freebsd-dev/sys/dev/sound/pcm/feeder.c
Ariff Abdullah c30ec7427a [stage: 4/9]
- Rearrange FEEDER_* constants starting from 0 to 31, so the future
  additions will be much easier and consistent.
- Introduce FEEDER_SWAPLR. Few super broken hardwares (found on several
  extremely cheap uaudio stick, possibly others) mistakenly wired left
  and right channels wrongly, screwing output or input.
2007-03-16 17:15:33 +00:00

916 lines
24 KiB
C

/*-
* Copyright (c) 1999 Cameron Grant <cg@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <dev/sound/pcm/sound.h>
#include "feeder_if.h"
SND_DECLARE_FILE("$FreeBSD$");
MALLOC_DEFINE(M_FEEDER, "feeder", "pcm feeder");
#define MAXFEEDERS 256
#undef FEEDER_DEBUG
int feeder_buffersize = FEEDBUFSZ;
TUNABLE_INT("hw.snd.feeder_buffersize", &feeder_buffersize);
#ifdef SND_DEBUG
static int
sysctl_hw_snd_feeder_buffersize(SYSCTL_HANDLER_ARGS)
{
int i, err, val;
val = feeder_buffersize;
err = sysctl_handle_int(oidp, &val, sizeof(val), req);
if (err != 0 || req->newptr == NULL)
return err;
if (val < FEEDBUFSZ_MIN || val > FEEDBUFSZ_MAX)
return EINVAL;
i = 0;
while (val >> i)
i++;
i = 1 << i;
if (i > val && (i >> 1) > 0 && (i >> 1) >= ((val * 3) >> 2))
i >>= 1;
feeder_buffersize = i;
return err;
}
SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_buffersize, CTLTYPE_INT | CTLFLAG_RW,
0, sizeof(int), sysctl_hw_snd_feeder_buffersize, "I",
"feeder buffer size");
#else
SYSCTL_INT(_hw_snd, OID_AUTO, feeder_buffersize, CTLFLAG_RD,
&feeder_buffersize, FEEDBUFSZ, "feeder buffer size");
#endif
struct feedertab_entry {
SLIST_ENTRY(feedertab_entry) link;
struct feeder_class *feederclass;
struct pcm_feederdesc *desc;
int idx;
};
static SLIST_HEAD(, feedertab_entry) feedertab;
/*****************************************************************************/
void
feeder_register(void *p)
{
static int feedercnt = 0;
struct feeder_class *fc = p;
struct feedertab_entry *fte;
int i;
if (feedercnt == 0) {
KASSERT(fc->desc == NULL, ("first feeder not root: %s", fc->name));
SLIST_INIT(&feedertab);
fte = malloc(sizeof(*fte), M_FEEDER, M_NOWAIT | M_ZERO);
if (fte == NULL) {
printf("can't allocate memory for root feeder: %s\n",
fc->name);
return;
}
fte->feederclass = fc;
fte->desc = NULL;
fte->idx = feedercnt;
SLIST_INSERT_HEAD(&feedertab, fte, link);
feedercnt++;
/* initialize global variables */
if (snd_verbose < 0 || snd_verbose > 3)
snd_verbose = 1;
if (snd_unit < 0 || snd_unit > PCMMAXDEV)
snd_unit = 0;
if (snd_maxautovchans < 0 ||
snd_maxautovchans > SND_MAXVCHANS)
snd_maxautovchans = 0;
if (chn_latency < CHN_LATENCY_MIN ||
chn_latency > CHN_LATENCY_MAX)
chn_latency = CHN_LATENCY_DEFAULT;
if (chn_latency_profile < CHN_LATENCY_PROFILE_MIN ||
chn_latency_profile > CHN_LATENCY_PROFILE_MAX)
chn_latency_profile = CHN_LATENCY_PROFILE_DEFAULT;
if (feeder_buffersize < FEEDBUFSZ_MIN ||
feeder_buffersize > FEEDBUFSZ_MAX)
feeder_buffersize = FEEDBUFSZ;
if (feeder_rate_min < FEEDRATE_MIN ||
feeder_rate_max < FEEDRATE_MIN ||
feeder_rate_min > FEEDRATE_MAX ||
feeder_rate_max > FEEDRATE_MAX ||
!(feeder_rate_min < feeder_rate_max)) {
feeder_rate_min = FEEDRATE_RATEMIN;
feeder_rate_max = FEEDRATE_RATEMAX;
}
if (feeder_rate_round < FEEDRATE_ROUNDHZ_MIN ||
feeder_rate_round > FEEDRATE_ROUNDHZ_MAX)
feeder_rate_round = FEEDRATE_ROUNDHZ;
if (bootverbose)
printf("%s: snd_unit=%d snd_maxautovchans=%d "
"latency=%d feeder_buffersize=%d "
"feeder_rate_min=%d feeder_rate_max=%d "
"feeder_rate_round=%d\n",
__func__, snd_unit, snd_maxautovchans,
chn_latency, feeder_buffersize,
feeder_rate_min, feeder_rate_max,
feeder_rate_round);
/* we've got our root feeder so don't veto pcm loading anymore */
pcm_veto_load = 0;
return;
}
KASSERT(fc->desc != NULL, ("feeder '%s' has no descriptor", fc->name));
/* beyond this point failure is non-fatal but may result in some translations being unavailable */
i = 0;
while ((feedercnt < MAXFEEDERS) && (fc->desc[i].type > 0)) {
/* printf("adding feeder %s, %x -> %x\n", fc->name, fc->desc[i].in, fc->desc[i].out); */
fte = malloc(sizeof(*fte), M_FEEDER, M_NOWAIT | M_ZERO);
if (fte == NULL) {
printf("can't allocate memory for feeder '%s', %x -> %x\n", fc->name, fc->desc[i].in, fc->desc[i].out);
return;
}
fte->feederclass = fc;
fte->desc = &fc->desc[i];
fte->idx = feedercnt;
fte->desc->idx = feedercnt;
SLIST_INSERT_HEAD(&feedertab, fte, link);
i++;
}
feedercnt++;
if (feedercnt >= MAXFEEDERS)
printf("MAXFEEDERS (%d >= %d) exceeded\n", feedercnt, MAXFEEDERS);
}
static void
feeder_unregisterall(void *p)
{
struct feedertab_entry *fte, *next;
next = SLIST_FIRST(&feedertab);
while (next != NULL) {
fte = next;
next = SLIST_NEXT(fte, link);
free(fte, M_FEEDER);
}
}
static int
cmpdesc(struct pcm_feederdesc *n, struct pcm_feederdesc *m)
{
return ((n->type == m->type) &&
((n->in == 0) || (n->in == m->in)) &&
((n->out == 0) || (n->out == m->out)) &&
(n->flags == m->flags));
}
static void
feeder_destroy(struct pcm_feeder *f)
{
FEEDER_FREE(f);
kobj_delete((kobj_t)f, M_FEEDER);
}
static struct pcm_feeder *
feeder_create(struct feeder_class *fc, struct pcm_feederdesc *desc)
{
struct pcm_feeder *f;
int err;
f = (struct pcm_feeder *)kobj_create((kobj_class_t)fc, M_FEEDER, M_NOWAIT | M_ZERO);
if (f == NULL)
return NULL;
f->align = fc->align;
f->data = fc->data;
f->source = NULL;
f->parent = NULL;
f->class = fc;
f->desc = &(f->desc_static);
if (desc) {
*(f->desc) = *desc;
} else {
f->desc->type = FEEDER_ROOT;
f->desc->in = 0;
f->desc->out = 0;
f->desc->flags = 0;
f->desc->idx = 0;
}
err = FEEDER_INIT(f);
if (err) {
printf("feeder_init(%p) on %s returned %d\n", f, fc->name, err);
feeder_destroy(f);
return NULL;
}
return f;
}
struct feeder_class *
feeder_getclass(struct pcm_feederdesc *desc)
{
struct feedertab_entry *fte;
SLIST_FOREACH(fte, &feedertab, link) {
if ((desc == NULL) && (fte->desc == NULL))
return fte->feederclass;
if ((fte->desc != NULL) && (desc != NULL) && cmpdesc(desc, fte->desc))
return fte->feederclass;
}
return NULL;
}
int
chn_addfeeder(struct pcm_channel *c, struct feeder_class *fc, struct pcm_feederdesc *desc)
{
struct pcm_feeder *nf;
nf = feeder_create(fc, desc);
if (nf == NULL)
return ENOSPC;
nf->source = c->feeder;
/* XXX we should use the lowest common denominator for align */
if (nf->align > 0)
c->align += nf->align;
else if (nf->align < 0 && c->align < -nf->align)
c->align = -nf->align;
if (c->feeder != NULL)
c->feeder->parent = nf;
c->feeder = nf;
return 0;
}
int
chn_removefeeder(struct pcm_channel *c)
{
struct pcm_feeder *f;
if (c->feeder == NULL)
return -1;
f = c->feeder;
c->feeder = c->feeder->source;
feeder_destroy(f);
return 0;
}
struct pcm_feeder *
chn_findfeeder(struct pcm_channel *c, u_int32_t type)
{
struct pcm_feeder *f;
f = c->feeder;
while (f != NULL) {
if (f->desc->type == type)
return f;
f = f->source;
}
return NULL;
}
static int
chainok(struct pcm_feeder *test, struct pcm_feeder *stop)
{
u_int32_t visited[MAXFEEDERS / 32];
u_int32_t idx, mask;
bzero(visited, sizeof(visited));
while (test && (test != stop)) {
idx = test->desc->idx;
if (idx < 0)
panic("bad idx %d", idx);
if (idx >= MAXFEEDERS)
panic("bad idx %d", idx);
mask = 1 << (idx & 31);
idx >>= 5;
if (visited[idx] & mask)
return 0;
visited[idx] |= mask;
test = test->source;
}
return 1;
}
/*
* See feeder_fmtchain() for the mumbo-jumbo ridiculous explaination
* of what the heck is this FMT_Q_*
*/
#define FMT_Q_UP 1
#define FMT_Q_DOWN 2
#define FMT_Q_EQ 3
#define FMT_Q_MULTI 4
/*
* 14bit format scoring
* --------------------
*
* 13 12 11 10 9 8 2 1 0 offset
* +---+---+---+---+---+---+-------------+---+---+
* | X | X | X | X | X | X | X X X X X X | X | X |
* +---+---+---+---+---+---+-------------+---+---+
* | | | | | | | | |
* | | | | | | | | +--> signed?
* | | | | | | | |
* | | | | | | | +------> bigendian?
* | | | | | | |
* | | | | | | +---------------> total channels
* | | | | | |
* | | | | | +------------------------> AFMT_A_LAW
* | | | | |
* | | | | +----------------------------> AFMT_MU_LAW
* | | | |
* | | | +--------------------------------> AFMT_8BIT
* | | |
* | | +------------------------------------> AFMT_16BIT
* | |
* | +----------------------------------------> AFMT_24BIT
* |
* +--------------------------------------------> AFMT_32BIT
*/
#define score_signeq(s1, s2) (((s1) & 0x1) == ((s2) & 0x1))
#define score_endianeq(s1, s2) (((s1) & 0x2) == ((s2) & 0x2))
#define score_cheq(s1, s2) (((s1) & 0xfc) == ((s2) & 0xfc))
#define score_val(s1) ((s1) & 0x3f00)
#define score_cse(s1) ((s1) & 0x7f)
u_int32_t
chn_fmtscore(u_int32_t fmt)
{
u_int32_t ret;
ret = 0;
if (fmt & AFMT_SIGNED)
ret |= 1 << 0;
if (fmt & AFMT_BIGENDIAN)
ret |= 1 << 1;
if (fmt & AFMT_STEREO)
ret |= (2 & 0x3f) << 2;
else
ret |= (1 & 0x3f) << 2;
if (fmt & AFMT_A_LAW)
ret |= 1 << 8;
else if (fmt & AFMT_MU_LAW)
ret |= 1 << 9;
else if (fmt & AFMT_8BIT)
ret |= 1 << 10;
else if (fmt & AFMT_16BIT)
ret |= 1 << 11;
else if (fmt & AFMT_24BIT)
ret |= 1 << 12;
else if (fmt & AFMT_32BIT)
ret |= 1 << 13;
return ret;
}
static u_int32_t
chn_fmtbestfunc(u_int32_t fmt, u_int32_t *fmts, int cheq)
{
u_int32_t best, score, score2, oldscore;
int i;
if (fmt == 0 || fmts == NULL || fmts[0] == 0)
return 0;
if (fmtvalid(fmt, fmts))
return fmt;
best = 0;
score = chn_fmtscore(fmt);
oldscore = 0;
for (i = 0; fmts[i] != 0; i++) {
score2 = chn_fmtscore(fmts[i]);
if (cheq && !score_cheq(score, score2))
continue;
if (oldscore == 0 ||
(score_val(score2) == score_val(score)) ||
(score_val(score2) == score_val(oldscore)) ||
(score_val(score2) > score_val(oldscore) &&
score_val(score2) < score_val(score)) ||
(score_val(score2) < score_val(oldscore) &&
score_val(score2) > score_val(score)) ||
(score_val(oldscore) < score_val(score) &&
score_val(score2) > score_val(oldscore))) {
if (score_val(oldscore) != score_val(score2) ||
score_cse(score) == score_cse(score2) ||
((score_cse(oldscore) != score_cse(score) &&
!score_endianeq(score, oldscore) &&
(score_endianeq(score, score2) ||
(!score_signeq(score, oldscore) &&
score_signeq(score, score2)))))) {
best = fmts[i];
oldscore = score2;
}
}
}
return best;
}
u_int32_t
chn_fmtbestbit(u_int32_t fmt, u_int32_t *fmts)
{
return chn_fmtbestfunc(fmt, fmts, 0);
}
u_int32_t
chn_fmtbeststereo(u_int32_t fmt, u_int32_t *fmts)
{
return chn_fmtbestfunc(fmt, fmts, 1);
}
u_int32_t
chn_fmtbest(u_int32_t fmt, u_int32_t *fmts)
{
u_int32_t best1, best2;
u_int32_t score, score1, score2;
if (fmtvalid(fmt, fmts))
return fmt;
best1 = chn_fmtbeststereo(fmt, fmts);
best2 = chn_fmtbestbit(fmt, fmts);
if (best1 != 0 && best2 != 0 && best1 != best2) {
if (fmt & AFMT_STEREO)
return best1;
else {
score = score_val(chn_fmtscore(fmt));
score1 = score_val(chn_fmtscore(best1));
score2 = score_val(chn_fmtscore(best2));
if (score1 == score2 || score1 == score)
return best1;
else if (score2 == score)
return best2;
else if (score1 > score2)
return best1;
return best2;
}
} else if (best2 == 0)
return best1;
else
return best2;
}
static struct pcm_feeder *
feeder_fmtchain(u_int32_t *to, struct pcm_feeder *source, struct pcm_feeder *stop, int maxdepth)
{
struct feedertab_entry *fte, *ftebest;
struct pcm_feeder *try, *ret;
uint32_t fl, qout, qsrc, qdst;
int qtype;
if (to == NULL || to[0] == 0)
return NULL;
DEB(printf("trying %s (0x%08x -> 0x%08x)...\n", source->class->name, source->desc->in, source->desc->out));
if (fmtvalid(source->desc->out, to)) {
DEB(printf("got it\n"));
return source;
}
if (maxdepth < 0)
return NULL;
/*
* WARNING: THIS IS _NOT_ FOR THE FAINT HEART
* Disclaimer: I don't expect anybody could understand this
* without deep logical and mathematical analysis
* involving various unnamed probability theorem.
*
* This "Best Fit Random Chain Selection" (BLEHBLEHWHATEVER) algorithm
* is **extremely** difficult to digest especially when applied to
* large sets / numbers of random chains (feeders), each with
* unique characteristic providing different sets of in/out format.
*
* Basically, our FEEDER_FMT (see feeder_fmt.c) chains characteristic:
* 1) Format chains
* 1.1 "8bit to any, not to 8bit"
* 1.1.1 sign can remain consistent, e.g: u8 -> u16[le|be]
* 1.1.2 sign can be changed, e.g: u8 -> s16[le|be]
* 1.1.3 endian can be changed, e.g: u8 -> u16[le|be]
* 1.1.4 both can be changed, e.g: u8 -> [u|s]16[le|be]
* 1.2 "Any to 8bit, not from 8bit"
* 1.2.1 sign can remain consistent, e.g: s16le -> s8
* 1.2.2 sign can be changed, e.g: s16le -> u8
* 1.2.3 source endian can be anything e.g: s16[le|be] -> s8
* 1.2.4 source endian / sign can be anything e.g: [u|s]16[le|be] -> u8
* 1.3 "Any to any where BOTH input and output either 8bit or non-8bit"
* 1.3.1 endian MUST remain consistent
* 1.3.2 sign CAN be changed
* 1.4 "Long jump" is allowed, e.g: from 16bit to 32bit, excluding
* 16bit to 24bit .
* 2) Channel chains (mono <-> stereo)
* 2.1 Both endian and sign MUST remain consistent
* 3) Endian chains (big endian <-> little endian)
* 3.1 Channels and sign MUST remain consistent
* 4) Sign chains (signed <-> unsigned)
* 4.1 Channels and endian MUST remain consistent
*
* .. and the mother of all chaining rules:
*
* Rules 0: Source and destination MUST not contain multiple selections.
* (qtype != FMT_Q_MULTI)
*
* First of all, our caller ( chn_fmtchain() ) will reduce the possible
* multiple from/to formats to a single best format using chn_fmtbest().
* Then, using chn_fmtscore(), we determine the chaining characteristic.
* Our main goal is to narrow it down until it reach FMT_Q_EQ chaining
* type while still adhering above chaining rules.
*
* The need for this complicated chaining procedures is inevitable,
* since currently we have more than 200 different types of FEEDER_FMT
* doing various unique format conversion. Without this (the old way),
* it is possible to generate broken chain since it doesn't do any
* sanity checking to ensure that the output format is "properly aligned"
* with the direction of conversion (quality up/down/equal).
*
* Conversion: s24le to s32le
* Possible chain: 1) s24le -> s32le (correct, optimized)
* 2) s24le -> s16le -> s32le
* (since we have feeder_24to16 and feeder_16to32)
* +-- obviously broken!
*
* Using scoring mechanisme, this will ensure that the chaining
* process do the right thing, or at least, give the best chain
* possible without causing quality (the 'Q') degradation.
*/
qdst = chn_fmtscore(to[0]);
qsrc = chn_fmtscore(source->desc->out);
#define score_q(s1) score_val(s1)
#define score_8bit(s1) ((s1) & 0x700)
#define score_non8bit(s1) (!score_8bit(s1))
#define score_across8bit(s1, s2) ((score_8bit(s1) && score_non8bit(s2)) || \
(score_8bit(s2) && score_non8bit(s1)))
#define FMT_CHAIN_Q_UP(s1, s2) (score_q(s1) < score_q(s2))
#define FMT_CHAIN_Q_DOWN(s1, s2) (score_q(s1) > score_q(s2))
#define FMT_CHAIN_Q_EQ(s1, s2) (score_q(s1) == score_q(s2))
#define FMT_Q_DOWN_FLAGS(s1, s2) (0x1 | (score_across8bit(s1, s2) ? \
0x2 : 0x0))
#define FMT_Q_UP_FLAGS(s1, s2) FMT_Q_DOWN_FLAGS(s1, s2)
#define FMT_Q_EQ_FLAGS(s1, s2) (0x3ffc | \
((score_cheq(s1, s2) && \
score_endianeq(s1, s2)) ? \
0x1 : 0x0) | \
((score_cheq(s1, s2) && \
score_signeq(s1, s2)) ? \
0x2 : 0x0))
/* Determine chaining direction and set matching flag */
fl = 0x3fff;
if (to[1] != 0) {
qtype = FMT_Q_MULTI;
printf("%s: WARNING: FMT_Q_MULTI chaining. Expect the unexpected.\n", __func__);
} else if (FMT_CHAIN_Q_DOWN(qsrc, qdst)) {
qtype = FMT_Q_DOWN;
fl = FMT_Q_DOWN_FLAGS(qsrc, qdst);
} else if (FMT_CHAIN_Q_UP(qsrc, qdst)) {
qtype = FMT_Q_UP;
fl = FMT_Q_UP_FLAGS(qsrc, qdst);
} else {
qtype = FMT_Q_EQ;
fl = FMT_Q_EQ_FLAGS(qsrc, qdst);
}
ftebest = NULL;
SLIST_FOREACH(fte, &feedertab, link) {
if (fte->desc == NULL)
continue;
if (fte->desc->type != FEEDER_FMT)
continue;
qout = chn_fmtscore(fte->desc->out);
#define FMT_Q_MULTI_VALIDATE(qt) ((qt) == FMT_Q_MULTI)
#define FMT_Q_FL_MATCH(qfl, s1, s2) (((s1) & (qfl)) == ((s2) & (qfl)))
#define FMT_Q_UP_VALIDATE(qt, s1, s2, s3) ((qt) == FMT_Q_UP && \
score_q(s3) >= score_q(s1) && \
score_q(s3) <= score_q(s2))
#define FMT_Q_DOWN_VALIDATE(qt, s1, s2, s3) ((qt) == FMT_Q_DOWN && \
score_q(s3) <= score_q(s1) && \
score_q(s3) >= score_q(s2))
#define FMT_Q_EQ_VALIDATE(qt, s1, s2) ((qt) == FMT_Q_EQ && \
score_q(s1) == score_q(s2))
if (fte->desc->in == source->desc->out &&
(FMT_Q_MULTI_VALIDATE(qtype) ||
(FMT_Q_FL_MATCH(fl, qout, qdst) &&
(FMT_Q_UP_VALIDATE(qtype, qsrc, qdst, qout) ||
FMT_Q_DOWN_VALIDATE(qtype, qsrc, qdst, qout) ||
FMT_Q_EQ_VALIDATE(qtype, qdst, qout))))) {
try = feeder_create(fte->feederclass, fte->desc);
if (try) {
try->source = source;
ret = chainok(try, stop) ? feeder_fmtchain(to, try, stop, maxdepth - 1) : NULL;
if (ret != NULL)
return ret;
feeder_destroy(try);
}
} else if (fte->desc->in == source->desc->out) {
/* XXX quality must be considered! */
if (ftebest == NULL)
ftebest = fte;
}
}
if (ftebest != NULL) {
try = feeder_create(ftebest->feederclass, ftebest->desc);
if (try) {
try->source = source;
ret = chainok(try, stop) ? feeder_fmtchain(to, try, stop, maxdepth - 1) : NULL;
if (ret != NULL)
return ret;
feeder_destroy(try);
}
}
/* printf("giving up %s...\n", source->class->name); */
return NULL;
}
u_int32_t
chn_fmtchain(struct pcm_channel *c, u_int32_t *to)
{
struct pcm_feeder *try, *del, *stop;
u_int32_t tmpfrom[2], tmpto[2], best, *from;
int i, max, bestmax;
KASSERT(c != NULL, ("c == NULL"));
KASSERT(c->feeder != NULL, ("c->feeder == NULL"));
KASSERT(to != NULL, ("to == NULL"));
KASSERT(to[0] != 0, ("to[0] == 0"));
if (c == NULL || c->feeder == NULL || to == NULL || to[0] == 0)
return 0;
stop = c->feeder;
best = 0;
if (c->direction == PCMDIR_REC && c->feeder->desc->type == FEEDER_ROOT) {
from = chn_getcaps(c)->fmtlist;
if (from[1] != 0) {
best = chn_fmtbest(to[0], from);
if (best != 0) {
tmpfrom[0] = best;
tmpfrom[1] = 0;
from = tmpfrom;
}
}
} else {
tmpfrom[0] = c->feeder->desc->out;
tmpfrom[1] = 0;
from = tmpfrom;
if (to[1] != 0) {
best = chn_fmtbest(from[0], to);
if (best != 0) {
tmpto[0] = best;
tmpto[1] = 0;
to = tmpto;
}
}
}
#define FEEDER_FMTCHAIN_MAXDEPTH 8
try = NULL;
if (to[0] != 0 && from[0] != 0 &&
to[1] == 0 && from[1] == 0) {
max = 0;
best = from[0];
c->feeder->desc->out = best;
do {
try = feeder_fmtchain(to, c->feeder, stop, max);
DEB(if (try != NULL) {
printf("%s: 0x%08x -> 0x%08x (maxdepth: %d)\n",
__func__, from[0], to[0], max);
});
} while (try == NULL && max++ < FEEDER_FMTCHAIN_MAXDEPTH);
} else {
printf("%s: Using the old-way format chaining!\n", __func__);
i = 0;
best = 0;
bestmax = 100;
while (from[i] != 0) {
c->feeder->desc->out = from[i];
try = NULL;
max = 0;
do {
try = feeder_fmtchain(to, c->feeder, stop, max);
} while (try == NULL && max++ < FEEDER_FMTCHAIN_MAXDEPTH);
if (try != NULL && max < bestmax) {
bestmax = max;
best = from[i];
}
while (try != NULL && try != stop) {
del = try;
try = try->source;
feeder_destroy(del);
}
i++;
}
if (best == 0)
return 0;
c->feeder->desc->out = best;
try = feeder_fmtchain(to, c->feeder, stop, bestmax);
}
if (try == NULL)
return 0;
c->feeder = try;
c->align = 0;
#ifdef FEEDER_DEBUG
printf("\n\nchain: ");
#endif
while (try && (try != stop)) {
#ifdef FEEDER_DEBUG
printf("%s [%d]", try->class->name, try->desc->idx);
if (try->source)
printf(" -> ");
#endif
if (try->source)
try->source->parent = try;
if (try->align > 0)
c->align += try->align;
else if (try->align < 0 && c->align < -try->align)
c->align = -try->align;
try = try->source;
}
#ifdef FEEDER_DEBUG
printf("%s [%d]\n", try->class->name, try->desc->idx);
#endif
if (c->direction == PCMDIR_REC) {
try = c->feeder;
while (try != NULL) {
if (try->desc->type == FEEDER_ROOT)
return try->desc->out;
try = try->source;
}
return best;
} else
return c->feeder->desc->out;
}
void
feeder_printchain(struct pcm_feeder *head)
{
struct pcm_feeder *f;
printf("feeder chain (head @%p)\n", head);
f = head;
while (f != NULL) {
printf("%s/%d @ %p\n", f->class->name, f->desc->idx, f);
f = f->source;
}
printf("[end]\n\n");
}
/*****************************************************************************/
static int
feed_root(struct pcm_feeder *feeder, struct pcm_channel *ch, u_int8_t *buffer, u_int32_t count, void *source)
{
struct snd_dbuf *src = source;
int l, offset;
KASSERT(count > 0, ("feed_root: count == 0"));
/* count &= ~((1 << ch->align) - 1); */
KASSERT(count > 0, ("feed_root: aligned count == 0 (align = %d)", ch->align));
if (++ch->feedcount == 0)
ch->feedcount = 2;
l = min(count, sndbuf_getready(src));
/* When recording only return as much data as available */
if (ch->direction == PCMDIR_REC) {
sndbuf_dispose(src, buffer, l);
return l;
}
offset = count - l;
if (offset > 0) {
if (snd_verbose > 3)
printf("%s: (%s) %spending %d bytes "
"(count=%d l=%d feed=%d)\n",
__func__,
(ch->flags & CHN_F_VIRTUAL) ? "virtual" : "hardware",
(ch->feedcount == 1) ? "pre" : "ap",
offset, count, l, ch->feedcount);
if (ch->feedcount == 1) {
memset(buffer,
sndbuf_zerodata(sndbuf_getfmt(src)),
offset);
if (l > 0)
sndbuf_dispose(src, buffer + offset, l);
else
ch->feedcount--;
} else {
if (l > 0)
sndbuf_dispose(src, buffer, l);
#if 1
memset(buffer + l,
sndbuf_zerodata(sndbuf_getfmt(src)),
offset);
if (!(ch->flags & CHN_F_CLOSING))
ch->xruns++;
#else
if (l < 1 || (ch->flags & CHN_F_CLOSING)) {
memset(buffer + l,
sndbuf_zerodata(sndbuf_getfmt(src)),
offset);
if (!(ch->flags & CHN_F_CLOSING))
ch->xruns++;
} else {
int cp, tgt;
tgt = l;
while (offset > 0) {
cp = min(l, offset);
memcpy(buffer + tgt, buffer, cp);
offset -= cp;
tgt += cp;
}
ch->xruns++;
}
#endif
}
} else if (l > 0)
sndbuf_dispose(src, buffer, l);
return count;
}
static kobj_method_t feeder_root_methods[] = {
KOBJMETHOD(feeder_feed, feed_root),
{ 0, 0 }
};
static struct feeder_class feeder_root_class = {
.name = "feeder_root",
.methods = feeder_root_methods,
.size = sizeof(struct pcm_feeder),
.align = 0,
.desc = NULL,
.data = NULL,
};
SYSINIT(feeder_root, SI_SUB_DRIVERS, SI_ORDER_FIRST, feeder_register, &feeder_root_class);
SYSUNINIT(feeder_root, SI_SUB_DRIVERS, SI_ORDER_FIRST, feeder_unregisterall, NULL);