03b0ca8b28
definition of igb_start() and igb_start_locked() (nor set if_start in the ifnet) when igb(4) uses if_transmit.
5945 lines
166 KiB
C
5945 lines
166 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2001-2011, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_altq.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#if __FreeBSD_version >= 800000
|
|
#include <sys/buf_ring.h>
|
|
#endif
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/smp.h>
|
|
#include <machine/smp.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_lro.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#include <machine/in_cksum.h>
|
|
#include <dev/led/led.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcireg.h>
|
|
|
|
#include "e1000_api.h"
|
|
#include "e1000_82575.h"
|
|
#include "if_igb.h"
|
|
|
|
/*********************************************************************
|
|
* Set this to one to display debug statistics
|
|
*********************************************************************/
|
|
int igb_display_debug_stats = 0;
|
|
|
|
/*********************************************************************
|
|
* Driver version:
|
|
*********************************************************************/
|
|
char igb_driver_version[] = "version - 2.3.1";
|
|
|
|
|
|
/*********************************************************************
|
|
* PCI Device ID Table
|
|
*
|
|
* Used by probe to select devices to load on
|
|
* Last field stores an index into e1000_strings
|
|
* Last entry must be all 0s
|
|
*
|
|
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID, String Index }
|
|
*********************************************************************/
|
|
|
|
static igb_vendor_info_t igb_vendor_info_array[] =
|
|
{
|
|
{ 0x8086, E1000_DEV_ID_82575EB_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82575EB_FIBER_SERDES,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82575GB_QUAD_COPPER,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_NS, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_NS_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_SERDES_QUAD,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_QUAD_COPPER,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_QUAD_COPPER_ET2,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82576_VF, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82580_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82580_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82580_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82580_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82580_COPPER_DUAL,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_82580_QUAD_FIBER,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_DH89XXCC_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_DH89XXCC_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_DH89XXCC_SFP, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_DH89XXCC_BACKPLANE,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_I350_COPPER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_I350_FIBER, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_I350_SERDES, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_I350_SGMII, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
{ 0x8086, E1000_DEV_ID_I350_VF, PCI_ANY_ID, PCI_ANY_ID, 0},
|
|
/* required last entry */
|
|
{ 0, 0, 0, 0, 0}
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Table of branding strings for all supported NICs.
|
|
*********************************************************************/
|
|
|
|
static char *igb_strings[] = {
|
|
"Intel(R) PRO/1000 Network Connection"
|
|
};
|
|
|
|
/*********************************************************************
|
|
* Function prototypes
|
|
*********************************************************************/
|
|
static int igb_probe(device_t);
|
|
static int igb_attach(device_t);
|
|
static int igb_detach(device_t);
|
|
static int igb_shutdown(device_t);
|
|
static int igb_suspend(device_t);
|
|
static int igb_resume(device_t);
|
|
#if __FreeBSD_version >= 800000
|
|
static int igb_mq_start(struct ifnet *, struct mbuf *);
|
|
static int igb_mq_start_locked(struct ifnet *,
|
|
struct tx_ring *, struct mbuf *);
|
|
static void igb_qflush(struct ifnet *);
|
|
static void igb_deferred_mq_start(void *, int);
|
|
#else
|
|
static void igb_start(struct ifnet *);
|
|
static void igb_start_locked(struct tx_ring *, struct ifnet *ifp);
|
|
#endif
|
|
static int igb_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void igb_init(void *);
|
|
static void igb_init_locked(struct adapter *);
|
|
static void igb_stop(void *);
|
|
static void igb_media_status(struct ifnet *, struct ifmediareq *);
|
|
static int igb_media_change(struct ifnet *);
|
|
static void igb_identify_hardware(struct adapter *);
|
|
static int igb_allocate_pci_resources(struct adapter *);
|
|
static int igb_allocate_msix(struct adapter *);
|
|
static int igb_allocate_legacy(struct adapter *);
|
|
static int igb_setup_msix(struct adapter *);
|
|
static void igb_free_pci_resources(struct adapter *);
|
|
static void igb_local_timer(void *);
|
|
static void igb_reset(struct adapter *);
|
|
static int igb_setup_interface(device_t, struct adapter *);
|
|
static int igb_allocate_queues(struct adapter *);
|
|
static void igb_configure_queues(struct adapter *);
|
|
|
|
static int igb_allocate_transmit_buffers(struct tx_ring *);
|
|
static void igb_setup_transmit_structures(struct adapter *);
|
|
static void igb_setup_transmit_ring(struct tx_ring *);
|
|
static void igb_initialize_transmit_units(struct adapter *);
|
|
static void igb_free_transmit_structures(struct adapter *);
|
|
static void igb_free_transmit_buffers(struct tx_ring *);
|
|
|
|
static int igb_allocate_receive_buffers(struct rx_ring *);
|
|
static int igb_setup_receive_structures(struct adapter *);
|
|
static int igb_setup_receive_ring(struct rx_ring *);
|
|
static void igb_initialize_receive_units(struct adapter *);
|
|
static void igb_free_receive_structures(struct adapter *);
|
|
static void igb_free_receive_buffers(struct rx_ring *);
|
|
static void igb_free_receive_ring(struct rx_ring *);
|
|
|
|
static void igb_enable_intr(struct adapter *);
|
|
static void igb_disable_intr(struct adapter *);
|
|
static void igb_update_stats_counters(struct adapter *);
|
|
static bool igb_txeof(struct tx_ring *);
|
|
|
|
static __inline void igb_rx_discard(struct rx_ring *, int);
|
|
static __inline void igb_rx_input(struct rx_ring *,
|
|
struct ifnet *, struct mbuf *, u32);
|
|
|
|
static bool igb_rxeof(struct igb_queue *, int, int *);
|
|
static void igb_rx_checksum(u32, struct mbuf *, u32);
|
|
static bool igb_tx_ctx_setup(struct tx_ring *, struct mbuf *);
|
|
static bool igb_tso_setup(struct tx_ring *, struct mbuf *, int,
|
|
struct ip *, struct tcphdr *);
|
|
static void igb_set_promisc(struct adapter *);
|
|
static void igb_disable_promisc(struct adapter *);
|
|
static void igb_set_multi(struct adapter *);
|
|
static void igb_update_link_status(struct adapter *);
|
|
static void igb_refresh_mbufs(struct rx_ring *, int);
|
|
|
|
static void igb_register_vlan(void *, struct ifnet *, u16);
|
|
static void igb_unregister_vlan(void *, struct ifnet *, u16);
|
|
static void igb_setup_vlan_hw_support(struct adapter *);
|
|
|
|
static int igb_xmit(struct tx_ring *, struct mbuf **);
|
|
static int igb_dma_malloc(struct adapter *, bus_size_t,
|
|
struct igb_dma_alloc *, int);
|
|
static void igb_dma_free(struct adapter *, struct igb_dma_alloc *);
|
|
static int igb_sysctl_nvm_info(SYSCTL_HANDLER_ARGS);
|
|
static void igb_print_nvm_info(struct adapter *);
|
|
static int igb_is_valid_ether_addr(u8 *);
|
|
static void igb_add_hw_stats(struct adapter *);
|
|
|
|
static void igb_vf_init_stats(struct adapter *);
|
|
static void igb_update_vf_stats_counters(struct adapter *);
|
|
|
|
/* Management and WOL Support */
|
|
static void igb_init_manageability(struct adapter *);
|
|
static void igb_release_manageability(struct adapter *);
|
|
static void igb_get_hw_control(struct adapter *);
|
|
static void igb_release_hw_control(struct adapter *);
|
|
static void igb_enable_wakeup(device_t);
|
|
static void igb_led_func(void *, int);
|
|
|
|
static int igb_irq_fast(void *);
|
|
static void igb_msix_que(void *);
|
|
static void igb_msix_link(void *);
|
|
static void igb_handle_que(void *context, int pending);
|
|
static void igb_handle_link(void *context, int pending);
|
|
static void igb_handle_link_locked(struct adapter *);
|
|
|
|
static void igb_set_sysctl_value(struct adapter *, const char *,
|
|
const char *, int *, int);
|
|
static int igb_set_flowcntl(SYSCTL_HANDLER_ARGS);
|
|
static int igb_sysctl_dmac(SYSCTL_HANDLER_ARGS);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static poll_handler_t igb_poll;
|
|
#endif /* POLLING */
|
|
|
|
/*********************************************************************
|
|
* FreeBSD Device Interface Entry Points
|
|
*********************************************************************/
|
|
|
|
static device_method_t igb_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, igb_probe),
|
|
DEVMETHOD(device_attach, igb_attach),
|
|
DEVMETHOD(device_detach, igb_detach),
|
|
DEVMETHOD(device_shutdown, igb_shutdown),
|
|
DEVMETHOD(device_suspend, igb_suspend),
|
|
DEVMETHOD(device_resume, igb_resume),
|
|
{0, 0}
|
|
};
|
|
|
|
static driver_t igb_driver = {
|
|
"igb", igb_methods, sizeof(struct adapter),
|
|
};
|
|
|
|
static devclass_t igb_devclass;
|
|
DRIVER_MODULE(igb, pci, igb_driver, igb_devclass, 0, 0);
|
|
MODULE_DEPEND(igb, pci, 1, 1, 1);
|
|
MODULE_DEPEND(igb, ether, 1, 1, 1);
|
|
|
|
/*********************************************************************
|
|
* Tunable default values.
|
|
*********************************************************************/
|
|
|
|
static SYSCTL_NODE(_hw, OID_AUTO, igb, CTLFLAG_RD, 0, "IGB driver parameters");
|
|
|
|
/* Descriptor defaults */
|
|
static int igb_rxd = IGB_DEFAULT_RXD;
|
|
static int igb_txd = IGB_DEFAULT_TXD;
|
|
TUNABLE_INT("hw.igb.rxd", &igb_rxd);
|
|
TUNABLE_INT("hw.igb.txd", &igb_txd);
|
|
SYSCTL_INT(_hw_igb, OID_AUTO, rxd, CTLFLAG_RDTUN, &igb_rxd, 0,
|
|
"Number of receive descriptors per queue");
|
|
SYSCTL_INT(_hw_igb, OID_AUTO, txd, CTLFLAG_RDTUN, &igb_txd, 0,
|
|
"Number of transmit descriptors per queue");
|
|
|
|
/*
|
|
** AIM: Adaptive Interrupt Moderation
|
|
** which means that the interrupt rate
|
|
** is varied over time based on the
|
|
** traffic for that interrupt vector
|
|
*/
|
|
static int igb_enable_aim = TRUE;
|
|
TUNABLE_INT("hw.igb.enable_aim", &igb_enable_aim);
|
|
SYSCTL_INT(_hw_igb, OID_AUTO, enable_aim, CTLFLAG_RW, &igb_enable_aim, 0,
|
|
"Enable adaptive interrupt moderation");
|
|
|
|
/*
|
|
* MSIX should be the default for best performance,
|
|
* but this allows it to be forced off for testing.
|
|
*/
|
|
static int igb_enable_msix = 1;
|
|
TUNABLE_INT("hw.igb.enable_msix", &igb_enable_msix);
|
|
SYSCTL_INT(_hw_igb, OID_AUTO, enable_msix, CTLFLAG_RDTUN, &igb_enable_msix, 0,
|
|
"Enable MSI-X interrupts");
|
|
|
|
/*
|
|
** Tuneable Interrupt rate
|
|
*/
|
|
static int igb_max_interrupt_rate = 8000;
|
|
TUNABLE_INT("hw.igb.max_interrupt_rate", &igb_max_interrupt_rate);
|
|
SYSCTL_INT(_hw_igb, OID_AUTO, max_interrupt_rate, CTLFLAG_RDTUN,
|
|
&igb_max_interrupt_rate, 0, "Maximum interrupts per second");
|
|
|
|
/*
|
|
** Header split causes the packet header to
|
|
** be dma'd to a seperate mbuf from the payload.
|
|
** this can have memory alignment benefits. But
|
|
** another plus is that small packets often fit
|
|
** into the header and thus use no cluster. Its
|
|
** a very workload dependent type feature.
|
|
*/
|
|
static int igb_header_split = FALSE;
|
|
TUNABLE_INT("hw.igb.hdr_split", &igb_header_split);
|
|
SYSCTL_INT(_hw_igb, OID_AUTO, header_split, CTLFLAG_RDTUN, &igb_header_split, 0,
|
|
"Enable receive mbuf header split");
|
|
|
|
/*
|
|
** This will autoconfigure based on
|
|
** the number of CPUs if left at 0.
|
|
*/
|
|
static int igb_num_queues = 0;
|
|
TUNABLE_INT("hw.igb.num_queues", &igb_num_queues);
|
|
SYSCTL_INT(_hw_igb, OID_AUTO, num_queues, CTLFLAG_RDTUN, &igb_num_queues, 0,
|
|
"Number of queues to configure, 0 indicates autoconfigure");
|
|
|
|
/*
|
|
** Global variable to store last used CPU when binding queues
|
|
** to CPUs in igb_allocate_msix. Starts at CPU_FIRST and increments when a
|
|
** queue is bound to a cpu.
|
|
*/
|
|
static int igb_last_bind_cpu = -1;
|
|
|
|
/* How many packets rxeof tries to clean at a time */
|
|
static int igb_rx_process_limit = 100;
|
|
TUNABLE_INT("hw.igb.rx_process_limit", &igb_rx_process_limit);
|
|
SYSCTL_INT(_hw_igb, OID_AUTO, rx_process_limit, CTLFLAG_RDTUN,
|
|
&igb_rx_process_limit, 0,
|
|
"Maximum number of received packets to process at a time, -1 means unlimited");
|
|
|
|
#ifdef DEV_NETMAP /* see ixgbe.c for details */
|
|
#include <dev/netmap/if_igb_netmap.h>
|
|
#endif /* DEV_NETMAP */
|
|
/*********************************************************************
|
|
* Device identification routine
|
|
*
|
|
* igb_probe determines if the driver should be loaded on
|
|
* adapter based on PCI vendor/device id of the adapter.
|
|
*
|
|
* return BUS_PROBE_DEFAULT on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
igb_probe(device_t dev)
|
|
{
|
|
char adapter_name[60];
|
|
uint16_t pci_vendor_id = 0;
|
|
uint16_t pci_device_id = 0;
|
|
uint16_t pci_subvendor_id = 0;
|
|
uint16_t pci_subdevice_id = 0;
|
|
igb_vendor_info_t *ent;
|
|
|
|
INIT_DEBUGOUT("igb_probe: begin");
|
|
|
|
pci_vendor_id = pci_get_vendor(dev);
|
|
if (pci_vendor_id != IGB_VENDOR_ID)
|
|
return (ENXIO);
|
|
|
|
pci_device_id = pci_get_device(dev);
|
|
pci_subvendor_id = pci_get_subvendor(dev);
|
|
pci_subdevice_id = pci_get_subdevice(dev);
|
|
|
|
ent = igb_vendor_info_array;
|
|
while (ent->vendor_id != 0) {
|
|
if ((pci_vendor_id == ent->vendor_id) &&
|
|
(pci_device_id == ent->device_id) &&
|
|
|
|
((pci_subvendor_id == ent->subvendor_id) ||
|
|
(ent->subvendor_id == PCI_ANY_ID)) &&
|
|
|
|
((pci_subdevice_id == ent->subdevice_id) ||
|
|
(ent->subdevice_id == PCI_ANY_ID))) {
|
|
sprintf(adapter_name, "%s %s",
|
|
igb_strings[ent->index],
|
|
igb_driver_version);
|
|
device_set_desc_copy(dev, adapter_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
ent++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device initialization routine
|
|
*
|
|
* The attach entry point is called when the driver is being loaded.
|
|
* This routine identifies the type of hardware, allocates all resources
|
|
* and initializes the hardware.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
igb_attach(device_t dev)
|
|
{
|
|
struct adapter *adapter;
|
|
int error = 0;
|
|
u16 eeprom_data;
|
|
|
|
INIT_DEBUGOUT("igb_attach: begin");
|
|
|
|
if (resource_disabled("igb", device_get_unit(dev))) {
|
|
device_printf(dev, "Disabled by device hint\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
adapter = device_get_softc(dev);
|
|
adapter->dev = adapter->osdep.dev = dev;
|
|
IGB_CORE_LOCK_INIT(adapter, device_get_nameunit(dev));
|
|
|
|
/* SYSCTL stuff */
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
|
|
igb_sysctl_nvm_info, "I", "NVM Information");
|
|
|
|
igb_set_sysctl_value(adapter, "enable_aim",
|
|
"Interrupt Moderation", &adapter->enable_aim,
|
|
igb_enable_aim);
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "fc", CTLTYPE_INT|CTLFLAG_RW,
|
|
adapter, 0, igb_set_flowcntl, "I", "Flow Control");
|
|
|
|
callout_init_mtx(&adapter->timer, &adapter->core_mtx, 0);
|
|
|
|
/* Determine hardware and mac info */
|
|
igb_identify_hardware(adapter);
|
|
|
|
/* Setup PCI resources */
|
|
if (igb_allocate_pci_resources(adapter)) {
|
|
device_printf(dev, "Allocation of PCI resources failed\n");
|
|
error = ENXIO;
|
|
goto err_pci;
|
|
}
|
|
|
|
/* Do Shared Code initialization */
|
|
if (e1000_setup_init_funcs(&adapter->hw, TRUE)) {
|
|
device_printf(dev, "Setup of Shared code failed\n");
|
|
error = ENXIO;
|
|
goto err_pci;
|
|
}
|
|
|
|
e1000_get_bus_info(&adapter->hw);
|
|
|
|
/* Sysctl for limiting the amount of work done in the taskqueue */
|
|
igb_set_sysctl_value(adapter, "rx_processing_limit",
|
|
"max number of rx packets to process",
|
|
&adapter->rx_process_limit, igb_rx_process_limit);
|
|
|
|
/*
|
|
* Validate number of transmit and receive descriptors. It
|
|
* must not exceed hardware maximum, and must be multiple
|
|
* of E1000_DBA_ALIGN.
|
|
*/
|
|
if (((igb_txd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN) != 0 ||
|
|
(igb_txd > IGB_MAX_TXD) || (igb_txd < IGB_MIN_TXD)) {
|
|
device_printf(dev, "Using %d TX descriptors instead of %d!\n",
|
|
IGB_DEFAULT_TXD, igb_txd);
|
|
adapter->num_tx_desc = IGB_DEFAULT_TXD;
|
|
} else
|
|
adapter->num_tx_desc = igb_txd;
|
|
if (((igb_rxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN) != 0 ||
|
|
(igb_rxd > IGB_MAX_RXD) || (igb_rxd < IGB_MIN_RXD)) {
|
|
device_printf(dev, "Using %d RX descriptors instead of %d!\n",
|
|
IGB_DEFAULT_RXD, igb_rxd);
|
|
adapter->num_rx_desc = IGB_DEFAULT_RXD;
|
|
} else
|
|
adapter->num_rx_desc = igb_rxd;
|
|
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_wait_to_complete = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
|
|
|
|
/* Copper options */
|
|
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
|
|
adapter->hw.phy.mdix = AUTO_ALL_MODES;
|
|
adapter->hw.phy.disable_polarity_correction = FALSE;
|
|
adapter->hw.phy.ms_type = IGB_MASTER_SLAVE;
|
|
}
|
|
|
|
/*
|
|
* Set the frame limits assuming
|
|
* standard ethernet sized frames.
|
|
*/
|
|
adapter->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHERNET_FCS_SIZE;
|
|
adapter->min_frame_size = ETH_ZLEN + ETHERNET_FCS_SIZE;
|
|
|
|
/*
|
|
** Allocate and Setup Queues
|
|
*/
|
|
if (igb_allocate_queues(adapter)) {
|
|
error = ENOMEM;
|
|
goto err_pci;
|
|
}
|
|
|
|
/* Allocate the appropriate stats memory */
|
|
if (adapter->vf_ifp) {
|
|
adapter->stats =
|
|
(struct e1000_vf_stats *)malloc(sizeof \
|
|
(struct e1000_vf_stats), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
igb_vf_init_stats(adapter);
|
|
} else
|
|
adapter->stats =
|
|
(struct e1000_hw_stats *)malloc(sizeof \
|
|
(struct e1000_hw_stats), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (adapter->stats == NULL) {
|
|
device_printf(dev, "Can not allocate stats memory\n");
|
|
error = ENOMEM;
|
|
goto err_late;
|
|
}
|
|
|
|
/* Allocate multicast array memory. */
|
|
adapter->mta = malloc(sizeof(u8) * ETH_ADDR_LEN *
|
|
MAX_NUM_MULTICAST_ADDRESSES, M_DEVBUF, M_NOWAIT);
|
|
if (adapter->mta == NULL) {
|
|
device_printf(dev, "Can not allocate multicast setup array\n");
|
|
error = ENOMEM;
|
|
goto err_late;
|
|
}
|
|
|
|
/* Some adapter-specific advanced features */
|
|
if (adapter->hw.mac.type >= e1000_i350) {
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "dmac", CTLTYPE_INT|CTLFLAG_RW,
|
|
adapter, 0, igb_sysctl_dmac, "I", "DMA Coalesce");
|
|
igb_set_sysctl_value(adapter, "eee_disabled",
|
|
"enable Energy Efficient Ethernet",
|
|
&adapter->hw.dev_spec._82575.eee_disable,
|
|
TRUE);
|
|
e1000_set_eee_i350(&adapter->hw);
|
|
}
|
|
|
|
/*
|
|
** Start from a known state, this is
|
|
** important in reading the nvm and
|
|
** mac from that.
|
|
*/
|
|
e1000_reset_hw(&adapter->hw);
|
|
|
|
/* Make sure we have a good EEPROM before we read from it */
|
|
if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
|
|
/*
|
|
** Some PCI-E parts fail the first check due to
|
|
** the link being in sleep state, call it again,
|
|
** if it fails a second time its a real issue.
|
|
*/
|
|
if (e1000_validate_nvm_checksum(&adapter->hw) < 0) {
|
|
device_printf(dev,
|
|
"The EEPROM Checksum Is Not Valid\n");
|
|
error = EIO;
|
|
goto err_late;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Copy the permanent MAC address out of the EEPROM
|
|
*/
|
|
if (e1000_read_mac_addr(&adapter->hw) < 0) {
|
|
device_printf(dev, "EEPROM read error while reading MAC"
|
|
" address\n");
|
|
error = EIO;
|
|
goto err_late;
|
|
}
|
|
/* Check its sanity */
|
|
if (!igb_is_valid_ether_addr(adapter->hw.mac.addr)) {
|
|
device_printf(dev, "Invalid MAC address\n");
|
|
error = EIO;
|
|
goto err_late;
|
|
}
|
|
|
|
/* Setup OS specific network interface */
|
|
if (igb_setup_interface(dev, adapter) != 0)
|
|
goto err_late;
|
|
|
|
/* Now get a good starting state */
|
|
igb_reset(adapter);
|
|
|
|
/* Initialize statistics */
|
|
igb_update_stats_counters(adapter);
|
|
|
|
adapter->hw.mac.get_link_status = 1;
|
|
igb_update_link_status(adapter);
|
|
|
|
/* Indicate SOL/IDER usage */
|
|
if (e1000_check_reset_block(&adapter->hw))
|
|
device_printf(dev,
|
|
"PHY reset is blocked due to SOL/IDER session.\n");
|
|
|
|
/* Determine if we have to control management hardware */
|
|
adapter->has_manage = e1000_enable_mng_pass_thru(&adapter->hw);
|
|
|
|
/*
|
|
* Setup Wake-on-Lan
|
|
*/
|
|
/* APME bit in EEPROM is mapped to WUC.APME */
|
|
eeprom_data = E1000_READ_REG(&adapter->hw, E1000_WUC) & E1000_WUC_APME;
|
|
if (eeprom_data)
|
|
adapter->wol = E1000_WUFC_MAG;
|
|
|
|
/* Register for VLAN events */
|
|
adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
|
|
igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
|
|
adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
|
|
igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
|
|
|
|
igb_add_hw_stats(adapter);
|
|
|
|
/* Tell the stack that the interface is not active */
|
|
adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
adapter->ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
|
|
adapter->led_dev = led_create(igb_led_func, adapter,
|
|
device_get_nameunit(dev));
|
|
|
|
/*
|
|
** Configure Interrupts
|
|
*/
|
|
if ((adapter->msix > 1) && (igb_enable_msix))
|
|
error = igb_allocate_msix(adapter);
|
|
else /* MSI or Legacy */
|
|
error = igb_allocate_legacy(adapter);
|
|
if (error)
|
|
goto err_late;
|
|
|
|
#ifdef DEV_NETMAP
|
|
igb_netmap_attach(adapter);
|
|
#endif /* DEV_NETMAP */
|
|
INIT_DEBUGOUT("igb_attach: end");
|
|
|
|
return (0);
|
|
|
|
err_late:
|
|
igb_detach(dev);
|
|
igb_free_transmit_structures(adapter);
|
|
igb_free_receive_structures(adapter);
|
|
igb_release_hw_control(adapter);
|
|
err_pci:
|
|
igb_free_pci_resources(adapter);
|
|
if (adapter->ifp != NULL)
|
|
if_free(adapter->ifp);
|
|
free(adapter->mta, M_DEVBUF);
|
|
IGB_CORE_LOCK_DESTROY(adapter);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
* Device removal routine
|
|
*
|
|
* The detach entry point is called when the driver is being removed.
|
|
* This routine stops the adapter and deallocates all the resources
|
|
* that were allocated for driver operation.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
*********************************************************************/
|
|
|
|
static int
|
|
igb_detach(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
INIT_DEBUGOUT("igb_detach: begin");
|
|
|
|
/* Make sure VLANS are not using driver */
|
|
if (adapter->ifp->if_vlantrunk != NULL) {
|
|
device_printf(dev,"Vlan in use, detach first\n");
|
|
return (EBUSY);
|
|
}
|
|
|
|
ether_ifdetach(adapter->ifp);
|
|
|
|
if (adapter->led_dev != NULL)
|
|
led_destroy(adapter->led_dev);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
adapter->in_detach = 1;
|
|
igb_stop(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
|
|
e1000_phy_hw_reset(&adapter->hw);
|
|
|
|
/* Give control back to firmware */
|
|
igb_release_manageability(adapter);
|
|
igb_release_hw_control(adapter);
|
|
|
|
if (adapter->wol) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
|
|
igb_enable_wakeup(dev);
|
|
}
|
|
|
|
/* Unregister VLAN events */
|
|
if (adapter->vlan_attach != NULL)
|
|
EVENTHANDLER_DEREGISTER(vlan_config, adapter->vlan_attach);
|
|
if (adapter->vlan_detach != NULL)
|
|
EVENTHANDLER_DEREGISTER(vlan_unconfig, adapter->vlan_detach);
|
|
|
|
callout_drain(&adapter->timer);
|
|
|
|
#ifdef DEV_NETMAP
|
|
netmap_detach(adapter->ifp);
|
|
#endif /* DEV_NETMAP */
|
|
igb_free_pci_resources(adapter);
|
|
bus_generic_detach(dev);
|
|
if_free(ifp);
|
|
|
|
igb_free_transmit_structures(adapter);
|
|
igb_free_receive_structures(adapter);
|
|
if (adapter->mta != NULL)
|
|
free(adapter->mta, M_DEVBUF);
|
|
|
|
IGB_CORE_LOCK_DESTROY(adapter);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Shutdown entry point
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
igb_shutdown(device_t dev)
|
|
{
|
|
return igb_suspend(dev);
|
|
}
|
|
|
|
/*
|
|
* Suspend/resume device methods.
|
|
*/
|
|
static int
|
|
igb_suspend(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
|
|
igb_stop(adapter);
|
|
|
|
igb_release_manageability(adapter);
|
|
igb_release_hw_control(adapter);
|
|
|
|
if (adapter->wol) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, E1000_WUC_PME_EN);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUFC, adapter->wol);
|
|
igb_enable_wakeup(dev);
|
|
}
|
|
|
|
IGB_CORE_UNLOCK(adapter);
|
|
|
|
return bus_generic_suspend(dev);
|
|
}
|
|
|
|
static int
|
|
igb_resume(device_t dev)
|
|
{
|
|
struct adapter *adapter = device_get_softc(dev);
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_init_locked(adapter);
|
|
igb_init_manageability(adapter);
|
|
|
|
if ((ifp->if_flags & IFF_UP) &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) && adapter->link_active) {
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
IGB_TX_LOCK(txr);
|
|
#if __FreeBSD_version >= 800000
|
|
/* Process the stack queue only if not depleted */
|
|
if (((txr->queue_status & IGB_QUEUE_DEPLETED) == 0) &&
|
|
!drbr_empty(ifp, txr->br))
|
|
igb_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
igb_start_locked(txr, ifp);
|
|
#endif
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
}
|
|
IGB_CORE_UNLOCK(adapter);
|
|
|
|
return bus_generic_resume(dev);
|
|
}
|
|
|
|
|
|
#if __FreeBSD_version < 800000
|
|
|
|
/*********************************************************************
|
|
* Transmit entry point
|
|
*
|
|
* igb_start is called by the stack to initiate a transmit.
|
|
* The driver will remain in this routine as long as there are
|
|
* packets to transmit and transmit resources are available.
|
|
* In case resources are not available stack is notified and
|
|
* the packet is requeued.
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_start_locked(struct tx_ring *txr, struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct mbuf *m_head;
|
|
|
|
IGB_TX_LOCK_ASSERT(txr);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING)
|
|
return;
|
|
if (!adapter->link_active)
|
|
return;
|
|
|
|
/* Call cleanup if number of TX descriptors low */
|
|
if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD)
|
|
igb_txeof(txr);
|
|
|
|
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
|
|
if (txr->tx_avail <= IGB_MAX_SCATTER) {
|
|
txr->queue_status |= IGB_QUEUE_DEPLETED;
|
|
break;
|
|
}
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Encapsulation can modify our pointer, and or make it
|
|
* NULL on failure. In that event, we can't requeue.
|
|
*/
|
|
if (igb_xmit(txr, &m_head)) {
|
|
if (m_head != NULL)
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
if (txr->tx_avail <= IGB_MAX_SCATTER)
|
|
txr->queue_status |= IGB_QUEUE_DEPLETED;
|
|
break;
|
|
}
|
|
|
|
/* Send a copy of the frame to the BPF listener */
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
|
|
/* Set watchdog on */
|
|
txr->watchdog_time = ticks;
|
|
txr->queue_status |= IGB_QUEUE_WORKING;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Legacy TX driver routine, called from the
|
|
* stack, always uses tx[0], and spins for it.
|
|
* Should not be used with multiqueue tx
|
|
*/
|
|
static void
|
|
igb_start(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
IGB_TX_LOCK(txr);
|
|
igb_start_locked(txr, ifp);
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
#else
|
|
/*
|
|
** Multiqueue Transmit driver
|
|
**
|
|
*/
|
|
static int
|
|
igb_mq_start(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct igb_queue *que;
|
|
struct tx_ring *txr;
|
|
int i, err = 0;
|
|
bool moveable = TRUE;
|
|
|
|
/* Which queue to use */
|
|
if ((m->m_flags & M_FLOWID) != 0) {
|
|
i = m->m_pkthdr.flowid % adapter->num_queues;
|
|
moveable = FALSE;
|
|
} else
|
|
i = curcpu % adapter->num_queues;
|
|
|
|
txr = &adapter->tx_rings[i];
|
|
que = &adapter->queues[i];
|
|
if (((txr->queue_status & IGB_QUEUE_DEPLETED) == 0) &&
|
|
IGB_TX_TRYLOCK(txr)) {
|
|
err = igb_mq_start_locked(ifp, txr, m);
|
|
IGB_TX_UNLOCK(txr);
|
|
} else {
|
|
err = drbr_enqueue(ifp, txr->br, m);
|
|
taskqueue_enqueue(que->tq, &txr->txq_task);
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
igb_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr, struct mbuf *m)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct mbuf *next;
|
|
int err = 0, enq;
|
|
|
|
IGB_TX_LOCK_ASSERT(txr);
|
|
|
|
if (((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) ||
|
|
(txr->queue_status == IGB_QUEUE_DEPLETED) ||
|
|
adapter->link_active == 0) {
|
|
if (m != NULL)
|
|
err = drbr_enqueue(ifp, txr->br, m);
|
|
return (err);
|
|
}
|
|
|
|
enq = 0;
|
|
if (m == NULL) {
|
|
next = drbr_dequeue(ifp, txr->br);
|
|
} else if (drbr_needs_enqueue(ifp, txr->br)) {
|
|
if ((err = drbr_enqueue(ifp, txr->br, m)) != 0)
|
|
return (err);
|
|
next = drbr_dequeue(ifp, txr->br);
|
|
} else
|
|
next = m;
|
|
|
|
/* Process the queue */
|
|
while (next != NULL) {
|
|
if ((err = igb_xmit(txr, &next)) != 0) {
|
|
if (next != NULL)
|
|
err = drbr_enqueue(ifp, txr->br, next);
|
|
break;
|
|
}
|
|
enq++;
|
|
drbr_stats_update(ifp, next->m_pkthdr.len, next->m_flags);
|
|
ETHER_BPF_MTAP(ifp, next);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
next = drbr_dequeue(ifp, txr->br);
|
|
}
|
|
if (enq > 0) {
|
|
/* Set the watchdog */
|
|
txr->queue_status |= IGB_QUEUE_WORKING;
|
|
txr->watchdog_time = ticks;
|
|
}
|
|
if (txr->tx_avail <= IGB_TX_CLEANUP_THRESHOLD)
|
|
igb_txeof(txr);
|
|
if (txr->tx_avail <= IGB_MAX_SCATTER)
|
|
txr->queue_status |= IGB_QUEUE_DEPLETED;
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Called from a taskqueue to drain queued transmit packets.
|
|
*/
|
|
static void
|
|
igb_deferred_mq_start(void *arg, int pending)
|
|
{
|
|
struct tx_ring *txr = arg;
|
|
struct adapter *adapter = txr->adapter;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
IGB_TX_LOCK(txr);
|
|
if (!drbr_empty(ifp, txr->br))
|
|
igb_mq_start_locked(ifp, txr, NULL);
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
|
|
/*
|
|
** Flush all ring buffers
|
|
*/
|
|
static void
|
|
igb_qflush(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct mbuf *m;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
IGB_TX_LOCK(txr);
|
|
while ((m = buf_ring_dequeue_sc(txr->br)) != NULL)
|
|
m_freem(m);
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
if_qflush(ifp);
|
|
}
|
|
#endif /* __FreeBSD_version >= 800000 */
|
|
|
|
/*********************************************************************
|
|
* Ioctl entry point
|
|
*
|
|
* igb_ioctl is called when the user wants to configure the
|
|
* interface.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static int
|
|
igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
#if defined(INET) || defined(INET6)
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
#endif
|
|
bool avoid_reset = FALSE;
|
|
int error = 0;
|
|
|
|
if (adapter->in_detach)
|
|
return (error);
|
|
|
|
switch (command) {
|
|
case SIOCSIFADDR:
|
|
#ifdef INET
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
avoid_reset = TRUE;
|
|
#endif
|
|
#ifdef INET6
|
|
if (ifa->ifa_addr->sa_family == AF_INET6)
|
|
avoid_reset = TRUE;
|
|
#endif
|
|
/*
|
|
** Calling init results in link renegotiation,
|
|
** so we avoid doing it when possible.
|
|
*/
|
|
if (avoid_reset) {
|
|
ifp->if_flags |= IFF_UP;
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
igb_init(adapter);
|
|
#ifdef INET
|
|
if (!(ifp->if_flags & IFF_NOARP))
|
|
arp_ifinit(ifp, ifa);
|
|
#endif
|
|
} else
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
case SIOCSIFMTU:
|
|
{
|
|
int max_frame_size;
|
|
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)");
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
max_frame_size = 9234;
|
|
if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
|
|
ETHER_CRC_LEN) {
|
|
IGB_CORE_UNLOCK(adapter);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
adapter->max_frame_size =
|
|
ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
|
|
igb_init_locked(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
break;
|
|
}
|
|
case SIOCSIFFLAGS:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd:\
|
|
SIOCSIFFLAGS (Set Interface Flags)");
|
|
IGB_CORE_LOCK(adapter);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
if ((ifp->if_flags ^ adapter->if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI)) {
|
|
igb_disable_promisc(adapter);
|
|
igb_set_promisc(adapter);
|
|
}
|
|
} else
|
|
igb_init_locked(adapter);
|
|
} else
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
igb_stop(adapter);
|
|
adapter->if_flags = ifp->if_flags;
|
|
IGB_CORE_UNLOCK(adapter);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI");
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_disable_intr(adapter);
|
|
igb_set_multi(adapter);
|
|
#ifdef DEVICE_POLLING
|
|
if (!(ifp->if_capenable & IFCAP_POLLING))
|
|
#endif
|
|
igb_enable_intr(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
break;
|
|
case SIOCSIFMEDIA:
|
|
/* Check SOL/IDER usage */
|
|
IGB_CORE_LOCK(adapter);
|
|
if (e1000_check_reset_block(&adapter->hw)) {
|
|
IGB_CORE_UNLOCK(adapter);
|
|
device_printf(adapter->dev, "Media change is"
|
|
" blocked due to SOL/IDER session.\n");
|
|
break;
|
|
}
|
|
IGB_CORE_UNLOCK(adapter);
|
|
case SIOCGIFMEDIA:
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: \
|
|
SIOCxIFMEDIA (Get/Set Interface Media)");
|
|
error = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
{
|
|
int mask, reinit;
|
|
|
|
IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)");
|
|
reinit = 0;
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
#ifdef DEVICE_POLLING
|
|
if (mask & IFCAP_POLLING) {
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING) {
|
|
error = ether_poll_register(igb_poll, ifp);
|
|
if (error)
|
|
return (error);
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_disable_intr(adapter);
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
IGB_CORE_UNLOCK(adapter);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
/* Enable interrupt even in error case */
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_enable_intr(adapter);
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
}
|
|
#endif
|
|
if (mask & IFCAP_HWCSUM) {
|
|
ifp->if_capenable ^= IFCAP_HWCSUM;
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_TSO4) {
|
|
ifp->if_capenable ^= IFCAP_TSO4;
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_VLAN_HWTAGGING) {
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_VLAN_HWFILTER) {
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWFILTER;
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_VLAN_HWTSO) {
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
|
|
reinit = 1;
|
|
}
|
|
if (mask & IFCAP_LRO) {
|
|
ifp->if_capenable ^= IFCAP_LRO;
|
|
reinit = 1;
|
|
}
|
|
if (reinit && (ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
igb_init(adapter);
|
|
VLAN_CAPABILITIES(ifp);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Init entry point
|
|
*
|
|
* This routine is used in two ways. It is used by the stack as
|
|
* init entry point in network interface structure. It is also used
|
|
* by the driver as a hw/sw initialization routine to get to a
|
|
* consistent state.
|
|
*
|
|
* return 0 on success, positive on failure
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_init_locked(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
device_t dev = adapter->dev;
|
|
|
|
INIT_DEBUGOUT("igb_init: begin");
|
|
|
|
IGB_CORE_LOCK_ASSERT(adapter);
|
|
|
|
igb_disable_intr(adapter);
|
|
callout_stop(&adapter->timer);
|
|
|
|
/* Get the latest mac address, User can use a LAA */
|
|
bcopy(IF_LLADDR(adapter->ifp), adapter->hw.mac.addr,
|
|
ETHER_ADDR_LEN);
|
|
|
|
/* Put the address into the Receive Address Array */
|
|
e1000_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
|
|
|
|
igb_reset(adapter);
|
|
igb_update_link_status(adapter);
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
|
|
|
|
/* Set hardware offload abilities */
|
|
ifp->if_hwassist = 0;
|
|
if (ifp->if_capenable & IFCAP_TXCSUM) {
|
|
ifp->if_hwassist |= (CSUM_TCP | CSUM_UDP);
|
|
#if __FreeBSD_version >= 800000
|
|
if (adapter->hw.mac.type == e1000_82576)
|
|
ifp->if_hwassist |= CSUM_SCTP;
|
|
#endif
|
|
}
|
|
|
|
if (ifp->if_capenable & IFCAP_TSO4)
|
|
ifp->if_hwassist |= CSUM_TSO;
|
|
|
|
/* Configure for OS presence */
|
|
igb_init_manageability(adapter);
|
|
|
|
/* Prepare transmit descriptors and buffers */
|
|
igb_setup_transmit_structures(adapter);
|
|
igb_initialize_transmit_units(adapter);
|
|
|
|
/* Setup Multicast table */
|
|
igb_set_multi(adapter);
|
|
|
|
/*
|
|
** Figure out the desired mbuf pool
|
|
** for doing jumbo/packetsplit
|
|
*/
|
|
if (adapter->max_frame_size <= 2048)
|
|
adapter->rx_mbuf_sz = MCLBYTES;
|
|
else if (adapter->max_frame_size <= 4096)
|
|
adapter->rx_mbuf_sz = MJUMPAGESIZE;
|
|
else
|
|
adapter->rx_mbuf_sz = MJUM9BYTES;
|
|
|
|
/* Prepare receive descriptors and buffers */
|
|
if (igb_setup_receive_structures(adapter)) {
|
|
device_printf(dev, "Could not setup receive structures\n");
|
|
return;
|
|
}
|
|
igb_initialize_receive_units(adapter);
|
|
|
|
/* Enable VLAN support */
|
|
if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
|
|
igb_setup_vlan_hw_support(adapter);
|
|
|
|
/* Don't lose promiscuous settings */
|
|
igb_set_promisc(adapter);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
callout_reset(&adapter->timer, hz, igb_local_timer, adapter);
|
|
e1000_clear_hw_cntrs_base_generic(&adapter->hw);
|
|
|
|
if (adapter->msix > 1) /* Set up queue routing */
|
|
igb_configure_queues(adapter);
|
|
|
|
/* this clears any pending interrupts */
|
|
E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
#ifdef DEVICE_POLLING
|
|
/*
|
|
* Only enable interrupts if we are not polling, make sure
|
|
* they are off otherwise.
|
|
*/
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
igb_disable_intr(adapter);
|
|
else
|
|
#endif /* DEVICE_POLLING */
|
|
{
|
|
igb_enable_intr(adapter);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_ICS, E1000_ICS_LSC);
|
|
}
|
|
|
|
/* Set Energy Efficient Ethernet */
|
|
|
|
e1000_set_eee_i350(&adapter->hw);
|
|
}
|
|
|
|
static void
|
|
igb_init(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_init_locked(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
|
|
static void
|
|
igb_handle_que(void *context, int pending)
|
|
{
|
|
struct igb_queue *que = context;
|
|
struct adapter *adapter = que->adapter;
|
|
struct tx_ring *txr = que->txr;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
bool more;
|
|
|
|
more = igb_rxeof(que, adapter->rx_process_limit, NULL);
|
|
|
|
IGB_TX_LOCK(txr);
|
|
igb_txeof(txr);
|
|
#if __FreeBSD_version >= 800000
|
|
/* Process the stack queue only if not depleted */
|
|
if (((txr->queue_status & IGB_QUEUE_DEPLETED) == 0) &&
|
|
!drbr_empty(ifp, txr->br))
|
|
igb_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
igb_start_locked(txr, ifp);
|
|
#endif
|
|
IGB_TX_UNLOCK(txr);
|
|
/* Do we need another? */
|
|
if (more) {
|
|
taskqueue_enqueue(que->tq, &que->que_task);
|
|
return;
|
|
}
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
return;
|
|
#endif
|
|
/* Reenable this interrupt */
|
|
if (que->eims)
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIMS, que->eims);
|
|
else
|
|
igb_enable_intr(adapter);
|
|
}
|
|
|
|
/* Deal with link in a sleepable context */
|
|
static void
|
|
igb_handle_link(void *context, int pending)
|
|
{
|
|
struct adapter *adapter = context;
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_handle_link_locked(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
static void
|
|
igb_handle_link_locked(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
IGB_CORE_LOCK_ASSERT(adapter);
|
|
adapter->hw.mac.get_link_status = 1;
|
|
igb_update_link_status(adapter);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && adapter->link_active) {
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
IGB_TX_LOCK(txr);
|
|
#if __FreeBSD_version >= 800000
|
|
/* Process the stack queue only if not depleted */
|
|
if (((txr->queue_status & IGB_QUEUE_DEPLETED) == 0) &&
|
|
!drbr_empty(ifp, txr->br))
|
|
igb_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
igb_start_locked(txr, ifp);
|
|
#endif
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSI/Legacy Deferred
|
|
* Interrupt Service routine
|
|
*
|
|
*********************************************************************/
|
|
static int
|
|
igb_irq_fast(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct igb_queue *que = adapter->queues;
|
|
u32 reg_icr;
|
|
|
|
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
|
|
/* Hot eject? */
|
|
if (reg_icr == 0xffffffff)
|
|
return FILTER_STRAY;
|
|
|
|
/* Definitely not our interrupt. */
|
|
if (reg_icr == 0x0)
|
|
return FILTER_STRAY;
|
|
|
|
if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
|
|
return FILTER_STRAY;
|
|
|
|
/*
|
|
* Mask interrupts until the taskqueue is finished running. This is
|
|
* cheap, just assume that it is needed. This also works around the
|
|
* MSI message reordering errata on certain systems.
|
|
*/
|
|
igb_disable_intr(adapter);
|
|
taskqueue_enqueue(que->tq, &que->que_task);
|
|
|
|
/* Link status change */
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
|
|
taskqueue_enqueue(que->tq, &adapter->link_task);
|
|
|
|
if (reg_icr & E1000_ICR_RXO)
|
|
adapter->rx_overruns++;
|
|
return FILTER_HANDLED;
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/*********************************************************************
|
|
*
|
|
* Legacy polling routine : if using this code you MUST be sure that
|
|
* multiqueue is not defined, ie, set igb_num_queues to 1.
|
|
*
|
|
*********************************************************************/
|
|
#if __FreeBSD_version >= 800000
|
|
#define POLL_RETURN_COUNT(a) (a)
|
|
static int
|
|
#else
|
|
#define POLL_RETURN_COUNT(a)
|
|
static void
|
|
#endif
|
|
igb_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct igb_queue *que = adapter->queues;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
u32 reg_icr, rx_done = 0;
|
|
u32 loop = IGB_MAX_LOOP;
|
|
bool more;
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
IGB_CORE_UNLOCK(adapter);
|
|
return POLL_RETURN_COUNT(rx_done);
|
|
}
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
|
reg_icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
/* Link status change */
|
|
if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))
|
|
igb_handle_link_locked(adapter);
|
|
|
|
if (reg_icr & E1000_ICR_RXO)
|
|
adapter->rx_overruns++;
|
|
}
|
|
IGB_CORE_UNLOCK(adapter);
|
|
|
|
igb_rxeof(que, count, &rx_done);
|
|
|
|
IGB_TX_LOCK(txr);
|
|
do {
|
|
more = igb_txeof(txr);
|
|
} while (loop-- && more);
|
|
#if __FreeBSD_version >= 800000
|
|
if (!drbr_empty(ifp, txr->br))
|
|
igb_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
igb_start_locked(txr, ifp);
|
|
#endif
|
|
IGB_TX_UNLOCK(txr);
|
|
return POLL_RETURN_COUNT(rx_done);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSIX Que Interrupt Service routine
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_msix_que(void *arg)
|
|
{
|
|
struct igb_queue *que = arg;
|
|
struct adapter *adapter = que->adapter;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct tx_ring *txr = que->txr;
|
|
struct rx_ring *rxr = que->rxr;
|
|
u32 newitr = 0;
|
|
bool more_rx;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIMC, que->eims);
|
|
++que->irqs;
|
|
|
|
IGB_TX_LOCK(txr);
|
|
igb_txeof(txr);
|
|
#if __FreeBSD_version >= 800000
|
|
/* Process the stack queue only if not depleted */
|
|
if (((txr->queue_status & IGB_QUEUE_DEPLETED) == 0) &&
|
|
!drbr_empty(ifp, txr->br))
|
|
igb_mq_start_locked(ifp, txr, NULL);
|
|
#else
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
igb_start_locked(txr, ifp);
|
|
#endif
|
|
IGB_TX_UNLOCK(txr);
|
|
|
|
more_rx = igb_rxeof(que, adapter->rx_process_limit, NULL);
|
|
|
|
if (adapter->enable_aim == FALSE)
|
|
goto no_calc;
|
|
/*
|
|
** Do Adaptive Interrupt Moderation:
|
|
** - Write out last calculated setting
|
|
** - Calculate based on average size over
|
|
** the last interval.
|
|
*/
|
|
if (que->eitr_setting)
|
|
E1000_WRITE_REG(&adapter->hw,
|
|
E1000_EITR(que->msix), que->eitr_setting);
|
|
|
|
que->eitr_setting = 0;
|
|
|
|
/* Idle, do nothing */
|
|
if ((txr->bytes == 0) && (rxr->bytes == 0))
|
|
goto no_calc;
|
|
|
|
/* Used half Default if sub-gig */
|
|
if (adapter->link_speed != 1000)
|
|
newitr = IGB_DEFAULT_ITR / 2;
|
|
else {
|
|
if ((txr->bytes) && (txr->packets))
|
|
newitr = txr->bytes/txr->packets;
|
|
if ((rxr->bytes) && (rxr->packets))
|
|
newitr = max(newitr,
|
|
(rxr->bytes / rxr->packets));
|
|
newitr += 24; /* account for hardware frame, crc */
|
|
/* set an upper boundary */
|
|
newitr = min(newitr, 3000);
|
|
/* Be nice to the mid range */
|
|
if ((newitr > 300) && (newitr < 1200))
|
|
newitr = (newitr / 3);
|
|
else
|
|
newitr = (newitr / 2);
|
|
}
|
|
newitr &= 0x7FFC; /* Mask invalid bits */
|
|
if (adapter->hw.mac.type == e1000_82575)
|
|
newitr |= newitr << 16;
|
|
else
|
|
newitr |= E1000_EITR_CNT_IGNR;
|
|
|
|
/* save for next interrupt */
|
|
que->eitr_setting = newitr;
|
|
|
|
/* Reset state */
|
|
txr->bytes = 0;
|
|
txr->packets = 0;
|
|
rxr->bytes = 0;
|
|
rxr->packets = 0;
|
|
|
|
no_calc:
|
|
/* Schedule a clean task if needed*/
|
|
if (more_rx)
|
|
taskqueue_enqueue(que->tq, &que->que_task);
|
|
else
|
|
/* Reenable this interrupt */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIMS, que->eims);
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* MSIX Link Interrupt Service routine
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_msix_link(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
u32 icr;
|
|
|
|
++adapter->link_irq;
|
|
icr = E1000_READ_REG(&adapter->hw, E1000_ICR);
|
|
if (!(icr & E1000_ICR_LSC))
|
|
goto spurious;
|
|
igb_handle_link(adapter, 0);
|
|
|
|
spurious:
|
|
/* Rearm */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS, E1000_IMS_LSC);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIMS, adapter->link_mask);
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called whenever the user queries the status of
|
|
* the interface using ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
u_char fiber_type = IFM_1000_SX;
|
|
|
|
INIT_DEBUGOUT("igb_media_status: begin");
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
igb_update_link_status(adapter);
|
|
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
|
|
if (!adapter->link_active) {
|
|
IGB_CORE_UNLOCK(adapter);
|
|
return;
|
|
}
|
|
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
|
|
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.phy.media_type == e1000_media_type_internal_serdes))
|
|
ifmr->ifm_active |= fiber_type | IFM_FDX;
|
|
else {
|
|
switch (adapter->link_speed) {
|
|
case 10:
|
|
ifmr->ifm_active |= IFM_10_T;
|
|
break;
|
|
case 100:
|
|
ifmr->ifm_active |= IFM_100_TX;
|
|
break;
|
|
case 1000:
|
|
ifmr->ifm_active |= IFM_1000_T;
|
|
break;
|
|
}
|
|
if (adapter->link_duplex == FULL_DUPLEX)
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
}
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Media Ioctl callback
|
|
*
|
|
* This routine is called when the user changes speed/duplex using
|
|
* media/mediopt option with ifconfig.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_media_change(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct ifmedia *ifm = &adapter->media;
|
|
|
|
INIT_DEBUGOUT("igb_media_change: begin");
|
|
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return (EINVAL);
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
switch (IFM_SUBTYPE(ifm->ifm_media)) {
|
|
case IFM_AUTO:
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
|
|
break;
|
|
case IFM_1000_LX:
|
|
case IFM_1000_SX:
|
|
case IFM_1000_T:
|
|
adapter->hw.mac.autoneg = DO_AUTO_NEG;
|
|
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
|
|
break;
|
|
case IFM_100_TX:
|
|
adapter->hw.mac.autoneg = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = 0;
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
|
|
else
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
|
|
break;
|
|
case IFM_10_T:
|
|
adapter->hw.mac.autoneg = FALSE;
|
|
adapter->hw.phy.autoneg_advertised = 0;
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
|
|
else
|
|
adapter->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
|
|
break;
|
|
default:
|
|
device_printf(adapter->dev, "Unsupported media type\n");
|
|
}
|
|
|
|
igb_init_locked(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine maps the mbufs to Advanced TX descriptors.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_xmit(struct tx_ring *txr, struct mbuf **m_headp)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
bus_dma_segment_t segs[IGB_MAX_SCATTER];
|
|
bus_dmamap_t map;
|
|
struct igb_tx_buffer *tx_buffer, *tx_buffer_mapped;
|
|
union e1000_adv_tx_desc *txd = NULL;
|
|
struct mbuf *m_head = *m_headp;
|
|
struct ether_vlan_header *eh = NULL;
|
|
struct ip *ip = NULL;
|
|
struct tcphdr *th = NULL;
|
|
u32 hdrlen, cmd_type_len, olinfo_status = 0;
|
|
int ehdrlen, poff;
|
|
int nsegs, i, first, last = 0;
|
|
int error, do_tso, remap = 1;
|
|
|
|
/* Set basic descriptor constants */
|
|
cmd_type_len = E1000_ADVTXD_DTYP_DATA;
|
|
cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
|
|
if (m_head->m_flags & M_VLANTAG)
|
|
cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
|
|
|
|
retry:
|
|
m_head = *m_headp;
|
|
do_tso = ((m_head->m_pkthdr.csum_flags & CSUM_TSO) != 0);
|
|
hdrlen = ehdrlen = poff = 0;
|
|
|
|
/*
|
|
* Intel recommends entire IP/TCP header length reside in a single
|
|
* buffer. If multiple descriptors are used to describe the IP and
|
|
* TCP header, each descriptor should describe one or more
|
|
* complete headers; descriptors referencing only parts of headers
|
|
* are not supported. If all layer headers are not coalesced into
|
|
* a single buffer, each buffer should not cross a 4KB boundary,
|
|
* or be larger than the maximum read request size.
|
|
* Controller also requires modifing IP/TCP header to make TSO work
|
|
* so we firstly get a writable mbuf chain then coalesce ethernet/
|
|
* IP/TCP header into a single buffer to meet the requirement of
|
|
* controller. This also simplifies IP/TCP/UDP checksum offloading
|
|
* which also has similiar restrictions.
|
|
*/
|
|
if (do_tso || m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD) {
|
|
if (do_tso || (m_head->m_next != NULL &&
|
|
m_head->m_pkthdr.csum_flags & CSUM_OFFLOAD)) {
|
|
if (M_WRITABLE(*m_headp) == 0) {
|
|
m_head = m_dup(*m_headp, M_DONTWAIT);
|
|
m_freem(*m_headp);
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_headp = m_head;
|
|
}
|
|
}
|
|
/*
|
|
* Assume IPv4, we don't have TSO/checksum offload support
|
|
* for IPv6 yet.
|
|
*/
|
|
ehdrlen = sizeof(struct ether_header);
|
|
m_head = m_pullup(m_head, ehdrlen);
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
eh = mtod(m_head, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
ehdrlen = sizeof(struct ether_vlan_header);
|
|
m_head = m_pullup(m_head, ehdrlen);
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
m_head = m_pullup(m_head, ehdrlen + sizeof(struct ip));
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m_head, char *) + ehdrlen);
|
|
poff = ehdrlen + (ip->ip_hl << 2);
|
|
if (do_tso) {
|
|
m_head = m_pullup(m_head, poff + sizeof(struct tcphdr));
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
/*
|
|
* The pseudo TCP checksum does not include TCP payload
|
|
* length so driver should recompute the checksum here
|
|
* what hardware expect to see. This is adherence of
|
|
* Microsoft's Large Send specification.
|
|
*/
|
|
th = (struct tcphdr *)(mtod(m_head, char *) + poff);
|
|
th->th_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
/* Keep track of the full header length */
|
|
hdrlen = poff + (th->th_off << 2);
|
|
} else if (m_head->m_pkthdr.csum_flags & CSUM_TCP) {
|
|
m_head = m_pullup(m_head, poff + sizeof(struct tcphdr));
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
th = (struct tcphdr *)(mtod(m_head, char *) + poff);
|
|
m_head = m_pullup(m_head, poff + (th->th_off << 2));
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m_head, char *) + ehdrlen);
|
|
th = (struct tcphdr *)(mtod(m_head, char *) + poff);
|
|
} else if (m_head->m_pkthdr.csum_flags & CSUM_UDP) {
|
|
m_head = m_pullup(m_head, poff + sizeof(struct udphdr));
|
|
if (m_head == NULL) {
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m_head, char *) + ehdrlen);
|
|
}
|
|
*m_headp = m_head;
|
|
}
|
|
|
|
/*
|
|
* Map the packet for DMA
|
|
*
|
|
* Capture the first descriptor index,
|
|
* this descriptor will have the index
|
|
* of the EOP which is the only one that
|
|
* now gets a DONE bit writeback.
|
|
*/
|
|
first = txr->next_avail_desc;
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
tx_buffer_mapped = tx_buffer;
|
|
map = tx_buffer->map;
|
|
|
|
error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
/*
|
|
* There are two types of errors we can (try) to handle:
|
|
* - EFBIG means the mbuf chain was too long and bus_dma ran
|
|
* out of segments. Defragment the mbuf chain and try again.
|
|
* - ENOMEM means bus_dma could not obtain enough bounce buffers
|
|
* at this point in time. Defer sending and try again later.
|
|
* All other errors, in particular EINVAL, are fatal and prevent the
|
|
* mbuf chain from ever going through. Drop it and report error.
|
|
*/
|
|
if (error == EFBIG && remap) {
|
|
struct mbuf *m;
|
|
|
|
m = m_defrag(*m_headp, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
adapter->mbuf_defrag_failed++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_headp = m;
|
|
|
|
/* Try it again, but only once */
|
|
remap = 0;
|
|
goto retry;
|
|
} else if (error == ENOMEM) {
|
|
adapter->no_tx_dma_setup++;
|
|
return (error);
|
|
} else if (error != 0) {
|
|
adapter->no_tx_dma_setup++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
** Make sure we don't overrun the ring,
|
|
** we need nsegs descriptors and one for
|
|
** the context descriptor used for the
|
|
** offloads.
|
|
*/
|
|
if ((nsegs + 1) > (txr->tx_avail - 2)) {
|
|
txr->no_desc_avail++;
|
|
bus_dmamap_unload(txr->txtag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
m_head = *m_headp;
|
|
|
|
/* Do hardware assists:
|
|
* Set up the context descriptor, used
|
|
* when any hardware offload is done.
|
|
* This includes CSUM, VLAN, and TSO.
|
|
* It will use the first descriptor.
|
|
*/
|
|
|
|
if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
|
|
if (igb_tso_setup(txr, m_head, ehdrlen, ip, th)) {
|
|
cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
|
|
olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
|
|
olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
|
|
} else
|
|
return (ENXIO);
|
|
} else if (igb_tx_ctx_setup(txr, m_head))
|
|
olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
|
|
|
|
/* Calculate payload length */
|
|
olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
|
|
<< E1000_ADVTXD_PAYLEN_SHIFT);
|
|
|
|
/* 82575 needs the queue index added */
|
|
if (adapter->hw.mac.type == e1000_82575)
|
|
olinfo_status |= txr->me << 4;
|
|
|
|
/* Set up our transmit descriptors */
|
|
i = txr->next_avail_desc;
|
|
for (int j = 0; j < nsegs; j++) {
|
|
bus_size_t seg_len;
|
|
bus_addr_t seg_addr;
|
|
|
|
tx_buffer = &txr->tx_buffers[i];
|
|
txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
|
|
seg_addr = segs[j].ds_addr;
|
|
seg_len = segs[j].ds_len;
|
|
|
|
txd->read.buffer_addr = htole64(seg_addr);
|
|
txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
|
|
txd->read.olinfo_status = htole32(olinfo_status);
|
|
last = i;
|
|
if (++i == adapter->num_tx_desc)
|
|
i = 0;
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
}
|
|
|
|
txr->next_avail_desc = i;
|
|
txr->tx_avail -= nsegs;
|
|
tx_buffer->m_head = m_head;
|
|
|
|
/*
|
|
** Here we swap the map so the last descriptor,
|
|
** which gets the completion interrupt has the
|
|
** real map, and the first descriptor gets the
|
|
** unused map from this descriptor.
|
|
*/
|
|
tx_buffer_mapped->map = tx_buffer->map;
|
|
tx_buffer->map = map;
|
|
bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Last Descriptor of Packet
|
|
* needs End Of Packet (EOP)
|
|
* and Report Status (RS)
|
|
*/
|
|
txd->read.cmd_type_len |=
|
|
htole32(E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_RS);
|
|
/*
|
|
* Keep track in the first buffer which
|
|
* descriptor will be written back
|
|
*/
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
tx_buffer->next_eop = last;
|
|
/* Update the watchdog time early and often */
|
|
txr->watchdog_time = ticks;
|
|
|
|
/*
|
|
* Advance the Transmit Descriptor Tail (TDT), this tells the E1000
|
|
* that this frame is available to transmit.
|
|
*/
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_TDT(txr->me), i);
|
|
++txr->tx_packets;
|
|
|
|
return (0);
|
|
}
|
|
static void
|
|
igb_set_promisc(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 reg;
|
|
|
|
if (adapter->vf_ifp) {
|
|
e1000_promisc_set_vf(hw, e1000_promisc_enabled);
|
|
return;
|
|
}
|
|
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
} else if (ifp->if_flags & IFF_ALLMULTI) {
|
|
reg |= E1000_RCTL_MPE;
|
|
reg &= ~E1000_RCTL_UPE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
}
|
|
}
|
|
|
|
static void
|
|
igb_disable_promisc(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 reg;
|
|
|
|
if (adapter->vf_ifp) {
|
|
e1000_promisc_set_vf(hw, e1000_promisc_disabled);
|
|
return;
|
|
}
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
reg &= (~E1000_RCTL_UPE);
|
|
reg &= (~E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Multicast Update
|
|
*
|
|
* This routine is called whenever multicast address list is updated.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_set_multi(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct ifmultiaddr *ifma;
|
|
u32 reg_rctl = 0;
|
|
u8 *mta;
|
|
|
|
int mcnt = 0;
|
|
|
|
IOCTL_DEBUGOUT("igb_set_multi: begin");
|
|
|
|
mta = adapter->mta;
|
|
bzero(mta, sizeof(uint8_t) * ETH_ADDR_LEN *
|
|
MAX_NUM_MULTICAST_ADDRESSES);
|
|
|
|
#if __FreeBSD_version < 800000
|
|
IF_ADDR_LOCK(ifp);
|
|
#else
|
|
if_maddr_rlock(ifp);
|
|
#endif
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
|
|
if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
|
|
break;
|
|
|
|
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
|
|
&mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
|
|
mcnt++;
|
|
}
|
|
#if __FreeBSD_version < 800000
|
|
IF_ADDR_UNLOCK(ifp);
|
|
#else
|
|
if_maddr_runlock(ifp);
|
|
#endif
|
|
|
|
if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
|
|
reg_rctl = E1000_READ_REG(&adapter->hw, E1000_RCTL);
|
|
reg_rctl |= E1000_RCTL_MPE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RCTL, reg_rctl);
|
|
} else
|
|
e1000_update_mc_addr_list(&adapter->hw, mta, mcnt);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
* Timer routine:
|
|
* This routine checks for link status,
|
|
* updates statistics, and does the watchdog.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_local_timer(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
device_t dev = adapter->dev;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct igb_queue *que = adapter->queues;
|
|
int hung = 0, busy = 0;
|
|
|
|
|
|
IGB_CORE_LOCK_ASSERT(adapter);
|
|
|
|
igb_update_link_status(adapter);
|
|
igb_update_stats_counters(adapter);
|
|
|
|
/*
|
|
** Check the TX queues status
|
|
** - central locked handling of OACTIVE
|
|
** - watchdog only if all queues show hung
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++, que++, txr++) {
|
|
if ((txr->queue_status & IGB_QUEUE_HUNG) &&
|
|
(adapter->pause_frames == 0))
|
|
++hung;
|
|
if (txr->queue_status & IGB_QUEUE_DEPLETED)
|
|
++busy;
|
|
if ((txr->queue_status & IGB_QUEUE_IDLE) == 0)
|
|
taskqueue_enqueue(que->tq, &que->que_task);
|
|
}
|
|
if (hung == adapter->num_queues)
|
|
goto timeout;
|
|
if (busy == adapter->num_queues)
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
else if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) &&
|
|
(busy < adapter->num_queues))
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
adapter->pause_frames = 0;
|
|
callout_reset(&adapter->timer, hz, igb_local_timer, adapter);
|
|
#ifndef DEVICE_POLLING
|
|
/* Schedule all queue interrupts - deadlock protection */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EICS, adapter->que_mask);
|
|
#endif
|
|
return;
|
|
|
|
timeout:
|
|
device_printf(adapter->dev, "Watchdog timeout -- resetting\n");
|
|
device_printf(dev,"Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
|
|
E1000_READ_REG(&adapter->hw, E1000_TDH(txr->me)),
|
|
E1000_READ_REG(&adapter->hw, E1000_TDT(txr->me)));
|
|
device_printf(dev,"TX(%d) desc avail = %d,"
|
|
"Next TX to Clean = %d\n",
|
|
txr->me, txr->tx_avail, txr->next_to_clean);
|
|
adapter->ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
adapter->watchdog_events++;
|
|
igb_init_locked(adapter);
|
|
}
|
|
|
|
static void
|
|
igb_update_link_status(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
device_t dev = adapter->dev;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
u32 link_check, thstat, ctrl;
|
|
|
|
link_check = thstat = ctrl = 0;
|
|
|
|
/* Get the cached link value or read for real */
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_copper:
|
|
if (hw->mac.get_link_status) {
|
|
/* Do the work to read phy */
|
|
e1000_check_for_link(hw);
|
|
link_check = !hw->mac.get_link_status;
|
|
} else
|
|
link_check = TRUE;
|
|
break;
|
|
case e1000_media_type_fiber:
|
|
e1000_check_for_link(hw);
|
|
link_check = (E1000_READ_REG(hw, E1000_STATUS) &
|
|
E1000_STATUS_LU);
|
|
break;
|
|
case e1000_media_type_internal_serdes:
|
|
e1000_check_for_link(hw);
|
|
link_check = adapter->hw.mac.serdes_has_link;
|
|
break;
|
|
/* VF device is type_unknown */
|
|
case e1000_media_type_unknown:
|
|
e1000_check_for_link(hw);
|
|
link_check = !hw->mac.get_link_status;
|
|
/* Fall thru */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Check for thermal downshift or shutdown */
|
|
if (hw->mac.type == e1000_i350) {
|
|
thstat = E1000_READ_REG(hw, E1000_THSTAT);
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
}
|
|
|
|
/* Now we check if a transition has happened */
|
|
if (link_check && (adapter->link_active == 0)) {
|
|
e1000_get_speed_and_duplex(&adapter->hw,
|
|
&adapter->link_speed, &adapter->link_duplex);
|
|
if (bootverbose)
|
|
device_printf(dev, "Link is up %d Mbps %s\n",
|
|
adapter->link_speed,
|
|
((adapter->link_duplex == FULL_DUPLEX) ?
|
|
"Full Duplex" : "Half Duplex"));
|
|
adapter->link_active = 1;
|
|
ifp->if_baudrate = adapter->link_speed * 1000000;
|
|
if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
|
|
(thstat & E1000_THSTAT_LINK_THROTTLE))
|
|
device_printf(dev, "Link: thermal downshift\n");
|
|
/* This can sleep */
|
|
if_link_state_change(ifp, LINK_STATE_UP);
|
|
} else if (!link_check && (adapter->link_active == 1)) {
|
|
ifp->if_baudrate = adapter->link_speed = 0;
|
|
adapter->link_duplex = 0;
|
|
if (bootverbose)
|
|
device_printf(dev, "Link is Down\n");
|
|
if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
|
|
(thstat & E1000_THSTAT_PWR_DOWN))
|
|
device_printf(dev, "Link: thermal shutdown\n");
|
|
adapter->link_active = 0;
|
|
/* This can sleep */
|
|
if_link_state_change(ifp, LINK_STATE_DOWN);
|
|
/* Reset queue state */
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++)
|
|
txr->queue_status = IGB_QUEUE_IDLE;
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine disables all traffic on the adapter by issuing a
|
|
* global reset on the MAC and deallocates TX/RX buffers.
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void
|
|
igb_stop(void *arg)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
IGB_CORE_LOCK_ASSERT(adapter);
|
|
|
|
INIT_DEBUGOUT("igb_stop: begin");
|
|
|
|
igb_disable_intr(adapter);
|
|
|
|
callout_stop(&adapter->timer);
|
|
|
|
/* Tell the stack that the interface is no longer active */
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
|
|
/* Disarm watchdog timer. */
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
IGB_TX_LOCK(txr);
|
|
txr->queue_status = IGB_QUEUE_IDLE;
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
|
|
e1000_reset_hw(&adapter->hw);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_WUC, 0);
|
|
|
|
e1000_led_off(&adapter->hw);
|
|
e1000_cleanup_led(&adapter->hw);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Determine hardware revision.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_identify_hardware(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
/* Make sure our PCI config space has the necessary stuff set */
|
|
adapter->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
if (!((adapter->hw.bus.pci_cmd_word & PCIM_CMD_BUSMASTEREN) &&
|
|
(adapter->hw.bus.pci_cmd_word & PCIM_CMD_MEMEN))) {
|
|
INIT_DEBUGOUT("Memory Access and/or Bus Master "
|
|
"bits were not set!\n");
|
|
adapter->hw.bus.pci_cmd_word |=
|
|
(PCIM_CMD_BUSMASTEREN | PCIM_CMD_MEMEN);
|
|
pci_write_config(dev, PCIR_COMMAND,
|
|
adapter->hw.bus.pci_cmd_word, 2);
|
|
}
|
|
|
|
/* Save off the information about this board */
|
|
adapter->hw.vendor_id = pci_get_vendor(dev);
|
|
adapter->hw.device_id = pci_get_device(dev);
|
|
adapter->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
|
|
adapter->hw.subsystem_vendor_id =
|
|
pci_read_config(dev, PCIR_SUBVEND_0, 2);
|
|
adapter->hw.subsystem_device_id =
|
|
pci_read_config(dev, PCIR_SUBDEV_0, 2);
|
|
|
|
/* Set MAC type early for PCI setup */
|
|
e1000_set_mac_type(&adapter->hw);
|
|
|
|
/* Are we a VF device? */
|
|
if ((adapter->hw.mac.type == e1000_vfadapt) ||
|
|
(adapter->hw.mac.type == e1000_vfadapt_i350))
|
|
adapter->vf_ifp = 1;
|
|
else
|
|
adapter->vf_ifp = 0;
|
|
}
|
|
|
|
static int
|
|
igb_allocate_pci_resources(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int rid;
|
|
|
|
rid = PCIR_BAR(0);
|
|
adapter->pci_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&rid, RF_ACTIVE);
|
|
if (adapter->pci_mem == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: memory\n");
|
|
return (ENXIO);
|
|
}
|
|
adapter->osdep.mem_bus_space_tag =
|
|
rman_get_bustag(adapter->pci_mem);
|
|
adapter->osdep.mem_bus_space_handle =
|
|
rman_get_bushandle(adapter->pci_mem);
|
|
adapter->hw.hw_addr = (u8 *)&adapter->osdep.mem_bus_space_handle;
|
|
|
|
adapter->num_queues = 1; /* Defaults for Legacy or MSI */
|
|
|
|
/* This will setup either MSI/X or MSI */
|
|
adapter->msix = igb_setup_msix(adapter);
|
|
adapter->hw.back = &adapter->osdep;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup the Legacy or MSI Interrupt handler
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_allocate_legacy(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct igb_queue *que = adapter->queues;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
int error, rid = 0;
|
|
|
|
/* Turn off all interrupts */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, 0xffffffff);
|
|
|
|
/* MSI RID is 1 */
|
|
if (adapter->msix == 1)
|
|
rid = 1;
|
|
|
|
/* We allocate a single interrupt resource */
|
|
adapter->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (adapter->res == NULL) {
|
|
device_printf(dev, "Unable to allocate bus resource: "
|
|
"interrupt\n");
|
|
return (ENXIO);
|
|
}
|
|
|
|
#if __FreeBSD_version >= 800000
|
|
TASK_INIT(&txr->txq_task, 0, igb_deferred_mq_start, txr);
|
|
#endif
|
|
|
|
/*
|
|
* Try allocating a fast interrupt and the associated deferred
|
|
* processing contexts.
|
|
*/
|
|
TASK_INIT(&que->que_task, 0, igb_handle_que, que);
|
|
/* Make tasklet for deferred link handling */
|
|
TASK_INIT(&adapter->link_task, 0, igb_handle_link, adapter);
|
|
que->tq = taskqueue_create_fast("igb_taskq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &que->tq);
|
|
taskqueue_start_threads(&que->tq, 1, PI_NET, "%s taskq",
|
|
device_get_nameunit(adapter->dev));
|
|
if ((error = bus_setup_intr(dev, adapter->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, igb_irq_fast, NULL,
|
|
adapter, &adapter->tag)) != 0) {
|
|
device_printf(dev, "Failed to register fast interrupt "
|
|
"handler: %d\n", error);
|
|
taskqueue_free(que->tq);
|
|
que->tq = NULL;
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup the MSIX Queue Interrupt handlers:
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_allocate_msix(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct igb_queue *que = adapter->queues;
|
|
int error, rid, vector = 0;
|
|
|
|
/* Be sure to start with all interrupts disabled */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, ~0);
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, vector++, que++) {
|
|
rid = vector +1;
|
|
que->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (que->res == NULL) {
|
|
device_printf(dev,
|
|
"Unable to allocate bus resource: "
|
|
"MSIX Queue Interrupt\n");
|
|
return (ENXIO);
|
|
}
|
|
error = bus_setup_intr(dev, que->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL,
|
|
igb_msix_que, que, &que->tag);
|
|
if (error) {
|
|
que->res = NULL;
|
|
device_printf(dev, "Failed to register Queue handler");
|
|
return (error);
|
|
}
|
|
#if __FreeBSD_version >= 800504
|
|
bus_describe_intr(dev, que->res, que->tag, "que %d", i);
|
|
#endif
|
|
que->msix = vector;
|
|
if (adapter->hw.mac.type == e1000_82575)
|
|
que->eims = E1000_EICR_TX_QUEUE0 << i;
|
|
else
|
|
que->eims = 1 << vector;
|
|
/*
|
|
** Bind the msix vector, and thus the
|
|
** rings to the corresponding cpu.
|
|
*/
|
|
if (adapter->num_queues > 1) {
|
|
if (igb_last_bind_cpu < 0)
|
|
igb_last_bind_cpu = CPU_FIRST();
|
|
bus_bind_intr(dev, que->res, igb_last_bind_cpu);
|
|
device_printf(dev,
|
|
"Bound queue %d to cpu %d\n",
|
|
i,igb_last_bind_cpu);
|
|
igb_last_bind_cpu = CPU_NEXT(igb_last_bind_cpu);
|
|
igb_last_bind_cpu = igb_last_bind_cpu % mp_ncpus;
|
|
}
|
|
#if __FreeBSD_version >= 800000
|
|
TASK_INIT(&que->txr->txq_task, 0, igb_deferred_mq_start,
|
|
que->txr);
|
|
#endif
|
|
/* Make tasklet for deferred handling */
|
|
TASK_INIT(&que->que_task, 0, igb_handle_que, que);
|
|
que->tq = taskqueue_create("igb_que", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &que->tq);
|
|
taskqueue_start_threads(&que->tq, 1, PI_NET, "%s que",
|
|
device_get_nameunit(adapter->dev));
|
|
}
|
|
|
|
/* And Link */
|
|
rid = vector + 1;
|
|
adapter->res = bus_alloc_resource_any(dev,
|
|
SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE);
|
|
if (adapter->res == NULL) {
|
|
device_printf(dev,
|
|
"Unable to allocate bus resource: "
|
|
"MSIX Link Interrupt\n");
|
|
return (ENXIO);
|
|
}
|
|
if ((error = bus_setup_intr(dev, adapter->res,
|
|
INTR_TYPE_NET | INTR_MPSAFE, NULL,
|
|
igb_msix_link, adapter, &adapter->tag)) != 0) {
|
|
device_printf(dev, "Failed to register Link handler");
|
|
return (error);
|
|
}
|
|
#if __FreeBSD_version >= 800504
|
|
bus_describe_intr(dev, adapter->res, adapter->tag, "link");
|
|
#endif
|
|
adapter->linkvec = vector;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
static void
|
|
igb_configure_queues(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct igb_queue *que;
|
|
u32 tmp, ivar = 0, newitr = 0;
|
|
|
|
/* First turn on RSS capability */
|
|
if (adapter->hw.mac.type != e1000_82575)
|
|
E1000_WRITE_REG(hw, E1000_GPIE,
|
|
E1000_GPIE_MSIX_MODE | E1000_GPIE_EIAME |
|
|
E1000_GPIE_PBA | E1000_GPIE_NSICR);
|
|
|
|
/* Turn on MSIX */
|
|
switch (adapter->hw.mac.type) {
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
case e1000_vfadapt:
|
|
case e1000_vfadapt_i350:
|
|
/* RX entries */
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
u32 index = i >> 1;
|
|
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
|
|
que = &adapter->queues[i];
|
|
if (i & 1) {
|
|
ivar &= 0xFF00FFFF;
|
|
ivar |= (que->msix | E1000_IVAR_VALID) << 16;
|
|
} else {
|
|
ivar &= 0xFFFFFF00;
|
|
ivar |= que->msix | E1000_IVAR_VALID;
|
|
}
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
|
|
}
|
|
/* TX entries */
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
u32 index = i >> 1;
|
|
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
|
|
que = &adapter->queues[i];
|
|
if (i & 1) {
|
|
ivar &= 0x00FFFFFF;
|
|
ivar |= (que->msix | E1000_IVAR_VALID) << 24;
|
|
} else {
|
|
ivar &= 0xFFFF00FF;
|
|
ivar |= (que->msix | E1000_IVAR_VALID) << 8;
|
|
}
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
|
|
adapter->que_mask |= que->eims;
|
|
}
|
|
|
|
/* And for the link interrupt */
|
|
ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
|
|
adapter->link_mask = 1 << adapter->linkvec;
|
|
E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
|
|
break;
|
|
case e1000_82576:
|
|
/* RX entries */
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
u32 index = i & 0x7; /* Each IVAR has two entries */
|
|
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
|
|
que = &adapter->queues[i];
|
|
if (i < 8) {
|
|
ivar &= 0xFFFFFF00;
|
|
ivar |= que->msix | E1000_IVAR_VALID;
|
|
} else {
|
|
ivar &= 0xFF00FFFF;
|
|
ivar |= (que->msix | E1000_IVAR_VALID) << 16;
|
|
}
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
|
|
adapter->que_mask |= que->eims;
|
|
}
|
|
/* TX entries */
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
u32 index = i & 0x7; /* Each IVAR has two entries */
|
|
ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
|
|
que = &adapter->queues[i];
|
|
if (i < 8) {
|
|
ivar &= 0xFFFF00FF;
|
|
ivar |= (que->msix | E1000_IVAR_VALID) << 8;
|
|
} else {
|
|
ivar &= 0x00FFFFFF;
|
|
ivar |= (que->msix | E1000_IVAR_VALID) << 24;
|
|
}
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
|
|
adapter->que_mask |= que->eims;
|
|
}
|
|
|
|
/* And for the link interrupt */
|
|
ivar = (adapter->linkvec | E1000_IVAR_VALID) << 8;
|
|
adapter->link_mask = 1 << adapter->linkvec;
|
|
E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
|
|
break;
|
|
|
|
case e1000_82575:
|
|
/* enable MSI-X support*/
|
|
tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
tmp |= E1000_CTRL_EXT_PBA_CLR;
|
|
/* Auto-Mask interrupts upon ICR read. */
|
|
tmp |= E1000_CTRL_EXT_EIAME;
|
|
tmp |= E1000_CTRL_EXT_IRCA;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
|
|
|
|
/* Queues */
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
que = &adapter->queues[i];
|
|
tmp = E1000_EICR_RX_QUEUE0 << i;
|
|
tmp |= E1000_EICR_TX_QUEUE0 << i;
|
|
que->eims = tmp;
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0),
|
|
i, que->eims);
|
|
adapter->que_mask |= que->eims;
|
|
}
|
|
|
|
/* Link */
|
|
E1000_WRITE_REG(hw, E1000_MSIXBM(adapter->linkvec),
|
|
E1000_EIMS_OTHER);
|
|
adapter->link_mask |= E1000_EIMS_OTHER;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Set the starting interrupt rate */
|
|
if (igb_max_interrupt_rate > 0)
|
|
newitr = (4000000 / igb_max_interrupt_rate) & 0x7FFC;
|
|
|
|
if (hw->mac.type == e1000_82575)
|
|
newitr |= newitr << 16;
|
|
else
|
|
newitr |= E1000_EITR_CNT_IGNR;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
que = &adapter->queues[i];
|
|
E1000_WRITE_REG(hw, E1000_EITR(que->msix), newitr);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
static void
|
|
igb_free_pci_resources(struct adapter *adapter)
|
|
{
|
|
struct igb_queue *que = adapter->queues;
|
|
device_t dev = adapter->dev;
|
|
int rid;
|
|
|
|
/*
|
|
** There is a slight possibility of a failure mode
|
|
** in attach that will result in entering this function
|
|
** before interrupt resources have been initialized, and
|
|
** in that case we do not want to execute the loops below
|
|
** We can detect this reliably by the state of the adapter
|
|
** res pointer.
|
|
*/
|
|
if (adapter->res == NULL)
|
|
goto mem;
|
|
|
|
/*
|
|
* First release all the interrupt resources:
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++, que++) {
|
|
rid = que->msix + 1;
|
|
if (que->tag != NULL) {
|
|
bus_teardown_intr(dev, que->res, que->tag);
|
|
que->tag = NULL;
|
|
}
|
|
if (que->res != NULL)
|
|
bus_release_resource(dev,
|
|
SYS_RES_IRQ, rid, que->res);
|
|
}
|
|
|
|
/* Clean the Legacy or Link interrupt last */
|
|
if (adapter->linkvec) /* we are doing MSIX */
|
|
rid = adapter->linkvec + 1;
|
|
else
|
|
(adapter->msix != 0) ? (rid = 1):(rid = 0);
|
|
|
|
que = adapter->queues;
|
|
if (adapter->tag != NULL) {
|
|
taskqueue_drain(que->tq, &adapter->link_task);
|
|
bus_teardown_intr(dev, adapter->res, adapter->tag);
|
|
adapter->tag = NULL;
|
|
}
|
|
if (adapter->res != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ, rid, adapter->res);
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, que++) {
|
|
if (que->tq != NULL) {
|
|
#if __FreeBSD_version >= 800000
|
|
taskqueue_drain(que->tq, &que->txr->txq_task);
|
|
#endif
|
|
taskqueue_drain(que->tq, &que->que_task);
|
|
taskqueue_free(que->tq);
|
|
}
|
|
}
|
|
mem:
|
|
if (adapter->msix)
|
|
pci_release_msi(dev);
|
|
|
|
if (adapter->msix_mem != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem);
|
|
|
|
if (adapter->pci_mem != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(0), adapter->pci_mem);
|
|
|
|
}
|
|
|
|
/*
|
|
* Setup Either MSI/X or MSI
|
|
*/
|
|
static int
|
|
igb_setup_msix(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int rid, want, queues, msgs;
|
|
|
|
/* tuneable override */
|
|
if (igb_enable_msix == 0)
|
|
goto msi;
|
|
|
|
/* First try MSI/X */
|
|
rid = PCIR_BAR(IGB_MSIX_BAR);
|
|
adapter->msix_mem = bus_alloc_resource_any(dev,
|
|
SYS_RES_MEMORY, &rid, RF_ACTIVE);
|
|
if (!adapter->msix_mem) {
|
|
/* May not be enabled */
|
|
device_printf(adapter->dev,
|
|
"Unable to map MSIX table \n");
|
|
goto msi;
|
|
}
|
|
|
|
msgs = pci_msix_count(dev);
|
|
if (msgs == 0) { /* system has msix disabled */
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(IGB_MSIX_BAR), adapter->msix_mem);
|
|
adapter->msix_mem = NULL;
|
|
goto msi;
|
|
}
|
|
|
|
/* Figure out a reasonable auto config value */
|
|
queues = (mp_ncpus > (msgs-1)) ? (msgs-1) : mp_ncpus;
|
|
|
|
/* Manual override */
|
|
if (igb_num_queues != 0)
|
|
queues = igb_num_queues;
|
|
if (queues > 8) /* max queues */
|
|
queues = 8;
|
|
|
|
/* Can have max of 4 queues on 82575 */
|
|
if ((adapter->hw.mac.type == e1000_82575) && (queues > 4))
|
|
queues = 4;
|
|
|
|
/* Limit the VF devices to one queue */
|
|
if (adapter->vf_ifp)
|
|
queues = 1;
|
|
|
|
/*
|
|
** One vector (RX/TX pair) per queue
|
|
** plus an additional for Link interrupt
|
|
*/
|
|
want = queues + 1;
|
|
if (msgs >= want)
|
|
msgs = want;
|
|
else {
|
|
device_printf(adapter->dev,
|
|
"MSIX Configuration Problem, "
|
|
"%d vectors configured, but %d queues wanted!\n",
|
|
msgs, want);
|
|
return (0);
|
|
}
|
|
if ((msgs) && pci_alloc_msix(dev, &msgs) == 0) {
|
|
device_printf(adapter->dev,
|
|
"Using MSIX interrupts with %d vectors\n", msgs);
|
|
adapter->num_queues = queues;
|
|
return (msgs);
|
|
}
|
|
msi:
|
|
msgs = pci_msi_count(dev);
|
|
if (msgs == 1 && pci_alloc_msi(dev, &msgs) == 0) {
|
|
device_printf(adapter->dev," Using MSI interrupt\n");
|
|
return (msgs);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Set up an fresh starting state
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_reset(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_fc_info *fc = &hw->fc;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
u32 pba = 0;
|
|
u16 hwm;
|
|
|
|
INIT_DEBUGOUT("igb_reset: begin");
|
|
|
|
/* Let the firmware know the OS is in control */
|
|
igb_get_hw_control(adapter);
|
|
|
|
/*
|
|
* Packet Buffer Allocation (PBA)
|
|
* Writing PBA sets the receive portion of the buffer
|
|
* the remainder is used for the transmit buffer.
|
|
*/
|
|
switch (hw->mac.type) {
|
|
case e1000_82575:
|
|
pba = E1000_PBA_32K;
|
|
break;
|
|
case e1000_82576:
|
|
case e1000_vfadapt:
|
|
pba = E1000_READ_REG(hw, E1000_RXPBS);
|
|
pba &= E1000_RXPBS_SIZE_MASK_82576;
|
|
break;
|
|
case e1000_82580:
|
|
case e1000_i350:
|
|
case e1000_vfadapt_i350:
|
|
pba = E1000_READ_REG(hw, E1000_RXPBS);
|
|
pba = e1000_rxpbs_adjust_82580(pba);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Special needs in case of Jumbo frames */
|
|
if ((hw->mac.type == e1000_82575) && (ifp->if_mtu > ETHERMTU)) {
|
|
u32 tx_space, min_tx, min_rx;
|
|
pba = E1000_READ_REG(hw, E1000_PBA);
|
|
tx_space = pba >> 16;
|
|
pba &= 0xffff;
|
|
min_tx = (adapter->max_frame_size +
|
|
sizeof(struct e1000_tx_desc) - ETHERNET_FCS_SIZE) * 2;
|
|
min_tx = roundup2(min_tx, 1024);
|
|
min_tx >>= 10;
|
|
min_rx = adapter->max_frame_size;
|
|
min_rx = roundup2(min_rx, 1024);
|
|
min_rx >>= 10;
|
|
if (tx_space < min_tx &&
|
|
((min_tx - tx_space) < pba)) {
|
|
pba = pba - (min_tx - tx_space);
|
|
/*
|
|
* if short on rx space, rx wins
|
|
* and must trump tx adjustment
|
|
*/
|
|
if (pba < min_rx)
|
|
pba = min_rx;
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_PBA, pba);
|
|
}
|
|
|
|
INIT_DEBUGOUT1("igb_init: pba=%dK",pba);
|
|
|
|
/*
|
|
* These parameters control the automatic generation (Tx) and
|
|
* response (Rx) to Ethernet PAUSE frames.
|
|
* - High water mark should allow for at least two frames to be
|
|
* received after sending an XOFF.
|
|
* - Low water mark works best when it is very near the high water mark.
|
|
* This allows the receiver to restart by sending XON when it has
|
|
* drained a bit.
|
|
*/
|
|
hwm = min(((pba << 10) * 9 / 10),
|
|
((pba << 10) - 2 * adapter->max_frame_size));
|
|
|
|
if (hw->mac.type < e1000_82576) {
|
|
fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
|
|
fc->low_water = fc->high_water - 8;
|
|
} else {
|
|
fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
|
|
fc->low_water = fc->high_water - 16;
|
|
}
|
|
|
|
fc->pause_time = IGB_FC_PAUSE_TIME;
|
|
fc->send_xon = TRUE;
|
|
if (adapter->fc)
|
|
fc->requested_mode = adapter->fc;
|
|
else
|
|
fc->requested_mode = e1000_fc_default;
|
|
|
|
/* Issue a global reset */
|
|
e1000_reset_hw(hw);
|
|
E1000_WRITE_REG(hw, E1000_WUC, 0);
|
|
|
|
if (e1000_init_hw(hw) < 0)
|
|
device_printf(dev, "Hardware Initialization Failed\n");
|
|
|
|
/* Setup DMA Coalescing */
|
|
if (hw->mac.type == e1000_i350) {
|
|
u32 reg = ~E1000_DMACR_DMAC_EN;
|
|
|
|
if (adapter->dmac == 0) { /* Disabling it */
|
|
E1000_WRITE_REG(hw, E1000_DMACR, reg);
|
|
goto reset_out;
|
|
}
|
|
|
|
hwm = (pba - 4) << 10;
|
|
reg = (((pba-6) << E1000_DMACR_DMACTHR_SHIFT)
|
|
& E1000_DMACR_DMACTHR_MASK);
|
|
|
|
/* transition to L0x or L1 if available..*/
|
|
reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
|
|
|
|
/* timer = value in adapter->dmac in 32usec intervals */
|
|
reg |= (adapter->dmac >> 5);
|
|
E1000_WRITE_REG(hw, E1000_DMACR, reg);
|
|
|
|
/* No lower threshold */
|
|
E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
|
|
|
|
/* set hwm to PBA - 2 * max frame size */
|
|
E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
|
|
|
|
/* Set the interval before transition */
|
|
reg = E1000_READ_REG(hw, E1000_DMCTLX);
|
|
reg |= 0x800000FF; /* 255 usec */
|
|
E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
|
|
|
|
/* free space in tx packet buffer to wake from DMA coal */
|
|
E1000_WRITE_REG(hw, E1000_DMCTXTH,
|
|
(20480 - (2 * adapter->max_frame_size)) >> 6);
|
|
|
|
/* make low power state decision controlled by DMA coal */
|
|
reg = E1000_READ_REG(hw, E1000_PCIEMISC);
|
|
E1000_WRITE_REG(hw, E1000_PCIEMISC,
|
|
reg | E1000_PCIEMISC_LX_DECISION);
|
|
device_printf(dev, "DMA Coalescing enabled\n");
|
|
}
|
|
|
|
reset_out:
|
|
E1000_WRITE_REG(&adapter->hw, E1000_VET, ETHERTYPE_VLAN);
|
|
e1000_get_phy_info(hw);
|
|
e1000_check_for_link(hw);
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Setup networking device structure and register an interface.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_setup_interface(device_t dev, struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
INIT_DEBUGOUT("igb_setup_interface: begin");
|
|
|
|
ifp = adapter->ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not allocate ifnet structure\n");
|
|
return (-1);
|
|
}
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_init = igb_init;
|
|
ifp->if_softc = adapter;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = igb_ioctl;
|
|
#if __FreeBSD_version >= 800000
|
|
ifp->if_transmit = igb_mq_start;
|
|
ifp->if_qflush = igb_qflush;
|
|
#else
|
|
ifp->if_start = igb_start;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, adapter->num_tx_desc - 1);
|
|
ifp->if_snd.ifq_drv_maxlen = adapter->num_tx_desc - 1;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
#endif
|
|
|
|
ether_ifattach(ifp, adapter->hw.mac.addr);
|
|
|
|
ifp->if_capabilities = ifp->if_capenable = 0;
|
|
|
|
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM;
|
|
ifp->if_capabilities |= IFCAP_TSO4;
|
|
ifp->if_capabilities |= IFCAP_JUMBO_MTU;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
/* Don't enable LRO by default */
|
|
ifp->if_capabilities |= IFCAP_LRO;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
|
|
/*
|
|
* Tell the upper layer(s) we
|
|
* support full VLAN capability.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING
|
|
| IFCAP_VLAN_HWTSO
|
|
| IFCAP_VLAN_MTU;
|
|
ifp->if_capenable |= IFCAP_VLAN_HWTAGGING
|
|
| IFCAP_VLAN_HWTSO
|
|
| IFCAP_VLAN_MTU;
|
|
|
|
/*
|
|
** Don't turn this on by default, if vlans are
|
|
** created on another pseudo device (eg. lagg)
|
|
** then vlan events are not passed thru, breaking
|
|
** operation, but with HW FILTER off it works. If
|
|
** using vlans directly on the igb driver you can
|
|
** enable this and get full hardware tag filtering.
|
|
*/
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWFILTER;
|
|
|
|
/*
|
|
* Specify the media types supported by this adapter and register
|
|
* callbacks to update media and link information
|
|
*/
|
|
ifmedia_init(&adapter->media, IFM_IMASK,
|
|
igb_media_change, igb_media_status);
|
|
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) ||
|
|
(adapter->hw.phy.media_type == e1000_media_type_internal_serdes)) {
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
|
|
} else {
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T, 0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_10_T | IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX,
|
|
0, NULL);
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
|
|
0, NULL);
|
|
if (adapter->hw.phy.type != e1000_phy_ife) {
|
|
ifmedia_add(&adapter->media,
|
|
IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
|
|
ifmedia_add(&adapter->media,
|
|
IFM_ETHER | IFM_1000_T, 0, NULL);
|
|
}
|
|
}
|
|
ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Manage DMA'able memory.
|
|
*/
|
|
static void
|
|
igb_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
if (error)
|
|
return;
|
|
*(bus_addr_t *) arg = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
igb_dma_malloc(struct adapter *adapter, bus_size_t size,
|
|
struct igb_dma_alloc *dma, int mapflags)
|
|
{
|
|
int error;
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
|
|
IGB_DBA_ALIGN, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
size, /* maxsize */
|
|
1, /* nsegments */
|
|
size, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&dma->dma_tag);
|
|
if (error) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dma_tag_create failed: %d\n",
|
|
__func__, error);
|
|
goto fail_0;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
|
|
BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
|
|
if (error) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dmamem_alloc(%ju) failed: %d\n",
|
|
__func__, (uintmax_t)size, error);
|
|
goto fail_2;
|
|
}
|
|
|
|
dma->dma_paddr = 0;
|
|
error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
|
|
size, igb_dmamap_cb, &dma->dma_paddr, mapflags | BUS_DMA_NOWAIT);
|
|
if (error || dma->dma_paddr == 0) {
|
|
device_printf(adapter->dev,
|
|
"%s: bus_dmamap_load failed: %d\n",
|
|
__func__, error);
|
|
goto fail_3;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail_3:
|
|
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
|
|
fail_2:
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
fail_0:
|
|
dma->dma_map = NULL;
|
|
dma->dma_tag = NULL;
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
igb_dma_free(struct adapter *adapter, struct igb_dma_alloc *dma)
|
|
{
|
|
if (dma->dma_tag == NULL)
|
|
return;
|
|
if (dma->dma_map != NULL) {
|
|
bus_dmamap_sync(dma->dma_tag, dma->dma_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
dma->dma_map = NULL;
|
|
}
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
dma->dma_tag = NULL;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for the transmit and receive rings, and then
|
|
* the descriptors associated with each, called only once at attach.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_allocate_queues(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct igb_queue *que = NULL;
|
|
struct tx_ring *txr = NULL;
|
|
struct rx_ring *rxr = NULL;
|
|
int rsize, tsize, error = E1000_SUCCESS;
|
|
int txconf = 0, rxconf = 0;
|
|
|
|
/* First allocate the top level queue structs */
|
|
if (!(adapter->queues =
|
|
(struct igb_queue *) malloc(sizeof(struct igb_queue) *
|
|
adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate queue memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Next allocate the TX ring struct memory */
|
|
if (!(adapter->tx_rings =
|
|
(struct tx_ring *) malloc(sizeof(struct tx_ring) *
|
|
adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate TX ring memory\n");
|
|
error = ENOMEM;
|
|
goto tx_fail;
|
|
}
|
|
|
|
/* Now allocate the RX */
|
|
if (!(adapter->rx_rings =
|
|
(struct rx_ring *) malloc(sizeof(struct rx_ring) *
|
|
adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate RX ring memory\n");
|
|
error = ENOMEM;
|
|
goto rx_fail;
|
|
}
|
|
|
|
tsize = roundup2(adapter->num_tx_desc *
|
|
sizeof(union e1000_adv_tx_desc), IGB_DBA_ALIGN);
|
|
/*
|
|
* Now set up the TX queues, txconf is needed to handle the
|
|
* possibility that things fail midcourse and we need to
|
|
* undo memory gracefully
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++, txconf++) {
|
|
/* Set up some basics */
|
|
txr = &adapter->tx_rings[i];
|
|
txr->adapter = adapter;
|
|
txr->me = i;
|
|
|
|
/* Initialize the TX lock */
|
|
snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
|
|
device_get_nameunit(dev), txr->me);
|
|
mtx_init(&txr->tx_mtx, txr->mtx_name, NULL, MTX_DEF);
|
|
|
|
if (igb_dma_malloc(adapter, tsize,
|
|
&txr->txdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev,
|
|
"Unable to allocate TX Descriptor memory\n");
|
|
error = ENOMEM;
|
|
goto err_tx_desc;
|
|
}
|
|
txr->tx_base = (struct e1000_tx_desc *)txr->txdma.dma_vaddr;
|
|
bzero((void *)txr->tx_base, tsize);
|
|
|
|
/* Now allocate transmit buffers for the ring */
|
|
if (igb_allocate_transmit_buffers(txr)) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up transmit buffers\n");
|
|
error = ENOMEM;
|
|
goto err_tx_desc;
|
|
}
|
|
#if __FreeBSD_version >= 800000
|
|
/* Allocate a buf ring */
|
|
txr->br = buf_ring_alloc(IGB_BR_SIZE, M_DEVBUF,
|
|
M_WAITOK, &txr->tx_mtx);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Next the RX queues...
|
|
*/
|
|
rsize = roundup2(adapter->num_rx_desc *
|
|
sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN);
|
|
for (int i = 0; i < adapter->num_queues; i++, rxconf++) {
|
|
rxr = &adapter->rx_rings[i];
|
|
rxr->adapter = adapter;
|
|
rxr->me = i;
|
|
|
|
/* Initialize the RX lock */
|
|
snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
|
|
device_get_nameunit(dev), txr->me);
|
|
mtx_init(&rxr->rx_mtx, rxr->mtx_name, NULL, MTX_DEF);
|
|
|
|
if (igb_dma_malloc(adapter, rsize,
|
|
&rxr->rxdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev,
|
|
"Unable to allocate RxDescriptor memory\n");
|
|
error = ENOMEM;
|
|
goto err_rx_desc;
|
|
}
|
|
rxr->rx_base = (union e1000_adv_rx_desc *)rxr->rxdma.dma_vaddr;
|
|
bzero((void *)rxr->rx_base, rsize);
|
|
|
|
/* Allocate receive buffers for the ring*/
|
|
if (igb_allocate_receive_buffers(rxr)) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up receive buffers\n");
|
|
error = ENOMEM;
|
|
goto err_rx_desc;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Finally set up the queue holding structs
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
que = &adapter->queues[i];
|
|
que->adapter = adapter;
|
|
que->txr = &adapter->tx_rings[i];
|
|
que->rxr = &adapter->rx_rings[i];
|
|
}
|
|
|
|
return (0);
|
|
|
|
err_rx_desc:
|
|
for (rxr = adapter->rx_rings; rxconf > 0; rxr++, rxconf--)
|
|
igb_dma_free(adapter, &rxr->rxdma);
|
|
err_tx_desc:
|
|
for (txr = adapter->tx_rings; txconf > 0; txr++, txconf--)
|
|
igb_dma_free(adapter, &txr->txdma);
|
|
free(adapter->rx_rings, M_DEVBUF);
|
|
rx_fail:
|
|
#if __FreeBSD_version >= 800000
|
|
buf_ring_free(txr->br, M_DEVBUF);
|
|
#endif
|
|
free(adapter->tx_rings, M_DEVBUF);
|
|
tx_fail:
|
|
free(adapter->queues, M_DEVBUF);
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for tx_buffer structures. The tx_buffer stores all
|
|
* the information needed to transmit a packet on the wire. This is
|
|
* called only once at attach, setup is done every reset.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_allocate_transmit_buffers(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
device_t dev = adapter->dev;
|
|
struct igb_tx_buffer *txbuf;
|
|
int error, i;
|
|
|
|
/*
|
|
* Setup DMA descriptor areas.
|
|
*/
|
|
if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
IGB_TSO_SIZE, /* maxsize */
|
|
IGB_MAX_SCATTER, /* nsegments */
|
|
PAGE_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&txr->txtag))) {
|
|
device_printf(dev,"Unable to allocate TX DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (!(txr->tx_buffers =
|
|
(struct igb_tx_buffer *) malloc(sizeof(struct igb_tx_buffer) *
|
|
adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate tx_buffer memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Create the descriptor buffer dma maps */
|
|
txbuf = txr->tx_buffers;
|
|
for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
|
|
error = bus_dmamap_create(txr->txtag, 0, &txbuf->map);
|
|
if (error != 0) {
|
|
device_printf(dev, "Unable to create TX DMA map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
/* We free all, it handles case where we are in the middle */
|
|
igb_free_transmit_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize a transmit ring.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_setup_transmit_ring(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct igb_tx_buffer *txbuf;
|
|
int i;
|
|
#ifdef DEV_NETMAP
|
|
struct netmap_adapter *na = NA(adapter->ifp);
|
|
struct netmap_slot *slot;
|
|
#endif /* DEV_NETMAP */
|
|
|
|
/* Clear the old descriptor contents */
|
|
IGB_TX_LOCK(txr);
|
|
#ifdef DEV_NETMAP
|
|
slot = netmap_reset(na, NR_TX, txr->me, 0);
|
|
#endif /* DEV_NETMAP */
|
|
bzero((void *)txr->tx_base,
|
|
(sizeof(union e1000_adv_tx_desc)) * adapter->num_tx_desc);
|
|
/* Reset indices */
|
|
txr->next_avail_desc = 0;
|
|
txr->next_to_clean = 0;
|
|
|
|
/* Free any existing tx buffers. */
|
|
txbuf = txr->tx_buffers;
|
|
for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
|
|
if (txbuf->m_head != NULL) {
|
|
bus_dmamap_sync(txr->txtag, txbuf->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag, txbuf->map);
|
|
m_freem(txbuf->m_head);
|
|
txbuf->m_head = NULL;
|
|
}
|
|
#ifdef DEV_NETMAP
|
|
if (slot) {
|
|
int si = netmap_idx_n2k(&na->tx_rings[txr->me], i);
|
|
/* no need to set the address */
|
|
netmap_load_map(txr->txtag, txbuf->map, NMB(slot + si));
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
/* clear the watch index */
|
|
txbuf->next_eop = -1;
|
|
}
|
|
|
|
/* Set number of descriptors available */
|
|
txr->tx_avail = adapter->num_tx_desc;
|
|
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
IGB_TX_UNLOCK(txr);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize all transmit rings.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_setup_transmit_structures(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++)
|
|
igb_setup_transmit_ring(txr);
|
|
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable transmit unit.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_initialize_transmit_units(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 tctl, txdctl;
|
|
|
|
INIT_DEBUGOUT("igb_initialize_transmit_units: begin");
|
|
tctl = txdctl = 0;
|
|
|
|
/* Setup the Tx Descriptor Rings */
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
u64 bus_addr = txr->txdma.dma_paddr;
|
|
|
|
E1000_WRITE_REG(hw, E1000_TDLEN(i),
|
|
adapter->num_tx_desc * sizeof(struct e1000_tx_desc));
|
|
E1000_WRITE_REG(hw, E1000_TDBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
E1000_WRITE_REG(hw, E1000_TDBAL(i),
|
|
(uint32_t)bus_addr);
|
|
|
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
|
E1000_WRITE_REG(hw, E1000_TDT(i), 0);
|
|
E1000_WRITE_REG(hw, E1000_TDH(i), 0);
|
|
|
|
HW_DEBUGOUT2("Base = %x, Length = %x\n",
|
|
E1000_READ_REG(hw, E1000_TDBAL(i)),
|
|
E1000_READ_REG(hw, E1000_TDLEN(i)));
|
|
|
|
txr->queue_status = IGB_QUEUE_IDLE;
|
|
|
|
txdctl |= IGB_TX_PTHRESH;
|
|
txdctl |= IGB_TX_HTHRESH << 8;
|
|
txdctl |= IGB_TX_WTHRESH << 16;
|
|
txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
|
|
}
|
|
|
|
if (adapter->vf_ifp)
|
|
return;
|
|
|
|
e1000_config_collision_dist(hw);
|
|
|
|
/* Program the Transmit Control Register */
|
|
tctl = E1000_READ_REG(hw, E1000_TCTL);
|
|
tctl &= ~E1000_TCTL_CT;
|
|
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
|
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
|
|
|
|
/* This write will effectively turn on the transmit unit. */
|
|
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free all transmit rings.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_free_transmit_structures(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
IGB_TX_LOCK(txr);
|
|
igb_free_transmit_buffers(txr);
|
|
igb_dma_free(adapter, &txr->txdma);
|
|
IGB_TX_UNLOCK(txr);
|
|
IGB_TX_LOCK_DESTROY(txr);
|
|
}
|
|
free(adapter->tx_rings, M_DEVBUF);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free transmit ring related data structures.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_free_transmit_buffers(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct igb_tx_buffer *tx_buffer;
|
|
int i;
|
|
|
|
INIT_DEBUGOUT("free_transmit_ring: begin");
|
|
|
|
if (txr->tx_buffers == NULL)
|
|
return;
|
|
|
|
tx_buffer = txr->tx_buffers;
|
|
for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
|
|
if (tx_buffer->m_head != NULL) {
|
|
bus_dmamap_sync(txr->txtag, tx_buffer->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag,
|
|
tx_buffer->map);
|
|
m_freem(tx_buffer->m_head);
|
|
tx_buffer->m_head = NULL;
|
|
if (tx_buffer->map != NULL) {
|
|
bus_dmamap_destroy(txr->txtag,
|
|
tx_buffer->map);
|
|
tx_buffer->map = NULL;
|
|
}
|
|
} else if (tx_buffer->map != NULL) {
|
|
bus_dmamap_unload(txr->txtag,
|
|
tx_buffer->map);
|
|
bus_dmamap_destroy(txr->txtag,
|
|
tx_buffer->map);
|
|
tx_buffer->map = NULL;
|
|
}
|
|
}
|
|
#if __FreeBSD_version >= 800000
|
|
if (txr->br != NULL)
|
|
buf_ring_free(txr->br, M_DEVBUF);
|
|
#endif
|
|
if (txr->tx_buffers != NULL) {
|
|
free(txr->tx_buffers, M_DEVBUF);
|
|
txr->tx_buffers = NULL;
|
|
}
|
|
if (txr->txtag != NULL) {
|
|
bus_dma_tag_destroy(txr->txtag);
|
|
txr->txtag = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Setup work for hardware segmentation offload (TSO)
|
|
*
|
|
**********************************************************************/
|
|
static bool
|
|
igb_tso_setup(struct tx_ring *txr, struct mbuf *mp, int ehdrlen,
|
|
struct ip *ip, struct tcphdr *th)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct e1000_adv_tx_context_desc *TXD;
|
|
struct igb_tx_buffer *tx_buffer;
|
|
u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
|
|
u32 mss_l4len_idx = 0;
|
|
u16 vtag = 0;
|
|
int ctxd, ip_hlen, tcp_hlen;
|
|
|
|
ctxd = txr->next_avail_desc;
|
|
tx_buffer = &txr->tx_buffers[ctxd];
|
|
TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd];
|
|
|
|
ip->ip_sum = 0;
|
|
ip_hlen = ip->ip_hl << 2;
|
|
tcp_hlen = th->th_off << 2;
|
|
|
|
/* VLAN MACLEN IPLEN */
|
|
if (mp->m_flags & M_VLANTAG) {
|
|
vtag = htole16(mp->m_pkthdr.ether_vtag);
|
|
vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
|
|
}
|
|
|
|
vlan_macip_lens |= (ehdrlen << E1000_ADVTXD_MACLEN_SHIFT);
|
|
vlan_macip_lens |= ip_hlen;
|
|
TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
|
|
|
|
/* ADV DTYPE TUCMD */
|
|
type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
|
|
TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
|
|
|
|
/* MSS L4LEN IDX */
|
|
mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
|
|
mss_l4len_idx |= (tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
|
|
/* 82575 needs the queue index added */
|
|
if (adapter->hw.mac.type == e1000_82575)
|
|
mss_l4len_idx |= txr->me << 4;
|
|
TXD->mss_l4len_idx = htole32(mss_l4len_idx);
|
|
|
|
TXD->seqnum_seed = htole32(0);
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
|
|
if (++ctxd == adapter->num_tx_desc)
|
|
ctxd = 0;
|
|
|
|
txr->tx_avail--;
|
|
txr->next_avail_desc = ctxd;
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Context Descriptor setup for VLAN or CSUM
|
|
*
|
|
**********************************************************************/
|
|
|
|
static bool
|
|
igb_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct e1000_adv_tx_context_desc *TXD;
|
|
struct igb_tx_buffer *tx_buffer;
|
|
u32 vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
|
|
struct ether_vlan_header *eh;
|
|
struct ip *ip = NULL;
|
|
struct ip6_hdr *ip6;
|
|
int ehdrlen, ctxd, ip_hlen = 0;
|
|
u16 etype, vtag = 0;
|
|
u8 ipproto = 0;
|
|
bool offload = TRUE;
|
|
|
|
if ((mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) == 0)
|
|
offload = FALSE;
|
|
|
|
vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
|
|
ctxd = txr->next_avail_desc;
|
|
tx_buffer = &txr->tx_buffers[ctxd];
|
|
TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[ctxd];
|
|
|
|
/*
|
|
** In advanced descriptors the vlan tag must
|
|
** be placed into the context descriptor, thus
|
|
** we need to be here just for that setup.
|
|
*/
|
|
if (mp->m_flags & M_VLANTAG) {
|
|
vtag = htole16(mp->m_pkthdr.ether_vtag);
|
|
vlan_macip_lens |= (vtag << E1000_ADVTXD_VLAN_SHIFT);
|
|
} else if (offload == FALSE)
|
|
return FALSE;
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present,
|
|
* helpful for QinQ too.
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
etype = ntohs(eh->evl_proto);
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
} else {
|
|
etype = ntohs(eh->evl_encap_proto);
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
}
|
|
|
|
/* Set the ether header length */
|
|
vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
|
|
|
|
switch (etype) {
|
|
case ETHERTYPE_IP:
|
|
ip = (struct ip *)(mp->m_data + ehdrlen);
|
|
ip_hlen = ip->ip_hl << 2;
|
|
if (mp->m_len < ehdrlen + ip_hlen) {
|
|
offload = FALSE;
|
|
break;
|
|
}
|
|
ipproto = ip->ip_p;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
|
|
break;
|
|
case ETHERTYPE_IPV6:
|
|
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
|
|
ip_hlen = sizeof(struct ip6_hdr);
|
|
ipproto = ip6->ip6_nxt;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
|
|
break;
|
|
default:
|
|
offload = FALSE;
|
|
break;
|
|
}
|
|
|
|
vlan_macip_lens |= ip_hlen;
|
|
type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
|
|
|
|
switch (ipproto) {
|
|
case IPPROTO_TCP:
|
|
if (mp->m_pkthdr.csum_flags & CSUM_TCP)
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
if (mp->m_pkthdr.csum_flags & CSUM_UDP)
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
|
|
break;
|
|
#if __FreeBSD_version >= 800000
|
|
case IPPROTO_SCTP:
|
|
if (mp->m_pkthdr.csum_flags & CSUM_SCTP)
|
|
type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
|
|
break;
|
|
#endif
|
|
default:
|
|
offload = FALSE;
|
|
break;
|
|
}
|
|
|
|
/* 82575 needs the queue index added */
|
|
if (adapter->hw.mac.type == e1000_82575)
|
|
mss_l4len_idx = txr->me << 4;
|
|
|
|
/* Now copy bits into descriptor */
|
|
TXD->vlan_macip_lens |= htole32(vlan_macip_lens);
|
|
TXD->type_tucmd_mlhl |= htole32(type_tucmd_mlhl);
|
|
TXD->seqnum_seed = htole32(0);
|
|
TXD->mss_l4len_idx = htole32(mss_l4len_idx);
|
|
|
|
tx_buffer->m_head = NULL;
|
|
tx_buffer->next_eop = -1;
|
|
|
|
/* We've consumed the first desc, adjust counters */
|
|
if (++ctxd == adapter->num_tx_desc)
|
|
ctxd = 0;
|
|
txr->next_avail_desc = ctxd;
|
|
--txr->tx_avail;
|
|
|
|
return (offload);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Examine each tx_buffer in the used queue. If the hardware is done
|
|
* processing the packet then free associated resources. The
|
|
* tx_buffer is put back on the free queue.
|
|
*
|
|
* TRUE return means there's work in the ring to clean, FALSE its empty.
|
|
**********************************************************************/
|
|
static bool
|
|
igb_txeof(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
int first, last, done, processed;
|
|
struct igb_tx_buffer *tx_buffer;
|
|
struct e1000_tx_desc *tx_desc, *eop_desc;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
IGB_TX_LOCK_ASSERT(txr);
|
|
|
|
#ifdef DEV_NETMAP
|
|
if (ifp->if_capenable & IFCAP_NETMAP) {
|
|
struct netmap_adapter *na = NA(ifp);
|
|
|
|
selwakeuppri(&na->tx_rings[txr->me].si, PI_NET);
|
|
IGB_TX_UNLOCK(txr);
|
|
IGB_CORE_LOCK(adapter);
|
|
selwakeuppri(&na->tx_si, PI_NET);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
IGB_TX_LOCK(txr);
|
|
return FALSE;
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
if (txr->tx_avail == adapter->num_tx_desc) {
|
|
txr->queue_status = IGB_QUEUE_IDLE;
|
|
return FALSE;
|
|
}
|
|
|
|
processed = 0;
|
|
first = txr->next_to_clean;
|
|
tx_desc = &txr->tx_base[first];
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
last = tx_buffer->next_eop;
|
|
eop_desc = &txr->tx_base[last];
|
|
|
|
/*
|
|
* What this does is get the index of the
|
|
* first descriptor AFTER the EOP of the
|
|
* first packet, that way we can do the
|
|
* simple comparison on the inner while loop.
|
|
*/
|
|
if (++last == adapter->num_tx_desc)
|
|
last = 0;
|
|
done = last;
|
|
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
while (eop_desc->upper.fields.status & E1000_TXD_STAT_DD) {
|
|
/* We clean the range of the packet */
|
|
while (first != done) {
|
|
tx_desc->upper.data = 0;
|
|
tx_desc->lower.data = 0;
|
|
tx_desc->buffer_addr = 0;
|
|
++txr->tx_avail;
|
|
++processed;
|
|
|
|
if (tx_buffer->m_head) {
|
|
txr->bytes +=
|
|
tx_buffer->m_head->m_pkthdr.len;
|
|
bus_dmamap_sync(txr->txtag,
|
|
tx_buffer->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag,
|
|
tx_buffer->map);
|
|
|
|
m_freem(tx_buffer->m_head);
|
|
tx_buffer->m_head = NULL;
|
|
}
|
|
tx_buffer->next_eop = -1;
|
|
txr->watchdog_time = ticks;
|
|
|
|
if (++first == adapter->num_tx_desc)
|
|
first = 0;
|
|
|
|
tx_buffer = &txr->tx_buffers[first];
|
|
tx_desc = &txr->tx_base[first];
|
|
}
|
|
++txr->packets;
|
|
++ifp->if_opackets;
|
|
/* See if we can continue to the next packet */
|
|
last = tx_buffer->next_eop;
|
|
if (last != -1) {
|
|
eop_desc = &txr->tx_base[last];
|
|
/* Get new done point */
|
|
if (++last == adapter->num_tx_desc) last = 0;
|
|
done = last;
|
|
} else
|
|
break;
|
|
}
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
txr->next_to_clean = first;
|
|
|
|
/*
|
|
** Watchdog calculation, we know there's
|
|
** work outstanding or the first return
|
|
** would have been taken, so none processed
|
|
** for too long indicates a hang.
|
|
*/
|
|
if ((!processed) && ((ticks - txr->watchdog_time) > IGB_WATCHDOG))
|
|
txr->queue_status |= IGB_QUEUE_HUNG;
|
|
/*
|
|
* If we have a minimum free,
|
|
* clear depleted state bit
|
|
*/
|
|
if (txr->tx_avail >= IGB_QUEUE_THRESHOLD)
|
|
txr->queue_status &= ~IGB_QUEUE_DEPLETED;
|
|
|
|
/* All clean, turn off the watchdog */
|
|
if (txr->tx_avail == adapter->num_tx_desc) {
|
|
txr->queue_status = IGB_QUEUE_IDLE;
|
|
return (FALSE);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Refresh mbuf buffers for RX descriptor rings
|
|
* - now keeps its own state so discards due to resource
|
|
* exhaustion are unnecessary, if an mbuf cannot be obtained
|
|
* it just returns, keeping its placeholder, thus it can simply
|
|
* be recalled to try again.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_refresh_mbufs(struct rx_ring *rxr, int limit)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
bus_dma_segment_t hseg[1];
|
|
bus_dma_segment_t pseg[1];
|
|
struct igb_rx_buf *rxbuf;
|
|
struct mbuf *mh, *mp;
|
|
int i, j, nsegs, error;
|
|
bool refreshed = FALSE;
|
|
|
|
i = j = rxr->next_to_refresh;
|
|
/*
|
|
** Get one descriptor beyond
|
|
** our work mark to control
|
|
** the loop.
|
|
*/
|
|
if (++j == adapter->num_rx_desc)
|
|
j = 0;
|
|
|
|
while (j != limit) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
/* No hdr mbuf used with header split off */
|
|
if (rxr->hdr_split == FALSE)
|
|
goto no_split;
|
|
if (rxbuf->m_head == NULL) {
|
|
mh = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
if (mh == NULL)
|
|
goto update;
|
|
} else
|
|
mh = rxbuf->m_head;
|
|
|
|
mh->m_pkthdr.len = mh->m_len = MHLEN;
|
|
mh->m_len = MHLEN;
|
|
mh->m_flags |= M_PKTHDR;
|
|
/* Get the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->htag,
|
|
rxbuf->hmap, mh, hseg, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
printf("Refresh mbufs: hdr dmamap load"
|
|
" failure - %d\n", error);
|
|
m_free(mh);
|
|
rxbuf->m_head = NULL;
|
|
goto update;
|
|
}
|
|
rxbuf->m_head = mh;
|
|
bus_dmamap_sync(rxr->htag, rxbuf->hmap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxr->rx_base[i].read.hdr_addr =
|
|
htole64(hseg[0].ds_addr);
|
|
no_split:
|
|
if (rxbuf->m_pack == NULL) {
|
|
mp = m_getjcl(M_DONTWAIT, MT_DATA,
|
|
M_PKTHDR, adapter->rx_mbuf_sz);
|
|
if (mp == NULL)
|
|
goto update;
|
|
} else
|
|
mp = rxbuf->m_pack;
|
|
|
|
mp->m_pkthdr.len = mp->m_len = adapter->rx_mbuf_sz;
|
|
/* Get the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->ptag,
|
|
rxbuf->pmap, mp, pseg, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
printf("Refresh mbufs: payload dmamap load"
|
|
" failure - %d\n", error);
|
|
m_free(mp);
|
|
rxbuf->m_pack = NULL;
|
|
goto update;
|
|
}
|
|
rxbuf->m_pack = mp;
|
|
bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxr->rx_base[i].read.pkt_addr =
|
|
htole64(pseg[0].ds_addr);
|
|
refreshed = TRUE; /* I feel wefreshed :) */
|
|
|
|
i = j; /* our next is precalculated */
|
|
rxr->next_to_refresh = i;
|
|
if (++j == adapter->num_rx_desc)
|
|
j = 0;
|
|
}
|
|
update:
|
|
if (refreshed) /* update tail */
|
|
E1000_WRITE_REG(&adapter->hw,
|
|
E1000_RDT(rxr->me), rxr->next_to_refresh);
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for rx_buffer structures. Since we use one
|
|
* rx_buffer per received packet, the maximum number of rx_buffer's
|
|
* that we'll need is equal to the number of receive descriptors
|
|
* that we've allocated.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_allocate_receive_buffers(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
device_t dev = adapter->dev;
|
|
struct igb_rx_buf *rxbuf;
|
|
int i, bsize, error;
|
|
|
|
bsize = sizeof(struct igb_rx_buf) * adapter->num_rx_desc;
|
|
if (!(rxr->rx_buffers =
|
|
(struct igb_rx_buf *) malloc(bsize,
|
|
M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate rx_buffer memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MSIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
MSIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&rxr->htag))) {
|
|
device_printf(dev, "Unable to create RX DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
if ((error = bus_dma_tag_create(bus_get_dma_tag(dev),
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MJUM9BYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MJUM9BYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&rxr->ptag))) {
|
|
device_printf(dev, "Unable to create RX payload DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0; i < adapter->num_rx_desc; i++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
error = bus_dmamap_create(rxr->htag,
|
|
BUS_DMA_NOWAIT, &rxbuf->hmap);
|
|
if (error) {
|
|
device_printf(dev,
|
|
"Unable to create RX head DMA maps\n");
|
|
goto fail;
|
|
}
|
|
error = bus_dmamap_create(rxr->ptag,
|
|
BUS_DMA_NOWAIT, &rxbuf->pmap);
|
|
if (error) {
|
|
device_printf(dev,
|
|
"Unable to create RX packet DMA maps\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
/* Frees all, but can handle partial completion */
|
|
igb_free_receive_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
|
|
static void
|
|
igb_free_receive_ring(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct igb_rx_buf *rxbuf;
|
|
|
|
|
|
for (int i = 0; i < adapter->num_rx_desc; i++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
if (rxbuf->m_head != NULL) {
|
|
bus_dmamap_sync(rxr->htag, rxbuf->hmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->htag, rxbuf->hmap);
|
|
rxbuf->m_head->m_flags |= M_PKTHDR;
|
|
m_freem(rxbuf->m_head);
|
|
}
|
|
if (rxbuf->m_pack != NULL) {
|
|
bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->ptag, rxbuf->pmap);
|
|
rxbuf->m_pack->m_flags |= M_PKTHDR;
|
|
m_freem(rxbuf->m_pack);
|
|
}
|
|
rxbuf->m_head = NULL;
|
|
rxbuf->m_pack = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize a receive ring and its buffers.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_setup_receive_ring(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter;
|
|
struct ifnet *ifp;
|
|
device_t dev;
|
|
struct igb_rx_buf *rxbuf;
|
|
bus_dma_segment_t pseg[1], hseg[1];
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
int rsize, nsegs, error = 0;
|
|
#ifdef DEV_NETMAP
|
|
struct netmap_adapter *na = NA(rxr->adapter->ifp);
|
|
struct netmap_slot *slot;
|
|
#endif /* DEV_NETMAP */
|
|
|
|
adapter = rxr->adapter;
|
|
dev = adapter->dev;
|
|
ifp = adapter->ifp;
|
|
|
|
/* Clear the ring contents */
|
|
IGB_RX_LOCK(rxr);
|
|
#ifdef DEV_NETMAP
|
|
slot = netmap_reset(na, NR_RX, rxr->me, 0);
|
|
#endif /* DEV_NETMAP */
|
|
rsize = roundup2(adapter->num_rx_desc *
|
|
sizeof(union e1000_adv_rx_desc), IGB_DBA_ALIGN);
|
|
bzero((void *)rxr->rx_base, rsize);
|
|
|
|
/*
|
|
** Free current RX buffer structures and their mbufs
|
|
*/
|
|
igb_free_receive_ring(rxr);
|
|
|
|
/* Configure for header split? */
|
|
if (igb_header_split)
|
|
rxr->hdr_split = TRUE;
|
|
|
|
/* Now replenish the ring mbufs */
|
|
for (int j = 0; j < adapter->num_rx_desc; ++j) {
|
|
struct mbuf *mh, *mp;
|
|
|
|
rxbuf = &rxr->rx_buffers[j];
|
|
#ifdef DEV_NETMAP
|
|
if (slot) {
|
|
/* slot sj is mapped to the i-th NIC-ring entry */
|
|
int sj = netmap_idx_n2k(&na->rx_rings[rxr->me], j);
|
|
uint64_t paddr;
|
|
void *addr;
|
|
|
|
addr = PNMB(slot + sj, &paddr);
|
|
netmap_load_map(rxr->ptag, rxbuf->pmap, addr);
|
|
/* Update descriptor */
|
|
rxr->rx_base[j].read.pkt_addr = htole64(paddr);
|
|
continue;
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
if (rxr->hdr_split == FALSE)
|
|
goto skip_head;
|
|
|
|
/* First the header */
|
|
rxbuf->m_head = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
if (rxbuf->m_head == NULL) {
|
|
error = ENOBUFS;
|
|
goto fail;
|
|
}
|
|
m_adj(rxbuf->m_head, ETHER_ALIGN);
|
|
mh = rxbuf->m_head;
|
|
mh->m_len = mh->m_pkthdr.len = MHLEN;
|
|
mh->m_flags |= M_PKTHDR;
|
|
/* Get the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->htag,
|
|
rxbuf->hmap, rxbuf->m_head, hseg,
|
|
&nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) /* Nothing elegant to do here */
|
|
goto fail;
|
|
bus_dmamap_sync(rxr->htag,
|
|
rxbuf->hmap, BUS_DMASYNC_PREREAD);
|
|
/* Update descriptor */
|
|
rxr->rx_base[j].read.hdr_addr = htole64(hseg[0].ds_addr);
|
|
|
|
skip_head:
|
|
/* Now the payload cluster */
|
|
rxbuf->m_pack = m_getjcl(M_DONTWAIT, MT_DATA,
|
|
M_PKTHDR, adapter->rx_mbuf_sz);
|
|
if (rxbuf->m_pack == NULL) {
|
|
error = ENOBUFS;
|
|
goto fail;
|
|
}
|
|
mp = rxbuf->m_pack;
|
|
mp->m_pkthdr.len = mp->m_len = adapter->rx_mbuf_sz;
|
|
/* Get the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->ptag,
|
|
rxbuf->pmap, mp, pseg,
|
|
&nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0)
|
|
goto fail;
|
|
bus_dmamap_sync(rxr->ptag,
|
|
rxbuf->pmap, BUS_DMASYNC_PREREAD);
|
|
/* Update descriptor */
|
|
rxr->rx_base[j].read.pkt_addr = htole64(pseg[0].ds_addr);
|
|
}
|
|
|
|
/* Setup our descriptor indices */
|
|
rxr->next_to_check = 0;
|
|
rxr->next_to_refresh = adapter->num_rx_desc - 1;
|
|
rxr->lro_enabled = FALSE;
|
|
rxr->rx_split_packets = 0;
|
|
rxr->rx_bytes = 0;
|
|
|
|
rxr->fmp = NULL;
|
|
rxr->lmp = NULL;
|
|
rxr->discard = FALSE;
|
|
|
|
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
** Now set up the LRO interface, we
|
|
** also only do head split when LRO
|
|
** is enabled, since so often they
|
|
** are undesireable in similar setups.
|
|
*/
|
|
if (ifp->if_capenable & IFCAP_LRO) {
|
|
error = tcp_lro_init(lro);
|
|
if (error) {
|
|
device_printf(dev, "LRO Initialization failed!\n");
|
|
goto fail;
|
|
}
|
|
INIT_DEBUGOUT("RX LRO Initialized\n");
|
|
rxr->lro_enabled = TRUE;
|
|
lro->ifp = adapter->ifp;
|
|
}
|
|
|
|
IGB_RX_UNLOCK(rxr);
|
|
return (0);
|
|
|
|
fail:
|
|
igb_free_receive_ring(rxr);
|
|
IGB_RX_UNLOCK(rxr);
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize all receive rings.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_setup_receive_structures(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
int i;
|
|
|
|
for (i = 0; i < adapter->num_queues; i++, rxr++)
|
|
if (igb_setup_receive_ring(rxr))
|
|
goto fail;
|
|
|
|
return (0);
|
|
fail:
|
|
/*
|
|
* Free RX buffers allocated so far, we will only handle
|
|
* the rings that completed, the failing case will have
|
|
* cleaned up for itself. 'i' is the endpoint.
|
|
*/
|
|
for (int j = 0; j > i; ++j) {
|
|
rxr = &adapter->rx_rings[i];
|
|
IGB_RX_LOCK(rxr);
|
|
igb_free_receive_ring(rxr);
|
|
IGB_RX_UNLOCK(rxr);
|
|
}
|
|
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable receive unit.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_initialize_receive_units(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
u32 rctl, rxcsum, psize, srrctl = 0;
|
|
|
|
INIT_DEBUGOUT("igb_initialize_receive_unit: begin");
|
|
|
|
/*
|
|
* Make sure receives are disabled while setting
|
|
* up the descriptor ring
|
|
*/
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
|
|
|
/*
|
|
** Set up for header split
|
|
*/
|
|
if (igb_header_split) {
|
|
/* Use a standard mbuf for the header */
|
|
srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
|
|
srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
|
|
} else
|
|
srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
|
|
|
|
/*
|
|
** Set up for jumbo frames
|
|
*/
|
|
if (ifp->if_mtu > ETHERMTU) {
|
|
rctl |= E1000_RCTL_LPE;
|
|
if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
|
|
srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
|
|
rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
|
|
} else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
|
|
srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
|
|
rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
|
|
}
|
|
/* Set maximum packet len */
|
|
psize = adapter->max_frame_size;
|
|
/* are we on a vlan? */
|
|
if (adapter->ifp->if_vlantrunk != NULL)
|
|
psize += VLAN_TAG_SIZE;
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
|
|
} else {
|
|
rctl &= ~E1000_RCTL_LPE;
|
|
srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
|
|
rctl |= E1000_RCTL_SZ_2048;
|
|
}
|
|
|
|
/* Setup the Base and Length of the Rx Descriptor Rings */
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
|
|
u64 bus_addr = rxr->rxdma.dma_paddr;
|
|
u32 rxdctl;
|
|
|
|
E1000_WRITE_REG(hw, E1000_RDLEN(i),
|
|
adapter->num_rx_desc * sizeof(struct e1000_rx_desc));
|
|
E1000_WRITE_REG(hw, E1000_RDBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
E1000_WRITE_REG(hw, E1000_RDBAL(i),
|
|
(uint32_t)bus_addr);
|
|
E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
|
|
/* Enable this Queue */
|
|
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
|
|
rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
|
|
rxdctl &= 0xFFF00000;
|
|
rxdctl |= IGB_RX_PTHRESH;
|
|
rxdctl |= IGB_RX_HTHRESH << 8;
|
|
rxdctl |= IGB_RX_WTHRESH << 16;
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
|
|
}
|
|
|
|
/*
|
|
** Setup for RX MultiQueue
|
|
*/
|
|
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
|
|
if (adapter->num_queues >1) {
|
|
u32 random[10], mrqc, shift = 0;
|
|
union igb_reta {
|
|
u32 dword;
|
|
u8 bytes[4];
|
|
} reta;
|
|
|
|
arc4rand(&random, sizeof(random), 0);
|
|
if (adapter->hw.mac.type == e1000_82575)
|
|
shift = 6;
|
|
/* Warning FM follows */
|
|
for (int i = 0; i < 128; i++) {
|
|
reta.bytes[i & 3] =
|
|
(i % adapter->num_queues) << shift;
|
|
if ((i & 3) == 3)
|
|
E1000_WRITE_REG(hw,
|
|
E1000_RETA(i >> 2), reta.dword);
|
|
}
|
|
/* Now fill in hash table */
|
|
mrqc = E1000_MRQC_ENABLE_RSS_4Q;
|
|
for (int i = 0; i < 10; i++)
|
|
E1000_WRITE_REG_ARRAY(hw,
|
|
E1000_RSSRK(0), i, random[i]);
|
|
|
|
mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
|
|
E1000_MRQC_RSS_FIELD_IPV4_TCP);
|
|
mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
|
|
E1000_MRQC_RSS_FIELD_IPV6_TCP);
|
|
mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
|
|
E1000_MRQC_RSS_FIELD_IPV6_UDP);
|
|
mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
|
|
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
|
|
|
|
E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
|
|
|
|
/*
|
|
** NOTE: Receive Full-Packet Checksum Offload
|
|
** is mutually exclusive with Multiqueue. However
|
|
** this is not the same as TCP/IP checksums which
|
|
** still work.
|
|
*/
|
|
rxcsum |= E1000_RXCSUM_PCSD;
|
|
#if __FreeBSD_version >= 800000
|
|
/* For SCTP Offload */
|
|
if ((hw->mac.type == e1000_82576)
|
|
&& (ifp->if_capenable & IFCAP_RXCSUM))
|
|
rxcsum |= E1000_RXCSUM_CRCOFL;
|
|
#endif
|
|
} else {
|
|
/* Non RSS setup */
|
|
if (ifp->if_capenable & IFCAP_RXCSUM) {
|
|
rxcsum |= E1000_RXCSUM_IPPCSE;
|
|
#if __FreeBSD_version >= 800000
|
|
if (adapter->hw.mac.type == e1000_82576)
|
|
rxcsum |= E1000_RXCSUM_CRCOFL;
|
|
#endif
|
|
} else
|
|
rxcsum &= ~E1000_RXCSUM_TUOFL;
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
|
|
|
|
/* Setup the Receive Control Register */
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
|
|
E1000_RCTL_RDMTS_HALF |
|
|
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
/* Strip CRC bytes. */
|
|
rctl |= E1000_RCTL_SECRC;
|
|
/* Make sure VLAN Filters are off */
|
|
rctl &= ~E1000_RCTL_VFE;
|
|
/* Don't store bad packets */
|
|
rctl &= ~E1000_RCTL_SBP;
|
|
|
|
/* Enable Receives */
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
|
|
/*
|
|
* Setup the HW Rx Head and Tail Descriptor Pointers
|
|
* - needs to be after enable
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
rxr = &adapter->rx_rings[i];
|
|
E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
|
|
#ifdef DEV_NETMAP
|
|
/*
|
|
* an init() while a netmap client is active must
|
|
* preserve the rx buffers passed to userspace.
|
|
* In this driver it means we adjust RDT to
|
|
* somthing different from next_to_refresh
|
|
* (which is not used in netmap mode).
|
|
*/
|
|
if (ifp->if_capenable & IFCAP_NETMAP) {
|
|
struct netmap_adapter *na = NA(adapter->ifp);
|
|
struct netmap_kring *kring = &na->rx_rings[i];
|
|
int t = rxr->next_to_refresh - kring->nr_hwavail;
|
|
|
|
if (t >= adapter->num_rx_desc)
|
|
t -= adapter->num_rx_desc;
|
|
else if (t < 0)
|
|
t += adapter->num_rx_desc;
|
|
E1000_WRITE_REG(hw, E1000_RDT(i), t);
|
|
} else
|
|
#endif /* DEV_NETMAP */
|
|
E1000_WRITE_REG(hw, E1000_RDT(i), rxr->next_to_refresh);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free receive rings.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_free_receive_structures(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
igb_free_receive_buffers(rxr);
|
|
tcp_lro_free(lro);
|
|
igb_dma_free(adapter, &rxr->rxdma);
|
|
}
|
|
|
|
free(adapter->rx_rings, M_DEVBUF);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free receive ring data structures.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_free_receive_buffers(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct igb_rx_buf *rxbuf;
|
|
int i;
|
|
|
|
INIT_DEBUGOUT("free_receive_structures: begin");
|
|
|
|
/* Cleanup any existing buffers */
|
|
if (rxr->rx_buffers != NULL) {
|
|
for (i = 0; i < adapter->num_rx_desc; i++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
if (rxbuf->m_head != NULL) {
|
|
bus_dmamap_sync(rxr->htag, rxbuf->hmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->htag, rxbuf->hmap);
|
|
rxbuf->m_head->m_flags |= M_PKTHDR;
|
|
m_freem(rxbuf->m_head);
|
|
}
|
|
if (rxbuf->m_pack != NULL) {
|
|
bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->ptag, rxbuf->pmap);
|
|
rxbuf->m_pack->m_flags |= M_PKTHDR;
|
|
m_freem(rxbuf->m_pack);
|
|
}
|
|
rxbuf->m_head = NULL;
|
|
rxbuf->m_pack = NULL;
|
|
if (rxbuf->hmap != NULL) {
|
|
bus_dmamap_destroy(rxr->htag, rxbuf->hmap);
|
|
rxbuf->hmap = NULL;
|
|
}
|
|
if (rxbuf->pmap != NULL) {
|
|
bus_dmamap_destroy(rxr->ptag, rxbuf->pmap);
|
|
rxbuf->pmap = NULL;
|
|
}
|
|
}
|
|
if (rxr->rx_buffers != NULL) {
|
|
free(rxr->rx_buffers, M_DEVBUF);
|
|
rxr->rx_buffers = NULL;
|
|
}
|
|
}
|
|
|
|
if (rxr->htag != NULL) {
|
|
bus_dma_tag_destroy(rxr->htag);
|
|
rxr->htag = NULL;
|
|
}
|
|
if (rxr->ptag != NULL) {
|
|
bus_dma_tag_destroy(rxr->ptag);
|
|
rxr->ptag = NULL;
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
igb_rx_discard(struct rx_ring *rxr, int i)
|
|
{
|
|
struct igb_rx_buf *rbuf;
|
|
|
|
rbuf = &rxr->rx_buffers[i];
|
|
|
|
/* Partially received? Free the chain */
|
|
if (rxr->fmp != NULL) {
|
|
rxr->fmp->m_flags |= M_PKTHDR;
|
|
m_freem(rxr->fmp);
|
|
rxr->fmp = NULL;
|
|
rxr->lmp = NULL;
|
|
}
|
|
|
|
/*
|
|
** With advanced descriptors the writeback
|
|
** clobbers the buffer addrs, so its easier
|
|
** to just free the existing mbufs and take
|
|
** the normal refresh path to get new buffers
|
|
** and mapping.
|
|
*/
|
|
if (rbuf->m_head) {
|
|
m_free(rbuf->m_head);
|
|
rbuf->m_head = NULL;
|
|
}
|
|
|
|
if (rbuf->m_pack) {
|
|
m_free(rbuf->m_pack);
|
|
rbuf->m_pack = NULL;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static __inline void
|
|
igb_rx_input(struct rx_ring *rxr, struct ifnet *ifp, struct mbuf *m, u32 ptype)
|
|
{
|
|
|
|
/*
|
|
* ATM LRO is only for IPv4/TCP packets and TCP checksum of the packet
|
|
* should be computed by hardware. Also it should not have VLAN tag in
|
|
* ethernet header.
|
|
*/
|
|
if (rxr->lro_enabled &&
|
|
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
|
|
(ptype & (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP)) ==
|
|
(E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP) &&
|
|
(m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
|
|
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
|
|
/*
|
|
* Send to the stack if:
|
|
** - LRO not enabled, or
|
|
** - no LRO resources, or
|
|
** - lro enqueue fails
|
|
*/
|
|
if (rxr->lro.lro_cnt != 0)
|
|
if (tcp_lro_rx(&rxr->lro, m, 0) == 0)
|
|
return;
|
|
}
|
|
IGB_RX_UNLOCK(rxr);
|
|
(*ifp->if_input)(ifp, m);
|
|
IGB_RX_LOCK(rxr);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine executes in interrupt context. It replenishes
|
|
* the mbufs in the descriptor and sends data which has been
|
|
* dma'ed into host memory to upper layer.
|
|
*
|
|
* We loop at most count times if count is > 0, or until done if
|
|
* count < 0.
|
|
*
|
|
* Return TRUE if more to clean, FALSE otherwise
|
|
*********************************************************************/
|
|
static bool
|
|
igb_rxeof(struct igb_queue *que, int count, int *done)
|
|
{
|
|
struct adapter *adapter = que->adapter;
|
|
struct rx_ring *rxr = que->rxr;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
struct lro_entry *queued;
|
|
int i, processed = 0, rxdone = 0;
|
|
u32 ptype, staterr = 0;
|
|
union e1000_adv_rx_desc *cur;
|
|
|
|
IGB_RX_LOCK(rxr);
|
|
/* Sync the ring. */
|
|
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
#ifdef DEV_NETMAP
|
|
if (ifp->if_capenable & IFCAP_NETMAP) {
|
|
struct netmap_adapter *na = NA(ifp);
|
|
|
|
na->rx_rings[rxr->me].nr_kflags |= NKR_PENDINTR;
|
|
selwakeuppri(&na->rx_rings[rxr->me].si, PI_NET);
|
|
IGB_RX_UNLOCK(rxr);
|
|
IGB_CORE_LOCK(adapter);
|
|
selwakeuppri(&na->rx_si, PI_NET);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
return (0);
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
|
|
/* Main clean loop */
|
|
for (i = rxr->next_to_check; count != 0;) {
|
|
struct mbuf *sendmp, *mh, *mp;
|
|
struct igb_rx_buf *rxbuf;
|
|
u16 hlen, plen, hdr, vtag;
|
|
bool eop = FALSE;
|
|
|
|
cur = &rxr->rx_base[i];
|
|
staterr = le32toh(cur->wb.upper.status_error);
|
|
if ((staterr & E1000_RXD_STAT_DD) == 0)
|
|
break;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
count--;
|
|
sendmp = mh = mp = NULL;
|
|
cur->wb.upper.status_error = 0;
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
plen = le16toh(cur->wb.upper.length);
|
|
ptype = le32toh(cur->wb.lower.lo_dword.data) & IGB_PKTTYPE_MASK;
|
|
if ((adapter->hw.mac.type == e1000_i350) &&
|
|
(staterr & E1000_RXDEXT_STATERR_LB))
|
|
vtag = be16toh(cur->wb.upper.vlan);
|
|
else
|
|
vtag = le16toh(cur->wb.upper.vlan);
|
|
hdr = le16toh(cur->wb.lower.lo_dword.hs_rss.hdr_info);
|
|
eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
|
|
|
|
/* Make sure all segments of a bad packet are discarded */
|
|
if (((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0) ||
|
|
(rxr->discard)) {
|
|
ifp->if_ierrors++;
|
|
++rxr->rx_discarded;
|
|
if (!eop) /* Catch subsequent segs */
|
|
rxr->discard = TRUE;
|
|
else
|
|
rxr->discard = FALSE;
|
|
igb_rx_discard(rxr, i);
|
|
goto next_desc;
|
|
}
|
|
|
|
/*
|
|
** The way the hardware is configured to
|
|
** split, it will ONLY use the header buffer
|
|
** when header split is enabled, otherwise we
|
|
** get normal behavior, ie, both header and
|
|
** payload are DMA'd into the payload buffer.
|
|
**
|
|
** The fmp test is to catch the case where a
|
|
** packet spans multiple descriptors, in that
|
|
** case only the first header is valid.
|
|
*/
|
|
if (rxr->hdr_split && rxr->fmp == NULL) {
|
|
hlen = (hdr & E1000_RXDADV_HDRBUFLEN_MASK) >>
|
|
E1000_RXDADV_HDRBUFLEN_SHIFT;
|
|
if (hlen > IGB_HDR_BUF)
|
|
hlen = IGB_HDR_BUF;
|
|
mh = rxr->rx_buffers[i].m_head;
|
|
mh->m_len = hlen;
|
|
/* clear buf pointer for refresh */
|
|
rxbuf->m_head = NULL;
|
|
/*
|
|
** Get the payload length, this
|
|
** could be zero if its a small
|
|
** packet.
|
|
*/
|
|
if (plen > 0) {
|
|
mp = rxr->rx_buffers[i].m_pack;
|
|
mp->m_len = plen;
|
|
mh->m_next = mp;
|
|
/* clear buf pointer */
|
|
rxbuf->m_pack = NULL;
|
|
rxr->rx_split_packets++;
|
|
}
|
|
} else {
|
|
/*
|
|
** Either no header split, or a
|
|
** secondary piece of a fragmented
|
|
** split packet.
|
|
*/
|
|
mh = rxr->rx_buffers[i].m_pack;
|
|
mh->m_len = plen;
|
|
/* clear buf info for refresh */
|
|
rxbuf->m_pack = NULL;
|
|
}
|
|
|
|
++processed; /* So we know when to refresh */
|
|
|
|
/* Initial frame - setup */
|
|
if (rxr->fmp == NULL) {
|
|
mh->m_pkthdr.len = mh->m_len;
|
|
/* Save the head of the chain */
|
|
rxr->fmp = mh;
|
|
rxr->lmp = mh;
|
|
if (mp != NULL) {
|
|
/* Add payload if split */
|
|
mh->m_pkthdr.len += mp->m_len;
|
|
rxr->lmp = mh->m_next;
|
|
}
|
|
} else {
|
|
/* Chain mbuf's together */
|
|
rxr->lmp->m_next = mh;
|
|
rxr->lmp = rxr->lmp->m_next;
|
|
rxr->fmp->m_pkthdr.len += mh->m_len;
|
|
}
|
|
|
|
if (eop) {
|
|
rxr->fmp->m_pkthdr.rcvif = ifp;
|
|
ifp->if_ipackets++;
|
|
rxr->rx_packets++;
|
|
/* capture data for AIM */
|
|
rxr->packets++;
|
|
rxr->bytes += rxr->fmp->m_pkthdr.len;
|
|
rxr->rx_bytes += rxr->fmp->m_pkthdr.len;
|
|
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
igb_rx_checksum(staterr, rxr->fmp, ptype);
|
|
|
|
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(staterr & E1000_RXD_STAT_VP) != 0) {
|
|
rxr->fmp->m_pkthdr.ether_vtag = vtag;
|
|
rxr->fmp->m_flags |= M_VLANTAG;
|
|
}
|
|
#if __FreeBSD_version >= 800000
|
|
rxr->fmp->m_pkthdr.flowid = que->msix;
|
|
rxr->fmp->m_flags |= M_FLOWID;
|
|
#endif
|
|
sendmp = rxr->fmp;
|
|
/* Make sure to set M_PKTHDR. */
|
|
sendmp->m_flags |= M_PKTHDR;
|
|
rxr->fmp = NULL;
|
|
rxr->lmp = NULL;
|
|
}
|
|
|
|
next_desc:
|
|
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Advance our pointers to the next descriptor. */
|
|
if (++i == adapter->num_rx_desc)
|
|
i = 0;
|
|
/*
|
|
** Send to the stack or LRO
|
|
*/
|
|
if (sendmp != NULL) {
|
|
rxr->next_to_check = i;
|
|
igb_rx_input(rxr, ifp, sendmp, ptype);
|
|
i = rxr->next_to_check;
|
|
rxdone++;
|
|
}
|
|
|
|
/* Every 8 descriptors we go to refresh mbufs */
|
|
if (processed == 8) {
|
|
igb_refresh_mbufs(rxr, i);
|
|
processed = 0;
|
|
}
|
|
}
|
|
|
|
/* Catch any remainders */
|
|
if (igb_rx_unrefreshed(rxr))
|
|
igb_refresh_mbufs(rxr, i);
|
|
|
|
rxr->next_to_check = i;
|
|
|
|
/*
|
|
* Flush any outstanding LRO work
|
|
*/
|
|
while ((queued = SLIST_FIRST(&lro->lro_active)) != NULL) {
|
|
SLIST_REMOVE_HEAD(&lro->lro_active, next);
|
|
tcp_lro_flush(lro, queued);
|
|
}
|
|
|
|
if (done != NULL)
|
|
*done = rxdone;
|
|
|
|
IGB_RX_UNLOCK(rxr);
|
|
return ((staterr & E1000_RXD_STAT_DD) ? TRUE : FALSE);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Verify that the hardware indicated that the checksum is valid.
|
|
* Inform the stack about the status of checksum so that stack
|
|
* doesn't spend time verifying the checksum.
|
|
*
|
|
*********************************************************************/
|
|
static void
|
|
igb_rx_checksum(u32 staterr, struct mbuf *mp, u32 ptype)
|
|
{
|
|
u16 status = (u16)staterr;
|
|
u8 errors = (u8) (staterr >> 24);
|
|
int sctp;
|
|
|
|
/* Ignore Checksum bit is set */
|
|
if (status & E1000_RXD_STAT_IXSM) {
|
|
mp->m_pkthdr.csum_flags = 0;
|
|
return;
|
|
}
|
|
|
|
if ((ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
|
|
(ptype & E1000_RXDADV_PKTTYPE_SCTP) != 0)
|
|
sctp = 1;
|
|
else
|
|
sctp = 0;
|
|
if (status & E1000_RXD_STAT_IPCS) {
|
|
/* Did it pass? */
|
|
if (!(errors & E1000_RXD_ERR_IPE)) {
|
|
/* IP Checksum Good */
|
|
mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
|
|
mp->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
} else
|
|
mp->m_pkthdr.csum_flags = 0;
|
|
}
|
|
|
|
if (status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
|
|
u16 type = (CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
|
|
#if __FreeBSD_version >= 800000
|
|
if (sctp) /* reassign */
|
|
type = CSUM_SCTP_VALID;
|
|
#endif
|
|
/* Did it pass? */
|
|
if (!(errors & E1000_RXD_ERR_TCPE)) {
|
|
mp->m_pkthdr.csum_flags |= type;
|
|
if (sctp == 0)
|
|
mp->m_pkthdr.csum_data = htons(0xffff);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This routine is run via an vlan
|
|
* config EVENT
|
|
*/
|
|
static void
|
|
igb_register_vlan(void *arg, struct ifnet *ifp, u16 vtag)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
u32 index, bit;
|
|
|
|
if (ifp->if_softc != arg) /* Not our event */
|
|
return;
|
|
|
|
if ((vtag == 0) || (vtag > 4095)) /* Invalid */
|
|
return;
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
index = (vtag >> 5) & 0x7F;
|
|
bit = vtag & 0x1F;
|
|
adapter->shadow_vfta[index] |= (1 << bit);
|
|
++adapter->num_vlans;
|
|
/* Change hw filter setting */
|
|
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
|
|
igb_setup_vlan_hw_support(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
/*
|
|
* This routine is run via an vlan
|
|
* unconfig EVENT
|
|
*/
|
|
static void
|
|
igb_unregister_vlan(void *arg, struct ifnet *ifp, u16 vtag)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
u32 index, bit;
|
|
|
|
if (ifp->if_softc != arg)
|
|
return;
|
|
|
|
if ((vtag == 0) || (vtag > 4095)) /* Invalid */
|
|
return;
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
index = (vtag >> 5) & 0x7F;
|
|
bit = vtag & 0x1F;
|
|
adapter->shadow_vfta[index] &= ~(1 << bit);
|
|
--adapter->num_vlans;
|
|
/* Change hw filter setting */
|
|
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER)
|
|
igb_setup_vlan_hw_support(adapter);
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
static void
|
|
igb_setup_vlan_hw_support(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
u32 reg;
|
|
|
|
if (adapter->vf_ifp) {
|
|
e1000_rlpml_set_vf(hw,
|
|
adapter->max_frame_size + VLAN_TAG_SIZE);
|
|
return;
|
|
}
|
|
|
|
reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
reg |= E1000_CTRL_VME;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, reg);
|
|
|
|
/* Enable the Filter Table */
|
|
if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
reg &= ~E1000_RCTL_CFIEN;
|
|
reg |= E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
}
|
|
|
|
/* Update the frame size */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_RLPML,
|
|
adapter->max_frame_size + VLAN_TAG_SIZE);
|
|
|
|
/* Don't bother with table if no vlans */
|
|
if ((adapter->num_vlans == 0) ||
|
|
((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
|
|
return;
|
|
/*
|
|
** A soft reset zero's out the VFTA, so
|
|
** we need to repopulate it now.
|
|
*/
|
|
for (int i = 0; i < IGB_VFTA_SIZE; i++)
|
|
if (adapter->shadow_vfta[i] != 0) {
|
|
if (adapter->vf_ifp)
|
|
e1000_vfta_set_vf(hw,
|
|
adapter->shadow_vfta[i], TRUE);
|
|
else
|
|
e1000_write_vfta(hw,
|
|
i, adapter->shadow_vfta[i]);
|
|
}
|
|
}
|
|
|
|
static void
|
|
igb_enable_intr(struct adapter *adapter)
|
|
{
|
|
/* With RSS set up what to auto clear */
|
|
if (adapter->msix_mem) {
|
|
u32 mask = (adapter->que_mask | adapter->link_mask);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIAC, mask);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIAM, mask);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIMS, mask);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS,
|
|
E1000_IMS_LSC);
|
|
} else {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMS,
|
|
IMS_ENABLE_MASK);
|
|
}
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
igb_disable_intr(struct adapter *adapter)
|
|
{
|
|
if (adapter->msix_mem) {
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIMC, ~0);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_EIAC, 0);
|
|
}
|
|
E1000_WRITE_REG(&adapter->hw, E1000_IMC, ~0);
|
|
E1000_WRITE_FLUSH(&adapter->hw);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Bit of a misnomer, what this really means is
|
|
* to enable OS management of the system... aka
|
|
* to disable special hardware management features
|
|
*/
|
|
static void
|
|
igb_init_manageability(struct adapter *adapter)
|
|
{
|
|
if (adapter->has_manage) {
|
|
int manc2h = E1000_READ_REG(&adapter->hw, E1000_MANC2H);
|
|
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
|
|
|
|
/* disable hardware interception of ARP */
|
|
manc &= ~(E1000_MANC_ARP_EN);
|
|
|
|
/* enable receiving management packets to the host */
|
|
manc |= E1000_MANC_EN_MNG2HOST;
|
|
manc2h |= 1 << 5; /* Mng Port 623 */
|
|
manc2h |= 1 << 6; /* Mng Port 664 */
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC2H, manc2h);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Give control back to hardware management
|
|
* controller if there is one.
|
|
*/
|
|
static void
|
|
igb_release_manageability(struct adapter *adapter)
|
|
{
|
|
if (adapter->has_manage) {
|
|
int manc = E1000_READ_REG(&adapter->hw, E1000_MANC);
|
|
|
|
/* re-enable hardware interception of ARP */
|
|
manc |= E1000_MANC_ARP_EN;
|
|
manc &= ~E1000_MANC_EN_MNG2HOST;
|
|
|
|
E1000_WRITE_REG(&adapter->hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that
|
|
* the driver is loaded.
|
|
*
|
|
*/
|
|
static void
|
|
igb_get_hw_control(struct adapter *adapter)
|
|
{
|
|
u32 ctrl_ext;
|
|
|
|
if (adapter->vf_ifp)
|
|
return;
|
|
|
|
/* Let firmware know the driver has taken over */
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
|
ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
|
|
/*
|
|
* igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that the
|
|
* driver is no longer loaded.
|
|
*
|
|
*/
|
|
static void
|
|
igb_release_hw_control(struct adapter *adapter)
|
|
{
|
|
u32 ctrl_ext;
|
|
|
|
if (adapter->vf_ifp)
|
|
return;
|
|
|
|
/* Let firmware taken over control of h/w */
|
|
ctrl_ext = E1000_READ_REG(&adapter->hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(&adapter->hw, E1000_CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
|
|
static int
|
|
igb_is_valid_ether_addr(uint8_t *addr)
|
|
{
|
|
char zero_addr[6] = { 0, 0, 0, 0, 0, 0 };
|
|
|
|
if ((addr[0] & 1) || (!bcmp(addr, zero_addr, ETHER_ADDR_LEN))) {
|
|
return (FALSE);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
|
|
/*
|
|
* Enable PCI Wake On Lan capability
|
|
*/
|
|
static void
|
|
igb_enable_wakeup(device_t dev)
|
|
{
|
|
u16 cap, status;
|
|
u8 id;
|
|
|
|
/* First find the capabilities pointer*/
|
|
cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
|
|
/* Read the PM Capabilities */
|
|
id = pci_read_config(dev, cap, 1);
|
|
if (id != PCIY_PMG) /* Something wrong */
|
|
return;
|
|
/* OK, we have the power capabilities, so
|
|
now get the status register */
|
|
cap += PCIR_POWER_STATUS;
|
|
status = pci_read_config(dev, cap, 2);
|
|
status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
|
|
pci_write_config(dev, cap, status, 2);
|
|
return;
|
|
}
|
|
|
|
static void
|
|
igb_led_func(void *arg, int onoff)
|
|
{
|
|
struct adapter *adapter = arg;
|
|
|
|
IGB_CORE_LOCK(adapter);
|
|
if (onoff) {
|
|
e1000_setup_led(&adapter->hw);
|
|
e1000_led_on(&adapter->hw);
|
|
} else {
|
|
e1000_led_off(&adapter->hw);
|
|
e1000_cleanup_led(&adapter->hw);
|
|
}
|
|
IGB_CORE_UNLOCK(adapter);
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Update the board statistics counters.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_update_stats_counters(struct adapter *adapter)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_hw_stats *stats;
|
|
|
|
/*
|
|
** The virtual function adapter has only a
|
|
** small controlled set of stats, do only
|
|
** those and return.
|
|
*/
|
|
if (adapter->vf_ifp) {
|
|
igb_update_vf_stats_counters(adapter);
|
|
return;
|
|
}
|
|
|
|
stats = (struct e1000_hw_stats *)adapter->stats;
|
|
|
|
if(adapter->hw.phy.media_type == e1000_media_type_copper ||
|
|
(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
|
|
stats->symerrs +=
|
|
E1000_READ_REG(hw,E1000_SYMERRS);
|
|
stats->sec += E1000_READ_REG(hw, E1000_SEC);
|
|
}
|
|
|
|
stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
|
|
stats->mpc += E1000_READ_REG(hw, E1000_MPC);
|
|
stats->scc += E1000_READ_REG(hw, E1000_SCC);
|
|
stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
|
|
|
|
stats->mcc += E1000_READ_REG(hw, E1000_MCC);
|
|
stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
|
|
stats->colc += E1000_READ_REG(hw, E1000_COLC);
|
|
stats->dc += E1000_READ_REG(hw, E1000_DC);
|
|
stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
|
|
stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
|
|
stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
|
|
/*
|
|
** For watchdog management we need to know if we have been
|
|
** paused during the last interval, so capture that here.
|
|
*/
|
|
adapter->pause_frames = E1000_READ_REG(&adapter->hw, E1000_XOFFRXC);
|
|
stats->xoffrxc += adapter->pause_frames;
|
|
stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
|
|
stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
|
|
stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
|
|
stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
|
|
stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
|
|
stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
|
|
stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
|
|
stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
|
|
stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
|
|
stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
|
|
stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
|
|
stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
|
|
|
|
/* For the 64-bit byte counters the low dword must be read first. */
|
|
/* Both registers clear on the read of the high dword */
|
|
|
|
stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
|
|
((u64)E1000_READ_REG(hw, E1000_GORCH) << 32);
|
|
stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
|
|
((u64)E1000_READ_REG(hw, E1000_GOTCH) << 32);
|
|
|
|
stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
|
|
stats->ruc += E1000_READ_REG(hw, E1000_RUC);
|
|
stats->rfc += E1000_READ_REG(hw, E1000_RFC);
|
|
stats->roc += E1000_READ_REG(hw, E1000_ROC);
|
|
stats->rjc += E1000_READ_REG(hw, E1000_RJC);
|
|
|
|
stats->tor += E1000_READ_REG(hw, E1000_TORH);
|
|
stats->tot += E1000_READ_REG(hw, E1000_TOTH);
|
|
|
|
stats->tpr += E1000_READ_REG(hw, E1000_TPR);
|
|
stats->tpt += E1000_READ_REG(hw, E1000_TPT);
|
|
stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
|
|
stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
|
|
stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
|
|
stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
|
|
stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
|
|
stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
|
|
stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
|
|
stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
|
|
|
|
/* Interrupt Counts */
|
|
|
|
stats->iac += E1000_READ_REG(hw, E1000_IAC);
|
|
stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
|
|
stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
|
|
stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
|
|
stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
|
|
stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
|
|
stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
|
|
stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
|
|
stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
|
|
|
|
/* Host to Card Statistics */
|
|
|
|
stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
|
|
stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
|
|
stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
|
|
stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
|
|
stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
|
|
stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
|
|
stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
|
|
stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
|
|
((u64)E1000_READ_REG(hw, E1000_HGORCH) << 32));
|
|
stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
|
|
((u64)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
|
|
stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
|
|
stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
|
|
stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
|
|
|
|
stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
|
|
stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
|
|
stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
|
|
stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
|
|
stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
|
|
stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
|
|
|
|
ifp = adapter->ifp;
|
|
ifp->if_collisions = stats->colc;
|
|
|
|
/* Rx Errors */
|
|
ifp->if_ierrors = adapter->dropped_pkts + stats->rxerrc +
|
|
stats->crcerrs + stats->algnerrc +
|
|
stats->ruc + stats->roc + stats->mpc + stats->cexterr;
|
|
|
|
/* Tx Errors */
|
|
ifp->if_oerrors = stats->ecol +
|
|
stats->latecol + adapter->watchdog_events;
|
|
|
|
/* Driver specific counters */
|
|
adapter->device_control = E1000_READ_REG(hw, E1000_CTRL);
|
|
adapter->rx_control = E1000_READ_REG(hw, E1000_RCTL);
|
|
adapter->int_mask = E1000_READ_REG(hw, E1000_IMS);
|
|
adapter->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
|
|
adapter->packet_buf_alloc_tx =
|
|
((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
|
|
adapter->packet_buf_alloc_rx =
|
|
(E1000_READ_REG(hw, E1000_PBA) & 0xffff);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Initialize the VF board statistics counters.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_vf_init_stats(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_vf_stats *stats;
|
|
|
|
stats = (struct e1000_vf_stats *)adapter->stats;
|
|
if (stats == NULL)
|
|
return;
|
|
stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
|
|
stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
|
|
stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
|
|
stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
|
|
stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Update the VF board statistics counters.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
igb_update_vf_stats_counters(struct adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_vf_stats *stats;
|
|
|
|
if (adapter->link_speed == 0)
|
|
return;
|
|
|
|
stats = (struct e1000_vf_stats *)adapter->stats;
|
|
|
|
UPDATE_VF_REG(E1000_VFGPRC,
|
|
stats->last_gprc, stats->gprc);
|
|
UPDATE_VF_REG(E1000_VFGORC,
|
|
stats->last_gorc, stats->gorc);
|
|
UPDATE_VF_REG(E1000_VFGPTC,
|
|
stats->last_gptc, stats->gptc);
|
|
UPDATE_VF_REG(E1000_VFGOTC,
|
|
stats->last_gotc, stats->gotc);
|
|
UPDATE_VF_REG(E1000_VFMPRC,
|
|
stats->last_mprc, stats->mprc);
|
|
}
|
|
|
|
/* Export a single 32-bit register via a read-only sysctl. */
|
|
static int
|
|
igb_sysctl_reg_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter;
|
|
u_int val;
|
|
|
|
adapter = oidp->oid_arg1;
|
|
val = E1000_READ_REG(&adapter->hw, oidp->oid_arg2);
|
|
return (sysctl_handle_int(oidp, &val, 0, req));
|
|
}
|
|
|
|
/*
|
|
** Tuneable interrupt rate handler
|
|
*/
|
|
static int
|
|
igb_sysctl_interrupt_rate_handler(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct igb_queue *que = ((struct igb_queue *)oidp->oid_arg1);
|
|
int error;
|
|
u32 reg, usec, rate;
|
|
|
|
reg = E1000_READ_REG(&que->adapter->hw, E1000_EITR(que->msix));
|
|
usec = ((reg & 0x7FFC) >> 2);
|
|
if (usec > 0)
|
|
rate = 1000000 / usec;
|
|
else
|
|
rate = 0;
|
|
error = sysctl_handle_int(oidp, &rate, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add sysctl variables, one per statistic, to the system.
|
|
*/
|
|
static void
|
|
igb_add_hw_stats(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
|
|
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(dev);
|
|
struct sysctl_oid *tree = device_get_sysctl_tree(dev);
|
|
struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
|
|
struct e1000_hw_stats *stats = adapter->stats;
|
|
|
|
struct sysctl_oid *stat_node, *queue_node, *int_node, *host_node;
|
|
struct sysctl_oid_list *stat_list, *queue_list, *int_list, *host_list;
|
|
|
|
#define QUEUE_NAME_LEN 32
|
|
char namebuf[QUEUE_NAME_LEN];
|
|
|
|
/* Driver Statistics */
|
|
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "link_irq",
|
|
CTLFLAG_RD, &adapter->link_irq, 0,
|
|
"Link MSIX IRQ Handled");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "dropped",
|
|
CTLFLAG_RD, &adapter->dropped_pkts,
|
|
"Driver dropped packets");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_dma_fail",
|
|
CTLFLAG_RD, &adapter->no_tx_dma_setup,
|
|
"Driver tx dma failure in xmit");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_overruns",
|
|
CTLFLAG_RD, &adapter->rx_overruns,
|
|
"RX overruns");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "watchdog_timeouts",
|
|
CTLFLAG_RD, &adapter->watchdog_events,
|
|
"Watchdog timeouts");
|
|
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "device_control",
|
|
CTLFLAG_RD, &adapter->device_control,
|
|
"Device Control Register");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_control",
|
|
CTLFLAG_RD, &adapter->rx_control,
|
|
"Receiver Control Register");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "interrupt_mask",
|
|
CTLFLAG_RD, &adapter->int_mask,
|
|
"Interrupt Mask");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "extended_int_mask",
|
|
CTLFLAG_RD, &adapter->eint_mask,
|
|
"Extended Interrupt Mask");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "tx_buf_alloc",
|
|
CTLFLAG_RD, &adapter->packet_buf_alloc_tx,
|
|
"Transmit Buffer Packet Allocation");
|
|
SYSCTL_ADD_ULONG(ctx, child, OID_AUTO, "rx_buf_alloc",
|
|
CTLFLAG_RD, &adapter->packet_buf_alloc_rx,
|
|
"Receive Buffer Packet Allocation");
|
|
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_high_water",
|
|
CTLFLAG_RD, &adapter->hw.fc.high_water, 0,
|
|
"Flow Control High Watermark");
|
|
SYSCTL_ADD_UINT(ctx, child, OID_AUTO, "fc_low_water",
|
|
CTLFLAG_RD, &adapter->hw.fc.low_water, 0,
|
|
"Flow Control Low Watermark");
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++, txr++) {
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
|
|
snprintf(namebuf, QUEUE_NAME_LEN, "queue%d", i);
|
|
queue_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, namebuf,
|
|
CTLFLAG_RD, NULL, "Queue Name");
|
|
queue_list = SYSCTL_CHILDREN(queue_node);
|
|
|
|
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "interrupt_rate",
|
|
CTLFLAG_RD, &adapter->queues[i],
|
|
sizeof(&adapter->queues[i]),
|
|
igb_sysctl_interrupt_rate_handler,
|
|
"IU", "Interrupt Rate");
|
|
|
|
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_head",
|
|
CTLFLAG_RD, adapter, E1000_TDH(txr->me),
|
|
igb_sysctl_reg_handler, "IU",
|
|
"Transmit Descriptor Head");
|
|
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "txd_tail",
|
|
CTLFLAG_RD, adapter, E1000_TDT(txr->me),
|
|
igb_sysctl_reg_handler, "IU",
|
|
"Transmit Descriptor Tail");
|
|
SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "no_desc_avail",
|
|
CTLFLAG_RD, &txr->no_desc_avail,
|
|
"Queue No Descriptor Available");
|
|
SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "tx_packets",
|
|
CTLFLAG_RD, &txr->tx_packets,
|
|
"Queue Packets Transmitted");
|
|
|
|
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_head",
|
|
CTLFLAG_RD, adapter, E1000_RDH(rxr->me),
|
|
igb_sysctl_reg_handler, "IU",
|
|
"Receive Descriptor Head");
|
|
SYSCTL_ADD_PROC(ctx, queue_list, OID_AUTO, "rxd_tail",
|
|
CTLFLAG_RD, adapter, E1000_RDT(rxr->me),
|
|
igb_sysctl_reg_handler, "IU",
|
|
"Receive Descriptor Tail");
|
|
SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "rx_packets",
|
|
CTLFLAG_RD, &rxr->rx_packets,
|
|
"Queue Packets Received");
|
|
SYSCTL_ADD_QUAD(ctx, queue_list, OID_AUTO, "rx_bytes",
|
|
CTLFLAG_RD, &rxr->rx_bytes,
|
|
"Queue Bytes Received");
|
|
SYSCTL_ADD_UINT(ctx, queue_list, OID_AUTO, "lro_queued",
|
|
CTLFLAG_RD, &lro->lro_queued, 0,
|
|
"LRO Queued");
|
|
SYSCTL_ADD_UINT(ctx, queue_list, OID_AUTO, "lro_flushed",
|
|
CTLFLAG_RD, &lro->lro_flushed, 0,
|
|
"LRO Flushed");
|
|
}
|
|
|
|
/* MAC stats get their own sub node */
|
|
|
|
stat_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "mac_stats",
|
|
CTLFLAG_RD, NULL, "MAC Statistics");
|
|
stat_list = SYSCTL_CHILDREN(stat_node);
|
|
|
|
/*
|
|
** VF adapter has a very limited set of stats
|
|
** since its not managing the metal, so to speak.
|
|
*/
|
|
if (adapter->vf_ifp) {
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
|
|
CTLFLAG_RD, &stats->gprc,
|
|
"Good Packets Received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
|
|
CTLFLAG_RD, &stats->gptc,
|
|
"Good Packets Transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
|
|
CTLFLAG_RD, &stats->gorc,
|
|
"Good Octets Received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
|
|
CTLFLAG_RD, &stats->gotc,
|
|
"Good Octets Transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
|
|
CTLFLAG_RD, &stats->mprc,
|
|
"Multicast Packets Received");
|
|
return;
|
|
}
|
|
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "excess_coll",
|
|
CTLFLAG_RD, &stats->ecol,
|
|
"Excessive collisions");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "single_coll",
|
|
CTLFLAG_RD, &stats->scc,
|
|
"Single collisions");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "multiple_coll",
|
|
CTLFLAG_RD, &stats->mcc,
|
|
"Multiple collisions");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "late_coll",
|
|
CTLFLAG_RD, &stats->latecol,
|
|
"Late collisions");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "collision_count",
|
|
CTLFLAG_RD, &stats->colc,
|
|
"Collision Count");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "symbol_errors",
|
|
CTLFLAG_RD, &stats->symerrs,
|
|
"Symbol Errors");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "sequence_errors",
|
|
CTLFLAG_RD, &stats->sec,
|
|
"Sequence Errors");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "defer_count",
|
|
CTLFLAG_RD, &stats->dc,
|
|
"Defer Count");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "missed_packets",
|
|
CTLFLAG_RD, &stats->mpc,
|
|
"Missed Packets");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_no_buff",
|
|
CTLFLAG_RD, &stats->rnbc,
|
|
"Receive No Buffers");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_undersize",
|
|
CTLFLAG_RD, &stats->ruc,
|
|
"Receive Undersize");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_fragmented",
|
|
CTLFLAG_RD, &stats->rfc,
|
|
"Fragmented Packets Received ");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_oversize",
|
|
CTLFLAG_RD, &stats->roc,
|
|
"Oversized Packets Received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_jabber",
|
|
CTLFLAG_RD, &stats->rjc,
|
|
"Recevied Jabber");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "recv_errs",
|
|
CTLFLAG_RD, &stats->rxerrc,
|
|
"Receive Errors");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "crc_errs",
|
|
CTLFLAG_RD, &stats->crcerrs,
|
|
"CRC errors");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "alignment_errs",
|
|
CTLFLAG_RD, &stats->algnerrc,
|
|
"Alignment Errors");
|
|
/* On 82575 these are collision counts */
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "coll_ext_errs",
|
|
CTLFLAG_RD, &stats->cexterr,
|
|
"Collision/Carrier extension errors");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_recvd",
|
|
CTLFLAG_RD, &stats->xonrxc,
|
|
"XON Received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xon_txd",
|
|
CTLFLAG_RD, &stats->xontxc,
|
|
"XON Transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_recvd",
|
|
CTLFLAG_RD, &stats->xoffrxc,
|
|
"XOFF Received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "xoff_txd",
|
|
CTLFLAG_RD, &stats->xofftxc,
|
|
"XOFF Transmitted");
|
|
/* Packet Reception Stats */
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_recvd",
|
|
CTLFLAG_RD, &stats->tpr,
|
|
"Total Packets Received ");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_recvd",
|
|
CTLFLAG_RD, &stats->gprc,
|
|
"Good Packets Received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_recvd",
|
|
CTLFLAG_RD, &stats->bprc,
|
|
"Broadcast Packets Received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_recvd",
|
|
CTLFLAG_RD, &stats->mprc,
|
|
"Multicast Packets Received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_64",
|
|
CTLFLAG_RD, &stats->prc64,
|
|
"64 byte frames received ");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_65_127",
|
|
CTLFLAG_RD, &stats->prc127,
|
|
"65-127 byte frames received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_128_255",
|
|
CTLFLAG_RD, &stats->prc255,
|
|
"128-255 byte frames received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_256_511",
|
|
CTLFLAG_RD, &stats->prc511,
|
|
"256-511 byte frames received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_512_1023",
|
|
CTLFLAG_RD, &stats->prc1023,
|
|
"512-1023 byte frames received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "rx_frames_1024_1522",
|
|
CTLFLAG_RD, &stats->prc1522,
|
|
"1023-1522 byte frames received");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_recvd",
|
|
CTLFLAG_RD, &stats->gorc,
|
|
"Good Octets Received");
|
|
|
|
/* Packet Transmission Stats */
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_octets_txd",
|
|
CTLFLAG_RD, &stats->gotc,
|
|
"Good Octets Transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "total_pkts_txd",
|
|
CTLFLAG_RD, &stats->tpt,
|
|
"Total Packets Transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "good_pkts_txd",
|
|
CTLFLAG_RD, &stats->gptc,
|
|
"Good Packets Transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "bcast_pkts_txd",
|
|
CTLFLAG_RD, &stats->bptc,
|
|
"Broadcast Packets Transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "mcast_pkts_txd",
|
|
CTLFLAG_RD, &stats->mptc,
|
|
"Multicast Packets Transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_64",
|
|
CTLFLAG_RD, &stats->ptc64,
|
|
"64 byte frames transmitted ");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_65_127",
|
|
CTLFLAG_RD, &stats->ptc127,
|
|
"65-127 byte frames transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_128_255",
|
|
CTLFLAG_RD, &stats->ptc255,
|
|
"128-255 byte frames transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_256_511",
|
|
CTLFLAG_RD, &stats->ptc511,
|
|
"256-511 byte frames transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_512_1023",
|
|
CTLFLAG_RD, &stats->ptc1023,
|
|
"512-1023 byte frames transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tx_frames_1024_1522",
|
|
CTLFLAG_RD, &stats->ptc1522,
|
|
"1024-1522 byte frames transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_txd",
|
|
CTLFLAG_RD, &stats->tsctc,
|
|
"TSO Contexts Transmitted");
|
|
SYSCTL_ADD_QUAD(ctx, stat_list, OID_AUTO, "tso_ctx_fail",
|
|
CTLFLAG_RD, &stats->tsctfc,
|
|
"TSO Contexts Failed");
|
|
|
|
|
|
/* Interrupt Stats */
|
|
|
|
int_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "interrupts",
|
|
CTLFLAG_RD, NULL, "Interrupt Statistics");
|
|
int_list = SYSCTL_CHILDREN(int_node);
|
|
|
|
SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "asserts",
|
|
CTLFLAG_RD, &stats->iac,
|
|
"Interrupt Assertion Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_pkt_timer",
|
|
CTLFLAG_RD, &stats->icrxptc,
|
|
"Interrupt Cause Rx Pkt Timer Expire Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_abs_timer",
|
|
CTLFLAG_RD, &stats->icrxatc,
|
|
"Interrupt Cause Rx Abs Timer Expire Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_pkt_timer",
|
|
CTLFLAG_RD, &stats->ictxptc,
|
|
"Interrupt Cause Tx Pkt Timer Expire Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_abs_timer",
|
|
CTLFLAG_RD, &stats->ictxatc,
|
|
"Interrupt Cause Tx Abs Timer Expire Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_empty",
|
|
CTLFLAG_RD, &stats->ictxqec,
|
|
"Interrupt Cause Tx Queue Empty Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "tx_queue_min_thresh",
|
|
CTLFLAG_RD, &stats->ictxqmtc,
|
|
"Interrupt Cause Tx Queue Min Thresh Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_desc_min_thresh",
|
|
CTLFLAG_RD, &stats->icrxdmtc,
|
|
"Interrupt Cause Rx Desc Min Thresh Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, int_list, OID_AUTO, "rx_overrun",
|
|
CTLFLAG_RD, &stats->icrxoc,
|
|
"Interrupt Cause Receiver Overrun Count");
|
|
|
|
/* Host to Card Stats */
|
|
|
|
host_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "host",
|
|
CTLFLAG_RD, NULL,
|
|
"Host to Card Statistics");
|
|
|
|
host_list = SYSCTL_CHILDREN(host_node);
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_tx_pkt",
|
|
CTLFLAG_RD, &stats->cbtmpc,
|
|
"Circuit Breaker Tx Packet Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "host_tx_pkt_discard",
|
|
CTLFLAG_RD, &stats->htdpmc,
|
|
"Host Transmit Discarded Packets");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "rx_pkt",
|
|
CTLFLAG_RD, &stats->rpthc,
|
|
"Rx Packets To Host");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_rx_pkts",
|
|
CTLFLAG_RD, &stats->cbrmpc,
|
|
"Circuit Breaker Rx Packet Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_rx_pkt_drop",
|
|
CTLFLAG_RD, &stats->cbrdpc,
|
|
"Circuit Breaker Rx Dropped Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "tx_good_pkt",
|
|
CTLFLAG_RD, &stats->hgptc,
|
|
"Host Good Packets Tx Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "breaker_tx_pkt_drop",
|
|
CTLFLAG_RD, &stats->htcbdpc,
|
|
"Host Tx Circuit Breaker Dropped Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "rx_good_bytes",
|
|
CTLFLAG_RD, &stats->hgorc,
|
|
"Host Good Octets Received Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "tx_good_bytes",
|
|
CTLFLAG_RD, &stats->hgotc,
|
|
"Host Good Octets Transmit Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "length_errors",
|
|
CTLFLAG_RD, &stats->lenerrs,
|
|
"Length Errors");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "serdes_violation_pkt",
|
|
CTLFLAG_RD, &stats->scvpc,
|
|
"SerDes/SGMII Code Violation Pkt Count");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, host_list, OID_AUTO, "header_redir_missed",
|
|
CTLFLAG_RD, &stats->hrmpc,
|
|
"Header Redirection Missed Packet Count");
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* This routine provides a way to dump out the adapter eeprom,
|
|
* often a useful debug/service tool. This only dumps the first
|
|
* 32 words, stuff that matters is in that extent.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_sysctl_nvm_info(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter;
|
|
int error;
|
|
int result;
|
|
|
|
result = -1;
|
|
error = sysctl_handle_int(oidp, &result, 0, req);
|
|
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
|
|
/*
|
|
* This value will cause a hex dump of the
|
|
* first 32 16-bit words of the EEPROM to
|
|
* the screen.
|
|
*/
|
|
if (result == 1) {
|
|
adapter = (struct adapter *)arg1;
|
|
igb_print_nvm_info(adapter);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
igb_print_nvm_info(struct adapter *adapter)
|
|
{
|
|
u16 eeprom_data;
|
|
int i, j, row = 0;
|
|
|
|
/* Its a bit crude, but it gets the job done */
|
|
printf("\nInterface EEPROM Dump:\n");
|
|
printf("Offset\n0x0000 ");
|
|
for (i = 0, j = 0; i < 32; i++, j++) {
|
|
if (j == 8) { /* Make the offset block */
|
|
j = 0; ++row;
|
|
printf("\n0x00%x0 ",row);
|
|
}
|
|
e1000_read_nvm(&adapter->hw, i, 1, &eeprom_data);
|
|
printf("%04x ", eeprom_data);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static void
|
|
igb_set_sysctl_value(struct adapter *adapter, const char *name,
|
|
const char *description, int *limit, int value)
|
|
{
|
|
*limit = value;
|
|
SYSCTL_ADD_INT(device_get_sysctl_ctx(adapter->dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(adapter->dev)),
|
|
OID_AUTO, name, CTLTYPE_INT|CTLFLAG_RW, limit, value, description);
|
|
}
|
|
|
|
/*
|
|
** Set flow control using sysctl:
|
|
** Flow control values:
|
|
** 0 - off
|
|
** 1 - rx pause
|
|
** 2 - tx pause
|
|
** 3 - full
|
|
*/
|
|
static int
|
|
igb_set_flowcntl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
static int input = 3; /* default is full */
|
|
struct adapter *adapter = (struct adapter *) arg1;
|
|
|
|
error = sysctl_handle_int(oidp, &input, 0, req);
|
|
|
|
if ((error) || (req->newptr == NULL))
|
|
return (error);
|
|
|
|
switch (input) {
|
|
case e1000_fc_rx_pause:
|
|
case e1000_fc_tx_pause:
|
|
case e1000_fc_full:
|
|
case e1000_fc_none:
|
|
adapter->hw.fc.requested_mode = input;
|
|
adapter->fc = input;
|
|
break;
|
|
default:
|
|
/* Do nothing */
|
|
return (error);
|
|
}
|
|
|
|
adapter->hw.fc.current_mode = adapter->hw.fc.requested_mode;
|
|
e1000_force_mac_fc(&adapter->hw);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
** Manage DMA Coalesce:
|
|
** Control values:
|
|
** 0/1 - off/on
|
|
** Legal timer values are:
|
|
** 250,500,1000-10000 in thousands
|
|
*/
|
|
static int
|
|
igb_sysctl_dmac(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct adapter *adapter = (struct adapter *) arg1;
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &adapter->dmac, 0, req);
|
|
|
|
if ((error) || (req->newptr == NULL))
|
|
return (error);
|
|
|
|
switch (adapter->dmac) {
|
|
case 0:
|
|
/*Disabling */
|
|
break;
|
|
case 1: /* Just enable and use default */
|
|
adapter->dmac = 1000;
|
|
break;
|
|
case 250:
|
|
case 500:
|
|
case 1000:
|
|
case 2000:
|
|
case 3000:
|
|
case 4000:
|
|
case 5000:
|
|
case 6000:
|
|
case 7000:
|
|
case 8000:
|
|
case 9000:
|
|
case 10000:
|
|
/* Legal values - allow */
|
|
break;
|
|
default:
|
|
/* Do nothing, illegal value */
|
|
adapter->dmac = 0;
|
|
return (error);
|
|
}
|
|
/* Reinit the interface */
|
|
igb_init(adapter);
|
|
return (error);
|
|
}
|