freebsd-dev/sys/dev/ocs_fc/ocs_pci.c
Kenneth D. Merry ef270ab1b6 Bring in the Broadcom/Emulex Fibre Channel driver, ocs_fc(4).
The ocs_fc(4) driver supports the following hardware:

Emulex 16/8G FC GEN 5 HBAS
	LPe15004 FC Host Bus Adapters
	LPe160XX FC Host Bus Adapters

Emulex 32/16G FC GEN 6 HBAS
	LPe3100X FC Host Bus Adapters
	LPe3200X FC Host Bus Adapters

The driver supports target and initiator mode, and also supports FC-Tape.

Note that the driver only currently works on little endian platforms.  It
is only included in the module build for amd64 and i386, and in GENERIC
on amd64 only.

Submitted by:	Ram Kishore Vegesna <ram.vegesna@broadcom.com>
Reviewed by:	mav
MFC after:	5 days
Relnotes:	yes
Sponsored by:	Broadcom
Differential Revision:	https://reviews.freebsd.org/D11423
2018-03-30 15:28:25 +00:00

964 lines
24 KiB
C

/*-
* Copyright (c) 2017 Broadcom. All rights reserved.
* The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#define OCS_COPYRIGHT "Copyright (C) 2017 Broadcom. All rights reserved."
/**
* @file
* Implementation of required FreeBSD PCI interface functions
*/
#include "ocs.h"
#include "version.h"
#include <sys/sysctl.h>
#include <sys/malloc.h>
static MALLOC_DEFINE(M_OCS, "OCS", "OneCore Storage data");
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
/**
* Tunable parameters for transport
*/
int logmask = 0;
int ctrlmask = 2;
int logdest = 1;
int loglevel = LOG_INFO;
int ramlog_size = 1*1024*1024;
int ddump_saved_size = 0;
static const char *queue_topology = "eq cq rq cq mq $nulp($nwq(cq wq:ulp=$rpt1)) cq wq:len=256:class=1";
static void ocs_release_bus(struct ocs_softc *);
static int32_t ocs_intr_alloc(struct ocs_softc *);
static int32_t ocs_intr_setup(struct ocs_softc *);
static int32_t ocs_intr_teardown(struct ocs_softc *);
static int ocs_pci_intx_filter(void *);
static void ocs_pci_intr(void *);
static int32_t ocs_init_dma_tag(struct ocs_softc *ocs);
static int32_t ocs_setup_fcports(ocs_t *ocs);
ocs_t *ocs_devices[MAX_OCS_DEVICES];
/**
* @brief Check support for the given device
*
* Determine support for a given device by examining the PCI vendor and
* device IDs
*
* @param dev device abstraction
*
* @return 0 if device is supported, ENXIO otherwise
*/
static int
ocs_pci_probe(device_t dev)
{
char *desc = NULL;
if (pci_get_vendor(dev) != PCI_VENDOR_EMULEX) {
return ENXIO;
}
switch (pci_get_device(dev)) {
case PCI_PRODUCT_EMULEX_OCE16001:
desc = "Emulex LightPulse FC Adapter";
break;
case PCI_PRODUCT_EMULEX_LPE31004:
desc = "Emulex LightPulse FC Adapter";
break;
case PCI_PRODUCT_EMULEX_OCE50102:
desc = "Emulex LightPulse 10GbE FCoE/NIC Adapter";
break;
default:
return ENXIO;
}
device_set_desc(dev, desc);
return BUS_PROBE_DEFAULT;
}
static int
ocs_map_bars(device_t dev, struct ocs_softc *ocs)
{
/*
* Map PCI BAR0 register into the CPU's space.
*/
ocs->reg[0].rid = PCIR_BAR(PCI_64BIT_BAR0);
ocs->reg[0].res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&ocs->reg[0].rid, RF_ACTIVE);
if (ocs->reg[0].res == NULL) {
device_printf(dev, "bus_alloc_resource failed rid=%#x\n",
ocs->reg[0].rid);
return ENXIO;
}
ocs->reg[0].btag = rman_get_bustag(ocs->reg[0].res);
ocs->reg[0].bhandle = rman_get_bushandle(ocs->reg[0].res);
return 0;
}
static int
ocs_setup_params(struct ocs_softc *ocs)
{
int32_t i = 0;
const char *hw_war_version;
/* Setup tunable parameters */
ocs->ctrlmask = ctrlmask;
ocs->speed = 0;
ocs->topology = 0;
ocs->ethernet_license = 0;
ocs->num_scsi_ios = 8192;
ocs->enable_hlm = 0;
ocs->hlm_group_size = 8;
ocs->logmask = logmask;
ocs->config_tgt = FALSE;
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"target", &i)) {
if (1 == i) {
ocs->config_tgt = TRUE;
device_printf(ocs->dev, "Enabling target\n");
}
}
ocs->config_ini = TRUE;
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"initiator", &i)) {
if (0 == i) {
ocs->config_ini = FALSE;
device_printf(ocs->dev, "Disabling initiator\n");
}
}
ocs->enable_ini = ocs->config_ini;
if (!ocs->config_ini && !ocs->config_tgt) {
device_printf(ocs->dev, "Unsupported, both initiator and target mode disabled.\n");
return 1;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"logmask", &logmask)) {
device_printf(ocs->dev, "logmask = %#x\n", logmask);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"logdest", &logdest)) {
device_printf(ocs->dev, "logdest = %#x\n", logdest);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"loglevel", &loglevel)) {
device_printf(ocs->dev, "loglevel = %#x\n", loglevel);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"ramlog_size", &ramlog_size)) {
device_printf(ocs->dev, "ramlog_size = %#x\n", ramlog_size);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"ddump_saved_size", &ddump_saved_size)) {
device_printf(ocs->dev, "ddump_saved_size= %#x\n", ddump_saved_size);
}
/* If enabled, initailize a RAM logging buffer */
if (logdest & 2) {
ocs->ramlog = ocs_ramlog_init(ocs, ramlog_size/OCS_RAMLOG_DEFAULT_BUFFERS,
OCS_RAMLOG_DEFAULT_BUFFERS);
/* If NULL was returned, then we'll simply skip using the ramlog but */
/* set logdest to 1 to ensure that we at least get default logging. */
if (ocs->ramlog == NULL) {
logdest = 1;
}
}
/* initialize a saved ddump */
if (ddump_saved_size) {
if (ocs_textbuf_alloc(ocs, &ocs->ddump_saved, ddump_saved_size)) {
ocs_log_err(ocs, "failed to allocate memory for saved ddump\n");
}
}
if (0 == resource_string_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"hw_war_version", &hw_war_version)) {
device_printf(ocs->dev, "hw_war_version = %s\n", hw_war_version);
ocs->hw_war_version = strdup(hw_war_version, M_OCS);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"explicit_buffer_list", &i)) {
ocs->explicit_buffer_list = i;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"ethernet_license", &i)) {
ocs->ethernet_license = i;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"speed", &i)) {
device_printf(ocs->dev, "speed = %d Mbps\n", i);
ocs->speed = i;
}
ocs->desc = device_get_desc(ocs->dev);
ocs_device_lock_init(ocs);
ocs->driver_version = STR_BE_MAJOR "." STR_BE_MINOR "." STR_BE_BUILD "." STR_BE_BRANCH;
ocs->model = ocs_pci_model(ocs->pci_vendor, ocs->pci_device);
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"enable_hlm", &i)) {
device_printf(ocs->dev, "enable_hlm = %d\n", i);
ocs->enable_hlm = i;
if (ocs->enable_hlm) {
ocs->hlm_group_size = 8;
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"hlm_group_size", &i)) {
ocs->hlm_group_size = i;
}
device_printf(ocs->dev, "hlm_group_size = %d\n", i);
}
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"num_scsi_ios", &i)) {
ocs->num_scsi_ios = i;
device_printf(ocs->dev, "num_scsi_ios = %d\n", ocs->num_scsi_ios);
} else {
ocs->num_scsi_ios = 8192;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"topology", &i)) {
ocs->topology = i;
device_printf(ocs->dev, "Setting topology=%#x\n", i);
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"num_vports", &i)) {
if (i >= 0 && i <= 254) {
device_printf(ocs->dev, "num_vports = %d\n", i);
ocs->num_vports = i;
} else {
device_printf(ocs->dev, "num_vports: %d not supported \n", i);
}
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"external_loopback", &i)) {
device_printf(ocs->dev, "external_loopback = %d\n", i);
ocs->external_loopback = i;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"tgt_rscn_delay", &i)) {
device_printf(ocs->dev, "tgt_rscn_delay = %d\n", i);
ocs->tgt_rscn_delay_msec = i * 1000;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"tgt_rscn_period", &i)) {
device_printf(ocs->dev, "tgt_rscn_period = %d\n", i);
ocs->tgt_rscn_period_msec = i * 1000;
}
if (0 == resource_int_value(device_get_name(ocs->dev), device_get_unit(ocs->dev),
"target_io_timer", &i)) {
device_printf(ocs->dev, "target_io_timer = %d\n", i);
ocs->target_io_timer_sec = i;
}
hw_global.queue_topology_string = queue_topology;
ocs->rq_selection_policy = 0;
ocs->rr_quanta = 1;
ocs->filter_def = "0,0,0,0";
return 0;
}
static int32_t
ocs_setup_fcports(ocs_t *ocs)
{
uint32_t i = 0, role = 0;
uint64_t sli_wwpn, sli_wwnn;
size_t size;
ocs_xport_t *xport = ocs->xport;
ocs_vport_spec_t *vport;
ocs_fcport *fcp = NULL;
size = sizeof(ocs_fcport) * (ocs->num_vports + 1);
ocs->fcports = ocs_malloc(ocs, size, M_ZERO|M_NOWAIT);
if (ocs->fcports == NULL) {
device_printf(ocs->dev, "Can't allocate fcport \n");
return 1;
}
role = (ocs->enable_ini)? KNOB_ROLE_INITIATOR: 0 |
(ocs->enable_tgt)? KNOB_ROLE_TARGET: 0;
fcp = FCPORT(ocs, i);
fcp->role = role;
i++;
ocs_list_foreach(&xport->vport_list, vport) {
fcp = FCPORT(ocs, i);
vport->tgt_data = fcp;
fcp->vport = vport;
fcp->role = role;
if (ocs_hw_get_def_wwn(ocs, i, &sli_wwpn, &sli_wwnn)) {
ocs_log_err(ocs, "Get default wwn failed \n");
i++;
continue;
}
vport->wwpn = ocs_be64toh(sli_wwpn);
vport->wwnn = ocs_be64toh(sli_wwnn);
i++;
ocs_log_debug(ocs, "VPort wwpn: %lx wwnn: %lx \n", vport->wwpn, vport->wwnn);
}
return 0;
}
int32_t
ocs_device_attach(ocs_t *ocs)
{
int32_t i;
ocs_io_t *io = NULL;
if (ocs->attached) {
ocs_log_warn(ocs, "%s: Device is already attached\n", __func__);
return -1;
}
/* Allocate transport object and bring online */
ocs->xport = ocs_xport_alloc(ocs);
if (ocs->xport == NULL) {
device_printf(ocs->dev, "failed to allocate transport object\n");
return ENOMEM;
} else if (ocs_xport_attach(ocs->xport) != 0) {
device_printf(ocs->dev, "%s: failed to attach transport object\n", __func__);
goto fail_xport_attach;
} else if (ocs_xport_initialize(ocs->xport) != 0) {
device_printf(ocs->dev, "%s: failed to initialize transport object\n", __func__);
goto fail_xport_init;
}
if (ocs_init_dma_tag(ocs)) {
goto fail_intr_setup;
}
for (i = 0; (io = ocs_io_get_instance(ocs, i)); i++) {
if (bus_dmamap_create(ocs->buf_dmat, 0, &io->tgt_io.dmap)) {
device_printf(ocs->dev, "%s: bad dma map create\n", __func__);
}
io->tgt_io.state = OCS_CAM_IO_FREE;
}
if (ocs_setup_fcports(ocs)) {
device_printf(ocs->dev, "FCports creation failed\n");
goto fail_intr_setup;
}
if(ocs_cam_attach(ocs)) {
device_printf(ocs->dev, "cam attach failed \n");
goto fail_intr_setup;
}
if (ocs_intr_setup(ocs)) {
device_printf(ocs->dev, "Interrupt setup failed\n");
goto fail_intr_setup;
}
if (ocs->enable_ini || ocs->enable_tgt) {
if (ocs_xport_control(ocs->xport, OCS_XPORT_PORT_ONLINE)) {
device_printf(ocs->dev, "Can't init port\n");
goto fail_xport_online;
}
}
ocs->attached = true;
return 0;
fail_xport_online:
if (ocs_xport_control(ocs->xport, OCS_XPORT_SHUTDOWN)) {
device_printf(ocs->dev, "Transport Shutdown timed out\n");
}
ocs_intr_teardown(ocs);
fail_intr_setup:
fail_xport_init:
ocs_xport_detach(ocs->xport);
if (ocs->config_tgt)
ocs_scsi_tgt_del_device(ocs);
ocs_xport_free(ocs->xport);
ocs->xport = NULL;
fail_xport_attach:
if (ocs->xport)
ocs_free(ocs, ocs->xport, sizeof(*(ocs->xport)));
ocs->xport = NULL;
return ENXIO;
}
/**
* @brief Connect the driver to the given device
*
* If the probe routine is successful, the OS will give the driver
* the opportunity to connect itself to the device. This routine
* maps PCI resources (memory BARs and interrupts) and initialize a
* hardware object.
*
* @param dev device abstraction
*
* @return 0 if the driver attaches to the device, ENXIO otherwise
*/
static int
ocs_pci_attach(device_t dev)
{
struct ocs_softc *ocs;
int instance;
instance = device_get_unit(dev);
ocs = (struct ocs_softc *)device_get_softc(dev);
if (NULL == ocs) {
device_printf(dev, "cannot allocate softc\n");
return ENOMEM;
}
memset(ocs, 0, sizeof(struct ocs_softc));
if (instance < ARRAY_SIZE(ocs_devices)) {
ocs_devices[instance] = ocs;
} else {
device_printf(dev, "got unexpected ocs instance number %d\n", instance);
}
ocs->instance_index = instance;
ocs->dev = dev;
pci_enable_io(dev, SYS_RES_MEMORY);
pci_enable_busmaster(dev);
ocs->pci_vendor = pci_get_vendor(dev);
ocs->pci_device = pci_get_device(dev);
snprintf(ocs->businfo, sizeof(ocs->businfo), "%02X:%02X:%02X",
pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev));
/* Map all memory BARs */
if (ocs_map_bars(dev, ocs)) {
device_printf(dev, "Failed to map pci bars\n");
goto release_bus;
}
/* create a root DMA tag for the device */
if (bus_dma_tag_create(bus_get_dma_tag(dev),
1, /* byte alignment */
0, /* no boundary restrictions */
BUS_SPACE_MAXADDR, /* no minimum low address */
BUS_SPACE_MAXADDR, /* no maximum high address */
NULL, /* no filter function */
NULL, /* or arguments */
BUS_SPACE_MAXSIZE, /* max size covered by tag */
BUS_SPACE_UNRESTRICTED, /* no segment count restrictions */
BUS_SPACE_MAXSIZE, /* no segment length restrictions */
0, /* flags */
NULL, /* no lock manipulation function */
NULL, /* or arguments */
&ocs->dmat)) {
device_printf(dev, "parent DMA tag allocation failed\n");
goto release_bus;
}
if (ocs_intr_alloc(ocs)) {
device_printf(dev, "Interrupt allocation failed\n");
goto release_bus;
}
if (PCIC_SERIALBUS == pci_get_class(dev) &&
PCIS_SERIALBUS_FC == pci_get_subclass(dev))
ocs->ocs_xport = OCS_XPORT_FC;
else {
device_printf(dev, "unsupported class (%#x : %#x)\n",
pci_get_class(dev),
pci_get_class(dev));
goto release_bus;
}
/* Setup tunable parameters */
if (ocs_setup_params(ocs)) {
device_printf(ocs->dev, "failed to setup params\n");
goto release_bus;
}
if (ocs_device_attach(ocs)) {
device_printf(ocs->dev, "failed to attach device\n");
goto release_params;
}
ocs->fc_type = FC_TYPE_FCP;
ocs_debug_attach(ocs);
return 0;
release_params:
ocs_ramlog_free(ocs, ocs->ramlog);
ocs_device_lock_free(ocs);
free(ocs->hw_war_version, M_OCS);
release_bus:
ocs_release_bus(ocs);
return ENXIO;
}
/**
* @brief free resources when pci device detach
*
* @param ocs pointer to ocs structure
*
* @return 0 for success, a negative error code value for failure.
*/
int32_t
ocs_device_detach(ocs_t *ocs)
{
int32_t rc = 0, i;
ocs_io_t *io = NULL;
if (ocs != NULL) {
if (!ocs->attached) {
ocs_log_warn(ocs, "%s: Device is not attached\n", __func__);
return -1;
}
rc = ocs_xport_control(ocs->xport, OCS_XPORT_SHUTDOWN);
if (rc) {
ocs_log_err(ocs, "%s: Transport Shutdown timed out\n", __func__);
}
ocs_intr_teardown(ocs);
if (ocs_xport_detach(ocs->xport) != 0) {
ocs_log_err(ocs, "%s: Transport detach failed\n", __func__);
}
ocs_cam_detach(ocs);
ocs_free(ocs, ocs->fcports, sizeof(ocs->fcports));
for (i = 0; (io = ocs_io_get_instance(ocs, i)); i++) {
if (bus_dmamap_destroy(ocs->buf_dmat, io->tgt_io.dmap)) {
device_printf(ocs->dev, "%s: bad dma map destroy\n", __func__);
}
}
bus_dma_tag_destroy(ocs->dmat);
ocs_xport_free(ocs->xport);
ocs->xport = NULL;
ocs->attached = FALSE;
}
return 0;
}
/**
* @brief Detach the driver from the given device
*
* If the driver is a loadable module, this routine gets called at unload
* time. This routine will stop the device and free any allocated resources.
*
* @param dev device abstraction
*
* @return 0 if the driver detaches from the device, ENXIO otherwise
*/
static int
ocs_pci_detach(device_t dev)
{
struct ocs_softc *ocs;
ocs = (struct ocs_softc *)device_get_softc(dev);
if (!ocs) {
device_printf(dev, "no driver context?!?\n");
return -1;
}
if (ocs->config_tgt && ocs->enable_tgt) {
device_printf(dev, "can't detach with target mode enabled\n");
return EBUSY;
}
ocs_device_detach(ocs);
/*
* Workaround for OCS SCSI Transport quirk.
*
* CTL requires that target mode is disabled prior to unloading the
* driver (ie ocs->enable_tgt = FALSE), but once the target is disabled,
* the transport will not call ocs_scsi_tgt_del_device() which deallocates
* CAM resources. The workaround is to explicitly make the call here.
*/
if (ocs->config_tgt)
ocs_scsi_tgt_del_device(ocs);
/* free strdup created buffer.*/
free(ocs->hw_war_version, M_OCS);
ocs_device_lock_free(ocs);
ocs_debug_detach(ocs);
ocs_ramlog_free(ocs, ocs->ramlog);
ocs_release_bus(ocs);
return 0;
}
/**
* @brief Notify driver of system shutdown
*
* @param dev device abstraction
*
* @return 0 if the driver attaches to the device, ENXIO otherwise
*/
static int
ocs_pci_shutdown(device_t dev)
{
device_printf(dev, "%s\n", __func__);
return 0;
}
/**
* @brief Release bus resources allocated within the soft context
*
* @param ocs Pointer to the driver's context
*
* @return none
*/
static void
ocs_release_bus(struct ocs_softc *ocs)
{
if (NULL != ocs) {
uint32_t i;
ocs_intr_teardown(ocs);
if (ocs->irq) {
bus_release_resource(ocs->dev, SYS_RES_IRQ,
rman_get_rid(ocs->irq), ocs->irq);
if (ocs->n_vec) {
pci_release_msi(ocs->dev);
ocs->n_vec = 0;
}
ocs->irq = NULL;
}
bus_dma_tag_destroy(ocs->dmat);
for (i = 0; i < PCI_MAX_BAR; i++) {
if (ocs->reg[i].res) {
bus_release_resource(ocs->dev, SYS_RES_MEMORY,
ocs->reg[i].rid,
ocs->reg[i].res);
}
}
}
}
/**
* @brief Allocate and initialize interrupts
*
* @param ocs Pointer to the driver's context
*
* @return none
*/
static int32_t
ocs_intr_alloc(struct ocs_softc *ocs)
{
ocs->n_vec = 1;
if (pci_alloc_msix(ocs->dev, &ocs->n_vec)) {
device_printf(ocs->dev, "MSI-X allocation failed\n");
if (pci_alloc_msi(ocs->dev, &ocs->n_vec)) {
device_printf(ocs->dev, "MSI allocation failed \n");
ocs->irqid = 0;
ocs->n_vec = 0;
} else
ocs->irqid = 1;
} else {
ocs->irqid = 1;
}
ocs->irq = bus_alloc_resource_any(ocs->dev, SYS_RES_IRQ, &ocs->irqid,
RF_ACTIVE | RF_SHAREABLE);
if (NULL == ocs->irq) {
device_printf(ocs->dev, "could not allocate interrupt\n");
return -1;
}
ocs->intr_ctx.vec = 0;
ocs->intr_ctx.softc = ocs;
snprintf(ocs->intr_ctx.name, sizeof(ocs->intr_ctx.name),
"%s_intr_%d",
device_get_nameunit(ocs->dev),
ocs->intr_ctx.vec);
return 0;
}
/**
* @brief Create and attach an interrupt handler
*
* @param ocs Pointer to the driver's context
*
* @return 0 on success, non-zero otherwise
*/
static int32_t
ocs_intr_setup(struct ocs_softc *ocs)
{
driver_filter_t *filter = NULL;
if (0 == ocs->n_vec) {
filter = ocs_pci_intx_filter;
}
if (bus_setup_intr(ocs->dev, ocs->irq, INTR_MPSAFE | INTR_TYPE_CAM,
filter, ocs_pci_intr, &ocs->intr_ctx,
&ocs->tag)) {
device_printf(ocs->dev, "could not initialize interrupt\n");
return -1;
}
return 0;
}
/**
* @brief Detach an interrupt handler
*
* @param ocs Pointer to the driver's context
*
* @return 0 on success, non-zero otherwise
*/
static int32_t
ocs_intr_teardown(struct ocs_softc *ocs)
{
if (!ocs) {
printf("%s: bad driver context?!?\n", __func__);
return -1;
}
if (ocs->tag) {
bus_teardown_intr(ocs->dev, ocs->irq, ocs->tag);
ocs->tag = NULL;
}
return 0;
}
/**
* @brief PCI interrupt handler
*
* @param arg pointer to the driver's software context
*
* @return FILTER_HANDLED if interrupt is processed, FILTER_STRAY otherwise
*/
static int
ocs_pci_intx_filter(void *arg)
{
ocs_intr_ctx_t *intr = arg;
struct ocs_softc *ocs = NULL;
uint16_t val = 0;
if (NULL == intr) {
return FILTER_STRAY;
}
ocs = intr->softc;
#ifndef PCIM_STATUS_INTR
#define PCIM_STATUS_INTR 0x0008
#endif
val = pci_read_config(ocs->dev, PCIR_STATUS, 2);
if (0xffff == val) {
device_printf(ocs->dev, "%s: pci_read_config(PCIR_STATUS) failed\n", __func__);
return FILTER_STRAY;
}
if (0 == (val & PCIM_STATUS_INTR)) {
return FILTER_STRAY;
}
val = pci_read_config(ocs->dev, PCIR_COMMAND, 2);
val |= PCIM_CMD_INTxDIS;
pci_write_config(ocs->dev, PCIR_COMMAND, val, 2);
return FILTER_SCHEDULE_THREAD;
}
/**
* @brief interrupt handler
*
* @param context pointer to the interrupt context
*/
static void
ocs_pci_intr(void *context)
{
ocs_intr_ctx_t *intr = context;
struct ocs_softc *ocs = intr->softc;
mtx_lock(&ocs->sim_lock);
ocs_hw_process(&ocs->hw, intr->vec, OCS_OS_MAX_ISR_TIME_MSEC);
mtx_unlock(&ocs->sim_lock);
}
/**
* @brief Initialize DMA tag
*
* @param ocs the driver instance's software context
*
* @return 0 on success, non-zero otherwise
*/
static int32_t
ocs_init_dma_tag(struct ocs_softc *ocs)
{
uint32_t max_sgl = 0;
uint32_t max_sge = 0;
/*
* IOs can't use the parent DMA tag and must create their
* own, based primarily on a restricted number of DMA segments.
* This is more of a BSD requirement than a SLI Port requirement
*/
ocs_hw_get(&ocs->hw, OCS_HW_N_SGL, &max_sgl);
ocs_hw_get(&ocs->hw, OCS_HW_MAX_SGE, &max_sge);
if (bus_dma_tag_create(ocs->dmat,
1, /* byte alignment */
0, /* no boundary restrictions */
BUS_SPACE_MAXADDR, /* no minimum low address */
BUS_SPACE_MAXADDR, /* no maximum high address */
NULL, /* no filter function */
NULL, /* or arguments */
BUS_SPACE_MAXSIZE, /* max size covered by tag */
max_sgl, /* segment count restrictions */
max_sge, /* segment length restrictions */
0, /* flags */
NULL, /* no lock manipulation function */
NULL, /* or arguments */
&ocs->buf_dmat)) {
device_printf(ocs->dev, "%s: bad bus_dma_tag_create(buf_dmat)\n", __func__);
return -1;
}
return 0;
}
int32_t
ocs_get_property(const char *prop_name, char *buffer, uint32_t buffer_len)
{
return -1;
}
/**
* @brief return pointer to ocs structure given instance index
*
* A pointer to an ocs structure is returned given an instance index.
*
* @param index index to ocs_devices array
*
* @return ocs pointer
*/
ocs_t *ocs_get_instance(uint32_t index)
{
if (index < ARRAY_SIZE(ocs_devices)) {
return ocs_devices[index];
}
return NULL;
}
/**
* @brief Return instance index of an opaque ocs structure
*
* Returns the ocs instance index
*
* @param os pointer to ocs instance
*
* @return pointer to ocs instance index
*/
uint32_t
ocs_instance(void *os)
{
ocs_t *ocs = os;
return ocs->instance_index;
}
static device_method_t ocs_methods[] = {
DEVMETHOD(device_probe, ocs_pci_probe),
DEVMETHOD(device_attach, ocs_pci_attach),
DEVMETHOD(device_detach, ocs_pci_detach),
DEVMETHOD(device_shutdown, ocs_pci_shutdown),
{0, 0}
};
static driver_t ocs_driver = {
"ocs_fc",
ocs_methods,
sizeof(struct ocs_softc)
};
static devclass_t ocs_devclass;
DRIVER_MODULE(ocs_fc, pci, ocs_driver, ocs_devclass, 0, 0);
MODULE_VERSION(ocs_fc, 1);