK(cos(x) == 1.0);
}
ATF_TC(cos_zero_pos);
ATF_TC_HEAD(cos_zero_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cos(+0.0) == 1.0");
}
ATF_TC_BODY(cos_zero_pos, tc)
{
const double x = 0.0L;
ATF_CHECK(cos(x) == 1.0);
}
/*
* cosf(3)
*/
ATF_TC(cosf_angles);
ATF_TC_HEAD(cosf_angles, tc)
{
atf_tc_set_md_var(tc, "descr", "Test some selected angles");
}
ATF_TC_BODY(cosf_angles, tc)
{
const float eps = FLT_EPSILON;
size_t i;
for (i = 0; i < __arraycount(angles); i++) {
int deg = angles[i].angle;
float theta = angles[i].x;
float cos_theta = angles[i].fy;
/*
* Force rounding to float even if FLT_EVAL_METHOD=2,
* as is the case on i386.
*
* The volatile should not be necessary, by C99 Sec.
* 5.2.4.2.2. para. 8 on p. 24 which specifies that
* assignment and cast remove all extra range and precision,
* but seems to be needed to work around a compiler bug.
*/
volatile float result = cosf(theta);
if (cos_theta == 999)
cos_theta = angles[i].y;
assert(cos_theta != 0);
if (!(fabsf((result - cos_theta)/cos_theta) <= eps)) {
atf_tc_fail_nonfatal("cosf(%d deg = %.8g) = %.8g"
" != %.8g", deg, theta, result, cos_theta);
}
}
}
ATF_TC(cosf_nan);
ATF_TC_HEAD(cosf_nan, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cosf(NaN) == NaN");
}
ATF_TC_BODY(cosf_nan, tc)
{
const float x = 0.0L / 0.0L;
ATF_CHECK(isnan(x) != 0);
ATF_CHECK(isnan(cosf(x)) != 0);
}
ATF_TC(cosf_inf_neg);
ATF_TC_HEAD(cosf_inf_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cosf(-Inf) == NaN");
}
ATF_TC_BODY(cosf_inf_neg, tc)
{
const float x = -1.0L / 0.0L;
if (isnan(cosf(x)) == 0) {
atf_tc_expect_fail("PR lib/45362");
atf_tc_fail("cosf(-Inf) != NaN");
}
}
ATF_TC(cosf_inf_pos);
ATF_TC_HEAD(cosf_inf_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cosf(+Inf) == NaN");
}
ATF_TC_BODY(cosf_inf_pos, tc)
{
const float x = 1.0L / 0.0L;
if (isnan(cosf(x)) == 0) {
atf_tc_expect_fail("PR lib/45362");
atf_tc_fail("cosf(+Inf) != NaN");
}
}
ATF_TC(cosf_zero_neg);
ATF_TC_HEAD(cosf_zero_neg, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cosf(-0.0) == 1.0");
}
ATF_TC_BODY(cosf_zero_neg, tc)
{
const float x = -0.0L;
ATF_CHECK(cosf(x) == 1.0);
}
ATF_TC(cosf_zero_pos);
ATF_TC_HEAD(cosf_zero_pos, tc)
{
atf_tc_set_md_var(tc, "descr", "Test cosf(+0.0) == 1.0");
}
ATF_TC_BODY(cosf_zero_pos, tc)
{
const float x = 0.0L;
ATF_CHECK(cosf(x) == 1.0);
}
ATF_TP_ADD_TCS(tp)
{
#ifdef __HAVE_LONG_DOUBLE
ATF_TP_ADD_TC(tp, cosl_angles);
ATF_TP_ADD_TC(tp, cosl_nan);
ATF_TP_ADD_TC(tp, cosl_inf_neg);
ATF_TP_ADD_TC(tp, cosl_inf_pos);
ATF_TP_ADD_TC(tp, cosl_zero_neg);
ATF_TP_ADD_TC(tp, cosl_zero_pos);
#endif
ATF_TP_ADD_TC(tp, cos_angles);
ATF_TP_ADD_TC(tp, cos_nan);
ATF_TP_ADD_TC(tp, cos_inf_neg);
ATF_TP_ADD_TC(tp, cos_inf_pos);
ATF_TP_ADD_TC(tp, cos_zero_neg);
ATF_TP_ADD_TC(tp, cos_zero_pos);
ATF_TP_ADD_TC(tp, cosf_angles);
ATF_TP_ADD_TC(tp, cosf_nan);
ATF_TP_ADD_TC(tp, cosf_inf_neg);
ATF_TP_ADD_TC(tp, cosf_inf_pos);
ATF_TP_ADD_TC(tp, cosf_zero_neg);
ATF_TP_ADD_TC(tp, cosf_zero_pos);
return atf_no_error();
}