freebsd-dev/sys/pci/if_xl.c
Bill Paul 021f8bcb89 Do not issue RX and TX reset commands in xl_stop() and xl_init(). On the
3c905B, the RX and TX reset commands also reset the cyclone chip's internal
PHY, which causes it to restart its autonegotiation session. This takes a
second or two to complete, which makes the interface seem to stop responding
for a few seconds every time you do something that reinitializes it.

Issuing the RX and TX resets on the older 3c905 boomerang adapters doesn't
cause any delay because the boomerang chip requires an external PHY.

This should fix the problem where people doing network installs via 3c905B
cards experience a delay after the interface is first initialized, among
other things.
1999-02-11 23:59:29 +00:00

2783 lines
72 KiB
C

/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id: if_xl.c,v 1.23 1999/02/01 21:25:52 wpaul Exp $
*/
/*
* 3Com 3c90x Etherlink XL PCI NIC driver
*
* Supports the 3Com "boomerang" and "cyclone" PCI
* bus-master chips (3c90x cards and embedded controllers) including
* the following:
*
* 3Com 3c900-TPO 10Mbps/RJ-45
* 3Com 3c900-COMBO 10Mbps/RJ-45,AUI,BNC
* 3Com 3c905-TX 10/100Mbps/RJ-45
* 3Com 3c905-T4 10/100Mbps/RJ-45
* 3Com 3c900B-TPO 10Mbps/RJ-45
* 3Com 3c900B-COMBO 10Mbps/RJ-45,AUI,BNC
* 3Com 3c905B-TX 10/100Mbps/RJ-45
* 3Com 3c905B-FL/FX 10/100Mbps/Fiber-optic
* 3Com 3c980-TX 10/100Mbps server adapter
* Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45
* Dell Precision on-board 3c905B 10/100Mbps/RJ-45
* Dell Latitude laptop docking station embedded 3c905-TX
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The 3c90x series chips use a bus-master DMA interface for transfering
* packets to and from the controller chip. Some of the "vortex" cards
* (3c59x) also supported a bus master mode, however for those chips
* you could only DMA packets to/from a contiguous memory buffer. For
* transmission this would mean copying the contents of the queued mbuf
* chain into a an mbuf cluster and then DMAing the cluster. This extra
* copy would sort of defeat the purpose of the bus master support for
* any packet that doesn't fit into a single mbuf.
*
* By contrast, the 3c90x cards support a fragment-based bus master
* mode where mbuf chains can be encapsulated using TX descriptors.
* This is similar to other PCI chips such as the Texas Instruments
* ThunderLAN and the Intel 82557/82558.
*
* The "vortex" driver (if_vx.c) happens to work for the "boomerang"
* bus master chips because they maintain the old PIO interface for
* backwards compatibility, but starting with the 3c905B and the
* "cyclone" chips, the compatibility interface has been dropped.
* Since using bus master DMA is a big win, we use this driver to
* support the PCI "boomerang" chips even though they work with the
* "vortex" driver in order to obtain better performance.
*
* This driver is in the /sys/pci directory because it only supports
* PCI-based NICs.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <vm/vm.h> /* for vtophys */
#include <vm/pmap.h> /* for vtophys */
#include <machine/clock.h> /* for DELAY */
#include <pci/pcireg.h>
#include <pci/pcivar.h>
/*
* The following #define causes the code to use PIO to access the
* chip's registers instead of memory mapped mode. The reason PIO mode
* is on by default is that the Etherlink XL manual seems to indicate
* that only the newer revision chips (3c905B) support both PIO and
* memory mapped access. Since we want to be compatible with the older
* bus master chips, we use PIO here. If you comment this out, the
* driver will use memory mapped I/O, which may be faster but which
* might not work on some devices.
*/
#define XL_USEIOSPACE
/*
* This #define controls the behavior of autonegotiation during the
* bootstrap phase. It's possible to have the driver initiate an
* autonegotiation session and then set a timeout which will cause the
* autoneg results to be polled later, usually once the kernel has
* finished booting. This is clever and all, but it can have bad side
* effects in some cases, particularly where NFS is involved. For
* example, if we're booting diskless with an NFS rootfs, the network
* interface has to be up and running before we hit the mountroot()
* code, otherwise mounting the rootfs will fail and we'll probably
* panic.
*
* Consequently, the 'backgrounded' autoneg behavior is turned off
* by default and we actually sit and wait 5 seconds for autonegotiation
* to complete before proceeding with the other device probes. If you
* choose to use the other behavior, you can uncomment this #define and
* recompile.
*/
/* #define XL_BACKGROUND_AUTONEG */
#include <pci/if_xlreg.h>
#if !defined(lint)
static const char rcsid[] =
"$Id: if_xl.c,v 1.23 1999/02/01 21:25:52 wpaul Exp $";
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct xl_type xl_devs[] = {
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT,
"3Com 3c900 Etherlink XL 10BaseT" },
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT_COMBO,
"3Com 3c900 Etherlink XL 10BaseT Combo" },
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10_100BT,
"3Com 3c905 Fast Etherlink XL 10/100BaseTX" },
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_100BT4,
"3Com 3c905 Fast Etherlink XL 10/100BaseT4" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10BT,
"3Com 3c900B Etherlink XL 10BaseT" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10BT_COMBO,
"3Com 3c900B Etherlink XL 10BaseT Combo" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT,
"3Com 3c905B Fast Etherlink XL 10/100BaseTX" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT4,
"3Com 3c905B Fast Etherlink XL 10/100BaseT4" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100FX,
"3Com 3c905B Fast Etherlink XL 10/100BaseFX/SC" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT_SERV,
"3Com 3c980 Fast Etherlink XL 10/100BaseTX" },
{ 0, 0, NULL }
};
/*
* Various supported PHY vendors/types and their names. Note that
* this driver will work with pretty much any MII-compliant PHY,
* so failure to positively identify the chip is not a fatal error.
*/
static struct xl_type xl_phys[] = {
{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" },
{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
{ 0, 0, "<MII-compliant physical interface>" }
};
static unsigned long xl_count = 0;
static const char *xl_probe __P((pcici_t, pcidi_t));
static void xl_attach __P((pcici_t, int));
static int xl_newbuf __P((struct xl_softc *,
struct xl_chain_onefrag *));
static void xl_stats_update __P((void *));
static int xl_encap __P((struct xl_softc *, struct xl_chain *,
struct mbuf * ));
static void xl_rxeof __P((struct xl_softc *));
static void xl_txeof __P((struct xl_softc *));
static void xl_txeoc __P((struct xl_softc *));
static void xl_intr __P((void *));
static void xl_start __P((struct ifnet *));
static int xl_ioctl __P((struct ifnet *, u_long, caddr_t));
static void xl_init __P((void *));
static void xl_stop __P((struct xl_softc *));
static void xl_watchdog __P((struct ifnet *));
static void xl_shutdown __P((int, void *));
static int xl_ifmedia_upd __P((struct ifnet *));
static void xl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static int xl_eeprom_wait __P((struct xl_softc *));
static int xl_read_eeprom __P((struct xl_softc *, caddr_t, int,
int, int));
static void xl_mii_sync __P((struct xl_softc *));
static void xl_mii_send __P((struct xl_softc *, u_int32_t, int));
static int xl_mii_readreg __P((struct xl_softc *, struct xl_mii_frame *));
static int xl_mii_writereg __P((struct xl_softc *, struct xl_mii_frame *));
static u_int16_t xl_phy_readreg __P((struct xl_softc *, int));
static void xl_phy_writereg __P((struct xl_softc *, int, int));
static void xl_autoneg_xmit __P((struct xl_softc *));
static void xl_autoneg_mii __P((struct xl_softc *, int, int));
static void xl_setmode_mii __P((struct xl_softc *, int));
static void xl_getmode_mii __P((struct xl_softc *));
static void xl_setmode __P((struct xl_softc *, int));
static u_int8_t xl_calchash __P((caddr_t));
static void xl_setmulti __P((struct xl_softc *));
static void xl_setmulti_hash __P((struct xl_softc *));
static void xl_reset __P((struct xl_softc *));
static int xl_list_rx_init __P((struct xl_softc *));
static int xl_list_tx_init __P((struct xl_softc *));
static void xl_wait __P((struct xl_softc *));
static void xl_mediacheck __P((struct xl_softc *));
#ifdef notdef
static void xl_testpacket __P((struct xl_softc *));
#endif
/*
* Murphy's law says that it's possible the chip can wedge and
* the 'command in progress' bit may never clear. Hence, we wait
* only a finite amount of time to avoid getting caught in an
* infinite loop. Normally this delay routine would be a macro,
* but it isn't called during normal operation so we can afford
* to make it a function.
*/
static void xl_wait(sc)
struct xl_softc *sc;
{
register int i;
for (i = 0; i < XL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY))
break;
}
if (i == XL_TIMEOUT)
printf("xl%d: command never completed!\n", sc->xl_unit);
return;
}
/*
* MII access routines are provided for adapters with external
* PHYs (3c905-TX, 3c905-T4, 3c905B-T4) and those with built-in
* autoneg logic that's faked up to look like a PHY (3c905B-TX).
* Note: if you don't perform the MDIO operations just right,
* it's possible to end up with code that works correctly with
* some chips/CPUs/processor speeds/bus speeds/etc but not
* with others.
*/
#define MII_SET(x) \
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \
CSR_READ_2(sc, XL_W4_PHY_MGMT) | x)
#define MII_CLR(x) \
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \
CSR_READ_2(sc, XL_W4_PHY_MGMT) & ~x)
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void xl_mii_sync(sc)
struct xl_softc *sc;
{
register int i;
XL_SEL_WIN(4);
MII_SET(XL_MII_DIR|XL_MII_DATA);
for (i = 0; i < 32; i++) {
MII_SET(XL_MII_CLK);
DELAY(1);
MII_CLR(XL_MII_CLK);
DELAY(1);
}
return;
}
/*
* Clock a series of bits through the MII.
*/
static void xl_mii_send(sc, bits, cnt)
struct xl_softc *sc;
u_int32_t bits;
int cnt;
{
int i;
XL_SEL_WIN(4);
MII_CLR(XL_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
MII_SET(XL_MII_DATA);
} else {
MII_CLR(XL_MII_DATA);
}
DELAY(1);
MII_CLR(XL_MII_CLK);
DELAY(1);
MII_SET(XL_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int xl_mii_readreg(sc, frame)
struct xl_softc *sc;
struct xl_mii_frame *frame;
{
int i, ack, s;
s = splimp();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = XL_MII_STARTDELIM;
frame->mii_opcode = XL_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/*
* Select register window 4.
*/
XL_SEL_WIN(4);
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, 0);
/*
* Turn on data xmit.
*/
MII_SET(XL_MII_DIR);
xl_mii_sync(sc);
/*
* Send command/address info.
*/
xl_mii_send(sc, frame->mii_stdelim, 2);
xl_mii_send(sc, frame->mii_opcode, 2);
xl_mii_send(sc, frame->mii_phyaddr, 5);
xl_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
MII_CLR((XL_MII_CLK|XL_MII_DATA));
DELAY(1);
MII_SET(XL_MII_CLK);
DELAY(1);
/* Turn off xmit. */
MII_CLR(XL_MII_DIR);
/* Check for ack */
MII_CLR(XL_MII_CLK);
DELAY(1);
MII_SET(XL_MII_CLK);
DELAY(1);
ack = CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA;
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for(i = 0; i < 16; i++) {
MII_CLR(XL_MII_CLK);
DELAY(1);
MII_SET(XL_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
MII_CLR(XL_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA)
frame->mii_data |= i;
DELAY(1);
}
MII_SET(XL_MII_CLK);
DELAY(1);
}
fail:
MII_CLR(XL_MII_CLK);
DELAY(1);
MII_SET(XL_MII_CLK);
DELAY(1);
splx(s);
if (ack)
return(1);
return(0);
}
/*
* Write to a PHY register through the MII.
*/
static int xl_mii_writereg(sc, frame)
struct xl_softc *sc;
struct xl_mii_frame *frame;
{
int s;
s = splimp();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = XL_MII_STARTDELIM;
frame->mii_opcode = XL_MII_WRITEOP;
frame->mii_turnaround = XL_MII_TURNAROUND;
/*
* Select the window 4.
*/
XL_SEL_WIN(4);
/*
* Turn on data output.
*/
MII_SET(XL_MII_DIR);
xl_mii_sync(sc);
xl_mii_send(sc, frame->mii_stdelim, 2);
xl_mii_send(sc, frame->mii_opcode, 2);
xl_mii_send(sc, frame->mii_phyaddr, 5);
xl_mii_send(sc, frame->mii_regaddr, 5);
xl_mii_send(sc, frame->mii_turnaround, 2);
xl_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
MII_SET(XL_MII_CLK);
DELAY(1);
MII_CLR(XL_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
MII_CLR(XL_MII_DIR);
splx(s);
return(0);
}
static u_int16_t xl_phy_readreg(sc, reg)
struct xl_softc *sc;
int reg;
{
struct xl_mii_frame frame;
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->xl_phy_addr;
frame.mii_regaddr = reg;
xl_mii_readreg(sc, &frame);
return(frame.mii_data);
}
static void xl_phy_writereg(sc, reg, data)
struct xl_softc *sc;
int reg;
int data;
{
struct xl_mii_frame frame;
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = sc->xl_phy_addr;
frame.mii_regaddr = reg;
frame.mii_data = data;
xl_mii_writereg(sc, &frame);
return;
}
/*
* The EEPROM is slow: give it time to come ready after issuing
* it a command.
*/
static int xl_eeprom_wait(sc)
struct xl_softc *sc;
{
int i;
for (i = 0; i < 100; i++) {
if (CSR_READ_2(sc, XL_W0_EE_CMD) & XL_EE_BUSY)
DELAY(162);
else
break;
}
if (i == 100) {
printf("xl%d: eeprom failed to come ready\n", sc->xl_unit);
return(1);
}
return(0);
}
/*
* Read a sequence of words from the EEPROM. Note that ethernet address
* data is stored in the EEPROM in network byte order.
*/
static int xl_read_eeprom(sc, dest, off, cnt, swap)
struct xl_softc *sc;
caddr_t dest;
int off;
int cnt;
int swap;
{
int err = 0, i;
u_int16_t word = 0, *ptr;
XL_SEL_WIN(0);
if (xl_eeprom_wait(sc))
return(1);
for (i = 0; i < cnt; i++) {
CSR_WRITE_2(sc, XL_W0_EE_CMD, XL_EE_READ | (off + i));
err = xl_eeprom_wait(sc);
if (err)
break;
word = CSR_READ_2(sc, XL_W0_EE_DATA);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return(err ? 1 : 0);
}
/*
* This routine is taken from the 3Com Etherlink XL manual,
* page 10-7. It calculates a CRC of the supplied multicast
* group address and returns the lower 8 bits, which are used
* as the multicast filter position.
* Note: the 3c905B currently only supports a 64-bit hash table,
* which means we really only need 6 bits, but the manual indicates
* that future chip revisions will have a 256-bit hash table,
* hence the routine is set up to calculate 8 bits of position
* info in case we need it some day.
* Note II, The Sequel: _CURRENT_ versions of the 3c905B have a
* 256 bit hash table. This means we have to use all 8 bits regardless.
* On older cards, the upper 2 bits will be ignored. Grrrr....
*/
static u_int8_t xl_calchash(addr)
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
/* return the filter bit position */
return(crc & 0x000000FF);
}
/*
* NICs older than the 3c905B have only one multicast option, which
* is to enable reception of all multicast frames.
*/
static void xl_setmulti(sc)
struct xl_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int8_t rxfilt;
int mcnt = 0;
ifp = &sc->arpcom.ac_if;
XL_SEL_WIN(5);
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
if (ifp->if_flags & IFF_ALLMULTI) {
rxfilt |= XL_RXFILTER_ALLMULTI;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
return;
}
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next)
mcnt++;
if (mcnt)
rxfilt |= XL_RXFILTER_ALLMULTI;
else
rxfilt &= ~XL_RXFILTER_ALLMULTI;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
return;
}
/*
* 3c905B adapters have a hash filter that we can program.
*/
static void xl_setmulti_hash(sc)
struct xl_softc *sc;
{
struct ifnet *ifp;
int h = 0, i;
struct ifmultiaddr *ifma;
u_int8_t rxfilt;
int mcnt = 0;
ifp = &sc->arpcom.ac_if;
XL_SEL_WIN(5);
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
if (ifp->if_flags & IFF_ALLMULTI) {
rxfilt |= XL_RXFILTER_ALLMULTI;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
return;
} else
rxfilt &= ~XL_RXFILTER_ALLMULTI;
/* first, zot all the existing hash bits */
for (i = 0; i < XL_HASHFILT_SIZE; i++)
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|i);
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = xl_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|XL_HASH_SET|h);
mcnt++;
}
if (mcnt)
rxfilt |= XL_RXFILTER_MULTIHASH;
else
rxfilt &= ~XL_RXFILTER_MULTIHASH;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
return;
}
#ifdef notdef
static void xl_testpacket(sc)
struct xl_softc *sc;
{
struct mbuf *m;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return;
bcopy(&sc->arpcom.ac_enaddr,
mtod(m, struct ether_header *)->ether_dhost, ETHER_ADDR_LEN);
bcopy(&sc->arpcom.ac_enaddr,
mtod(m, struct ether_header *)->ether_shost, ETHER_ADDR_LEN);
mtod(m, struct ether_header *)->ether_type = htons(3);
mtod(m, unsigned char *)[14] = 0;
mtod(m, unsigned char *)[15] = 0;
mtod(m, unsigned char *)[16] = 0xE3;
m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3;
IF_ENQUEUE(&ifp->if_snd, m);
xl_start(ifp);
return;
}
#endif
/*
* Initiate an autonegotiation session.
*/
static void xl_autoneg_xmit(sc)
struct xl_softc *sc;
{
u_int16_t phy_sts;
xl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
DELAY(500);
while(xl_phy_readreg(sc, XL_PHY_GENCTL)
& PHY_BMCR_RESET);
phy_sts = xl_phy_readreg(sc, PHY_BMCR);
phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
xl_phy_writereg(sc, PHY_BMCR, phy_sts);
return;
}
/*
* Invoke autonegotiation on a PHY. Also used with the 3Com internal
* autoneg logic which is mapped onto the MII.
*/
static void xl_autoneg_mii(sc, flag, verbose)
struct xl_softc *sc;
int flag;
int verbose;
{
u_int16_t phy_sts = 0, media, advert, ability;
struct ifnet *ifp;
struct ifmedia *ifm;
ifm = &sc->ifmedia;
ifp = &sc->arpcom.ac_if;
ifm->ifm_media = IFM_ETHER | IFM_AUTO;
/*
* The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
* bit cleared in the status register, but has the 'autoneg enabled'
* bit set in the control register. This is a contradiction, and
* I'm not sure how to handle it. If you want to force an attempt
* to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
* and see what happens.
*/
#ifndef FORCE_AUTONEG_TFOUR
/*
* First, see if autoneg is supported. If not, there's
* no point in continuing.
*/
phy_sts = xl_phy_readreg(sc, PHY_BMSR);
if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
if (verbose)
printf("xl%d: autonegotiation not supported\n",
sc->xl_unit);
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
media = xl_phy_readreg(sc, PHY_BMCR);
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
xl_phy_writereg(sc, PHY_BMCR, media);
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
(CSR_READ_1(sc, XL_W3_MAC_CTRL) &
~XL_MACCTRL_DUPLEX));
return;
}
#endif
switch (flag) {
case XL_FLAG_FORCEDELAY:
/*
* XXX Never use this option anywhere but in the probe
* routine: making the kernel stop dead in its tracks
* for three whole seconds after we've gone multi-user
* is really bad manners.
*/
xl_autoneg_xmit(sc);
DELAY(5000000);
break;
case XL_FLAG_SCHEDDELAY:
/*
* Wait for the transmitter to go idle before starting
* an autoneg session, otherwise xl_start() may clobber
* our timeout, and we don't want to allow transmission
* during an autoneg session since that can screw it up.
*/
if (sc->xl_cdata.xl_tx_head != NULL) {
sc->xl_want_auto = 1;
return;
}
xl_autoneg_xmit(sc);
ifp->if_timer = 5;
sc->xl_autoneg = 1;
sc->xl_want_auto = 0;
return;
break;
case XL_FLAG_DELAYTIMEO:
ifp->if_timer = 0;
sc->xl_autoneg = 0;
break;
default:
printf("xl%d: invalid autoneg flag: %d\n", sc->xl_unit, flag);
return;
}
if (xl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
if (verbose)
printf("xl%d: autoneg complete, ", sc->xl_unit);
phy_sts = xl_phy_readreg(sc, PHY_BMSR);
} else {
if (verbose)
printf("xl%d: autoneg not complete, ", sc->xl_unit);
}
media = xl_phy_readreg(sc, PHY_BMCR);
/* Link is good. Report modes and set duplex mode. */
if (xl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
if (verbose)
printf("link status good ");
advert = xl_phy_readreg(sc, XL_PHY_ANAR);
ability = xl_phy_readreg(sc, XL_PHY_LPAR);
if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
ifm->ifm_media = IFM_ETHER|IFM_100_T4;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(100baseT4)\n");
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
media |= PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
media |= PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 100Mbps)\n");
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
media &= ~PHY_BMCR_SPEEDSEL;
media |= PHY_BMCR_DUPLEX;
printf("(full-duplex, 10Mbps)\n");
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
printf("(half-duplex, 10Mbps)\n");
}
/* Set ASIC's duplex mode to match the PHY. */
XL_SEL_WIN(3);
if (media & PHY_BMCR_DUPLEX)
CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
else
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
(CSR_READ_1(sc, XL_W3_MAC_CTRL) &
~XL_MACCTRL_DUPLEX));
xl_phy_writereg(sc, PHY_BMCR, media);
} else {
if (verbose)
printf("no carrier (forcing half-duplex, 10Mbps)\n");
ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
media &= ~PHY_BMCR_SPEEDSEL;
media &= ~PHY_BMCR_DUPLEX;
xl_phy_writereg(sc, PHY_BMCR, media);
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
(CSR_READ_1(sc, XL_W3_MAC_CTRL) &
~XL_MACCTRL_DUPLEX));
}
xl_init(sc);
if (sc->xl_tx_pend) {
sc->xl_autoneg = 0;
sc->xl_tx_pend = 0;
xl_start(ifp);
}
return;
}
static void xl_getmode_mii(sc)
struct xl_softc *sc;
{
u_int16_t bmsr;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
bmsr = xl_phy_readreg(sc, PHY_BMSR);
if (bootverbose)
printf("xl%d: PHY status word: %x\n", sc->xl_unit, bmsr);
/* fallback */
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
if (bmsr & PHY_BMSR_10BTHALF) {
if (bootverbose)
printf("xl%d: 10Mbps half-duplex mode supported\n",
sc->xl_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
}
if (bmsr & PHY_BMSR_10BTFULL) {
if (bootverbose)
printf("xl%d: 10Mbps full-duplex mode supported\n",
sc->xl_unit);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
}
if (bmsr & PHY_BMSR_100BTXHALF) {
if (bootverbose)
printf("xl%d: 100Mbps half-duplex mode supported\n",
sc->xl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
}
if (bmsr & PHY_BMSR_100BTXFULL) {
if (bootverbose)
printf("xl%d: 100Mbps full-duplex mode supported\n",
sc->xl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
}
/* Some also support 100BaseT4. */
if (bmsr & PHY_BMSR_100BT4) {
if (bootverbose)
printf("xl%d: 100baseT4 mode supported\n", sc->xl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
#ifdef FORCE_AUTONEG_TFOUR
if (bootverbose)
printf("xl%d: forcing on autoneg support for BT4\n",
sc->xl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
#endif
}
if (bmsr & PHY_BMSR_CANAUTONEG) {
if (bootverbose)
printf("xl%d: autoneg supported\n", sc->xl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
}
return;
}
/*
* Set speed and duplex mode.
*/
static void xl_setmode_mii(sc, media)
struct xl_softc *sc;
int media;
{
u_int16_t bmcr;
u_int32_t icfg;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/*
* If an autoneg session is in progress, stop it.
*/
if (sc->xl_autoneg) {
printf("xl%d: canceling autoneg session\n", sc->xl_unit);
ifp->if_timer = sc->xl_autoneg = sc->xl_want_auto = 0;
bmcr = xl_phy_readreg(sc, PHY_BMCR);
bmcr &= ~PHY_BMCR_AUTONEGENBL;
xl_phy_writereg(sc, PHY_BMCR, bmcr);
}
printf("xl%d: selecting MII, ", sc->xl_unit);
XL_SEL_WIN(3);
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
icfg &= ~XL_ICFG_CONNECTOR_MASK;
if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BT4)
icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS);
if (sc->xl_media & XL_MEDIAOPT_BTX) {
if (sc->xl_type == XL_TYPE_905B)
icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS);
else
icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS);
}
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
if (IFM_SUBTYPE(media) == IFM_100_FX) {
icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS);
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
return;
}
bmcr = xl_phy_readreg(sc, PHY_BMCR);
bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);
if (IFM_SUBTYPE(media) == IFM_100_T4) {
printf("100Mbps/T4, half-duplex\n");
bmcr |= PHY_BMCR_SPEEDSEL;
bmcr &= ~PHY_BMCR_DUPLEX;
}
if (IFM_SUBTYPE(media) == IFM_100_TX) {
printf("100Mbps, ");
bmcr |= PHY_BMCR_SPEEDSEL;
}
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10Mbps, ");
bmcr &= ~PHY_BMCR_SPEEDSEL;
}
if ((media & IFM_GMASK) == IFM_FDX) {
printf("full duplex\n");
bmcr |= PHY_BMCR_DUPLEX;
XL_SEL_WIN(3);
CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
} else {
printf("half duplex\n");
bmcr &= ~PHY_BMCR_DUPLEX;
XL_SEL_WIN(3);
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
}
xl_phy_writereg(sc, PHY_BMCR, bmcr);
return;
}
static void xl_setmode(sc, media)
struct xl_softc *sc;
int media;
{
u_int32_t icfg;
u_int16_t mediastat;
printf("xl%d: selecting ", sc->xl_unit);
XL_SEL_WIN(4);
mediastat = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
XL_SEL_WIN(3);
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
if (sc->xl_media & XL_MEDIAOPT_BT) {
if (IFM_SUBTYPE(media) == IFM_10_T) {
printf("10baseT transceiver, ");
sc->xl_xcvr = XL_XCVR_10BT;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_10BT << XL_ICFG_CONNECTOR_BITS);
mediastat |= XL_MEDIASTAT_LINKBEAT|
XL_MEDIASTAT_JABGUARD;
mediastat &= ~XL_MEDIASTAT_SQEENB;
}
}
if (sc->xl_media & XL_MEDIAOPT_BFX) {
if (IFM_SUBTYPE(media) == IFM_100_FX) {
printf("100baseFX port, ");
sc->xl_xcvr = XL_XCVR_100BFX;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS);
mediastat |= XL_MEDIASTAT_LINKBEAT;
mediastat &= ~XL_MEDIASTAT_SQEENB;
}
}
if (sc->xl_media & XL_MEDIAOPT_AUI) {
if (IFM_SUBTYPE(media) == IFM_10_5) {
printf("AUI port, ");
sc->xl_xcvr = XL_XCVR_AUI;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS);
mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
XL_MEDIASTAT_JABGUARD);
mediastat |= ~XL_MEDIASTAT_SQEENB;
}
}
if (sc->xl_media & XL_MEDIAOPT_BNC) {
if (IFM_SUBTYPE(media) == IFM_10_2) {
printf("BNC port, ");
sc->xl_xcvr = XL_XCVR_COAX;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_COAX << XL_ICFG_CONNECTOR_BITS);
mediastat &= ~(XL_MEDIASTAT_LINKBEAT|
XL_MEDIASTAT_JABGUARD|
XL_MEDIASTAT_SQEENB);
}
}
if ((media & IFM_GMASK) == IFM_FDX ||
IFM_SUBTYPE(media) == IFM_100_FX) {
printf("full duplex\n");
XL_SEL_WIN(3);
CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
} else {
printf("half duplex\n");
XL_SEL_WIN(3);
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
}
if (IFM_SUBTYPE(media) == IFM_10_2)
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
else
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
XL_SEL_WIN(4);
CSR_WRITE_2(sc, XL_W4_MEDIA_STATUS, mediastat);
DELAY(800);
XL_SEL_WIN(7);
return;
}
static void xl_reset(sc)
struct xl_softc *sc;
{
XL_SEL_WIN(0);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RESET);
xl_wait(sc);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for a 3Com Etherlink XL chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static const char *
xl_probe(config_id, device_id)
pcici_t config_id;
pcidi_t device_id;
{
struct xl_type *t;
t = xl_devs;
while(t->xl_name != NULL) {
if ((device_id & 0xFFFF) == t->xl_vid &&
((device_id >> 16) & 0xFFFF) == t->xl_did) {
return(t->xl_name);
}
t++;
}
return(NULL);
}
/*
* This routine is a kludge to work around possible hardware faults
* or manufacturing defects that can cause the media options register
* (or reset options register, as it's called for the first generation
* 3cx90x adapters) to return an incorrect result. I have encountered
* one Dell Latitude laptop docking station with an integrated 3c905-TX
* which doesn't have any of the 'mediaopt' bits set. This screws up
* the attach routine pretty badly because it doesn't know what media
* to look for. If we find ourselves in this predicament, this routine
* will try to guess the media options values and warn the user of a
* possible manufacturing defect with his adapter/system/whatever.
*/
static void xl_mediacheck(sc)
struct xl_softc *sc;
{
u_int16_t devid;
/*
* If some of the media options bits are set, assume they are
* correct. If not, try to figure it out down below.
* XXX I should check for 10baseFL, but I don't have an adapter
* to test with.
*/
if (sc->xl_media & (XL_MEDIAOPT_MASK & ~XL_MEDIAOPT_VCO)) {
/*
* Check the XCVR value. If it's not in the normal range
* of values, we need to fake it up here.
*/
if (sc->xl_xcvr <= XL_XCVR_AUTO)
return;
else {
printf("xl%d: bogus xcvr value "
"in EEPROM (%x)\n", sc->xl_unit, sc->xl_xcvr);
printf("xl%d: choosing new default based "
"on card type\n", sc->xl_unit);
}
} else {
printf("xl%d: WARNING: no media options bits set in "
"the media options register!!\n", sc->xl_unit);
printf("xl%d: this could be a manufacturing defect in "
"your adapter or system\n", sc->xl_unit);
printf("xl%d: attempting to guess media type; you "
"should probably consult your vendor\n", sc->xl_unit);
}
/*
* Read the device ID from the EEPROM.
* This is what's loaded into the PCI device ID register, so it has
* to be correct otherwise we wouldn't have gotten this far.
*/
xl_read_eeprom(sc, (caddr_t)&devid, XL_EE_PRODID, 1, 0);
switch(devid) {
case TC_DEVICEID_BOOMERANG_10BT: /* 3c900-TP */
case TC_DEVICEID_CYCLONE_10BT: /* 3c900B-TP */
sc->xl_media = XL_MEDIAOPT_BT;
sc->xl_xcvr = XL_XCVR_10BT;
printf("xl%d: guessing 10BaseT transceiver\n", sc->xl_unit);
break;
case TC_DEVICEID_BOOMERANG_10BT_COMBO: /* 3c900-COMBO */
case TC_DEVICEID_CYCLONE_10BT_COMBO: /* 3c900B-COMBO */
sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI;
sc->xl_xcvr = XL_XCVR_10BT;
printf("xl%d: guessing COMBO (AUI/BNC/TP)\n", sc->xl_unit);
break;
case TC_DEVICEID_BOOMERANG_10_100BT: /* 3c905-TX */
sc->xl_media = XL_MEDIAOPT_MII;
sc->xl_xcvr = XL_XCVR_MII;
printf("xl%d: guessing MII\n", sc->xl_unit);
break;
case TC_DEVICEID_BOOMERANG_100BT4: /* 3c905-T4 */
case TC_DEVICEID_CYCLONE_10_100BT4: /* 3c905B-T4 */
sc->xl_media = XL_MEDIAOPT_BT4;
sc->xl_xcvr = XL_XCVR_MII;
printf("xl%d: guessing 100BaseT4/MII\n", sc->xl_unit);
break;
case TC_DEVICEID_CYCLONE_10_100BT: /* 3c905B-TX */
case TC_DEVICEID_CYCLONE_10_100BT_SERV: /* 3c980-TX */
sc->xl_media = XL_MEDIAOPT_BTX;
sc->xl_xcvr = XL_XCVR_AUTO;
printf("xl%d: guessing 10/100 internal\n", sc->xl_unit);
break;
default:
printf("xl%d: unknown device ID: %x -- "
"defaulting to 10baseT\n", sc->xl_unit, devid);
sc->xl_media = XL_MEDIAOPT_BT;
break;
}
return;
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
xl_attach(config_id, unit)
pcici_t config_id;
int unit;
{
int s, i;
#ifndef XL_USEIOSPACE
vm_offset_t pbase, vbase;
#endif
u_char eaddr[ETHER_ADDR_LEN];
u_int32_t command;
struct xl_softc *sc;
struct ifnet *ifp;
int media = IFM_ETHER|IFM_100_TX|IFM_FDX;
unsigned int round;
caddr_t roundptr;
struct xl_type *p;
u_int16_t phy_vid, phy_did, phy_sts;
s = splimp();
sc = malloc(sizeof(struct xl_softc), M_DEVBUF, M_NOWAIT);
if (sc == NULL) {
printf("xl%d: no memory for softc struct!\n", unit);
return;
}
bzero(sc, sizeof(struct xl_softc));
/*
* If this is a 3c905B, we have to check one extra thing.
* The 905B supports power management and may be placed in
* a low-power mode (D3 mode), typically by certain operating
* systems which shall not be named. The PCI BIOS is supposed
* to reset the NIC and bring it out of low-power mode, but
* some do not. Consequently, we have to see if this chip
* supports power management, and if so, make sure it's not
* in low-power mode. If power management is available, the
* capid byte will be 0x01.
*
* I _think_ that what actually happens is that the chip
* loses its PCI configuration during the transition from
* D3 back to D0; this means that it should be possible for
* us to save the PCI iobase, membase and IRQ, put the chip
* back in the D0 state, then restore the PCI config ourselves.
*/
command = pci_conf_read(config_id, XL_PCI_CAPID) & 0x000000FF;
if (command == 0x01) {
command = pci_conf_read(config_id, XL_PCI_PWRMGMTCTRL);
if (command & XL_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_conf_read(config_id, XL_PCI_LOIO);
membase = pci_conf_read(config_id, XL_PCI_LOMEM);
irq = pci_conf_read(config_id, XL_PCI_INTLINE);
/* Reset the power state. */
printf("xl%d: chip is in D%d power mode "
"-- setting to D0\n", unit, command & XL_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_conf_write(config_id, XL_PCI_PWRMGMTCTRL, command);
/* Restore PCI config data. */
pci_conf_write(config_id, XL_PCI_LOIO, iobase);
pci_conf_write(config_id, XL_PCI_LOMEM, membase);
pci_conf_write(config_id, XL_PCI_INTLINE, irq);
}
}
/*
* Map control/status registers.
*/
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
#ifdef XL_USEIOSPACE
if (!(command & PCIM_CMD_PORTEN)) {
printf("xl%d: failed to enable I/O ports!\n", unit);
free(sc, M_DEVBUF);
goto fail;
}
sc->iobase = pci_conf_read(config_id, XL_PCI_LOIO) & 0xFFFFFFE0;
#else
if (!(command & PCIM_CMD_MEMEN)) {
printf("xl%d: failed to enable memory mapping!\n", unit);
goto fail;
}
if (!pci_map_mem(config_id, XL_PCI_LOMEM, &vbase, &pbase)) {
printf ("xl%d: couldn't map memory\n", unit);
goto fail;
}
sc->csr = (volatile caddr_t)vbase;
#endif
/* Allocate interrupt */
if (!pci_map_int(config_id, xl_intr, sc, &net_imask)) {
printf("xl%d: couldn't map interrupt\n", unit);
goto fail;
}
/* Reset the adapter. */
xl_reset(sc);
/*
* Get station address from the EEPROM.
*/
if (xl_read_eeprom(sc, (caddr_t)&eaddr, XL_EE_OEM_ADR0, 3, 1)) {
printf("xl%d: failed to read station address\n", sc->xl_unit);
free(sc, M_DEVBUF);
goto fail;
}
/*
* A 3Com chip was detected. Inform the world.
*/
printf("xl%d: Ethernet address: %6D\n", unit, eaddr, ":");
sc->xl_unit = unit;
callout_handle_init(&sc->xl_stat_ch);
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
sc->xl_ldata_ptr = malloc(sizeof(struct xl_list_data) + 8,
M_DEVBUF, M_NOWAIT);
if (sc->xl_ldata_ptr == NULL) {
free(sc, M_DEVBUF);
printf("xl%d: no memory for list buffers!\n", unit);
return;
}
sc->xl_ldata = (struct xl_list_data *)sc->xl_ldata_ptr;
round = (unsigned int)sc->xl_ldata_ptr & 0xF;
roundptr = sc->xl_ldata_ptr;
for (i = 0; i < 8; i++) {
if (round % 8) {
round++;
roundptr++;
} else
break;
}
sc->xl_ldata = (struct xl_list_data *)roundptr;
bzero(sc->xl_ldata, sizeof(struct xl_list_data));
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = unit;
ifp->if_name = "xl";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = xl_ioctl;
ifp->if_output = ether_output;
ifp->if_start = xl_start;
ifp->if_watchdog = xl_watchdog;
ifp->if_init = xl_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = XL_TX_LIST_CNT - 1;
/*
* Figure out the card type. 3c905B adapters have the
* 'supportsNoTxLength' bit set in the capabilities
* word in the EEPROM.
*/
xl_read_eeprom(sc, (caddr_t)&sc->xl_caps, XL_EE_CAPS, 1, 0);
if (sc->xl_caps & XL_CAPS_NO_TXLENGTH)
sc->xl_type = XL_TYPE_905B;
else
sc->xl_type = XL_TYPE_90X;
/*
* Now we have to see what sort of media we have.
* This includes probing for an MII interace and a
* possible PHY.
*/
XL_SEL_WIN(3);
sc->xl_media = CSR_READ_2(sc, XL_W3_MEDIA_OPT);
if (bootverbose)
printf("xl%d: media options word: %x\n", sc->xl_unit,
sc->xl_media);
xl_read_eeprom(sc, (char *)&sc->xl_xcvr, XL_EE_ICFG_0, 2, 0);
sc->xl_xcvr &= XL_ICFG_CONNECTOR_MASK;
sc->xl_xcvr >>= XL_ICFG_CONNECTOR_BITS;
xl_mediacheck(sc);
if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX
|| sc->xl_media & XL_MEDIAOPT_BT4) {
/*
* In theory I shouldn't need this, but... if this
* card supports an MII, either an external one or
* an internal fake one, select it in the internal
* config register before trying to probe it.
*/
u_int32_t icfg;
XL_SEL_WIN(3);
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
icfg &= ~XL_ICFG_CONNECTOR_MASK;
if (sc->xl_media & XL_MEDIAOPT_MII ||
sc->xl_media & XL_MEDIAOPT_BT4)
icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS);
if (sc->xl_media & XL_MEDIAOPT_BTX)
icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS);
if (sc->xl_media & XL_MEDIAOPT_BFX)
icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS);
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
if (bootverbose)
printf("xl%d: probing for a PHY\n", sc->xl_unit);
for (i = XL_PHYADDR_MIN; i < XL_PHYADDR_MAX + 1; i++) {
if (bootverbose)
printf("xl%d: checking address: %d\n",
sc->xl_unit, i);
sc->xl_phy_addr = i;
xl_phy_writereg(sc, XL_PHY_GENCTL, PHY_BMCR_RESET);
DELAY(500);
while(xl_phy_readreg(sc, XL_PHY_GENCTL)
& PHY_BMCR_RESET);
if ((phy_sts = xl_phy_readreg(sc, XL_PHY_GENSTS)))
break;
}
if (phy_sts) {
phy_vid = xl_phy_readreg(sc, XL_PHY_VENID);
phy_did = xl_phy_readreg(sc, XL_PHY_DEVID);
if (bootverbose)
printf("xl%d: found PHY at address %d, ",
sc->xl_unit, sc->xl_phy_addr);
if (bootverbose)
printf("vendor id: %x device id: %x\n",
phy_vid, phy_did);
p = xl_phys;
while(p->xl_vid) {
if (phy_vid == p->xl_vid &&
(phy_did | 0x000F) == p->xl_did) {
sc->xl_pinfo = p;
break;
}
p++;
}
if (sc->xl_pinfo == NULL)
sc->xl_pinfo = &xl_phys[PHY_UNKNOWN];
if (bootverbose)
printf("xl%d: PHY type: %s\n",
sc->xl_unit, sc->xl_pinfo->xl_name);
} else {
printf("xl%d: MII without any phy!\n", sc->xl_unit);
}
}
/*
* Do ifmedia setup.
*/
ifmedia_init(&sc->ifmedia, 0, xl_ifmedia_upd, xl_ifmedia_sts);
if (sc->xl_media & XL_MEDIAOPT_BT) {
if (bootverbose)
printf("xl%d: found 10baseT\n", sc->xl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
}
if (sc->xl_media & XL_MEDIAOPT_AUI) {
if (bootverbose)
printf("xl%d: found AUI\n", sc->xl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
}
if (sc->xl_media & XL_MEDIAOPT_BNC) {
if (bootverbose)
printf("xl%d: found BNC\n", sc->xl_unit);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_2, 0, NULL);
}
/*
* Technically we could use xl_getmode_mii() to scan the
* modes, but the built-in BTX mode on the 3c905B implies
* 10/100 full/half duplex support anyway, so why not just
* do it and get it over with.
*/
if (sc->xl_media & XL_MEDIAOPT_BTX) {
if (bootverbose)
printf("xl%d: found 100baseTX\n", sc->xl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
if (sc->xl_pinfo != NULL)
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
}
if (sc->xl_media & XL_MEDIAOPT_BFX) {
if (bootverbose)
printf("xl%d: found 100baseFX\n", sc->xl_unit);
ifp->if_baudrate = 100000000;
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
}
/*
* If there's an MII, we have to probe its modes
* separately.
*/
if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BT4) {
if (bootverbose)
printf("xl%d: found MII\n", sc->xl_unit);
xl_getmode_mii(sc);
}
/* Choose a default media. */
switch(sc->xl_xcvr) {
case XL_XCVR_10BT:
media = IFM_ETHER|IFM_10_T;
xl_setmode(sc, media);
break;
case XL_XCVR_AUI:
media = IFM_ETHER|IFM_10_5;
xl_setmode(sc, media);
break;
case XL_XCVR_COAX:
media = IFM_ETHER|IFM_10_2;
xl_setmode(sc, media);
break;
case XL_XCVR_AUTO:
#ifdef XL_BACKGROUND_AUTONEG
xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1);
#else
xl_autoneg_mii(sc, XL_FLAG_FORCEDELAY, 1);
#endif
media = sc->ifmedia.ifm_media;
break;
case XL_XCVR_100BTX:
case XL_XCVR_MII:
#ifdef XL_BACKGROUND_AUTONEG
xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1);
#else
xl_autoneg_mii(sc, XL_FLAG_FORCEDELAY, 1);
#endif
media = sc->ifmedia.ifm_media;
break;
case XL_XCVR_100BFX:
media = IFM_ETHER|IFM_100_FX;
break;
default:
printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit,
sc->xl_xcvr);
/*
* This will probably be wrong, but it prevents
* the ifmedia code from panicking.
*/
media = IFM_ETHER|IFM_10_T;
break;
}
ifmedia_set(&sc->ifmedia, media);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
#if NBPFILTER > 0
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
at_shutdown(xl_shutdown, sc, SHUTDOWN_POST_SYNC);
fail:
splx(s);
return;
}
/*
* Initialize the transmit descriptors.
*/
static int xl_list_tx_init(sc)
struct xl_softc *sc;
{
struct xl_chain_data *cd;
struct xl_list_data *ld;
int i;
cd = &sc->xl_cdata;
ld = sc->xl_ldata;
for (i = 0; i < XL_TX_LIST_CNT; i++) {
cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i];
if (i == (XL_TX_LIST_CNT - 1))
cd->xl_tx_chain[i].xl_next = NULL;
else
cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1];
}
cd->xl_tx_free = &cd->xl_tx_chain[0];
cd->xl_tx_tail = cd->xl_tx_head = NULL;
return(0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int xl_list_rx_init(sc)
struct xl_softc *sc;
{
struct xl_chain_data *cd;
struct xl_list_data *ld;
int i;
cd = &sc->xl_cdata;
ld = sc->xl_ldata;
for (i = 0; i < XL_RX_LIST_CNT; i++) {
cd->xl_rx_chain[i].xl_ptr =
(struct xl_list_onefrag *)&ld->xl_rx_list[i];
if (xl_newbuf(sc, &cd->xl_rx_chain[i]) == ENOBUFS)
return(ENOBUFS);
if (i == (XL_RX_LIST_CNT - 1)) {
cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[0];
ld->xl_rx_list[i].xl_next =
vtophys(&ld->xl_rx_list[0]);
} else {
cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[i + 1];
ld->xl_rx_list[i].xl_next =
vtophys(&ld->xl_rx_list[i + 1]);
}
}
cd->xl_rx_head = &cd->xl_rx_chain[0];
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
static int xl_newbuf(sc, c)
struct xl_softc *sc;
struct xl_chain_onefrag *c;
{
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("xl%d: no memory for rx list -- packet dropped!\n",
sc->xl_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("xl%d: no memory for rx list -- packet dropped!\n",
sc->xl_unit);
m_freem(m_new);
return(ENOBUFS);
}
c->xl_mbuf = m_new;
c->xl_ptr->xl_status = 0;
c->xl_ptr->xl_frag.xl_addr = vtophys(mtod(m_new, caddr_t));
c->xl_ptr->xl_frag.xl_len = MCLBYTES | XL_LAST_FRAG;
return(0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void xl_rxeof(sc)
struct xl_softc *sc;
{
struct ether_header *eh;
struct mbuf *m;
struct ifnet *ifp;
struct xl_chain_onefrag *cur_rx;
int total_len = 0;
u_int16_t rxstat;
ifp = &sc->arpcom.ac_if;
again:
while((rxstat = sc->xl_cdata.xl_rx_head->xl_ptr->xl_status)) {
cur_rx = sc->xl_cdata.xl_rx_head;
sc->xl_cdata.xl_rx_head = cur_rx->xl_next;
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & XL_RXSTAT_UP_ERROR) {
ifp->if_ierrors++;
cur_rx->xl_ptr->xl_status = 0;
continue;
}
/*
* If there error bit was not set, the upload complete
* bit should be set which means we have a valid packet.
* If not, something truly strange has happened.
*/
if (!(rxstat & XL_RXSTAT_UP_CMPLT)) {
printf("xl%d: bad receive status -- packet dropped",
sc->xl_unit);
ifp->if_ierrors++;
cur_rx->xl_ptr->xl_status = 0;
continue;
}
/* No errors; receive the packet. */
m = cur_rx->xl_mbuf;
total_len = cur_rx->xl_ptr->xl_status & XL_RXSTAT_LENMASK;
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition and
* should leave the buffer in place and continue. This will
* result in a lost packet, but there's little else we
* can do in this situation.
*/
if (xl_newbuf(sc, cur_rx) == ENOBUFS) {
ifp->if_ierrors++;
cur_rx->xl_ptr->xl_status = 0;
continue;
}
eh = mtod(m, struct ether_header *);
m->m_pkthdr.rcvif = ifp;
#if NBPFILTER > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf) {
m->m_pkthdr.len = m->m_len = total_len;
bpf_mtap(ifp, m);
if (ifp->if_flags & IFF_PROMISC &&
(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
ETHER_ADDR_LEN) &&
(eh->ether_dhost[0] & 1) == 0)) {
m_freem(m);
continue;
}
}
#endif
/* Remove header from mbuf and pass it on. */
m->m_pkthdr.len = m->m_len =
total_len - sizeof(struct ether_header);
m->m_data += sizeof(struct ether_header);
ether_input(ifp, eh, m);
}
/*
* Handle the 'end of channel' condition. When the upload
* engine hits the end of the RX ring, it will stall. This
* is our cue to flush the RX ring, reload the uplist pointer
* register and unstall the engine.
* XXX This is actually a little goofy. With the ThunderLAN
* chip, you get an interrupt when the receiver hits the end
* of the receive ring, which tells you exactly when you
* you need to reload the ring pointer. Here we have to
* fake it. I'm mad at myself for not being clever enough
* to avoid the use of a goto here.
*/
if (CSR_READ_4(sc, XL_UPLIST_PTR) == 0 ||
CSR_READ_4(sc, XL_UPLIST_STATUS) & XL_PKTSTAT_UP_STALLED) {
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
xl_wait(sc);
CSR_WRITE_4(sc, XL_UPLIST_PTR,
vtophys(&sc->xl_ldata->xl_rx_list[0]));
sc->xl_cdata.xl_rx_head = &sc->xl_cdata.xl_rx_chain[0];
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
goto again;
}
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void xl_txeof(sc)
struct xl_softc *sc;
{
struct xl_chain *cur_tx;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
/* Clear the timeout timer. */
ifp->if_timer = 0;
/*
* Go through our tx list and free mbufs for those
* frames that have been uploaded. Note: the 3c905B
* sets a special bit in the status word to let us
* know that a frame has been downloaded, but the
* original 3c900/3c905 adapters don't do that.
* Consequently, we have to use a different test if
* xl_type != XL_TYPE_905B.
*/
while(sc->xl_cdata.xl_tx_head != NULL) {
cur_tx = sc->xl_cdata.xl_tx_head;
if ((sc->xl_type == XL_TYPE_905B &&
!(cur_tx->xl_ptr->xl_status & XL_TXSTAT_DL_COMPLETE)) ||
CSR_READ_4(sc, XL_DOWNLIST_PTR)) {
break;
}
sc->xl_cdata.xl_tx_head = cur_tx->xl_next;
m_freem(cur_tx->xl_mbuf);
cur_tx->xl_mbuf = NULL;
cur_tx->xl_next = sc->xl_cdata.xl_tx_free;
sc->xl_cdata.xl_tx_free = cur_tx;
}
if (sc->xl_cdata.xl_tx_head == NULL) {
ifp->if_flags &= ~IFF_OACTIVE;
sc->xl_cdata.xl_tx_tail = NULL;
if (sc->xl_want_auto)
xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1);
} else {
if (CSR_READ_4(sc, XL_DMACTL) & XL_DMACTL_DOWN_STALLED ||
!CSR_READ_4(sc, XL_DOWNLIST_PTR)) {
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
vtophys(sc->xl_cdata.xl_tx_head->xl_ptr));
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
}
}
return;
}
/*
* TX 'end of channel' interrupt handler. Actually, we should
* only get a 'TX complete' interrupt if there's a transmit error,
* so this is really TX error handler.
*/
static void xl_txeoc(sc)
struct xl_softc *sc;
{
u_int8_t txstat;
while((txstat = CSR_READ_1(sc, XL_TX_STATUS))) {
if (txstat & XL_TXSTATUS_UNDERRUN ||
txstat & XL_TXSTATUS_JABBER ||
txstat & XL_TXSTATUS_RECLAIM) {
printf("xl%d: transmission error: %x\n",
sc->xl_unit, txstat);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
if (sc->xl_cdata.xl_tx_head != NULL)
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
vtophys(sc->xl_cdata.xl_tx_head->xl_ptr));
/*
* Remember to set this for the
* first generation 3c90X chips.
*/
CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
if (sc->xl_type == XL_TYPE_905B) {
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
}
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
} else {
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
}
/*
* Write an arbitrary byte to the TX_STATUS register
* to clear this interrupt/error and advance to the next.
*/
CSR_WRITE_1(sc, XL_TX_STATUS, 0x01);
}
return;
}
static void xl_intr(arg)
void *arg;
{
struct xl_softc *sc;
struct ifnet *ifp;
u_int16_t status;
sc = arg;
ifp = &sc->arpcom.ac_if;
/* Disable interrupts. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB);
for (;;) {
status = CSR_READ_2(sc, XL_STATUS);
if ((status & XL_INTRS) == 0)
break;
if (status & XL_STAT_UP_COMPLETE) {
xl_rxeof(sc);
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_INTR_ACK|XL_STAT_UP_COMPLETE);
}
if (status & XL_STAT_DOWN_COMPLETE) {
xl_txeof(sc);
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_INTR_ACK|XL_STAT_DOWN_COMPLETE);
}
if (status & XL_STAT_TX_COMPLETE) {
ifp->if_oerrors++;
xl_txeoc(sc);
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_INTR_ACK|XL_STAT_TX_COMPLETE);
}
if (status & XL_STAT_ADFAIL) {
xl_reset(sc);
xl_init(sc);
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_INTR_ACK|XL_STAT_ADFAIL);
}
if (status & XL_STAT_STATSOFLOW) {
sc->xl_stats_no_timeout = 1;
xl_stats_update(sc);
sc->xl_stats_no_timeout = 0;
}
CSR_WRITE_2(sc, XL_STATUS, XL_CMD_INTR_ACK|XL_STAT_INTREQ|
XL_STAT_INTLATCH);
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS);
XL_SEL_WIN(7);
if (ifp->if_snd.ifq_head != NULL) {
xl_start(ifp);
}
return;
}
static void xl_stats_update(xsc)
void *xsc;
{
struct xl_softc *sc;
struct ifnet *ifp;
struct xl_stats xl_stats;
u_int8_t *p;
int i;
bzero((char *)&xl_stats, sizeof(struct xl_stats));
sc = xsc;
ifp = &sc->arpcom.ac_if;
p = (u_int8_t *)&xl_stats;
/* Read all the stats registers. */
XL_SEL_WIN(6);
for (i = 0; i < 16; i++)
*p++ = CSR_READ_1(sc, XL_W6_CARRIER_LOST + i);
ifp->if_ipackets += xl_rx_goodframes(xl_stats);
ifp->if_opackets += xl_tx_goodframes(xl_stats);
ifp->if_ierrors += xl_stats.xl_rx_overrun;
ifp->if_collisions += xl_stats.xl_tx_multi_collision +
xl_stats.xl_tx_single_collision +
xl_stats.xl_tx_late_collision;
/*
* Boomerang and cyclone chips have an extra stats counter
* in window 4 (BadSSD). We have to read this too in order
* to clear out all the stats registers and avoid a statsoflow
* interrupt.
*/
XL_SEL_WIN(4);
CSR_READ_1(sc, XL_W4_BADSSD);
XL_SEL_WIN(7);
if (!sc->xl_stats_no_timeout)
sc->xl_stat_ch = timeout(xl_stats_update, sc, hz);
return;
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int xl_encap(sc, c, m_head)
struct xl_softc *sc;
struct xl_chain *c;
struct mbuf *m_head;
{
int frag = 0;
struct xl_frag *f = NULL;
int total_len;
struct mbuf *m;
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
m = m_head;
total_len = 0;
for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
if (m->m_len != 0) {
if (frag == XL_MAXFRAGS)
break;
total_len+= m->m_len;
c->xl_ptr->xl_frag[frag].xl_addr =
vtophys(mtod(m, vm_offset_t));
c->xl_ptr->xl_frag[frag].xl_len = m->m_len;
frag++;
}
}
/*
* Handle special case: we used up all 63 fragments,
* but we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (m != NULL) {
struct mbuf *m_new = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("xl%d: no memory for tx list", sc->xl_unit);
return(1);
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
printf("xl%d: no memory for tx list",
sc->xl_unit);
return(1);
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, caddr_t));
m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
m_freem(m_head);
m_head = m_new;
f = &c->xl_ptr->xl_frag[0];
f->xl_addr = vtophys(mtod(m_new, caddr_t));
f->xl_len = total_len = m_new->m_len;
frag = 1;
}
c->xl_mbuf = m_head;
c->xl_ptr->xl_frag[frag - 1].xl_len |= XL_LAST_FRAG;
c->xl_ptr->xl_status = total_len;
c->xl_ptr->xl_next = 0;
return(0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void xl_start(ifp)
struct ifnet *ifp;
{
struct xl_softc *sc;
struct mbuf *m_head = NULL;
struct xl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
sc = ifp->if_softc;
if (sc->xl_autoneg) {
sc->xl_tx_pend = 1;
return;
}
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->xl_cdata.xl_tx_free == NULL) {
xl_txeoc(sc);
xl_txeof(sc);
if (sc->xl_cdata.xl_tx_free == NULL) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
}
start_tx = sc->xl_cdata.xl_tx_free;
while(sc->xl_cdata.xl_tx_free != NULL) {
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
cur_tx = sc->xl_cdata.xl_tx_free;
sc->xl_cdata.xl_tx_free = cur_tx->xl_next;
cur_tx->xl_next = NULL;
/* Pack the data into the descriptor. */
xl_encap(sc, cur_tx, m_head);
/* Chain it together. */
if (prev != NULL) {
prev->xl_next = cur_tx;
prev->xl_ptr->xl_next = vtophys(cur_tx->xl_ptr);
}
prev = cur_tx;
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, cur_tx->xl_mbuf);
#endif
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL)
return;
/*
* Place the request for the upload interrupt
* in the last descriptor in the chain. This way, if
* we're chaining several packets at once, we'll only
* get an interupt once for the whole chain rather than
* once for each packet.
*/
cur_tx->xl_ptr->xl_status |= XL_TXSTAT_DL_INTR;
/*
* Queue the packets. If the TX channel is clear, update
* the downlist pointer register.
*/
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL);
xl_wait(sc);
if (CSR_READ_4(sc, XL_DOWNLIST_PTR)) {
sc->xl_cdata.xl_tx_tail->xl_next = start_tx;
sc->xl_cdata.xl_tx_tail->xl_ptr->xl_next =
vtophys(start_tx->xl_ptr);
sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status &=
~XL_TXSTAT_DL_INTR;
sc->xl_cdata.xl_tx_tail = cur_tx;
} else {
sc->xl_cdata.xl_tx_head = start_tx;
sc->xl_cdata.xl_tx_tail = cur_tx;
CSR_WRITE_4(sc, XL_DOWNLIST_PTR, vtophys(start_tx->xl_ptr));
}
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
XL_SEL_WIN(7);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
/*
* XXX Under certain conditions, usually on slower machines
* where interrupts may be dropped, it's possible for the
* adapter to chew up all the buffers in the receive ring
* and stall, without us being able to do anything about it.
* To guard against this, we need to make a pass over the
* RX queue to make sure there aren't any packets pending.
* Doing it here means we can flush the receive ring at the
* same time the chip is DMAing the transmit descriptors we
* just gave it.
*
* 3Com goes to some lengths to emphasize the Parallel Tasking (tm)
* nature of their chips in all their marketing literature;
* we may as well take advantage of it. :)
*/
xl_rxeof(sc);
return;
}
static void xl_init(xsc)
void *xsc;
{
struct xl_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
int s, i;
u_int16_t rxfilt = 0;
u_int16_t phy_bmcr = 0;
if (sc->xl_autoneg)
return;
s = splimp();
/*
* XXX Hack for the 3c905B: the built-in autoneg logic's state
* gets reset by xl_init() when we don't want it to. Try
* to preserve it. (For 3c905 cards with real external PHYs,
* the BMCR register doesn't change, but this doesn't hurt.)
*/
if (sc->xl_pinfo != NULL)
phy_bmcr = xl_phy_readreg(sc, PHY_BMCR);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
xl_stop(sc);
xl_wait(sc);
/* Init our MAC address */
XL_SEL_WIN(2);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, XL_W2_STATION_ADDR_LO + i,
sc->arpcom.ac_enaddr[i]);
}
/* Clear the station mask. */
for (i = 0; i < 3; i++)
CSR_WRITE_2(sc, XL_W2_STATION_MASK_LO + (i * 2), 0);
#ifdef notdef
/* Reset TX and RX. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
#endif
/* Init circular RX list. */
if (xl_list_rx_init(sc) == ENOBUFS) {
printf("xl%d: initialization failed: no "
"memory for rx buffers\n", sc->xl_unit);
xl_stop(sc);
return;
}
/* Init TX descriptors. */
xl_list_tx_init(sc);
/*
* Set the TX freethresh value.
* Note that this has no effect on 3c905B "cyclone"
* cards but is required for 3c900/3c905 "boomerang"
* cards in order to enable the download engine.
*/
CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
/*
* If this is a 3c905B, also set the tx reclaim threshold.
* This helps cut down on the number of tx reclaim errors
* that could happen on a busy network. The chip multiplies
* the register value by 16 to obtain the actual threshold
* in bytes, so we divide by 16 when setting the value here.
* The existing threshold value can be examined by reading
* the register at offset 9 in window 5.
*/
if (sc->xl_type == XL_TYPE_905B) {
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
}
/* Set RX filter bits. */
XL_SEL_WIN(5);
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
/* Set the individual bit to receive frames for this host only. */
rxfilt |= XL_RXFILTER_INDIVIDUAL;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
rxfilt |= XL_RXFILTER_ALLFRAMES;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
} else {
rxfilt &= ~XL_RXFILTER_ALLFRAMES;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
rxfilt |= XL_RXFILTER_BROADCAST;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
} else {
rxfilt &= ~XL_RXFILTER_BROADCAST;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
}
/*
* Program the multicast filter, if necessary.
*/
if (sc->xl_type == XL_TYPE_905B)
xl_setmulti_hash(sc);
else
xl_setmulti(sc);
/*
* Load the address of the RX list. We have to
* stall the upload engine before we can manipulate
* the uplist pointer register, then unstall it when
* we're finished. We also have to wait for the
* stall command to complete before proceeding.
* Note that we have to do this after any RX resets
* have completed since the uplist register is cleared
* by a reset.
*/
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
xl_wait(sc);
CSR_WRITE_4(sc, XL_UPLIST_PTR, vtophys(&sc->xl_ldata->xl_rx_list[0]));
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
/*
* If the coax transceiver is on, make sure to enable
* the DC-DC converter.
*/
XL_SEL_WIN(3);
if (sc->xl_xcvr == XL_XCVR_COAX)
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
else
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
/* Clear out the stats counters. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
sc->xl_stats_no_timeout = 1;
xl_stats_update(sc);
sc->xl_stats_no_timeout = 0;
XL_SEL_WIN(4);
CSR_WRITE_2(sc, XL_W4_NET_DIAG, XL_NETDIAG_UPPER_BYTES_ENABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_ENABLE);
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|0xFF);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|XL_INTRS);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS);
/* Set the RX early threshold */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_THRESH|(XL_PACKET_SIZE >>2));
CSR_WRITE_2(sc, XL_DMACTL, XL_DMACTL_UP_RX_EARLY);
/* Enable receiver and transmitter. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_ENABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
/* Restore state of BMCR */
if (sc->xl_pinfo != NULL)
xl_phy_writereg(sc, PHY_BMCR, phy_bmcr);
/* Select window 7 for normal operations. */
XL_SEL_WIN(7);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
sc->xl_stat_ch = timeout(xl_stats_update, sc, hz);
return;
}
/*
* Set media options.
*/
static int xl_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct xl_softc *sc;
struct ifmedia *ifm;
sc = ifp->if_softc;
ifm = &sc->ifmedia;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return(EINVAL);
if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX
|| sc->xl_media & XL_MEDIAOPT_BT4) {
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1);
else
xl_setmode_mii(sc, ifm->ifm_media);
} else {
xl_setmode(sc, ifm->ifm_media);
}
return(0);
}
/*
* Report current media status.
*/
static void xl_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct xl_softc *sc;
u_int16_t advert = 0, ability = 0;
u_int32_t icfg;
sc = ifp->if_softc;
XL_SEL_WIN(3);
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG) & XL_ICFG_CONNECTOR_MASK;
icfg >>= XL_ICFG_CONNECTOR_BITS;
ifmr->ifm_active = IFM_ETHER;
switch(icfg) {
case XL_XCVR_10BT:
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
break;
case XL_XCVR_AUI:
ifmr->ifm_active = IFM_ETHER|IFM_10_5;
break;
case XL_XCVR_COAX:
ifmr->ifm_active = IFM_ETHER|IFM_10_2;
break;
/*
* XXX MII and BTX/AUTO should be separate cases.
*/
case XL_XCVR_100BTX:
case XL_XCVR_AUTO:
case XL_XCVR_MII:
if (!(xl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
if (xl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
else
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
XL_SEL_WIN(3);
if (CSR_READ_2(sc, XL_W3_MAC_CTRL) &
XL_MACCTRL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
break;
}
ability = xl_phy_readreg(sc, XL_PHY_LPAR);
advert = xl_phy_readreg(sc, XL_PHY_ANAR);
if (advert & PHY_ANAR_100BT4 &&
ability & PHY_ANAR_100BT4) {
ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
} else if (advert & PHY_ANAR_100BTXFULL &&
ability & PHY_ANAR_100BTXFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
} else if (advert & PHY_ANAR_100BTXHALF &&
ability & PHY_ANAR_100BTXHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
} else if (advert & PHY_ANAR_10BTFULL &&
ability & PHY_ANAR_10BTFULL) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
} else if (advert & PHY_ANAR_10BTHALF &&
ability & PHY_ANAR_10BTHALF) {
ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
}
break;
case XL_XCVR_100BFX:
ifmr->ifm_active = IFM_ETHER|IFM_100_FX;
break;
default:
printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit, icfg);
break;
}
return;
}
static int xl_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct xl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
xl_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
xl_stop(sc);
}
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (sc->xl_type == XL_TYPE_905B)
xl_setmulti_hash(sc);
else
xl_setmulti(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
static void xl_watchdog(ifp)
struct ifnet *ifp;
{
struct xl_softc *sc;
u_int16_t status = 0;
sc = ifp->if_softc;
if (sc->xl_autoneg) {
xl_autoneg_mii(sc, XL_FLAG_DELAYTIMEO, 1);
return;
}
ifp->if_oerrors++;
XL_SEL_WIN(4);
status = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
printf("xl%d: watchdog timeout\n", sc->xl_unit);
if (status & XL_MEDIASTAT_CARRIER)
printf("xl%d: no carrier - transceiver cable problem?\n",
sc->xl_unit);
xl_txeoc(sc);
xl_txeof(sc);
xl_rxeof(sc);
xl_init(sc);
if (ifp->if_snd.ifq_head != NULL)
xl_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void xl_stop(sc)
struct xl_softc *sc;
{
register int i;
struct ifnet *ifp;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISCARD);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_DISABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
DELAY(800);
#ifdef notdef
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
#endif
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_INTLATCH);
/* Stop the stats updater. */
untimeout(xl_stats_update, sc, sc->xl_stat_ch);
/*
* Free data in the RX lists.
*/
for (i = 0; i < XL_RX_LIST_CNT; i++) {
if (sc->xl_cdata.xl_rx_chain[i].xl_mbuf != NULL) {
m_freem(sc->xl_cdata.xl_rx_chain[i].xl_mbuf);
sc->xl_cdata.xl_rx_chain[i].xl_mbuf = NULL;
}
}
bzero((char *)&sc->xl_ldata->xl_rx_list,
sizeof(sc->xl_ldata->xl_rx_list));
/*
* Free the TX list buffers.
*/
for (i = 0; i < XL_TX_LIST_CNT; i++) {
if (sc->xl_cdata.xl_tx_chain[i].xl_mbuf != NULL) {
m_freem(sc->xl_cdata.xl_tx_chain[i].xl_mbuf);
sc->xl_cdata.xl_tx_chain[i].xl_mbuf = NULL;
}
}
bzero((char *)&sc->xl_ldata->xl_tx_list,
sizeof(sc->xl_ldata->xl_tx_list));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void xl_shutdown(howto, arg)
int howto;
void *arg;
{
struct xl_softc *sc = (struct xl_softc *)arg;
xl_stop(sc);
return;
}
static struct pci_device xl_device = {
"xl",
xl_probe,
xl_attach,
&xl_count,
NULL
};
DATA_SET(pcidevice_set, xl_device);