497e80a371
of unnecessary path components that are relics of cvs2svn. (These are directory moves)
3504 lines
103 KiB
C
3504 lines
103 KiB
C
/* Output dbx-format symbol table information from GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
|
||
/* Output dbx-format symbol table data.
|
||
This consists of many symbol table entries, each of them
|
||
a .stabs assembler pseudo-op with four operands:
|
||
a "name" which is really a description of one symbol and its type,
|
||
a "code", which is a symbol defined in stab.h whose name starts with N_,
|
||
an unused operand always 0,
|
||
and a "value" which is an address or an offset.
|
||
The name is enclosed in doublequote characters.
|
||
|
||
Each function, variable, typedef, and structure tag
|
||
has a symbol table entry to define it.
|
||
The beginning and end of each level of name scoping within
|
||
a function are also marked by special symbol table entries.
|
||
|
||
The "name" consists of the symbol name, a colon, a kind-of-symbol letter,
|
||
and a data type number. The data type number may be followed by
|
||
"=" and a type definition; normally this will happen the first time
|
||
the type number is mentioned. The type definition may refer to
|
||
other types by number, and those type numbers may be followed
|
||
by "=" and nested definitions.
|
||
|
||
This can make the "name" quite long.
|
||
When a name is more than 80 characters, we split the .stabs pseudo-op
|
||
into two .stabs pseudo-ops, both sharing the same "code" and "value".
|
||
The first one is marked as continued with a double-backslash at the
|
||
end of its "name".
|
||
|
||
The kind-of-symbol letter distinguished function names from global
|
||
variables from file-scope variables from parameters from auto
|
||
variables in memory from typedef names from register variables.
|
||
See `dbxout_symbol'.
|
||
|
||
The "code" is mostly redundant with the kind-of-symbol letter
|
||
that goes in the "name", but not entirely: for symbols located
|
||
in static storage, the "code" says which segment the address is in,
|
||
which controls how it is relocated.
|
||
|
||
The "value" for a symbol in static storage
|
||
is the core address of the symbol (actually, the assembler
|
||
label for the symbol). For a symbol located in a stack slot
|
||
it is the stack offset; for one in a register, the register number.
|
||
For a typedef symbol, it is zero.
|
||
|
||
If DEBUG_SYMS_TEXT is defined, all debugging symbols must be
|
||
output while in the text section.
|
||
|
||
For more on data type definitions, see `dbxout_type'. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "flags.h"
|
||
#include "regs.h"
|
||
#include "insn-config.h"
|
||
#include "reload.h"
|
||
#include "output.h"
|
||
#include "dbxout.h"
|
||
#include "toplev.h"
|
||
#include "tm_p.h"
|
||
#include "ggc.h"
|
||
#include "debug.h"
|
||
#include "function.h"
|
||
#include "target.h"
|
||
#include "langhooks.h"
|
||
#include "obstack.h"
|
||
#include "expr.h"
|
||
|
||
#ifdef XCOFF_DEBUGGING_INFO
|
||
#include "xcoffout.h"
|
||
#endif
|
||
|
||
#define DBXOUT_DECR_NESTING \
|
||
if (--debug_nesting == 0 && symbol_queue_index > 0) \
|
||
{ emit_pending_bincls_if_required (); debug_flush_symbol_queue (); }
|
||
|
||
#define DBXOUT_DECR_NESTING_AND_RETURN(x) \
|
||
do {--debug_nesting; return (x);} while (0)
|
||
|
||
#ifndef ASM_STABS_OP
|
||
# ifdef XCOFF_DEBUGGING_INFO
|
||
# define ASM_STABS_OP "\t.stabx\t"
|
||
# else
|
||
# define ASM_STABS_OP "\t.stabs\t"
|
||
# endif
|
||
#endif
|
||
|
||
#ifndef ASM_STABN_OP
|
||
#define ASM_STABN_OP "\t.stabn\t"
|
||
#endif
|
||
|
||
#ifndef ASM_STABD_OP
|
||
#define ASM_STABD_OP "\t.stabd\t"
|
||
#endif
|
||
|
||
#ifndef DBX_TYPE_DECL_STABS_CODE
|
||
#define DBX_TYPE_DECL_STABS_CODE N_LSYM
|
||
#endif
|
||
|
||
#ifndef DBX_STATIC_CONST_VAR_CODE
|
||
#define DBX_STATIC_CONST_VAR_CODE N_FUN
|
||
#endif
|
||
|
||
#ifndef DBX_REGPARM_STABS_CODE
|
||
#define DBX_REGPARM_STABS_CODE N_RSYM
|
||
#endif
|
||
|
||
#ifndef DBX_REGPARM_STABS_LETTER
|
||
#define DBX_REGPARM_STABS_LETTER 'P'
|
||
#endif
|
||
|
||
#ifndef NO_DBX_FUNCTION_END
|
||
#define NO_DBX_FUNCTION_END 0
|
||
#endif
|
||
|
||
#ifndef NO_DBX_BNSYM_ENSYM
|
||
#define NO_DBX_BNSYM_ENSYM 0
|
||
#endif
|
||
|
||
#ifndef NO_DBX_MAIN_SOURCE_DIRECTORY
|
||
#define NO_DBX_MAIN_SOURCE_DIRECTORY 0
|
||
#endif
|
||
|
||
#ifndef DBX_BLOCKS_FUNCTION_RELATIVE
|
||
#define DBX_BLOCKS_FUNCTION_RELATIVE 0
|
||
#endif
|
||
|
||
#ifndef DBX_LINES_FUNCTION_RELATIVE
|
||
#define DBX_LINES_FUNCTION_RELATIVE 0
|
||
#endif
|
||
|
||
#ifndef DBX_CONTIN_LENGTH
|
||
#define DBX_CONTIN_LENGTH 80
|
||
#endif
|
||
|
||
#ifndef DBX_CONTIN_CHAR
|
||
#define DBX_CONTIN_CHAR '\\'
|
||
#endif
|
||
|
||
enum typestatus {TYPE_UNSEEN, TYPE_XREF, TYPE_DEFINED};
|
||
|
||
/* Structure recording information about a C data type.
|
||
The status element says whether we have yet output
|
||
the definition of the type. TYPE_XREF says we have
|
||
output it as a cross-reference only.
|
||
The file_number and type_number elements are used if DBX_USE_BINCL
|
||
is defined. */
|
||
|
||
struct typeinfo GTY(())
|
||
{
|
||
enum typestatus status;
|
||
int file_number;
|
||
int type_number;
|
||
};
|
||
|
||
/* Vector recording information about C data types.
|
||
When we first notice a data type (a tree node),
|
||
we assign it a number using next_type_number.
|
||
That is its index in this vector. */
|
||
|
||
static GTY ((length ("typevec_len"))) struct typeinfo *typevec;
|
||
|
||
/* Number of elements of space allocated in `typevec'. */
|
||
|
||
static GTY(()) int typevec_len;
|
||
|
||
/* In dbx output, each type gets a unique number.
|
||
This is the number for the next type output.
|
||
The number, once assigned, is in the TYPE_SYMTAB_ADDRESS field. */
|
||
|
||
static GTY(()) int next_type_number;
|
||
|
||
/* The C front end may call dbxout_symbol before dbxout_init runs.
|
||
We save all such decls in this list and output them when we get
|
||
to dbxout_init. */
|
||
|
||
static GTY(()) tree preinit_symbols;
|
||
|
||
enum binclstatus {BINCL_NOT_REQUIRED, BINCL_PENDING, BINCL_PROCESSED};
|
||
|
||
/* When using N_BINCL in dbx output, each type number is actually a
|
||
pair of the file number and the type number within the file.
|
||
This is a stack of input files. */
|
||
|
||
struct dbx_file
|
||
{
|
||
struct dbx_file *next;
|
||
int file_number;
|
||
int next_type_number;
|
||
enum binclstatus bincl_status; /* Keep track of lazy bincl. */
|
||
const char *pending_bincl_name; /* Name of bincl. */
|
||
struct dbx_file *prev; /* Chain to traverse all pending bincls. */
|
||
};
|
||
|
||
/* This is the top of the stack.
|
||
|
||
This is not saved for PCH, because restoring a PCH should not change it.
|
||
next_file_number does have to be saved, because the PCH may use some
|
||
file numbers; however, just before restoring a PCH, next_file_number
|
||
should always be 0 because we should not have needed any file numbers
|
||
yet. */
|
||
|
||
#if (defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)) \
|
||
&& defined (DBX_USE_BINCL)
|
||
static struct dbx_file *current_file;
|
||
#endif
|
||
|
||
/* This is the next file number to use. */
|
||
|
||
static GTY(()) int next_file_number;
|
||
|
||
/* A counter for dbxout_function_end. */
|
||
|
||
static GTY(()) int scope_labelno;
|
||
|
||
/* A counter for dbxout_source_line. */
|
||
|
||
static GTY(()) int dbxout_source_line_counter;
|
||
|
||
/* Number for the next N_SOL filename stabs label. The number 0 is reserved
|
||
for the N_SO filename stabs label. */
|
||
|
||
static GTY(()) int source_label_number = 1;
|
||
|
||
/* Last source file name mentioned in a NOTE insn. */
|
||
|
||
static GTY(()) const char *lastfile;
|
||
|
||
/* Used by PCH machinery to detect if 'lastfile' should be reset to
|
||
base_input_file. */
|
||
static GTY(()) int lastfile_is_base;
|
||
|
||
/* Typical USG systems don't have stab.h, and they also have
|
||
no use for DBX-format debugging info. */
|
||
|
||
#if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
|
||
|
||
#ifdef DBX_USE_BINCL
|
||
/* If zero then there is no pending BINCL. */
|
||
static int pending_bincls = 0;
|
||
#endif
|
||
|
||
/* The original input file name. */
|
||
static const char *base_input_file;
|
||
|
||
#ifdef DEBUG_SYMS_TEXT
|
||
#define FORCE_TEXT switch_to_section (current_function_section ())
|
||
#else
|
||
#define FORCE_TEXT
|
||
#endif
|
||
|
||
#include "gstab.h"
|
||
|
||
#define STAB_CODE_TYPE enum __stab_debug_code
|
||
|
||
/* 1 if PARM is passed to this function in memory. */
|
||
|
||
#define PARM_PASSED_IN_MEMORY(PARM) \
|
||
(MEM_P (DECL_INCOMING_RTL (PARM)))
|
||
|
||
/* A C expression for the integer offset value of an automatic variable
|
||
(N_LSYM) having address X (an RTX). */
|
||
#ifndef DEBUGGER_AUTO_OFFSET
|
||
#define DEBUGGER_AUTO_OFFSET(X) \
|
||
(GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0)
|
||
#endif
|
||
|
||
/* A C expression for the integer offset value of an argument (N_PSYM)
|
||
having address X (an RTX). The nominal offset is OFFSET. */
|
||
#ifndef DEBUGGER_ARG_OFFSET
|
||
#define DEBUGGER_ARG_OFFSET(OFFSET, X) (OFFSET)
|
||
#endif
|
||
|
||
/* This obstack holds the stab string currently being constructed. We
|
||
build it up here, then write it out, so we can split long lines up
|
||
properly (see dbxout_finish_complex_stabs). */
|
||
static struct obstack stabstr_ob;
|
||
static size_t stabstr_last_contin_point;
|
||
|
||
#ifdef DBX_USE_BINCL
|
||
static void emit_bincl_stab (const char *c);
|
||
static void emit_pending_bincls (void);
|
||
#endif
|
||
static inline void emit_pending_bincls_if_required (void);
|
||
|
||
static void dbxout_init (const char *);
|
||
|
||
static void dbxout_finish (const char *);
|
||
static void dbxout_start_source_file (unsigned, const char *);
|
||
static void dbxout_end_source_file (unsigned);
|
||
static void dbxout_typedefs (tree);
|
||
static void dbxout_type_index (tree);
|
||
static void dbxout_args (tree);
|
||
static void dbxout_type_fields (tree);
|
||
static void dbxout_type_method_1 (tree);
|
||
static void dbxout_type_methods (tree);
|
||
static void dbxout_range_type (tree);
|
||
static void dbxout_type (tree, int);
|
||
static bool print_int_cst_bounds_in_octal_p (tree);
|
||
static void dbxout_type_name (tree);
|
||
static void dbxout_class_name_qualifiers (tree);
|
||
static int dbxout_symbol_location (tree, tree, const char *, rtx);
|
||
static void dbxout_symbol_name (tree, const char *, int);
|
||
static void dbxout_block (tree, int, tree);
|
||
static void dbxout_global_decl (tree);
|
||
static void dbxout_type_decl (tree, int);
|
||
static void dbxout_handle_pch (unsigned);
|
||
|
||
/* The debug hooks structure. */
|
||
#if defined (DBX_DEBUGGING_INFO)
|
||
|
||
static void dbxout_source_line (unsigned int, const char *);
|
||
static void dbxout_begin_prologue (unsigned int, const char *);
|
||
static void dbxout_source_file (const char *);
|
||
static void dbxout_function_end (tree);
|
||
static void dbxout_begin_function (tree);
|
||
static void dbxout_begin_block (unsigned, unsigned);
|
||
static void dbxout_end_block (unsigned, unsigned);
|
||
static void dbxout_function_decl (tree);
|
||
|
||
const struct gcc_debug_hooks dbx_debug_hooks =
|
||
{
|
||
dbxout_init,
|
||
dbxout_finish,
|
||
debug_nothing_int_charstar,
|
||
debug_nothing_int_charstar,
|
||
dbxout_start_source_file,
|
||
dbxout_end_source_file,
|
||
dbxout_begin_block,
|
||
dbxout_end_block,
|
||
debug_true_tree, /* ignore_block */
|
||
dbxout_source_line, /* source_line */
|
||
dbxout_begin_prologue, /* begin_prologue */
|
||
debug_nothing_int_charstar, /* end_prologue */
|
||
debug_nothing_int_charstar, /* end_epilogue */
|
||
#ifdef DBX_FUNCTION_FIRST
|
||
dbxout_begin_function,
|
||
#else
|
||
debug_nothing_tree, /* begin_function */
|
||
#endif
|
||
debug_nothing_int, /* end_function */
|
||
dbxout_function_decl,
|
||
dbxout_global_decl, /* global_decl */
|
||
dbxout_type_decl, /* type_decl */
|
||
debug_nothing_tree_tree, /* imported_module_or_decl */
|
||
debug_nothing_tree, /* deferred_inline_function */
|
||
debug_nothing_tree, /* outlining_inline_function */
|
||
debug_nothing_rtx, /* label */
|
||
dbxout_handle_pch, /* handle_pch */
|
||
debug_nothing_rtx, /* var_location */
|
||
debug_nothing_void, /* switch_text_section */
|
||
0 /* start_end_main_source_file */
|
||
};
|
||
#endif /* DBX_DEBUGGING_INFO */
|
||
|
||
#if defined (XCOFF_DEBUGGING_INFO)
|
||
const struct gcc_debug_hooks xcoff_debug_hooks =
|
||
{
|
||
dbxout_init,
|
||
dbxout_finish,
|
||
debug_nothing_int_charstar,
|
||
debug_nothing_int_charstar,
|
||
dbxout_start_source_file,
|
||
dbxout_end_source_file,
|
||
xcoffout_begin_block,
|
||
xcoffout_end_block,
|
||
debug_true_tree, /* ignore_block */
|
||
xcoffout_source_line,
|
||
xcoffout_begin_prologue, /* begin_prologue */
|
||
debug_nothing_int_charstar, /* end_prologue */
|
||
xcoffout_end_epilogue,
|
||
debug_nothing_tree, /* begin_function */
|
||
xcoffout_end_function,
|
||
debug_nothing_tree, /* function_decl */
|
||
dbxout_global_decl, /* global_decl */
|
||
dbxout_type_decl, /* type_decl */
|
||
debug_nothing_tree_tree, /* imported_module_or_decl */
|
||
debug_nothing_tree, /* deferred_inline_function */
|
||
debug_nothing_tree, /* outlining_inline_function */
|
||
debug_nothing_rtx, /* label */
|
||
dbxout_handle_pch, /* handle_pch */
|
||
debug_nothing_rtx, /* var_location */
|
||
debug_nothing_void, /* switch_text_section */
|
||
0 /* start_end_main_source_file */
|
||
};
|
||
#endif /* XCOFF_DEBUGGING_INFO */
|
||
|
||
/* Numeric formatting helper macro. Note that this does not handle
|
||
hexadecimal. */
|
||
#define NUMBER_FMT_LOOP(P, NUM, BASE) \
|
||
do \
|
||
{ \
|
||
int digit = NUM % BASE; \
|
||
NUM /= BASE; \
|
||
*--P = digit + '0'; \
|
||
} \
|
||
while (NUM > 0)
|
||
|
||
/* Utility: write a decimal integer NUM to asm_out_file. */
|
||
void
|
||
dbxout_int (int num)
|
||
{
|
||
char buf[64];
|
||
char *p = buf + sizeof buf;
|
||
unsigned int unum;
|
||
|
||
if (num == 0)
|
||
{
|
||
putc ('0', asm_out_file);
|
||
return;
|
||
}
|
||
if (num < 0)
|
||
{
|
||
putc ('-', asm_out_file);
|
||
unum = -num;
|
||
}
|
||
else
|
||
unum = num;
|
||
|
||
NUMBER_FMT_LOOP (p, unum, 10);
|
||
|
||
while (p < buf + sizeof buf)
|
||
{
|
||
putc (*p, asm_out_file);
|
||
p++;
|
||
}
|
||
}
|
||
|
||
|
||
/* Primitives for emitting simple stabs directives. All other stabs
|
||
routines should use these functions instead of directly emitting
|
||
stabs. They are exported because machine-dependent code may need
|
||
to invoke them, e.g. in a DBX_OUTPUT_* macro whose definition
|
||
forwards to code in CPU.c. */
|
||
|
||
/* The following functions should all be called immediately after one
|
||
of the dbxout_begin_stab* functions (below). They write out
|
||
various things as the value of a stab. */
|
||
|
||
/* Write out a literal zero as the value of a stab. */
|
||
void
|
||
dbxout_stab_value_zero (void)
|
||
{
|
||
fputs ("0\n", asm_out_file);
|
||
}
|
||
|
||
/* Write out the label LABEL as the value of a stab. */
|
||
void
|
||
dbxout_stab_value_label (const char *label)
|
||
{
|
||
assemble_name (asm_out_file, label);
|
||
putc ('\n', asm_out_file);
|
||
}
|
||
|
||
/* Write out the difference of two labels, LABEL - BASE, as the value
|
||
of a stab. */
|
||
void
|
||
dbxout_stab_value_label_diff (const char *label, const char *base)
|
||
{
|
||
assemble_name (asm_out_file, label);
|
||
putc ('-', asm_out_file);
|
||
assemble_name (asm_out_file, base);
|
||
putc ('\n', asm_out_file);
|
||
}
|
||
|
||
/* Write out an internal label as the value of a stab, and immediately
|
||
emit that internal label. This should be used only when
|
||
dbxout_stabd will not work. STEM is the name stem of the label,
|
||
COUNTERP is a pointer to a counter variable which will be used to
|
||
guarantee label uniqueness. */
|
||
void
|
||
dbxout_stab_value_internal_label (const char *stem, int *counterp)
|
||
{
|
||
char label[100];
|
||
int counter = counterp ? (*counterp)++ : 0;
|
||
|
||
ASM_GENERATE_INTERNAL_LABEL (label, stem, counter);
|
||
dbxout_stab_value_label (label);
|
||
targetm.asm_out.internal_label (asm_out_file, stem, counter);
|
||
}
|
||
|
||
/* Write out the difference between BASE and an internal label as the
|
||
value of a stab, and immediately emit that internal label. STEM and
|
||
COUNTERP are as for dbxout_stab_value_internal_label. */
|
||
void
|
||
dbxout_stab_value_internal_label_diff (const char *stem, int *counterp,
|
||
const char *base)
|
||
{
|
||
char label[100];
|
||
int counter = counterp ? (*counterp)++ : 0;
|
||
|
||
ASM_GENERATE_INTERNAL_LABEL (label, stem, counter);
|
||
dbxout_stab_value_label_diff (label, base);
|
||
targetm.asm_out.internal_label (asm_out_file, stem, counter);
|
||
}
|
||
|
||
/* The following functions produce specific kinds of stab directives. */
|
||
|
||
/* Write a .stabd directive with type STYPE and desc SDESC to asm_out_file. */
|
||
void
|
||
dbxout_stabd (int stype, int sdesc)
|
||
{
|
||
fputs (ASM_STABD_OP, asm_out_file);
|
||
dbxout_int (stype);
|
||
fputs (",0,", asm_out_file);
|
||
dbxout_int (sdesc);
|
||
putc ('\n', asm_out_file);
|
||
}
|
||
|
||
/* Write a .stabn directive with type STYPE. This function stops
|
||
short of emitting the value field, which is the responsibility of
|
||
the caller (normally it will be either a symbol or the difference
|
||
of two symbols). */
|
||
|
||
void
|
||
dbxout_begin_stabn (int stype)
|
||
{
|
||
fputs (ASM_STABN_OP, asm_out_file);
|
||
dbxout_int (stype);
|
||
fputs (",0,0,", asm_out_file);
|
||
}
|
||
|
||
/* Write a .stabn directive with type N_SLINE and desc LINE. As above,
|
||
the value field is the responsibility of the caller. */
|
||
void
|
||
dbxout_begin_stabn_sline (int lineno)
|
||
{
|
||
fputs (ASM_STABN_OP, asm_out_file);
|
||
dbxout_int (N_SLINE);
|
||
fputs (",0,", asm_out_file);
|
||
dbxout_int (lineno);
|
||
putc (',', asm_out_file);
|
||
}
|
||
|
||
/* Begin a .stabs directive with string "", type STYPE, and desc and
|
||
other fields 0. The value field is the responsibility of the
|
||
caller. This function cannot be used for .stabx directives. */
|
||
void
|
||
dbxout_begin_empty_stabs (int stype)
|
||
{
|
||
fputs (ASM_STABS_OP, asm_out_file);
|
||
fputs ("\"\",", asm_out_file);
|
||
dbxout_int (stype);
|
||
fputs (",0,0,", asm_out_file);
|
||
}
|
||
|
||
/* Begin a .stabs directive with string STR, type STYPE, and desc 0.
|
||
The value field is the responsibility of the caller. */
|
||
void
|
||
dbxout_begin_simple_stabs (const char *str, int stype)
|
||
{
|
||
fputs (ASM_STABS_OP, asm_out_file);
|
||
output_quoted_string (asm_out_file, str);
|
||
putc (',', asm_out_file);
|
||
dbxout_int (stype);
|
||
fputs (",0,0,", asm_out_file);
|
||
}
|
||
|
||
/* As above but use SDESC for the desc field. */
|
||
void
|
||
dbxout_begin_simple_stabs_desc (const char *str, int stype, int sdesc)
|
||
{
|
||
fputs (ASM_STABS_OP, asm_out_file);
|
||
output_quoted_string (asm_out_file, str);
|
||
putc (',', asm_out_file);
|
||
dbxout_int (stype);
|
||
fputs (",0,", asm_out_file);
|
||
dbxout_int (sdesc);
|
||
putc (',', asm_out_file);
|
||
}
|
||
|
||
/* The next set of functions are entirely concerned with production of
|
||
"complex" .stabs directives: that is, .stabs directives whose
|
||
strings have to be constructed piecemeal. dbxout_type,
|
||
dbxout_symbol, etc. use these routines heavily. The string is queued
|
||
up in an obstack, then written out by dbxout_finish_complex_stabs, which
|
||
is also responsible for splitting it up if it exceeds DBX_CONTIN_LENGTH.
|
||
(You might think it would be more efficient to go straight to stdio
|
||
when DBX_CONTIN_LENGTH is 0 (i.e. no length limit) but that turns
|
||
out not to be the case, and anyway this needs fewer #ifdefs.) */
|
||
|
||
/* Begin a complex .stabs directive. If we can, write the initial
|
||
ASM_STABS_OP to the asm_out_file. */
|
||
|
||
static void
|
||
dbxout_begin_complex_stabs (void)
|
||
{
|
||
emit_pending_bincls_if_required ();
|
||
FORCE_TEXT;
|
||
fputs (ASM_STABS_OP, asm_out_file);
|
||
putc ('"', asm_out_file);
|
||
gcc_assert (stabstr_last_contin_point == 0);
|
||
}
|
||
|
||
/* As above, but do not force text or emit pending bincls. This is
|
||
used by dbxout_symbol_location, which needs to do something else. */
|
||
static void
|
||
dbxout_begin_complex_stabs_noforcetext (void)
|
||
{
|
||
fputs (ASM_STABS_OP, asm_out_file);
|
||
putc ('"', asm_out_file);
|
||
gcc_assert (stabstr_last_contin_point == 0);
|
||
}
|
||
|
||
/* Add CHR, a single character, to the string being built. */
|
||
#define stabstr_C(chr) obstack_1grow (&stabstr_ob, chr)
|
||
|
||
/* Add STR, a normal C string, to the string being built. */
|
||
#define stabstr_S(str) obstack_grow (&stabstr_ob, str, strlen(str))
|
||
|
||
/* Add the text of ID, an IDENTIFIER_NODE, to the string being built. */
|
||
#define stabstr_I(id) obstack_grow (&stabstr_ob, \
|
||
IDENTIFIER_POINTER (id), \
|
||
IDENTIFIER_LENGTH (id))
|
||
|
||
/* Add NUM, a signed decimal number, to the string being built. */
|
||
static void
|
||
stabstr_D (HOST_WIDE_INT num)
|
||
{
|
||
char buf[64];
|
||
char *p = buf + sizeof buf;
|
||
unsigned int unum;
|
||
|
||
if (num == 0)
|
||
{
|
||
stabstr_C ('0');
|
||
return;
|
||
}
|
||
if (num < 0)
|
||
{
|
||
stabstr_C ('-');
|
||
unum = -num;
|
||
}
|
||
else
|
||
unum = num;
|
||
|
||
NUMBER_FMT_LOOP (p, unum, 10);
|
||
|
||
obstack_grow (&stabstr_ob, p, (buf + sizeof buf) - p);
|
||
}
|
||
|
||
/* Add NUM, an unsigned decimal number, to the string being built. */
|
||
static void
|
||
stabstr_U (unsigned HOST_WIDE_INT num)
|
||
{
|
||
char buf[64];
|
||
char *p = buf + sizeof buf;
|
||
if (num == 0)
|
||
{
|
||
stabstr_C ('0');
|
||
return;
|
||
}
|
||
NUMBER_FMT_LOOP (p, num, 10);
|
||
obstack_grow (&stabstr_ob, p, (buf + sizeof buf) - p);
|
||
}
|
||
|
||
/* Add CST, an INTEGER_CST tree, to the string being built as an
|
||
unsigned octal number. This routine handles values which are
|
||
larger than a single HOST_WIDE_INT. */
|
||
static void
|
||
stabstr_O (tree cst)
|
||
{
|
||
unsigned HOST_WIDE_INT high = TREE_INT_CST_HIGH (cst);
|
||
unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (cst);
|
||
|
||
char buf[128];
|
||
char *p = buf + sizeof buf;
|
||
|
||
/* GDB wants constants with no extra leading "1" bits, so
|
||
we need to remove any sign-extension that might be
|
||
present. */
|
||
{
|
||
const unsigned int width = TYPE_PRECISION (TREE_TYPE (cst));
|
||
if (width == HOST_BITS_PER_WIDE_INT * 2)
|
||
;
|
||
else if (width > HOST_BITS_PER_WIDE_INT)
|
||
high &= (((HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT)) - 1);
|
||
else if (width == HOST_BITS_PER_WIDE_INT)
|
||
high = 0;
|
||
else
|
||
high = 0, low &= (((HOST_WIDE_INT) 1 << width) - 1);
|
||
}
|
||
|
||
/* Leading zero for base indicator. */
|
||
stabstr_C ('0');
|
||
|
||
/* If the value is zero, the base indicator will serve as the value
|
||
all by itself. */
|
||
if (high == 0 && low == 0)
|
||
return;
|
||
|
||
/* If the high half is zero, we need only print the low half normally. */
|
||
if (high == 0)
|
||
NUMBER_FMT_LOOP (p, low, 8);
|
||
else
|
||
{
|
||
/* When high != 0, we need to print enough zeroes from low to
|
||
give the digits from high their proper place-values. Hence
|
||
NUMBER_FMT_LOOP cannot be used. */
|
||
const int n_digits = HOST_BITS_PER_WIDE_INT / 3;
|
||
int i;
|
||
|
||
for (i = 1; i <= n_digits; i++)
|
||
{
|
||
unsigned int digit = low % 8;
|
||
low /= 8;
|
||
*--p = '0' + digit;
|
||
}
|
||
|
||
/* Octal digits carry exactly three bits of information. The
|
||
width of a HOST_WIDE_INT is not normally a multiple of three.
|
||
Therefore, the next digit printed probably needs to carry
|
||
information from both low and high. */
|
||
if (HOST_BITS_PER_WIDE_INT % 3 != 0)
|
||
{
|
||
const int n_leftover_bits = HOST_BITS_PER_WIDE_INT % 3;
|
||
const int n_bits_from_high = 3 - n_leftover_bits;
|
||
|
||
const unsigned HOST_WIDE_INT
|
||
low_mask = (((unsigned HOST_WIDE_INT)1) << n_leftover_bits) - 1;
|
||
const unsigned HOST_WIDE_INT
|
||
high_mask = (((unsigned HOST_WIDE_INT)1) << n_bits_from_high) - 1;
|
||
|
||
unsigned int digit;
|
||
|
||
/* At this point, only the bottom n_leftover_bits bits of low
|
||
should be set. */
|
||
gcc_assert (!(low & ~low_mask));
|
||
|
||
digit = (low | ((high & high_mask) << n_leftover_bits));
|
||
high >>= n_bits_from_high;
|
||
|
||
*--p = '0' + digit;
|
||
}
|
||
|
||
/* Now we can format high in the normal manner. However, if
|
||
the only bits of high that were set were handled by the
|
||
digit split between low and high, high will now be zero, and
|
||
we don't want to print extra digits in that case. */
|
||
if (high)
|
||
NUMBER_FMT_LOOP (p, high, 8);
|
||
}
|
||
|
||
obstack_grow (&stabstr_ob, p, (buf + sizeof buf) - p);
|
||
}
|
||
|
||
/* Called whenever it is safe to break a stabs string into multiple
|
||
.stabs directives. If the current string has exceeded the limit
|
||
set by DBX_CONTIN_LENGTH, mark the current position in the buffer
|
||
as a continuation point by inserting DBX_CONTIN_CHAR (doubled if
|
||
it is a backslash) and a null character. */
|
||
static inline void
|
||
stabstr_continue (void)
|
||
{
|
||
if (DBX_CONTIN_LENGTH > 0
|
||
&& obstack_object_size (&stabstr_ob) - stabstr_last_contin_point
|
||
> DBX_CONTIN_LENGTH)
|
||
{
|
||
if (DBX_CONTIN_CHAR == '\\')
|
||
obstack_1grow (&stabstr_ob, '\\');
|
||
obstack_1grow (&stabstr_ob, DBX_CONTIN_CHAR);
|
||
obstack_1grow (&stabstr_ob, '\0');
|
||
stabstr_last_contin_point = obstack_object_size (&stabstr_ob);
|
||
}
|
||
}
|
||
#define CONTIN stabstr_continue ()
|
||
|
||
/* Macro subroutine of dbxout_finish_complex_stabs, which emits
|
||
all of the arguments to the .stabs directive after the string.
|
||
Overridden by xcoffout.h. CODE is the stabs code for this symbol;
|
||
LINE is the source line to write into the desc field (in extended
|
||
mode); SYM is the symbol itself.
|
||
|
||
ADDR, LABEL, and NUMBER are three different ways to represent the
|
||
stabs value field. At most one of these should be nonzero.
|
||
|
||
ADDR is used most of the time; it represents the value as an
|
||
RTL address constant.
|
||
|
||
LABEL is used (currently) only for N_CATCH stabs; it represents
|
||
the value as a string suitable for assemble_name.
|
||
|
||
NUMBER is used when the value is an offset from an implicit base
|
||
pointer (e.g. for a stack variable), or an index (e.g. for a
|
||
register variable). It represents the value as a decimal integer. */
|
||
|
||
#ifndef DBX_FINISH_STABS
|
||
#define DBX_FINISH_STABS(SYM, CODE, LINE, ADDR, LABEL, NUMBER) \
|
||
do { \
|
||
int line_ = use_gnu_debug_info_extensions ? LINE : 0; \
|
||
\
|
||
dbxout_int (CODE); \
|
||
fputs (",0,", asm_out_file); \
|
||
dbxout_int (line_); \
|
||
putc (',', asm_out_file); \
|
||
if (ADDR) \
|
||
output_addr_const (asm_out_file, ADDR); \
|
||
else if (LABEL) \
|
||
assemble_name (asm_out_file, LABEL); \
|
||
else \
|
||
dbxout_int (NUMBER); \
|
||
putc ('\n', asm_out_file); \
|
||
} while (0)
|
||
#endif
|
||
|
||
/* Finish the emission of a complex .stabs directive. When DBX_CONTIN_LENGTH
|
||
is zero, this has only to emit the close quote and the remainder of
|
||
the arguments. When it is nonzero, the string has been marshalled in
|
||
stabstr_ob, and this routine is responsible for breaking it up into
|
||
DBX_CONTIN_LENGTH-sized chunks.
|
||
|
||
SYM is the DECL of the symbol under consideration; it is used only
|
||
for its DECL_SOURCE_LINE. The other arguments are all passed directly
|
||
to DBX_FINISH_STABS; see above for details. */
|
||
|
||
static void
|
||
dbxout_finish_complex_stabs (tree sym, STAB_CODE_TYPE code,
|
||
rtx addr, const char *label, int number)
|
||
{
|
||
int line ATTRIBUTE_UNUSED;
|
||
char *str;
|
||
size_t len;
|
||
|
||
line = sym ? DECL_SOURCE_LINE (sym) : 0;
|
||
if (DBX_CONTIN_LENGTH > 0)
|
||
{
|
||
char *chunk;
|
||
size_t chunklen;
|
||
|
||
/* Nul-terminate the growing string, then get its size and
|
||
address. */
|
||
obstack_1grow (&stabstr_ob, '\0');
|
||
|
||
len = obstack_object_size (&stabstr_ob);
|
||
chunk = str = XOBFINISH (&stabstr_ob, char *);
|
||
|
||
/* Within the buffer are a sequence of NUL-separated strings,
|
||
each of which is to be written out as a separate stab
|
||
directive. */
|
||
for (;;)
|
||
{
|
||
chunklen = strlen (chunk);
|
||
fwrite (chunk, 1, chunklen, asm_out_file);
|
||
fputs ("\",", asm_out_file);
|
||
|
||
/* Must add an extra byte to account for the NUL separator. */
|
||
chunk += chunklen + 1;
|
||
len -= chunklen + 1;
|
||
|
||
/* Only put a line number on the last stab in the sequence. */
|
||
DBX_FINISH_STABS (sym, code, len == 0 ? line : 0,
|
||
addr, label, number);
|
||
if (len == 0)
|
||
break;
|
||
|
||
fputs (ASM_STABS_OP, asm_out_file);
|
||
putc ('"', asm_out_file);
|
||
}
|
||
stabstr_last_contin_point = 0;
|
||
}
|
||
else
|
||
{
|
||
/* No continuations - we can put the whole string out at once.
|
||
It is faster to augment the string with the close quote and
|
||
comma than to do a two-character fputs. */
|
||
obstack_grow (&stabstr_ob, "\",", 2);
|
||
len = obstack_object_size (&stabstr_ob);
|
||
str = XOBFINISH (&stabstr_ob, char *);
|
||
|
||
fwrite (str, 1, len, asm_out_file);
|
||
DBX_FINISH_STABS (sym, code, line, addr, label, number);
|
||
}
|
||
obstack_free (&stabstr_ob, str);
|
||
}
|
||
|
||
#if defined (DBX_DEBUGGING_INFO)
|
||
|
||
static void
|
||
dbxout_function_end (tree decl)
|
||
{
|
||
char lscope_label_name[100];
|
||
|
||
/* The Lscope label must be emitted even if we aren't doing anything
|
||
else; dbxout_block needs it. */
|
||
switch_to_section (function_section (current_function_decl));
|
||
|
||
/* Convert Lscope into the appropriate format for local labels in case
|
||
the system doesn't insert underscores in front of user generated
|
||
labels. */
|
||
ASM_GENERATE_INTERNAL_LABEL (lscope_label_name, "Lscope", scope_labelno);
|
||
targetm.asm_out.internal_label (asm_out_file, "Lscope", scope_labelno);
|
||
|
||
/* The N_FUN tag at the end of the function is a GNU extension,
|
||
which may be undesirable, and is unnecessary if we do not have
|
||
named sections. */
|
||
if (!use_gnu_debug_info_extensions
|
||
|| NO_DBX_FUNCTION_END
|
||
|| !targetm.have_named_sections
|
||
|| DECL_IGNORED_P (decl))
|
||
return;
|
||
|
||
/* By convention, GCC will mark the end of a function with an N_FUN
|
||
symbol and an empty string. */
|
||
if (flag_reorder_blocks_and_partition)
|
||
{
|
||
dbxout_begin_empty_stabs (N_FUN);
|
||
dbxout_stab_value_label_diff (cfun->hot_section_end_label,
|
||
cfun->hot_section_label);
|
||
dbxout_begin_empty_stabs (N_FUN);
|
||
dbxout_stab_value_label_diff (cfun->cold_section_end_label,
|
||
cfun->cold_section_label);
|
||
}
|
||
else
|
||
{
|
||
char begin_label[20];
|
||
/* Reference current function start using LFBB. */
|
||
ASM_GENERATE_INTERNAL_LABEL (begin_label, "LFBB", scope_labelno);
|
||
dbxout_begin_empty_stabs (N_FUN);
|
||
dbxout_stab_value_label_diff (lscope_label_name, begin_label);
|
||
}
|
||
|
||
if (!NO_DBX_BNSYM_ENSYM && !flag_debug_only_used_symbols)
|
||
dbxout_stabd (N_ENSYM, 0);
|
||
}
|
||
#endif /* DBX_DEBUGGING_INFO */
|
||
|
||
/* Get lang description for N_SO stab. */
|
||
static unsigned int ATTRIBUTE_UNUSED
|
||
get_lang_number (void)
|
||
{
|
||
const char *language_string = lang_hooks.name;
|
||
|
||
if (strcmp (language_string, "GNU C") == 0)
|
||
return N_SO_C;
|
||
else if (strcmp (language_string, "GNU C++") == 0)
|
||
return N_SO_CC;
|
||
else if (strcmp (language_string, "GNU F77") == 0)
|
||
return N_SO_FORTRAN;
|
||
else if (strcmp (language_string, "GNU F95") == 0)
|
||
return N_SO_FORTRAN90; /* CHECKME */
|
||
else if (strcmp (language_string, "GNU Pascal") == 0)
|
||
return N_SO_PASCAL;
|
||
else if (strcmp (language_string, "GNU Objective-C") == 0)
|
||
return N_SO_OBJC;
|
||
else if (strcmp (language_string, "GNU Objective-C++") == 0)
|
||
return N_SO_OBJCPLUS;
|
||
else
|
||
return 0;
|
||
|
||
}
|
||
|
||
/* At the beginning of compilation, start writing the symbol table.
|
||
Initialize `typevec' and output the standard data types of C. */
|
||
|
||
static void
|
||
dbxout_init (const char *input_file_name)
|
||
{
|
||
char ltext_label_name[100];
|
||
bool used_ltext_label_name = false;
|
||
tree syms = lang_hooks.decls.getdecls ();
|
||
|
||
typevec_len = 100;
|
||
typevec = ggc_calloc (typevec_len, sizeof typevec[0]);
|
||
|
||
/* stabstr_ob contains one string, which will be just fine with
|
||
1-byte alignment. */
|
||
obstack_specify_allocation (&stabstr_ob, 0, 1, xmalloc, free);
|
||
|
||
/* Convert Ltext into the appropriate format for local labels in case
|
||
the system doesn't insert underscores in front of user generated
|
||
labels. */
|
||
ASM_GENERATE_INTERNAL_LABEL (ltext_label_name, "Ltext", 0);
|
||
|
||
/* Put the current working directory in an N_SO symbol. */
|
||
if (use_gnu_debug_info_extensions && !NO_DBX_MAIN_SOURCE_DIRECTORY)
|
||
{
|
||
static const char *cwd;
|
||
|
||
if (!cwd)
|
||
{
|
||
cwd = get_src_pwd ();
|
||
if (cwd[0] == '\0')
|
||
cwd = "/";
|
||
else if (!IS_DIR_SEPARATOR (cwd[strlen (cwd) - 1]))
|
||
cwd = concat (cwd, "/", NULL);
|
||
}
|
||
#ifdef DBX_OUTPUT_MAIN_SOURCE_DIRECTORY
|
||
DBX_OUTPUT_MAIN_SOURCE_DIRECTORY (asm_out_file, cwd);
|
||
#else /* no DBX_OUTPUT_MAIN_SOURCE_DIRECTORY */
|
||
dbxout_begin_simple_stabs_desc (cwd, N_SO, get_lang_number ());
|
||
dbxout_stab_value_label (ltext_label_name);
|
||
used_ltext_label_name = true;
|
||
#endif /* no DBX_OUTPUT_MAIN_SOURCE_DIRECTORY */
|
||
}
|
||
|
||
#ifdef DBX_OUTPUT_MAIN_SOURCE_FILENAME
|
||
DBX_OUTPUT_MAIN_SOURCE_FILENAME (asm_out_file, input_file_name);
|
||
#else
|
||
dbxout_begin_simple_stabs_desc (input_file_name, N_SO, get_lang_number ());
|
||
dbxout_stab_value_label (ltext_label_name);
|
||
used_ltext_label_name = true;
|
||
#endif
|
||
|
||
if (used_ltext_label_name)
|
||
{
|
||
switch_to_section (text_section);
|
||
targetm.asm_out.internal_label (asm_out_file, "Ltext", 0);
|
||
}
|
||
|
||
/* Emit an N_OPT stab to indicate that this file was compiled by GCC.
|
||
The string used is historical. */
|
||
#ifndef NO_DBX_GCC_MARKER
|
||
dbxout_begin_simple_stabs ("gcc2_compiled.", N_OPT);
|
||
dbxout_stab_value_zero ();
|
||
#endif
|
||
|
||
base_input_file = lastfile = input_file_name;
|
||
|
||
next_type_number = 1;
|
||
|
||
#ifdef DBX_USE_BINCL
|
||
current_file = XNEW (struct dbx_file);
|
||
current_file->next = NULL;
|
||
current_file->file_number = 0;
|
||
current_file->next_type_number = 1;
|
||
next_file_number = 1;
|
||
current_file->prev = NULL;
|
||
current_file->bincl_status = BINCL_NOT_REQUIRED;
|
||
current_file->pending_bincl_name = NULL;
|
||
#endif
|
||
|
||
/* Get all permanent types that have typedef names, and output them
|
||
all, except for those already output. Some language front ends
|
||
put these declarations in the top-level scope; some do not;
|
||
the latter are responsible for calling debug_hooks->type_decl from
|
||
their record_builtin_type function. */
|
||
dbxout_typedefs (syms);
|
||
|
||
if (preinit_symbols)
|
||
{
|
||
tree t;
|
||
for (t = nreverse (preinit_symbols); t; t = TREE_CHAIN (t))
|
||
dbxout_symbol (TREE_VALUE (t), 0);
|
||
preinit_symbols = 0;
|
||
}
|
||
}
|
||
|
||
/* Output any typedef names for types described by TYPE_DECLs in SYMS. */
|
||
|
||
static void
|
||
dbxout_typedefs (tree syms)
|
||
{
|
||
for (; syms != NULL_TREE; syms = TREE_CHAIN (syms))
|
||
{
|
||
if (TREE_CODE (syms) == TYPE_DECL)
|
||
{
|
||
tree type = TREE_TYPE (syms);
|
||
if (TYPE_NAME (type)
|
||
&& TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
||
&& COMPLETE_OR_VOID_TYPE_P (type)
|
||
&& ! TREE_ASM_WRITTEN (TYPE_NAME (type)))
|
||
dbxout_symbol (TYPE_NAME (type), 0);
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef DBX_USE_BINCL
|
||
/* Emit BINCL stab using given name. */
|
||
static void
|
||
emit_bincl_stab (const char *name)
|
||
{
|
||
dbxout_begin_simple_stabs (name, N_BINCL);
|
||
dbxout_stab_value_zero ();
|
||
}
|
||
|
||
/* If there are pending bincls then it is time to emit all of them. */
|
||
|
||
static inline void
|
||
emit_pending_bincls_if_required (void)
|
||
{
|
||
if (pending_bincls)
|
||
emit_pending_bincls ();
|
||
}
|
||
|
||
/* Emit all pending bincls. */
|
||
|
||
static void
|
||
emit_pending_bincls (void)
|
||
{
|
||
struct dbx_file *f = current_file;
|
||
|
||
/* Find first pending bincl. */
|
||
while (f->bincl_status == BINCL_PENDING)
|
||
f = f->next;
|
||
|
||
/* Now emit all bincls. */
|
||
f = f->prev;
|
||
|
||
while (f)
|
||
{
|
||
if (f->bincl_status == BINCL_PENDING)
|
||
{
|
||
emit_bincl_stab (f->pending_bincl_name);
|
||
|
||
/* Update file number and status. */
|
||
f->file_number = next_file_number++;
|
||
f->bincl_status = BINCL_PROCESSED;
|
||
}
|
||
if (f == current_file)
|
||
break;
|
||
f = f->prev;
|
||
}
|
||
|
||
/* All pending bincls have been emitted. */
|
||
pending_bincls = 0;
|
||
}
|
||
|
||
#else
|
||
|
||
static inline void
|
||
emit_pending_bincls_if_required (void) {}
|
||
#endif
|
||
|
||
/* Change to reading from a new source file. Generate a N_BINCL stab. */
|
||
|
||
static void
|
||
dbxout_start_source_file (unsigned int line ATTRIBUTE_UNUSED,
|
||
const char *filename ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifdef DBX_USE_BINCL
|
||
struct dbx_file *n = XNEW (struct dbx_file);
|
||
|
||
n->next = current_file;
|
||
n->next_type_number = 1;
|
||
/* Do not assign file number now.
|
||
Delay it until we actually emit BINCL. */
|
||
n->file_number = 0;
|
||
n->prev = NULL;
|
||
current_file->prev = n;
|
||
n->bincl_status = BINCL_PENDING;
|
||
n->pending_bincl_name = filename;
|
||
pending_bincls = 1;
|
||
current_file = n;
|
||
#endif
|
||
}
|
||
|
||
/* Revert to reading a previous source file. Generate a N_EINCL stab. */
|
||
|
||
static void
|
||
dbxout_end_source_file (unsigned int line ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifdef DBX_USE_BINCL
|
||
/* Emit EINCL stab only if BINCL is not pending. */
|
||
if (current_file->bincl_status == BINCL_PROCESSED)
|
||
{
|
||
dbxout_begin_stabn (N_EINCL);
|
||
dbxout_stab_value_zero ();
|
||
}
|
||
current_file->bincl_status = BINCL_NOT_REQUIRED;
|
||
current_file = current_file->next;
|
||
#endif
|
||
}
|
||
|
||
/* Handle a few odd cases that occur when trying to make PCH files work. */
|
||
|
||
static void
|
||
dbxout_handle_pch (unsigned at_end)
|
||
{
|
||
if (! at_end)
|
||
{
|
||
/* When using the PCH, this file will be included, so we need to output
|
||
a BINCL. */
|
||
dbxout_start_source_file (0, lastfile);
|
||
|
||
/* The base file when using the PCH won't be the same as
|
||
the base file when it's being generated. */
|
||
lastfile = NULL;
|
||
}
|
||
else
|
||
{
|
||
/* ... and an EINCL. */
|
||
dbxout_end_source_file (0);
|
||
|
||
/* Deal with cases where 'lastfile' was never actually changed. */
|
||
lastfile_is_base = lastfile == NULL;
|
||
}
|
||
}
|
||
|
||
#if defined (DBX_DEBUGGING_INFO)
|
||
/* Output debugging info to FILE to switch to sourcefile FILENAME. */
|
||
|
||
static void
|
||
dbxout_source_file (const char *filename)
|
||
{
|
||
if (lastfile == 0 && lastfile_is_base)
|
||
{
|
||
lastfile = base_input_file;
|
||
lastfile_is_base = 0;
|
||
}
|
||
|
||
if (filename && (lastfile == 0 || strcmp (filename, lastfile)))
|
||
{
|
||
/* Don't change section amid function. */
|
||
if (current_function_decl == NULL_TREE)
|
||
switch_to_section (text_section);
|
||
|
||
dbxout_begin_simple_stabs (filename, N_SOL);
|
||
dbxout_stab_value_internal_label ("Ltext", &source_label_number);
|
||
lastfile = filename;
|
||
}
|
||
}
|
||
|
||
/* Output N_BNSYM, line number symbol entry, and local symbol at
|
||
function scope */
|
||
|
||
static void
|
||
dbxout_begin_prologue (unsigned int lineno, const char *filename)
|
||
{
|
||
if (use_gnu_debug_info_extensions
|
||
&& !NO_DBX_FUNCTION_END
|
||
&& !NO_DBX_BNSYM_ENSYM
|
||
&& !flag_debug_only_used_symbols)
|
||
dbxout_stabd (N_BNSYM, 0);
|
||
|
||
/* pre-increment the scope counter */
|
||
scope_labelno++;
|
||
|
||
dbxout_source_line (lineno, filename);
|
||
/* Output function begin block at function scope, referenced
|
||
by dbxout_block, dbxout_source_line and dbxout_function_end. */
|
||
emit_pending_bincls_if_required ();
|
||
targetm.asm_out.internal_label (asm_out_file, "LFBB", scope_labelno);
|
||
}
|
||
|
||
/* Output a line number symbol entry for source file FILENAME and line
|
||
number LINENO. */
|
||
|
||
static void
|
||
dbxout_source_line (unsigned int lineno, const char *filename)
|
||
{
|
||
dbxout_source_file (filename);
|
||
|
||
#ifdef DBX_OUTPUT_SOURCE_LINE
|
||
DBX_OUTPUT_SOURCE_LINE (asm_out_file, lineno, dbxout_source_line_counter);
|
||
#else
|
||
if (DBX_LINES_FUNCTION_RELATIVE)
|
||
{
|
||
char begin_label[20];
|
||
dbxout_begin_stabn_sline (lineno);
|
||
/* Reference current function start using LFBB. */
|
||
ASM_GENERATE_INTERNAL_LABEL (begin_label, "LFBB", scope_labelno);
|
||
dbxout_stab_value_internal_label_diff ("LM", &dbxout_source_line_counter,
|
||
begin_label);
|
||
}
|
||
else
|
||
dbxout_stabd (N_SLINE, lineno);
|
||
#endif
|
||
}
|
||
|
||
/* Describe the beginning of an internal block within a function. */
|
||
|
||
static void
|
||
dbxout_begin_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int n)
|
||
{
|
||
emit_pending_bincls_if_required ();
|
||
targetm.asm_out.internal_label (asm_out_file, "LBB", n);
|
||
}
|
||
|
||
/* Describe the end line-number of an internal block within a function. */
|
||
|
||
static void
|
||
dbxout_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int n)
|
||
{
|
||
emit_pending_bincls_if_required ();
|
||
targetm.asm_out.internal_label (asm_out_file, "LBE", n);
|
||
}
|
||
|
||
/* Output dbx data for a function definition.
|
||
This includes a definition of the function name itself (a symbol),
|
||
definitions of the parameters (locating them in the parameter list)
|
||
and then output the block that makes up the function's body
|
||
(including all the auto variables of the function). */
|
||
|
||
static void
|
||
dbxout_function_decl (tree decl)
|
||
{
|
||
emit_pending_bincls_if_required ();
|
||
#ifndef DBX_FUNCTION_FIRST
|
||
dbxout_begin_function (decl);
|
||
#endif
|
||
dbxout_block (DECL_INITIAL (decl), 0, DECL_ARGUMENTS (decl));
|
||
dbxout_function_end (decl);
|
||
}
|
||
|
||
#endif /* DBX_DEBUGGING_INFO */
|
||
|
||
/* Debug information for a global DECL. Called from toplev.c after
|
||
compilation proper has finished. */
|
||
static void
|
||
dbxout_global_decl (tree decl)
|
||
{
|
||
if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl))
|
||
{
|
||
int saved_tree_used = TREE_USED (decl);
|
||
TREE_USED (decl) = 1;
|
||
dbxout_symbol (decl, 0);
|
||
TREE_USED (decl) = saved_tree_used;
|
||
}
|
||
}
|
||
|
||
/* This is just a function-type adapter; dbxout_symbol does exactly
|
||
what we want but returns an int. */
|
||
static void
|
||
dbxout_type_decl (tree decl, int local)
|
||
{
|
||
dbxout_symbol (decl, local);
|
||
}
|
||
|
||
/* At the end of compilation, finish writing the symbol table.
|
||
The default is to call debug_free_queue but do nothing else. */
|
||
|
||
static void
|
||
dbxout_finish (const char *filename ATTRIBUTE_UNUSED)
|
||
{
|
||
#ifdef DBX_OUTPUT_MAIN_SOURCE_FILE_END
|
||
DBX_OUTPUT_MAIN_SOURCE_FILE_END (asm_out_file, filename);
|
||
#elif defined DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END
|
||
{
|
||
switch_to_section (text_section);
|
||
dbxout_begin_empty_stabs (N_SO);
|
||
dbxout_stab_value_internal_label ("Letext", 0);
|
||
}
|
||
#endif
|
||
debug_free_queue ();
|
||
}
|
||
|
||
/* Output the index of a type. */
|
||
|
||
static void
|
||
dbxout_type_index (tree type)
|
||
{
|
||
#ifndef DBX_USE_BINCL
|
||
stabstr_D (TYPE_SYMTAB_ADDRESS (type));
|
||
#else
|
||
struct typeinfo *t = &typevec[TYPE_SYMTAB_ADDRESS (type)];
|
||
stabstr_C ('(');
|
||
stabstr_D (t->file_number);
|
||
stabstr_C (',');
|
||
stabstr_D (t->type_number);
|
||
stabstr_C (')');
|
||
#endif
|
||
}
|
||
|
||
|
||
|
||
/* Used in several places: evaluates to '0' for a private decl,
|
||
'1' for a protected decl, '2' for a public decl. */
|
||
#define DECL_ACCESSIBILITY_CHAR(DECL) \
|
||
(TREE_PRIVATE (DECL) ? '0' : TREE_PROTECTED (DECL) ? '1' : '2')
|
||
|
||
/* Subroutine of `dbxout_type'. Output the type fields of TYPE.
|
||
This must be a separate function because anonymous unions require
|
||
recursive calls. */
|
||
|
||
static void
|
||
dbxout_type_fields (tree type)
|
||
{
|
||
tree tem;
|
||
|
||
/* Output the name, type, position (in bits), size (in bits) of each
|
||
field that we can support. */
|
||
for (tem = TYPE_FIELDS (type); tem; tem = TREE_CHAIN (tem))
|
||
{
|
||
/* If one of the nodes is an error_mark or its type is then
|
||
return early. */
|
||
if (tem == error_mark_node || TREE_TYPE (tem) == error_mark_node)
|
||
return;
|
||
|
||
/* Omit here local type decls until we know how to support them. */
|
||
if (TREE_CODE (tem) == TYPE_DECL
|
||
/* Omit here the nameless fields that are used to skip bits. */
|
||
|| DECL_IGNORED_P (tem)
|
||
/* Omit fields whose position or size are variable or too large to
|
||
represent. */
|
||
|| (TREE_CODE (tem) == FIELD_DECL
|
||
&& (! host_integerp (bit_position (tem), 0)
|
||
|| ! DECL_SIZE (tem)
|
||
|| ! host_integerp (DECL_SIZE (tem), 1))))
|
||
continue;
|
||
|
||
else if (TREE_CODE (tem) != CONST_DECL)
|
||
{
|
||
/* Continue the line if necessary,
|
||
but not before the first field. */
|
||
if (tem != TYPE_FIELDS (type))
|
||
CONTIN;
|
||
|
||
if (DECL_NAME (tem))
|
||
stabstr_I (DECL_NAME (tem));
|
||
stabstr_C (':');
|
||
|
||
if (use_gnu_debug_info_extensions
|
||
&& (TREE_PRIVATE (tem) || TREE_PROTECTED (tem)
|
||
|| TREE_CODE (tem) != FIELD_DECL))
|
||
{
|
||
stabstr_C ('/');
|
||
stabstr_C (DECL_ACCESSIBILITY_CHAR (tem));
|
||
}
|
||
|
||
dbxout_type ((TREE_CODE (tem) == FIELD_DECL
|
||
&& DECL_BIT_FIELD_TYPE (tem))
|
||
? DECL_BIT_FIELD_TYPE (tem) : TREE_TYPE (tem), 0);
|
||
|
||
if (TREE_CODE (tem) == VAR_DECL)
|
||
{
|
||
if (TREE_STATIC (tem) && use_gnu_debug_info_extensions)
|
||
{
|
||
tree name = DECL_ASSEMBLER_NAME (tem);
|
||
|
||
stabstr_C (':');
|
||
stabstr_I (name);
|
||
stabstr_C (';');
|
||
}
|
||
else
|
||
/* If TEM is non-static, GDB won't understand it. */
|
||
stabstr_S (",0,0;");
|
||
}
|
||
else
|
||
{
|
||
stabstr_C (',');
|
||
stabstr_D (int_bit_position (tem));
|
||
stabstr_C (',');
|
||
stabstr_D (tree_low_cst (DECL_SIZE (tem), 1));
|
||
stabstr_C (';');
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Subroutine of `dbxout_type_methods'. Output debug info about the
|
||
method described DECL. */
|
||
|
||
static void
|
||
dbxout_type_method_1 (tree decl)
|
||
{
|
||
char c1 = 'A', c2;
|
||
|
||
if (TREE_CODE (TREE_TYPE (decl)) == FUNCTION_TYPE)
|
||
c2 = '?';
|
||
else /* it's a METHOD_TYPE. */
|
||
{
|
||
tree firstarg = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)));
|
||
/* A for normal functions.
|
||
B for `const' member functions.
|
||
C for `volatile' member functions.
|
||
D for `const volatile' member functions. */
|
||
if (TYPE_READONLY (TREE_TYPE (firstarg)))
|
||
c1 += 1;
|
||
if (TYPE_VOLATILE (TREE_TYPE (firstarg)))
|
||
c1 += 2;
|
||
|
||
if (DECL_VINDEX (decl))
|
||
c2 = '*';
|
||
else
|
||
c2 = '.';
|
||
}
|
||
|
||
/* ??? Output the mangled name, which contains an encoding of the
|
||
method's type signature. May not be necessary anymore. */
|
||
stabstr_C (':');
|
||
stabstr_I (DECL_ASSEMBLER_NAME (decl));
|
||
stabstr_C (';');
|
||
stabstr_C (DECL_ACCESSIBILITY_CHAR (decl));
|
||
stabstr_C (c1);
|
||
stabstr_C (c2);
|
||
|
||
if (DECL_VINDEX (decl) && host_integerp (DECL_VINDEX (decl), 0))
|
||
{
|
||
stabstr_D (tree_low_cst (DECL_VINDEX (decl), 0));
|
||
stabstr_C (';');
|
||
dbxout_type (DECL_CONTEXT (decl), 0);
|
||
stabstr_C (';');
|
||
}
|
||
}
|
||
|
||
/* Subroutine of `dbxout_type'. Output debug info about the methods defined
|
||
in TYPE. */
|
||
|
||
static void
|
||
dbxout_type_methods (tree type)
|
||
{
|
||
/* C++: put out the method names and their parameter lists */
|
||
tree methods = TYPE_METHODS (type);
|
||
tree fndecl;
|
||
tree last;
|
||
|
||
if (methods == NULL_TREE)
|
||
return;
|
||
|
||
if (TREE_CODE (methods) != TREE_VEC)
|
||
fndecl = methods;
|
||
else if (TREE_VEC_ELT (methods, 0) != NULL_TREE)
|
||
fndecl = TREE_VEC_ELT (methods, 0);
|
||
else
|
||
fndecl = TREE_VEC_ELT (methods, 1);
|
||
|
||
while (fndecl)
|
||
{
|
||
int need_prefix = 1;
|
||
|
||
/* Group together all the methods for the same operation.
|
||
These differ in the types of the arguments. */
|
||
for (last = NULL_TREE;
|
||
fndecl && (last == NULL_TREE || DECL_NAME (fndecl) == DECL_NAME (last));
|
||
fndecl = TREE_CHAIN (fndecl))
|
||
/* Output the name of the field (after overloading), as
|
||
well as the name of the field before overloading, along
|
||
with its parameter list */
|
||
{
|
||
/* Skip methods that aren't FUNCTION_DECLs. (In C++, these
|
||
include TEMPLATE_DECLs.) The debugger doesn't know what
|
||
to do with such entities anyhow. */
|
||
if (TREE_CODE (fndecl) != FUNCTION_DECL)
|
||
continue;
|
||
|
||
CONTIN;
|
||
|
||
last = fndecl;
|
||
|
||
/* Also ignore abstract methods; those are only interesting to
|
||
the DWARF backends. */
|
||
if (DECL_IGNORED_P (fndecl) || DECL_ABSTRACT (fndecl))
|
||
continue;
|
||
|
||
/* Redundantly output the plain name, since that's what gdb
|
||
expects. */
|
||
if (need_prefix)
|
||
{
|
||
stabstr_I (DECL_NAME (fndecl));
|
||
stabstr_S ("::");
|
||
need_prefix = 0;
|
||
}
|
||
|
||
dbxout_type (TREE_TYPE (fndecl), 0);
|
||
dbxout_type_method_1 (fndecl);
|
||
}
|
||
if (!need_prefix)
|
||
stabstr_C (';');
|
||
}
|
||
}
|
||
|
||
/* Emit a "range" type specification, which has the form:
|
||
"r<index type>;<lower bound>;<upper bound>;".
|
||
TYPE is an INTEGER_TYPE. */
|
||
|
||
static void
|
||
dbxout_range_type (tree type)
|
||
{
|
||
stabstr_C ('r');
|
||
if (TREE_TYPE (type))
|
||
dbxout_type (TREE_TYPE (type), 0);
|
||
else if (TREE_CODE (type) != INTEGER_TYPE)
|
||
dbxout_type (type, 0); /* E.g. Pascal's ARRAY [BOOLEAN] of INTEGER */
|
||
else
|
||
{
|
||
/* Traditionally, we made sure 'int' was type 1, and builtin types
|
||
were defined to be sub-ranges of int. Unfortunately, this
|
||
does not allow us to distinguish true sub-ranges from integer
|
||
types. So, instead we define integer (non-sub-range) types as
|
||
sub-ranges of themselves. This matters for Chill. If this isn't
|
||
a subrange type, then we want to define it in terms of itself.
|
||
However, in C, this may be an anonymous integer type, and we don't
|
||
want to emit debug info referring to it. Just calling
|
||
dbxout_type_index won't work anyways, because the type hasn't been
|
||
defined yet. We make this work for both cases by checked to see
|
||
whether this is a defined type, referring to it if it is, and using
|
||
'int' otherwise. */
|
||
if (TYPE_SYMTAB_ADDRESS (type) != 0)
|
||
dbxout_type_index (type);
|
||
else
|
||
dbxout_type_index (integer_type_node);
|
||
}
|
||
|
||
stabstr_C (';');
|
||
if (TYPE_MIN_VALUE (type) != 0
|
||
&& host_integerp (TYPE_MIN_VALUE (type), 0))
|
||
{
|
||
if (print_int_cst_bounds_in_octal_p (type))
|
||
stabstr_O (TYPE_MIN_VALUE (type));
|
||
else
|
||
stabstr_D (tree_low_cst (TYPE_MIN_VALUE (type), 0));
|
||
}
|
||
else
|
||
stabstr_C ('0');
|
||
|
||
stabstr_C (';');
|
||
if (TYPE_MAX_VALUE (type) != 0
|
||
&& host_integerp (TYPE_MAX_VALUE (type), 0))
|
||
{
|
||
if (print_int_cst_bounds_in_octal_p (type))
|
||
stabstr_O (TYPE_MAX_VALUE (type));
|
||
else
|
||
stabstr_D (tree_low_cst (TYPE_MAX_VALUE (type), 0));
|
||
stabstr_C (';');
|
||
}
|
||
else
|
||
stabstr_S ("-1;");
|
||
}
|
||
|
||
|
||
/* Output a reference to a type. If the type has not yet been
|
||
described in the dbx output, output its definition now.
|
||
For a type already defined, just refer to its definition
|
||
using the type number.
|
||
|
||
If FULL is nonzero, and the type has been described only with
|
||
a forward-reference, output the definition now.
|
||
If FULL is zero in this case, just refer to the forward-reference
|
||
using the number previously allocated. */
|
||
|
||
static void
|
||
dbxout_type (tree type, int full)
|
||
{
|
||
tree tem;
|
||
tree main_variant;
|
||
static int anonymous_type_number = 0;
|
||
bool vector_type = false;
|
||
|
||
if (TREE_CODE (type) == VECTOR_TYPE)
|
||
{
|
||
/* The frontend feeds us a representation for the vector as a struct
|
||
containing an array. Pull out the array type. */
|
||
type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
|
||
vector_type = true;
|
||
}
|
||
|
||
/* If there was an input error and we don't really have a type,
|
||
avoid crashing and write something that is at least valid
|
||
by assuming `int'. */
|
||
if (type == error_mark_node)
|
||
type = integer_type_node;
|
||
else
|
||
{
|
||
if (TYPE_NAME (type)
|
||
&& TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
||
&& TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
|
||
full = 0;
|
||
}
|
||
|
||
/* Try to find the "main variant" with the same name. */
|
||
if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
||
&& DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
|
||
main_variant = TREE_TYPE (TYPE_NAME (type));
|
||
else
|
||
main_variant = TYPE_MAIN_VARIANT (type);
|
||
|
||
/* If we are not using extensions, stabs does not distinguish const and
|
||
volatile, so there is no need to make them separate types. */
|
||
if (!use_gnu_debug_info_extensions)
|
||
type = main_variant;
|
||
|
||
if (TYPE_SYMTAB_ADDRESS (type) == 0)
|
||
{
|
||
/* Type has no dbx number assigned. Assign next available number. */
|
||
TYPE_SYMTAB_ADDRESS (type) = next_type_number++;
|
||
|
||
/* Make sure type vector is long enough to record about this type. */
|
||
|
||
if (next_type_number == typevec_len)
|
||
{
|
||
typevec
|
||
= ggc_realloc (typevec, (typevec_len * 2 * sizeof typevec[0]));
|
||
memset (typevec + typevec_len, 0, typevec_len * sizeof typevec[0]);
|
||
typevec_len *= 2;
|
||
}
|
||
|
||
#ifdef DBX_USE_BINCL
|
||
emit_pending_bincls_if_required ();
|
||
typevec[TYPE_SYMTAB_ADDRESS (type)].file_number
|
||
= current_file->file_number;
|
||
typevec[TYPE_SYMTAB_ADDRESS (type)].type_number
|
||
= current_file->next_type_number++;
|
||
#endif
|
||
}
|
||
|
||
if (flag_debug_only_used_symbols)
|
||
{
|
||
if ((TREE_CODE (type) == RECORD_TYPE
|
||
|| TREE_CODE (type) == UNION_TYPE
|
||
|| TREE_CODE (type) == QUAL_UNION_TYPE
|
||
|| TREE_CODE (type) == ENUMERAL_TYPE)
|
||
&& TYPE_STUB_DECL (type)
|
||
&& DECL_P (TYPE_STUB_DECL (type))
|
||
&& ! DECL_IGNORED_P (TYPE_STUB_DECL (type)))
|
||
debug_queue_symbol (TYPE_STUB_DECL (type));
|
||
else if (TYPE_NAME (type)
|
||
&& TREE_CODE (TYPE_NAME (type)) == TYPE_DECL)
|
||
debug_queue_symbol (TYPE_NAME (type));
|
||
}
|
||
|
||
/* Output the number of this type, to refer to it. */
|
||
dbxout_type_index (type);
|
||
|
||
#ifdef DBX_TYPE_DEFINED
|
||
if (DBX_TYPE_DEFINED (type))
|
||
return;
|
||
#endif
|
||
|
||
/* If this type's definition has been output or is now being output,
|
||
that is all. */
|
||
|
||
switch (typevec[TYPE_SYMTAB_ADDRESS (type)].status)
|
||
{
|
||
case TYPE_UNSEEN:
|
||
break;
|
||
case TYPE_XREF:
|
||
/* If we have already had a cross reference,
|
||
and either that's all we want or that's the best we could do,
|
||
don't repeat the cross reference.
|
||
Sun dbx crashes if we do. */
|
||
if (! full || !COMPLETE_TYPE_P (type)
|
||
/* No way in DBX fmt to describe a variable size. */
|
||
|| ! host_integerp (TYPE_SIZE (type), 1))
|
||
return;
|
||
break;
|
||
case TYPE_DEFINED:
|
||
return;
|
||
}
|
||
|
||
#ifdef DBX_NO_XREFS
|
||
/* For systems where dbx output does not allow the `=xsNAME:' syntax,
|
||
leave the type-number completely undefined rather than output
|
||
a cross-reference. If we have already used GNU debug info extensions,
|
||
then it is OK to output a cross reference. This is necessary to get
|
||
proper C++ debug output. */
|
||
if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE
|
||
|| TREE_CODE (type) == QUAL_UNION_TYPE
|
||
|| TREE_CODE (type) == ENUMERAL_TYPE)
|
||
&& ! use_gnu_debug_info_extensions)
|
||
/* We must use the same test here as we use twice below when deciding
|
||
whether to emit a cross-reference. */
|
||
if ((TYPE_NAME (type) != 0
|
||
&& ! (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
||
&& DECL_IGNORED_P (TYPE_NAME (type)))
|
||
&& !full)
|
||
|| !COMPLETE_TYPE_P (type)
|
||
/* No way in DBX fmt to describe a variable size. */
|
||
|| ! host_integerp (TYPE_SIZE (type), 1))
|
||
{
|
||
typevec[TYPE_SYMTAB_ADDRESS (type)].status = TYPE_XREF;
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
/* Output a definition now. */
|
||
stabstr_C ('=');
|
||
|
||
/* Mark it as defined, so that if it is self-referent
|
||
we will not get into an infinite recursion of definitions. */
|
||
|
||
typevec[TYPE_SYMTAB_ADDRESS (type)].status = TYPE_DEFINED;
|
||
|
||
/* If this type is a variant of some other, hand off. Types with
|
||
different names are usefully distinguished. We only distinguish
|
||
cv-qualified types if we're using extensions. */
|
||
if (TYPE_READONLY (type) > TYPE_READONLY (main_variant))
|
||
{
|
||
stabstr_C ('k');
|
||
dbxout_type (build_type_variant (type, 0, TYPE_VOLATILE (type)), 0);
|
||
return;
|
||
}
|
||
else if (TYPE_VOLATILE (type) > TYPE_VOLATILE (main_variant))
|
||
{
|
||
stabstr_C ('B');
|
||
dbxout_type (build_type_variant (type, TYPE_READONLY (type), 0), 0);
|
||
return;
|
||
}
|
||
else if (main_variant != TYPE_MAIN_VARIANT (type))
|
||
{
|
||
if (flag_debug_only_used_symbols)
|
||
{
|
||
tree orig_type = DECL_ORIGINAL_TYPE (TYPE_NAME (type));
|
||
|
||
if ((TREE_CODE (orig_type) == RECORD_TYPE
|
||
|| TREE_CODE (orig_type) == UNION_TYPE
|
||
|| TREE_CODE (orig_type) == QUAL_UNION_TYPE
|
||
|| TREE_CODE (orig_type) == ENUMERAL_TYPE)
|
||
&& TYPE_STUB_DECL (orig_type)
|
||
&& ! DECL_IGNORED_P (TYPE_STUB_DECL (orig_type)))
|
||
debug_queue_symbol (TYPE_STUB_DECL (orig_type));
|
||
}
|
||
/* 'type' is a typedef; output the type it refers to. */
|
||
dbxout_type (DECL_ORIGINAL_TYPE (TYPE_NAME (type)), 0);
|
||
return;
|
||
}
|
||
/* else continue. */
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case VOID_TYPE:
|
||
case LANG_TYPE:
|
||
/* For a void type, just define it as itself; i.e., "5=5".
|
||
This makes us consider it defined
|
||
without saying what it is. The debugger will make it
|
||
a void type when the reference is seen, and nothing will
|
||
ever override that default. */
|
||
dbxout_type_index (type);
|
||
break;
|
||
|
||
case INTEGER_TYPE:
|
||
if (type == char_type_node && ! TYPE_UNSIGNED (type))
|
||
{
|
||
/* Output the type `char' as a subrange of itself!
|
||
I don't understand this definition, just copied it
|
||
from the output of pcc.
|
||
This used to use `r2' explicitly and we used to
|
||
take care to make sure that `char' was type number 2. */
|
||
stabstr_C ('r');
|
||
dbxout_type_index (type);
|
||
stabstr_S (";0;127;");
|
||
}
|
||
|
||
/* If this is a subtype of another integer type, always prefer to
|
||
write it as a subtype. */
|
||
else if (TREE_TYPE (type) != 0
|
||
&& TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
|
||
{
|
||
/* If the size is non-standard, say what it is if we can use
|
||
GDB extensions. */
|
||
|
||
if (use_gnu_debug_info_extensions
|
||
&& TYPE_PRECISION (type) != TYPE_PRECISION (integer_type_node))
|
||
{
|
||
stabstr_S ("@s");
|
||
stabstr_D (TYPE_PRECISION (type));
|
||
stabstr_C (';');
|
||
}
|
||
|
||
dbxout_range_type (type);
|
||
}
|
||
|
||
else
|
||
{
|
||
/* If the size is non-standard, say what it is if we can use
|
||
GDB extensions. */
|
||
|
||
if (use_gnu_debug_info_extensions
|
||
&& TYPE_PRECISION (type) != TYPE_PRECISION (integer_type_node))
|
||
{
|
||
stabstr_S ("@s");
|
||
stabstr_D (TYPE_PRECISION (type));
|
||
stabstr_C (';');
|
||
}
|
||
|
||
if (print_int_cst_bounds_in_octal_p (type))
|
||
{
|
||
stabstr_C ('r');
|
||
|
||
/* If this type derives from another type, output type index of
|
||
parent type. This is particularly important when parent type
|
||
is an enumerated type, because not generating the parent type
|
||
index would transform the definition of this enumerated type
|
||
into a plain unsigned type. */
|
||
if (TREE_TYPE (type) != 0)
|
||
dbxout_type_index (TREE_TYPE (type));
|
||
else
|
||
dbxout_type_index (type);
|
||
|
||
stabstr_C (';');
|
||
stabstr_O (TYPE_MIN_VALUE (type));
|
||
stabstr_C (';');
|
||
stabstr_O (TYPE_MAX_VALUE (type));
|
||
stabstr_C (';');
|
||
}
|
||
|
||
else
|
||
/* Output other integer types as subranges of `int'. */
|
||
dbxout_range_type (type);
|
||
}
|
||
|
||
break;
|
||
|
||
case REAL_TYPE:
|
||
/* This used to say `r1' and we used to take care
|
||
to make sure that `int' was type number 1. */
|
||
stabstr_C ('r');
|
||
dbxout_type_index (integer_type_node);
|
||
stabstr_C (';');
|
||
stabstr_D (int_size_in_bytes (type));
|
||
stabstr_S (";0;");
|
||
break;
|
||
|
||
case BOOLEAN_TYPE:
|
||
if (use_gnu_debug_info_extensions)
|
||
{
|
||
stabstr_S ("@s");
|
||
stabstr_D (BITS_PER_UNIT * int_size_in_bytes (type));
|
||
stabstr_S (";-16;");
|
||
}
|
||
else /* Define as enumeral type (False, True) */
|
||
stabstr_S ("eFalse:0,True:1,;");
|
||
break;
|
||
|
||
case COMPLEX_TYPE:
|
||
/* Differs from the REAL_TYPE by its new data type number.
|
||
R3 is NF_COMPLEX. We don't try to use any of the other NF_*
|
||
codes since gdb doesn't care anyway. */
|
||
|
||
if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
|
||
{
|
||
stabstr_S ("R3;");
|
||
stabstr_D (2 * int_size_in_bytes (TREE_TYPE (type)));
|
||
stabstr_S (";0;");
|
||
}
|
||
else
|
||
{
|
||
/* Output a complex integer type as a structure,
|
||
pending some other way to do it. */
|
||
stabstr_C ('s');
|
||
stabstr_D (int_size_in_bytes (type));
|
||
|
||
stabstr_S ("real:");
|
||
dbxout_type (TREE_TYPE (type), 0);
|
||
stabstr_S (",0,");
|
||
stabstr_D (TYPE_PRECISION (TREE_TYPE (type)));
|
||
|
||
stabstr_S (";imag:");
|
||
dbxout_type (TREE_TYPE (type), 0);
|
||
stabstr_C (',');
|
||
stabstr_D (TYPE_PRECISION (TREE_TYPE (type)));
|
||
stabstr_C (',');
|
||
stabstr_D (TYPE_PRECISION (TREE_TYPE (type)));
|
||
stabstr_S (";;");
|
||
}
|
||
break;
|
||
|
||
case ARRAY_TYPE:
|
||
/* Make arrays of packed bits look like bitstrings for chill. */
|
||
if (TYPE_PACKED (type) && use_gnu_debug_info_extensions)
|
||
{
|
||
stabstr_S ("@s");
|
||
stabstr_D (BITS_PER_UNIT * int_size_in_bytes (type));
|
||
stabstr_S (";@S;S");
|
||
dbxout_type (TYPE_DOMAIN (type), 0);
|
||
break;
|
||
}
|
||
|
||
if (use_gnu_debug_info_extensions && vector_type)
|
||
stabstr_S ("@V;");
|
||
|
||
/* Output "a" followed by a range type definition
|
||
for the index type of the array
|
||
followed by a reference to the target-type.
|
||
ar1;0;N;M for a C array of type M and size N+1. */
|
||
/* Check if a character string type, which in Chill is
|
||
different from an array of characters. */
|
||
if (TYPE_STRING_FLAG (type) && use_gnu_debug_info_extensions)
|
||
{
|
||
stabstr_S ("@S;");
|
||
}
|
||
tem = TYPE_DOMAIN (type);
|
||
if (tem == NULL)
|
||
{
|
||
stabstr_S ("ar");
|
||
dbxout_type_index (integer_type_node);
|
||
stabstr_S (";0;-1;");
|
||
}
|
||
else
|
||
{
|
||
stabstr_C ('a');
|
||
dbxout_range_type (tem);
|
||
}
|
||
|
||
dbxout_type (TREE_TYPE (type), 0);
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
{
|
||
tree binfo = TYPE_BINFO (type);
|
||
|
||
/* Output a structure type. We must use the same test here as we
|
||
use in the DBX_NO_XREFS case above. */
|
||
if ((TYPE_NAME (type) != 0
|
||
&& ! (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
||
&& DECL_IGNORED_P (TYPE_NAME (type)))
|
||
&& !full)
|
||
|| !COMPLETE_TYPE_P (type)
|
||
/* No way in DBX fmt to describe a variable size. */
|
||
|| ! host_integerp (TYPE_SIZE (type), 1))
|
||
{
|
||
/* If the type is just a cross reference, output one
|
||
and mark the type as partially described.
|
||
If it later becomes defined, we will output
|
||
its real definition.
|
||
If the type has a name, don't nest its definition within
|
||
another type's definition; instead, output an xref
|
||
and let the definition come when the name is defined. */
|
||
stabstr_S ((TREE_CODE (type) == RECORD_TYPE) ? "xs" : "xu");
|
||
if (TYPE_NAME (type) != 0)
|
||
dbxout_type_name (type);
|
||
else
|
||
{
|
||
stabstr_S ("$$");
|
||
stabstr_D (anonymous_type_number++);
|
||
}
|
||
|
||
stabstr_C (':');
|
||
typevec[TYPE_SYMTAB_ADDRESS (type)].status = TYPE_XREF;
|
||
break;
|
||
}
|
||
|
||
/* Identify record or union, and print its size. */
|
||
stabstr_C ((TREE_CODE (type) == RECORD_TYPE) ? 's' : 'u');
|
||
stabstr_D (int_size_in_bytes (type));
|
||
|
||
if (binfo)
|
||
{
|
||
int i;
|
||
tree child;
|
||
VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
|
||
|
||
if (use_gnu_debug_info_extensions)
|
||
{
|
||
if (BINFO_N_BASE_BINFOS (binfo))
|
||
{
|
||
stabstr_C ('!');
|
||
stabstr_U (BINFO_N_BASE_BINFOS (binfo));
|
||
stabstr_C (',');
|
||
}
|
||
}
|
||
for (i = 0; BINFO_BASE_ITERATE (binfo, i, child); i++)
|
||
{
|
||
tree access = (accesses ? VEC_index (tree, accesses, i)
|
||
: access_public_node);
|
||
|
||
if (use_gnu_debug_info_extensions)
|
||
{
|
||
stabstr_C (BINFO_VIRTUAL_P (child) ? '1' : '0');
|
||
stabstr_C (access == access_public_node ? '2' :
|
||
access == access_protected_node
|
||
? '1' :'0');
|
||
if (BINFO_VIRTUAL_P (child)
|
||
&& (strcmp (lang_hooks.name, "GNU C++") == 0
|
||
|| strcmp (lang_hooks.name, "GNU Objective-C++") == 0))
|
||
/* For a virtual base, print the (negative)
|
||
offset within the vtable where we must look
|
||
to find the necessary adjustment. */
|
||
stabstr_D
|
||
(tree_low_cst (BINFO_VPTR_FIELD (child), 0)
|
||
* BITS_PER_UNIT);
|
||
else
|
||
stabstr_D (tree_low_cst (BINFO_OFFSET (child), 0)
|
||
* BITS_PER_UNIT);
|
||
stabstr_C (',');
|
||
dbxout_type (BINFO_TYPE (child), 0);
|
||
stabstr_C (';');
|
||
}
|
||
else
|
||
{
|
||
/* Print out the base class information with
|
||
fields which have the same names at the types
|
||
they hold. */
|
||
dbxout_type_name (BINFO_TYPE (child));
|
||
stabstr_C (':');
|
||
dbxout_type (BINFO_TYPE (child), full);
|
||
stabstr_C (',');
|
||
stabstr_D (tree_low_cst (BINFO_OFFSET (child), 0)
|
||
* BITS_PER_UNIT);
|
||
stabstr_C (',');
|
||
stabstr_D
|
||
(tree_low_cst (TYPE_SIZE (BINFO_TYPE (child)), 0)
|
||
* BITS_PER_UNIT);
|
||
stabstr_C (';');
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Write out the field declarations. */
|
||
dbxout_type_fields (type);
|
||
if (use_gnu_debug_info_extensions && TYPE_METHODS (type) != NULL_TREE)
|
||
{
|
||
dbxout_type_methods (type);
|
||
}
|
||
|
||
stabstr_C (';');
|
||
|
||
if (use_gnu_debug_info_extensions && TREE_CODE (type) == RECORD_TYPE
|
||
/* Avoid the ~ if we don't really need it--it confuses dbx. */
|
||
&& TYPE_VFIELD (type))
|
||
{
|
||
|
||
/* We need to write out info about what field this class
|
||
uses as its "main" vtable pointer field, because if this
|
||
field is inherited from a base class, GDB cannot necessarily
|
||
figure out which field it's using in time. */
|
||
stabstr_S ("~%");
|
||
dbxout_type (DECL_FCONTEXT (TYPE_VFIELD (type)), 0);
|
||
stabstr_C (';');
|
||
}
|
||
break;
|
||
|
||
case ENUMERAL_TYPE:
|
||
/* We must use the same test here as we use in the DBX_NO_XREFS case
|
||
above. We simplify it a bit since an enum will never have a variable
|
||
size. */
|
||
if ((TYPE_NAME (type) != 0
|
||
&& ! (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
|
||
&& DECL_IGNORED_P (TYPE_NAME (type)))
|
||
&& !full)
|
||
|| !COMPLETE_TYPE_P (type))
|
||
{
|
||
stabstr_S ("xe");
|
||
dbxout_type_name (type);
|
||
typevec[TYPE_SYMTAB_ADDRESS (type)].status = TYPE_XREF;
|
||
stabstr_C (':');
|
||
return;
|
||
}
|
||
if (use_gnu_debug_info_extensions
|
||
&& TYPE_PRECISION (type) != TYPE_PRECISION (integer_type_node))
|
||
{
|
||
stabstr_S ("@s");
|
||
stabstr_D (TYPE_PRECISION (type));
|
||
stabstr_C (';');
|
||
}
|
||
|
||
stabstr_C ('e');
|
||
for (tem = TYPE_VALUES (type); tem; tem = TREE_CHAIN (tem))
|
||
{
|
||
stabstr_I (TREE_PURPOSE (tem));
|
||
stabstr_C (':');
|
||
|
||
if (TREE_INT_CST_HIGH (TREE_VALUE (tem)) == 0)
|
||
stabstr_D (TREE_INT_CST_LOW (TREE_VALUE (tem)));
|
||
else if (TREE_INT_CST_HIGH (TREE_VALUE (tem)) == -1
|
||
&& (HOST_WIDE_INT) TREE_INT_CST_LOW (TREE_VALUE (tem)) < 0)
|
||
stabstr_D (TREE_INT_CST_LOW (TREE_VALUE (tem)));
|
||
else
|
||
stabstr_O (TREE_VALUE (tem));
|
||
|
||
stabstr_C (',');
|
||
if (TREE_CHAIN (tem) != 0)
|
||
CONTIN;
|
||
}
|
||
|
||
stabstr_C (';');
|
||
break;
|
||
|
||
case POINTER_TYPE:
|
||
stabstr_C ('*');
|
||
dbxout_type (TREE_TYPE (type), 0);
|
||
break;
|
||
|
||
case METHOD_TYPE:
|
||
if (use_gnu_debug_info_extensions)
|
||
{
|
||
stabstr_C ('#');
|
||
|
||
/* Write the argument types out longhand. */
|
||
dbxout_type (TYPE_METHOD_BASETYPE (type), 0);
|
||
stabstr_C (',');
|
||
dbxout_type (TREE_TYPE (type), 0);
|
||
dbxout_args (TYPE_ARG_TYPES (type));
|
||
stabstr_C (';');
|
||
}
|
||
else
|
||
/* Treat it as a function type. */
|
||
dbxout_type (TREE_TYPE (type), 0);
|
||
break;
|
||
|
||
case OFFSET_TYPE:
|
||
if (use_gnu_debug_info_extensions)
|
||
{
|
||
stabstr_C ('@');
|
||
dbxout_type (TYPE_OFFSET_BASETYPE (type), 0);
|
||
stabstr_C (',');
|
||
dbxout_type (TREE_TYPE (type), 0);
|
||
}
|
||
else
|
||
/* Should print as an int, because it is really just an offset. */
|
||
dbxout_type (integer_type_node, 0);
|
||
break;
|
||
|
||
case REFERENCE_TYPE:
|
||
if (use_gnu_debug_info_extensions)
|
||
{
|
||
stabstr_C ('&');
|
||
}
|
||
else
|
||
stabstr_C ('*');
|
||
dbxout_type (TREE_TYPE (type), 0);
|
||
break;
|
||
|
||
case FUNCTION_TYPE:
|
||
stabstr_C ('f');
|
||
dbxout_type (TREE_TYPE (type), 0);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if the given type represents an integer whose bounds
|
||
should be printed in octal format. */
|
||
|
||
static bool
|
||
print_int_cst_bounds_in_octal_p (tree type)
|
||
{
|
||
/* If we can use GDB extensions and the size is wider than a long
|
||
(the size used by GDB to read them) or we may have trouble writing
|
||
the bounds the usual way, write them in octal. Note the test is for
|
||
the *target's* size of "long", not that of the host. The host test
|
||
is just to make sure we can write it out in case the host wide int
|
||
is narrower than the target "long".
|
||
|
||
For unsigned types, we use octal if they are the same size or larger.
|
||
This is because we print the bounds as signed decimal, and hence they
|
||
can't span same size unsigned types. */
|
||
|
||
if (use_gnu_debug_info_extensions
|
||
&& TYPE_MIN_VALUE (type) != 0
|
||
&& TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
|
||
&& TYPE_MAX_VALUE (type) != 0
|
||
&& TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
|
||
&& (TYPE_PRECISION (type) > TYPE_PRECISION (integer_type_node)
|
||
|| ((TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
|
||
&& TYPE_UNSIGNED (type))
|
||
|| TYPE_PRECISION (type) > HOST_BITS_PER_WIDE_INT
|
||
|| (TYPE_PRECISION (type) == HOST_BITS_PER_WIDE_INT
|
||
&& TYPE_UNSIGNED (type))))
|
||
return TRUE;
|
||
else
|
||
return FALSE;
|
||
}
|
||
|
||
/* Output the name of type TYPE, with no punctuation.
|
||
Such names can be set up either by typedef declarations
|
||
or by struct, enum and union tags. */
|
||
|
||
static void
|
||
dbxout_type_name (tree type)
|
||
{
|
||
tree t = TYPE_NAME (type);
|
||
|
||
gcc_assert (t);
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case IDENTIFIER_NODE:
|
||
break;
|
||
case TYPE_DECL:
|
||
t = DECL_NAME (t);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
stabstr_I (t);
|
||
}
|
||
|
||
/* Output leading leading struct or class names needed for qualifying
|
||
type whose scope is limited to a struct or class. */
|
||
|
||
static void
|
||
dbxout_class_name_qualifiers (tree decl)
|
||
{
|
||
tree context = decl_type_context (decl);
|
||
|
||
if (context != NULL_TREE
|
||
&& TREE_CODE(context) == RECORD_TYPE
|
||
&& TYPE_NAME (context) != 0
|
||
&& (TREE_CODE (TYPE_NAME (context)) == IDENTIFIER_NODE
|
||
|| (DECL_NAME (TYPE_NAME (context)) != 0)))
|
||
{
|
||
tree name = TYPE_NAME (context);
|
||
|
||
if (TREE_CODE (name) == TYPE_DECL)
|
||
{
|
||
dbxout_class_name_qualifiers (name);
|
||
name = DECL_NAME (name);
|
||
}
|
||
stabstr_I (name);
|
||
stabstr_S ("::");
|
||
}
|
||
}
|
||
|
||
/* This is a specialized subset of expand_expr for use by dbxout_symbol in
|
||
evaluating DECL_VALUE_EXPR. In particular, we stop if we find decls that
|
||
havn't been expanded, or if the expression is getting so complex we won't
|
||
be able to represent it in stabs anyway. Returns NULL on failure. */
|
||
|
||
static rtx
|
||
dbxout_expand_expr (tree expr)
|
||
{
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
if (DECL_HAS_VALUE_EXPR_P (expr))
|
||
return dbxout_expand_expr (DECL_VALUE_EXPR (expr));
|
||
/* FALLTHRU */
|
||
|
||
case CONST_DECL:
|
||
case RESULT_DECL:
|
||
return DECL_RTL_IF_SET (expr);
|
||
|
||
case INTEGER_CST:
|
||
return expand_expr (expr, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
|
||
|
||
case COMPONENT_REF:
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
case BIT_FIELD_REF:
|
||
{
|
||
enum machine_mode mode;
|
||
HOST_WIDE_INT bitsize, bitpos;
|
||
tree offset, tem;
|
||
int volatilep = 0, unsignedp = 0;
|
||
rtx x;
|
||
|
||
tem = get_inner_reference (expr, &bitsize, &bitpos, &offset,
|
||
&mode, &unsignedp, &volatilep, true);
|
||
|
||
x = dbxout_expand_expr (tem);
|
||
if (x == NULL || !MEM_P (x))
|
||
return NULL;
|
||
if (offset != NULL)
|
||
{
|
||
if (!host_integerp (offset, 0))
|
||
return NULL;
|
||
x = adjust_address_nv (x, mode, tree_low_cst (offset, 0));
|
||
}
|
||
if (bitpos != 0)
|
||
x = adjust_address_nv (x, mode, bitpos / BITS_PER_UNIT);
|
||
|
||
return x;
|
||
}
|
||
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Helper function for output_used_types. Queue one entry from the
|
||
used types hash to be output. */
|
||
|
||
static int
|
||
output_used_types_helper (void **slot, void *data)
|
||
{
|
||
tree type = *slot;
|
||
VEC(tree, heap) **types_p = data;
|
||
|
||
if ((TREE_CODE (type) == RECORD_TYPE
|
||
|| TREE_CODE (type) == UNION_TYPE
|
||
|| TREE_CODE (type) == QUAL_UNION_TYPE
|
||
|| TREE_CODE (type) == ENUMERAL_TYPE)
|
||
&& TYPE_STUB_DECL (type)
|
||
&& DECL_P (TYPE_STUB_DECL (type))
|
||
&& ! DECL_IGNORED_P (TYPE_STUB_DECL (type)))
|
||
VEC_quick_push (tree, *types_p, TYPE_STUB_DECL (type));
|
||
else if (TYPE_NAME (type)
|
||
&& TREE_CODE (TYPE_NAME (type)) == TYPE_DECL)
|
||
VEC_quick_push (tree, *types_p, TYPE_NAME (type));
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* This is a qsort callback which sorts types and declarations into a
|
||
predictable order (types, then declarations, sorted by UID
|
||
within). */
|
||
|
||
static int
|
||
output_types_sort (const void *pa, const void *pb)
|
||
{
|
||
const tree lhs = *((const tree *)pa);
|
||
const tree rhs = *((const tree *)pb);
|
||
|
||
if (TYPE_P (lhs))
|
||
{
|
||
if (TYPE_P (rhs))
|
||
return TYPE_UID (lhs) - TYPE_UID (rhs);
|
||
else
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
if (TYPE_P (rhs))
|
||
return -1;
|
||
else
|
||
return DECL_UID (lhs) - DECL_UID (rhs);
|
||
}
|
||
}
|
||
|
||
|
||
/* Force all types used by this function to be output in debug
|
||
information. */
|
||
|
||
static void
|
||
output_used_types (void)
|
||
{
|
||
if (cfun && cfun->used_types_hash)
|
||
{
|
||
VEC(tree, heap) *types;
|
||
int i;
|
||
tree type;
|
||
|
||
types = VEC_alloc (tree, heap, htab_elements (cfun->used_types_hash));
|
||
htab_traverse (cfun->used_types_hash, output_used_types_helper, &types);
|
||
|
||
/* Sort by UID to prevent dependence on hash table ordering. */
|
||
qsort (VEC_address (tree, types), VEC_length (tree, types),
|
||
sizeof (tree), output_types_sort);
|
||
|
||
for (i = 0; VEC_iterate (tree, types, i, type); i++)
|
||
debug_queue_symbol (type);
|
||
|
||
VEC_free (tree, heap, types);
|
||
}
|
||
}
|
||
|
||
/* Output a .stabs for the symbol defined by DECL,
|
||
which must be a ..._DECL node in the normal namespace.
|
||
It may be a CONST_DECL, a FUNCTION_DECL, a PARM_DECL or a VAR_DECL.
|
||
LOCAL is nonzero if the scope is less than the entire file.
|
||
Return 1 if a stabs might have been emitted. */
|
||
|
||
int
|
||
dbxout_symbol (tree decl, int local ATTRIBUTE_UNUSED)
|
||
{
|
||
tree type = TREE_TYPE (decl);
|
||
tree context = NULL_TREE;
|
||
int result = 0;
|
||
rtx decl_rtl;
|
||
|
||
/* "Intercept" dbxout_symbol() calls like we do all debug_hooks. */
|
||
++debug_nesting;
|
||
|
||
/* Ignore nameless syms, but don't ignore type tags. */
|
||
|
||
if ((DECL_NAME (decl) == 0 && TREE_CODE (decl) != TYPE_DECL)
|
||
|| DECL_IGNORED_P (decl))
|
||
DBXOUT_DECR_NESTING_AND_RETURN (0);
|
||
|
||
/* If we are to generate only the symbols actually used then such
|
||
symbol nodes are flagged with TREE_USED. Ignore any that
|
||
aren't flaged as TREE_USED. */
|
||
|
||
if (flag_debug_only_used_symbols
|
||
&& (!TREE_USED (decl)
|
||
&& (TREE_CODE (decl) != VAR_DECL || !DECL_INITIAL (decl))))
|
||
DBXOUT_DECR_NESTING_AND_RETURN (0);
|
||
|
||
/* If dbxout_init has not yet run, queue this symbol for later. */
|
||
if (!typevec)
|
||
{
|
||
preinit_symbols = tree_cons (0, decl, preinit_symbols);
|
||
DBXOUT_DECR_NESTING_AND_RETURN (0);
|
||
}
|
||
|
||
if (flag_debug_only_used_symbols)
|
||
{
|
||
tree t;
|
||
|
||
/* We now have a used symbol. We need to generate the info for
|
||
the symbol's type in addition to the symbol itself. These
|
||
type symbols are queued to be generated after were done with
|
||
the symbol itself (otherwise they would fight over the
|
||
stabstr obstack).
|
||
|
||
Note, because the TREE_TYPE(type) might be something like a
|
||
pointer to a named type we need to look for the first name
|
||
we see following the TREE_TYPE chain. */
|
||
|
||
t = type;
|
||
while (POINTER_TYPE_P (t))
|
||
t = TREE_TYPE (t);
|
||
|
||
/* RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE, and ENUMERAL_TYPE
|
||
need special treatment. The TYPE_STUB_DECL field in these
|
||
types generally represents the tag name type we want to
|
||
output. In addition there could be a typedef type with
|
||
a different name. In that case we also want to output
|
||
that. */
|
||
|
||
if (TREE_CODE (t) == RECORD_TYPE
|
||
|| TREE_CODE (t) == UNION_TYPE
|
||
|| TREE_CODE (t) == QUAL_UNION_TYPE
|
||
|| TREE_CODE (t) == ENUMERAL_TYPE)
|
||
{
|
||
if (TYPE_STUB_DECL (t)
|
||
&& TYPE_STUB_DECL (t) != decl
|
||
&& DECL_P (TYPE_STUB_DECL (t))
|
||
&& ! DECL_IGNORED_P (TYPE_STUB_DECL (t)))
|
||
{
|
||
debug_queue_symbol (TYPE_STUB_DECL (t));
|
||
if (TYPE_NAME (t)
|
||
&& TYPE_NAME (t) != TYPE_STUB_DECL (t)
|
||
&& TYPE_NAME (t) != decl
|
||
&& DECL_P (TYPE_NAME (t)))
|
||
debug_queue_symbol (TYPE_NAME (t));
|
||
}
|
||
}
|
||
else if (TYPE_NAME (t)
|
||
&& TYPE_NAME (t) != decl
|
||
&& DECL_P (TYPE_NAME (t)))
|
||
debug_queue_symbol (TYPE_NAME (t));
|
||
}
|
||
|
||
emit_pending_bincls_if_required ();
|
||
|
||
switch (TREE_CODE (decl))
|
||
{
|
||
case CONST_DECL:
|
||
/* Enum values are defined by defining the enum type. */
|
||
break;
|
||
|
||
case FUNCTION_DECL:
|
||
decl_rtl = DECL_RTL_IF_SET (decl);
|
||
if (!decl_rtl)
|
||
DBXOUT_DECR_NESTING_AND_RETURN (0);
|
||
if (DECL_EXTERNAL (decl))
|
||
break;
|
||
/* Don't mention a nested function under its parent. */
|
||
context = decl_function_context (decl);
|
||
if (context == current_function_decl)
|
||
break;
|
||
/* Don't mention an inline instance of a nested function. */
|
||
if (context && DECL_FROM_INLINE (decl))
|
||
break;
|
||
if (!MEM_P (decl_rtl)
|
||
|| GET_CODE (XEXP (decl_rtl, 0)) != SYMBOL_REF)
|
||
break;
|
||
|
||
if (flag_debug_only_used_symbols)
|
||
output_used_types ();
|
||
|
||
dbxout_begin_complex_stabs ();
|
||
stabstr_I (DECL_ASSEMBLER_NAME (decl));
|
||
stabstr_S (TREE_PUBLIC (decl) ? ":F" : ":f");
|
||
result = 1;
|
||
|
||
if (TREE_TYPE (type))
|
||
dbxout_type (TREE_TYPE (type), 0);
|
||
else
|
||
dbxout_type (void_type_node, 0);
|
||
|
||
/* For a nested function, when that function is compiled,
|
||
mention the containing function name
|
||
as well as (since dbx wants it) our own assembler-name. */
|
||
if (context != 0)
|
||
{
|
||
stabstr_C (',');
|
||
stabstr_I (DECL_ASSEMBLER_NAME (decl));
|
||
stabstr_C (',');
|
||
stabstr_I (DECL_NAME (context));
|
||
}
|
||
|
||
dbxout_finish_complex_stabs (decl, N_FUN, XEXP (decl_rtl, 0), 0, 0);
|
||
break;
|
||
|
||
case TYPE_DECL:
|
||
/* Don't output the same typedef twice.
|
||
And don't output what language-specific stuff doesn't want output. */
|
||
if (TREE_ASM_WRITTEN (decl) || TYPE_DECL_SUPPRESS_DEBUG (decl))
|
||
DBXOUT_DECR_NESTING_AND_RETURN (0);
|
||
|
||
/* Don't output typedefs for types with magic type numbers (XCOFF). */
|
||
#ifdef DBX_ASSIGN_FUNDAMENTAL_TYPE_NUMBER
|
||
{
|
||
int fundamental_type_number =
|
||
DBX_ASSIGN_FUNDAMENTAL_TYPE_NUMBER (decl);
|
||
|
||
if (fundamental_type_number != 0)
|
||
{
|
||
TREE_ASM_WRITTEN (decl) = 1;
|
||
TYPE_SYMTAB_ADDRESS (TREE_TYPE (decl)) = fundamental_type_number;
|
||
DBXOUT_DECR_NESTING_AND_RETURN (0);
|
||
}
|
||
}
|
||
#endif
|
||
FORCE_TEXT;
|
||
result = 1;
|
||
{
|
||
int tag_needed = 1;
|
||
int did_output = 0;
|
||
|
||
if (DECL_NAME (decl))
|
||
{
|
||
/* Nonzero means we must output a tag as well as a typedef. */
|
||
tag_needed = 0;
|
||
|
||
/* Handle the case of a C++ structure or union
|
||
where the TYPE_NAME is a TYPE_DECL
|
||
which gives both a typedef name and a tag. */
|
||
/* dbx requires the tag first and the typedef second. */
|
||
if ((TREE_CODE (type) == RECORD_TYPE
|
||
|| TREE_CODE (type) == UNION_TYPE
|
||
|| TREE_CODE (type) == QUAL_UNION_TYPE)
|
||
&& TYPE_NAME (type) == decl
|
||
&& !use_gnu_debug_info_extensions
|
||
&& !TREE_ASM_WRITTEN (TYPE_NAME (type))
|
||
/* Distinguish the implicit typedefs of C++
|
||
from explicit ones that might be found in C. */
|
||
&& DECL_ARTIFICIAL (decl)
|
||
/* Do not generate a tag for incomplete records. */
|
||
&& COMPLETE_TYPE_P (type)
|
||
/* Do not generate a tag for records of variable size,
|
||
since this type can not be properly described in the
|
||
DBX format, and it confuses some tools such as objdump. */
|
||
&& host_integerp (TYPE_SIZE (type), 1))
|
||
{
|
||
tree name = TYPE_NAME (type);
|
||
if (TREE_CODE (name) == TYPE_DECL)
|
||
name = DECL_NAME (name);
|
||
|
||
dbxout_begin_complex_stabs ();
|
||
stabstr_I (name);
|
||
stabstr_S (":T");
|
||
dbxout_type (type, 1);
|
||
dbxout_finish_complex_stabs (0, DBX_TYPE_DECL_STABS_CODE,
|
||
0, 0, 0);
|
||
}
|
||
|
||
dbxout_begin_complex_stabs ();
|
||
|
||
/* Output leading class/struct qualifiers. */
|
||
if (use_gnu_debug_info_extensions)
|
||
dbxout_class_name_qualifiers (decl);
|
||
|
||
/* Output typedef name. */
|
||
stabstr_I (DECL_NAME (decl));
|
||
stabstr_C (':');
|
||
|
||
/* Short cut way to output a tag also. */
|
||
if ((TREE_CODE (type) == RECORD_TYPE
|
||
|| TREE_CODE (type) == UNION_TYPE
|
||
|| TREE_CODE (type) == QUAL_UNION_TYPE)
|
||
&& TYPE_NAME (type) == decl
|
||
/* Distinguish the implicit typedefs of C++
|
||
from explicit ones that might be found in C. */
|
||
&& DECL_ARTIFICIAL (decl))
|
||
{
|
||
if (use_gnu_debug_info_extensions)
|
||
{
|
||
stabstr_C ('T');
|
||
TREE_ASM_WRITTEN (TYPE_NAME (type)) = 1;
|
||
}
|
||
}
|
||
|
||
stabstr_C ('t');
|
||
dbxout_type (type, 1);
|
||
dbxout_finish_complex_stabs (decl, DBX_TYPE_DECL_STABS_CODE,
|
||
0, 0, 0);
|
||
did_output = 1;
|
||
}
|
||
|
||
/* Don't output a tag if this is an incomplete type. This prevents
|
||
the sun4 Sun OS 4.x dbx from crashing. */
|
||
|
||
if (tag_needed && TYPE_NAME (type) != 0
|
||
&& (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE
|
||
|| (DECL_NAME (TYPE_NAME (type)) != 0))
|
||
&& COMPLETE_TYPE_P (type)
|
||
&& !TREE_ASM_WRITTEN (TYPE_NAME (type)))
|
||
{
|
||
/* For a TYPE_DECL with no name, but the type has a name,
|
||
output a tag.
|
||
This is what represents `struct foo' with no typedef. */
|
||
/* In C++, the name of a type is the corresponding typedef.
|
||
In C, it is an IDENTIFIER_NODE. */
|
||
tree name = TYPE_NAME (type);
|
||
if (TREE_CODE (name) == TYPE_DECL)
|
||
name = DECL_NAME (name);
|
||
|
||
dbxout_begin_complex_stabs ();
|
||
stabstr_I (name);
|
||
stabstr_S (":T");
|
||
dbxout_type (type, 1);
|
||
dbxout_finish_complex_stabs (0, DBX_TYPE_DECL_STABS_CODE, 0, 0, 0);
|
||
did_output = 1;
|
||
}
|
||
|
||
/* If an enum type has no name, it cannot be referred to, but
|
||
we must output it anyway, to record the enumeration
|
||
constants. */
|
||
|
||
if (!did_output && TREE_CODE (type) == ENUMERAL_TYPE)
|
||
{
|
||
dbxout_begin_complex_stabs ();
|
||
/* Some debuggers fail when given NULL names, so give this a
|
||
harmless name of " " (Why not "(anon)"?). */
|
||
stabstr_S (" :T");
|
||
dbxout_type (type, 1);
|
||
dbxout_finish_complex_stabs (0, DBX_TYPE_DECL_STABS_CODE, 0, 0, 0);
|
||
}
|
||
|
||
/* Prevent duplicate output of a typedef. */
|
||
TREE_ASM_WRITTEN (decl) = 1;
|
||
break;
|
||
}
|
||
|
||
case PARM_DECL:
|
||
/* Parm decls go in their own separate chains
|
||
and are output by dbxout_reg_parms and dbxout_parms. */
|
||
gcc_unreachable ();
|
||
|
||
case RESULT_DECL:
|
||
case VAR_DECL:
|
||
/* Don't mention a variable that is external.
|
||
Let the file that defines it describe it. */
|
||
if (DECL_EXTERNAL (decl))
|
||
break;
|
||
|
||
/* If the variable is really a constant
|
||
and not written in memory, inform the debugger.
|
||
|
||
??? Why do we skip emitting the type and location in this case? */
|
||
if (TREE_STATIC (decl) && TREE_READONLY (decl)
|
||
&& DECL_INITIAL (decl) != 0
|
||
&& host_integerp (DECL_INITIAL (decl), 0)
|
||
&& ! TREE_ASM_WRITTEN (decl)
|
||
&& (DECL_CONTEXT (decl) == NULL_TREE
|
||
|| TREE_CODE (DECL_CONTEXT (decl)) == BLOCK
|
||
|| TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
|
||
&& TREE_PUBLIC (decl) == 0)
|
||
{
|
||
/* The sun4 assembler does not grok this. */
|
||
|
||
if (TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE
|
||
|| TREE_CODE (TREE_TYPE (decl)) == ENUMERAL_TYPE)
|
||
{
|
||
HOST_WIDE_INT ival = TREE_INT_CST_LOW (DECL_INITIAL (decl));
|
||
|
||
dbxout_begin_complex_stabs ();
|
||
dbxout_symbol_name (decl, NULL, 'c');
|
||
stabstr_S ("=i");
|
||
stabstr_D (ival);
|
||
dbxout_finish_complex_stabs (0, N_LSYM, 0, 0, 0);
|
||
DBXOUT_DECR_NESTING;
|
||
return 1;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
/* else it is something we handle like a normal variable. */
|
||
|
||
decl_rtl = dbxout_expand_expr (decl);
|
||
if (!decl_rtl)
|
||
DBXOUT_DECR_NESTING_AND_RETURN (0);
|
||
|
||
decl_rtl = eliminate_regs (decl_rtl, 0, NULL_RTX);
|
||
#ifdef LEAF_REG_REMAP
|
||
if (current_function_uses_only_leaf_regs)
|
||
leaf_renumber_regs_insn (decl_rtl);
|
||
#endif
|
||
|
||
result = dbxout_symbol_location (decl, type, 0, decl_rtl);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
DBXOUT_DECR_NESTING;
|
||
return result;
|
||
}
|
||
|
||
/* Output the stab for DECL, a VAR_DECL, RESULT_DECL or PARM_DECL.
|
||
Add SUFFIX to its name, if SUFFIX is not 0.
|
||
Describe the variable as residing in HOME
|
||
(usually HOME is DECL_RTL (DECL), but not always).
|
||
Returns 1 if the stab was really emitted. */
|
||
|
||
static int
|
||
dbxout_symbol_location (tree decl, tree type, const char *suffix, rtx home)
|
||
{
|
||
int letter = 0;
|
||
STAB_CODE_TYPE code;
|
||
rtx addr = 0;
|
||
int number = 0;
|
||
int regno = -1;
|
||
|
||
/* Don't mention a variable at all
|
||
if it was completely optimized into nothingness.
|
||
|
||
If the decl was from an inline function, then its rtl
|
||
is not identically the rtl that was used in this
|
||
particular compilation. */
|
||
if (GET_CODE (home) == SUBREG)
|
||
{
|
||
rtx value = home;
|
||
|
||
while (GET_CODE (value) == SUBREG)
|
||
value = SUBREG_REG (value);
|
||
if (REG_P (value))
|
||
{
|
||
if (REGNO (value) >= FIRST_PSEUDO_REGISTER)
|
||
return 0;
|
||
}
|
||
home = alter_subreg (&home);
|
||
}
|
||
if (REG_P (home))
|
||
{
|
||
regno = REGNO (home);
|
||
if (regno >= FIRST_PSEUDO_REGISTER)
|
||
return 0;
|
||
}
|
||
|
||
/* The kind-of-variable letter depends on where
|
||
the variable is and on the scope of its name:
|
||
G and N_GSYM for static storage and global scope,
|
||
S for static storage and file scope,
|
||
V for static storage and local scope,
|
||
for those two, use N_LCSYM if data is in bss segment,
|
||
N_STSYM if in data segment, N_FUN otherwise.
|
||
(We used N_FUN originally, then changed to N_STSYM
|
||
to please GDB. However, it seems that confused ld.
|
||
Now GDB has been fixed to like N_FUN, says Kingdon.)
|
||
no letter at all, and N_LSYM, for auto variable,
|
||
r and N_RSYM for register variable. */
|
||
|
||
if (MEM_P (home) && GET_CODE (XEXP (home, 0)) == SYMBOL_REF)
|
||
{
|
||
if (TREE_PUBLIC (decl))
|
||
{
|
||
letter = 'G';
|
||
code = N_GSYM;
|
||
}
|
||
else
|
||
{
|
||
addr = XEXP (home, 0);
|
||
|
||
letter = decl_function_context (decl) ? 'V' : 'S';
|
||
|
||
/* Some ports can transform a symbol ref into a label ref,
|
||
because the symbol ref is too far away and has to be
|
||
dumped into a constant pool. Alternatively, the symbol
|
||
in the constant pool might be referenced by a different
|
||
symbol. */
|
||
if (GET_CODE (addr) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (addr))
|
||
{
|
||
bool marked;
|
||
rtx tmp = get_pool_constant_mark (addr, &marked);
|
||
|
||
if (GET_CODE (tmp) == SYMBOL_REF)
|
||
{
|
||
addr = tmp;
|
||
if (CONSTANT_POOL_ADDRESS_P (addr))
|
||
get_pool_constant_mark (addr, &marked);
|
||
else
|
||
marked = true;
|
||
}
|
||
else if (GET_CODE (tmp) == LABEL_REF)
|
||
{
|
||
addr = tmp;
|
||
marked = true;
|
||
}
|
||
|
||
/* If all references to the constant pool were optimized
|
||
out, we just ignore the symbol. */
|
||
if (!marked)
|
||
return 0;
|
||
}
|
||
|
||
/* This should be the same condition as in assemble_variable, but
|
||
we don't have access to dont_output_data here. So, instead,
|
||
we rely on the fact that error_mark_node initializers always
|
||
end up in bss for C++ and never end up in bss for C. */
|
||
if (DECL_INITIAL (decl) == 0
|
||
|| (!strcmp (lang_hooks.name, "GNU C++")
|
||
&& DECL_INITIAL (decl) == error_mark_node))
|
||
code = N_LCSYM;
|
||
else if (DECL_IN_TEXT_SECTION (decl))
|
||
/* This is not quite right, but it's the closest
|
||
of all the codes that Unix defines. */
|
||
code = DBX_STATIC_CONST_VAR_CODE;
|
||
else
|
||
{
|
||
/* Ultrix `as' seems to need this. */
|
||
#ifdef DBX_STATIC_STAB_DATA_SECTION
|
||
switch_to_section (data_section);
|
||
#endif
|
||
code = N_STSYM;
|
||
}
|
||
}
|
||
}
|
||
else if (regno >= 0)
|
||
{
|
||
letter = 'r';
|
||
code = N_RSYM;
|
||
number = DBX_REGISTER_NUMBER (regno);
|
||
}
|
||
else if (MEM_P (home)
|
||
&& (MEM_P (XEXP (home, 0))
|
||
|| (REG_P (XEXP (home, 0))
|
||
&& REGNO (XEXP (home, 0)) != HARD_FRAME_POINTER_REGNUM
|
||
&& REGNO (XEXP (home, 0)) != STACK_POINTER_REGNUM
|
||
#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
&& REGNO (XEXP (home, 0)) != ARG_POINTER_REGNUM
|
||
#endif
|
||
)))
|
||
/* If the value is indirect by memory or by a register
|
||
that isn't the frame pointer
|
||
then it means the object is variable-sized and address through
|
||
that register or stack slot. DBX has no way to represent this
|
||
so all we can do is output the variable as a pointer.
|
||
If it's not a parameter, ignore it. */
|
||
{
|
||
if (REG_P (XEXP (home, 0)))
|
||
{
|
||
letter = 'r';
|
||
code = N_RSYM;
|
||
if (REGNO (XEXP (home, 0)) >= FIRST_PSEUDO_REGISTER)
|
||
return 0;
|
||
number = DBX_REGISTER_NUMBER (REGNO (XEXP (home, 0)));
|
||
}
|
||
else
|
||
{
|
||
code = N_LSYM;
|
||
/* RTL looks like (MEM (MEM (PLUS (REG...) (CONST_INT...)))).
|
||
We want the value of that CONST_INT. */
|
||
number = DEBUGGER_AUTO_OFFSET (XEXP (XEXP (home, 0), 0));
|
||
}
|
||
|
||
/* Effectively do build_pointer_type, but don't cache this type,
|
||
since it might be temporary whereas the type it points to
|
||
might have been saved for inlining. */
|
||
/* Don't use REFERENCE_TYPE because dbx can't handle that. */
|
||
type = make_node (POINTER_TYPE);
|
||
TREE_TYPE (type) = TREE_TYPE (decl);
|
||
}
|
||
else if (MEM_P (home)
|
||
&& REG_P (XEXP (home, 0)))
|
||
{
|
||
code = N_LSYM;
|
||
number = DEBUGGER_AUTO_OFFSET (XEXP (home, 0));
|
||
}
|
||
else if (MEM_P (home)
|
||
&& GET_CODE (XEXP (home, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (home, 0), 1)) == CONST_INT)
|
||
{
|
||
code = N_LSYM;
|
||
/* RTL looks like (MEM (PLUS (REG...) (CONST_INT...)))
|
||
We want the value of that CONST_INT. */
|
||
number = DEBUGGER_AUTO_OFFSET (XEXP (home, 0));
|
||
}
|
||
else if (MEM_P (home)
|
||
&& GET_CODE (XEXP (home, 0)) == CONST)
|
||
{
|
||
/* Handle an obscure case which can arise when optimizing and
|
||
when there are few available registers. (This is *always*
|
||
the case for i386/i486 targets). The RTL looks like
|
||
(MEM (CONST ...)) even though this variable is a local `auto'
|
||
or a local `register' variable. In effect, what has happened
|
||
is that the reload pass has seen that all assignments and
|
||
references for one such a local variable can be replaced by
|
||
equivalent assignments and references to some static storage
|
||
variable, thereby avoiding the need for a register. In such
|
||
cases we're forced to lie to debuggers and tell them that
|
||
this variable was itself `static'. */
|
||
code = N_LCSYM;
|
||
letter = 'V';
|
||
addr = XEXP (XEXP (home, 0), 0);
|
||
}
|
||
else if (GET_CODE (home) == CONCAT)
|
||
{
|
||
tree subtype;
|
||
|
||
/* If TYPE is not a COMPLEX_TYPE (it might be a RECORD_TYPE,
|
||
for example), then there is no easy way to figure out
|
||
what SUBTYPE should be. So, we give up. */
|
||
if (TREE_CODE (type) != COMPLEX_TYPE)
|
||
return 0;
|
||
|
||
subtype = TREE_TYPE (type);
|
||
|
||
/* If the variable's storage is in two parts,
|
||
output each as a separate stab with a modified name. */
|
||
if (WORDS_BIG_ENDIAN)
|
||
dbxout_symbol_location (decl, subtype, "$imag", XEXP (home, 0));
|
||
else
|
||
dbxout_symbol_location (decl, subtype, "$real", XEXP (home, 0));
|
||
|
||
if (WORDS_BIG_ENDIAN)
|
||
dbxout_symbol_location (decl, subtype, "$real", XEXP (home, 1));
|
||
else
|
||
dbxout_symbol_location (decl, subtype, "$imag", XEXP (home, 1));
|
||
return 1;
|
||
}
|
||
else
|
||
/* Address might be a MEM, when DECL is a variable-sized object.
|
||
Or it might be const0_rtx, meaning previous passes
|
||
want us to ignore this variable. */
|
||
return 0;
|
||
|
||
/* Ok, start a symtab entry and output the variable name. */
|
||
emit_pending_bincls_if_required ();
|
||
FORCE_TEXT;
|
||
|
||
#ifdef DBX_STATIC_BLOCK_START
|
||
DBX_STATIC_BLOCK_START (asm_out_file, code);
|
||
#endif
|
||
|
||
dbxout_begin_complex_stabs_noforcetext ();
|
||
dbxout_symbol_name (decl, suffix, letter);
|
||
dbxout_type (type, 0);
|
||
dbxout_finish_complex_stabs (decl, code, addr, 0, number);
|
||
|
||
#ifdef DBX_STATIC_BLOCK_END
|
||
DBX_STATIC_BLOCK_END (asm_out_file, code);
|
||
#endif
|
||
return 1;
|
||
}
|
||
|
||
/* Output the symbol name of DECL for a stabs, with suffix SUFFIX.
|
||
Then output LETTER to indicate the kind of location the symbol has. */
|
||
|
||
static void
|
||
dbxout_symbol_name (tree decl, const char *suffix, int letter)
|
||
{
|
||
tree name;
|
||
|
||
if (DECL_CONTEXT (decl)
|
||
&& (TYPE_P (DECL_CONTEXT (decl))
|
||
|| TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL))
|
||
/* One slight hitch: if this is a VAR_DECL which is a class member
|
||
or a namespace member, we must put out the mangled name instead of the
|
||
DECL_NAME. Note also that static member (variable) names DO NOT begin
|
||
with underscores in .stabs directives. */
|
||
name = DECL_ASSEMBLER_NAME (decl);
|
||
else
|
||
/* ...but if we're function-local, we don't want to include the junk
|
||
added by ASM_FORMAT_PRIVATE_NAME. */
|
||
name = DECL_NAME (decl);
|
||
|
||
if (name)
|
||
stabstr_I (name);
|
||
else
|
||
stabstr_S ("(anon)");
|
||
|
||
if (suffix)
|
||
stabstr_S (suffix);
|
||
stabstr_C (':');
|
||
if (letter)
|
||
stabstr_C (letter);
|
||
}
|
||
|
||
/* Output definitions of all the decls in a chain. Return nonzero if
|
||
anything was output */
|
||
|
||
int
|
||
dbxout_syms (tree syms)
|
||
{
|
||
int result = 0;
|
||
while (syms)
|
||
{
|
||
result += dbxout_symbol (syms, 1);
|
||
syms = TREE_CHAIN (syms);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/* The following two functions output definitions of function parameters.
|
||
Each parameter gets a definition locating it in the parameter list.
|
||
Each parameter that is a register variable gets a second definition
|
||
locating it in the register.
|
||
|
||
Printing or argument lists in gdb uses the definitions that
|
||
locate in the parameter list. But reference to the variable in
|
||
expressions uses preferentially the definition as a register. */
|
||
|
||
/* Output definitions, referring to storage in the parmlist,
|
||
of all the parms in PARMS, which is a chain of PARM_DECL nodes. */
|
||
|
||
void
|
||
dbxout_parms (tree parms)
|
||
{
|
||
++debug_nesting;
|
||
emit_pending_bincls_if_required ();
|
||
|
||
for (; parms; parms = TREE_CHAIN (parms))
|
||
if (DECL_NAME (parms)
|
||
&& TREE_TYPE (parms) != error_mark_node
|
||
&& DECL_RTL_SET_P (parms)
|
||
&& DECL_INCOMING_RTL (parms))
|
||
{
|
||
tree eff_type;
|
||
char letter;
|
||
STAB_CODE_TYPE code;
|
||
int number;
|
||
|
||
/* Perform any necessary register eliminations on the parameter's rtl,
|
||
so that the debugging output will be accurate. */
|
||
DECL_INCOMING_RTL (parms)
|
||
= eliminate_regs (DECL_INCOMING_RTL (parms), 0, NULL_RTX);
|
||
SET_DECL_RTL (parms, eliminate_regs (DECL_RTL (parms), 0, NULL_RTX));
|
||
#ifdef LEAF_REG_REMAP
|
||
if (current_function_uses_only_leaf_regs)
|
||
{
|
||
leaf_renumber_regs_insn (DECL_INCOMING_RTL (parms));
|
||
leaf_renumber_regs_insn (DECL_RTL (parms));
|
||
}
|
||
#endif
|
||
|
||
if (PARM_PASSED_IN_MEMORY (parms))
|
||
{
|
||
rtx inrtl = XEXP (DECL_INCOMING_RTL (parms), 0);
|
||
|
||
/* ??? Here we assume that the parm address is indexed
|
||
off the frame pointer or arg pointer.
|
||
If that is not true, we produce meaningless results,
|
||
but do not crash. */
|
||
if (GET_CODE (inrtl) == PLUS
|
||
&& GET_CODE (XEXP (inrtl, 1)) == CONST_INT)
|
||
number = INTVAL (XEXP (inrtl, 1));
|
||
else
|
||
number = 0;
|
||
|
||
code = N_PSYM;
|
||
number = DEBUGGER_ARG_OFFSET (number, inrtl);
|
||
letter = 'p';
|
||
|
||
/* It is quite tempting to use TREE_TYPE (parms) instead
|
||
of DECL_ARG_TYPE (parms) for the eff_type, so that gcc
|
||
reports the actual type of the parameter, rather than
|
||
the promoted type. This certainly makes GDB's life
|
||
easier, at least for some ports. The change is a bad
|
||
idea however, since GDB expects to be able access the
|
||
type without performing any conversions. So for
|
||
example, if we were passing a float to an unprototyped
|
||
function, gcc will store a double on the stack, but if
|
||
we emit a stab saying the type is a float, then gdb
|
||
will only read in a single value, and this will produce
|
||
an erroneous value. */
|
||
eff_type = DECL_ARG_TYPE (parms);
|
||
}
|
||
else if (REG_P (DECL_RTL (parms)))
|
||
{
|
||
rtx best_rtl;
|
||
|
||
/* Parm passed in registers and lives in registers or nowhere. */
|
||
code = DBX_REGPARM_STABS_CODE;
|
||
letter = DBX_REGPARM_STABS_LETTER;
|
||
|
||
/* For parms passed in registers, it is better to use the
|
||
declared type of the variable, not the type it arrived in. */
|
||
eff_type = TREE_TYPE (parms);
|
||
|
||
/* If parm lives in a register, use that register; pretend
|
||
the parm was passed there. It would be more consistent
|
||
to describe the register where the parm was passed, but
|
||
in practice that register usually holds something else.
|
||
If the parm lives nowhere, use the register where it
|
||
was passed. */
|
||
if (REGNO (DECL_RTL (parms)) < FIRST_PSEUDO_REGISTER)
|
||
best_rtl = DECL_RTL (parms);
|
||
else
|
||
best_rtl = DECL_INCOMING_RTL (parms);
|
||
|
||
number = DBX_REGISTER_NUMBER (REGNO (best_rtl));
|
||
}
|
||
else if (MEM_P (DECL_RTL (parms))
|
||
&& REG_P (XEXP (DECL_RTL (parms), 0))
|
||
&& REGNO (XEXP (DECL_RTL (parms), 0)) != HARD_FRAME_POINTER_REGNUM
|
||
&& REGNO (XEXP (DECL_RTL (parms), 0)) != STACK_POINTER_REGNUM
|
||
#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
|
||
&& REGNO (XEXP (DECL_RTL (parms), 0)) != ARG_POINTER_REGNUM
|
||
#endif
|
||
)
|
||
{
|
||
/* Parm was passed via invisible reference.
|
||
That is, its address was passed in a register.
|
||
Output it as if it lived in that register.
|
||
The debugger will know from the type
|
||
that it was actually passed by invisible reference. */
|
||
|
||
code = DBX_REGPARM_STABS_CODE;
|
||
|
||
/* GDB likes this marked with a special letter. */
|
||
letter = (use_gnu_debug_info_extensions
|
||
? 'a' : DBX_REGPARM_STABS_LETTER);
|
||
eff_type = TREE_TYPE (parms);
|
||
|
||
/* DECL_RTL looks like (MEM (REG...). Get the register number.
|
||
If it is an unallocated pseudo-reg, then use the register where
|
||
it was passed instead.
|
||
??? Why is DBX_REGISTER_NUMBER not used here? */
|
||
|
||
if (REGNO (XEXP (DECL_RTL (parms), 0)) < FIRST_PSEUDO_REGISTER)
|
||
number = REGNO (XEXP (DECL_RTL (parms), 0));
|
||
else
|
||
number = REGNO (DECL_INCOMING_RTL (parms));
|
||
}
|
||
else if (MEM_P (DECL_RTL (parms))
|
||
&& MEM_P (XEXP (DECL_RTL (parms), 0)))
|
||
{
|
||
/* Parm was passed via invisible reference, with the reference
|
||
living on the stack. DECL_RTL looks like
|
||
(MEM (MEM (PLUS (REG ...) (CONST_INT ...)))) or it
|
||
could look like (MEM (MEM (REG))). */
|
||
|
||
code = N_PSYM;
|
||
letter = 'v';
|
||
eff_type = TREE_TYPE (parms);
|
||
|
||
if (!REG_P (XEXP (XEXP (DECL_RTL (parms), 0), 0)))
|
||
number = INTVAL (XEXP (XEXP (XEXP (DECL_RTL (parms), 0), 0), 1));
|
||
else
|
||
number = 0;
|
||
|
||
number = DEBUGGER_ARG_OFFSET (number,
|
||
XEXP (XEXP (DECL_RTL (parms), 0), 0));
|
||
}
|
||
else if (MEM_P (DECL_RTL (parms))
|
||
&& XEXP (DECL_RTL (parms), 0) != const0_rtx
|
||
/* ??? A constant address for a parm can happen
|
||
when the reg it lives in is equiv to a constant in memory.
|
||
Should make this not happen, after 2.4. */
|
||
&& ! CONSTANT_P (XEXP (DECL_RTL (parms), 0)))
|
||
{
|
||
/* Parm was passed in registers but lives on the stack. */
|
||
|
||
code = N_PSYM;
|
||
letter = 'p';
|
||
eff_type = TREE_TYPE (parms);
|
||
|
||
/* DECL_RTL looks like (MEM (PLUS (REG...) (CONST_INT...))),
|
||
in which case we want the value of that CONST_INT,
|
||
or (MEM (REG ...)),
|
||
in which case we use a value of zero. */
|
||
if (!REG_P (XEXP (DECL_RTL (parms), 0)))
|
||
number = INTVAL (XEXP (XEXP (DECL_RTL (parms), 0), 1));
|
||
else
|
||
number = 0;
|
||
|
||
/* Make a big endian correction if the mode of the type of the
|
||
parameter is not the same as the mode of the rtl. */
|
||
if (BYTES_BIG_ENDIAN
|
||
&& TYPE_MODE (TREE_TYPE (parms)) != GET_MODE (DECL_RTL (parms))
|
||
&& GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parms))) < UNITS_PER_WORD)
|
||
number += (GET_MODE_SIZE (GET_MODE (DECL_RTL (parms)))
|
||
- GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parms))));
|
||
}
|
||
else
|
||
/* ??? We don't know how to represent this argument. */
|
||
continue;
|
||
|
||
dbxout_begin_complex_stabs ();
|
||
|
||
if (DECL_NAME (parms))
|
||
{
|
||
stabstr_I (DECL_NAME (parms));
|
||
stabstr_C (':');
|
||
}
|
||
else
|
||
stabstr_S ("(anon):");
|
||
stabstr_C (letter);
|
||
dbxout_type (eff_type, 0);
|
||
dbxout_finish_complex_stabs (parms, code, 0, 0, number);
|
||
}
|
||
DBXOUT_DECR_NESTING;
|
||
}
|
||
|
||
/* Output definitions for the places where parms live during the function,
|
||
when different from where they were passed, when the parms were passed
|
||
in memory.
|
||
|
||
It is not useful to do this for parms passed in registers
|
||
that live during the function in different registers, because it is
|
||
impossible to look in the passed register for the passed value,
|
||
so we use the within-the-function register to begin with.
|
||
|
||
PARMS is a chain of PARM_DECL nodes. */
|
||
|
||
void
|
||
dbxout_reg_parms (tree parms)
|
||
{
|
||
++debug_nesting;
|
||
|
||
for (; parms; parms = TREE_CHAIN (parms))
|
||
if (DECL_NAME (parms) && PARM_PASSED_IN_MEMORY (parms))
|
||
{
|
||
/* Report parms that live in registers during the function
|
||
but were passed in memory. */
|
||
if (REG_P (DECL_RTL (parms))
|
||
&& REGNO (DECL_RTL (parms)) < FIRST_PSEUDO_REGISTER)
|
||
dbxout_symbol_location (parms, TREE_TYPE (parms),
|
||
0, DECL_RTL (parms));
|
||
else if (GET_CODE (DECL_RTL (parms)) == CONCAT)
|
||
dbxout_symbol_location (parms, TREE_TYPE (parms),
|
||
0, DECL_RTL (parms));
|
||
/* Report parms that live in memory but not where they were passed. */
|
||
else if (MEM_P (DECL_RTL (parms))
|
||
&& ! rtx_equal_p (DECL_RTL (parms), DECL_INCOMING_RTL (parms)))
|
||
dbxout_symbol_location (parms, TREE_TYPE (parms),
|
||
0, DECL_RTL (parms));
|
||
}
|
||
DBXOUT_DECR_NESTING;
|
||
}
|
||
|
||
/* Given a chain of ..._TYPE nodes (as come in a parameter list),
|
||
output definitions of those names, in raw form */
|
||
|
||
static void
|
||
dbxout_args (tree args)
|
||
{
|
||
while (args)
|
||
{
|
||
stabstr_C (',');
|
||
dbxout_type (TREE_VALUE (args), 0);
|
||
args = TREE_CHAIN (args);
|
||
}
|
||
}
|
||
|
||
/* Subroutine of dbxout_block. Emit an N_LBRAC stab referencing LABEL.
|
||
BEGIN_LABEL is the name of the beginning of the function, which may
|
||
be required. */
|
||
static void
|
||
dbx_output_lbrac (const char *label,
|
||
const char *begin_label ATTRIBUTE_UNUSED)
|
||
{
|
||
dbxout_begin_stabn (N_LBRAC);
|
||
if (DBX_BLOCKS_FUNCTION_RELATIVE)
|
||
dbxout_stab_value_label_diff (label, begin_label);
|
||
else
|
||
dbxout_stab_value_label (label);
|
||
}
|
||
|
||
/* Subroutine of dbxout_block. Emit an N_RBRAC stab referencing LABEL.
|
||
BEGIN_LABEL is the name of the beginning of the function, which may
|
||
be required. */
|
||
static void
|
||
dbx_output_rbrac (const char *label,
|
||
const char *begin_label ATTRIBUTE_UNUSED)
|
||
{
|
||
dbxout_begin_stabn (N_RBRAC);
|
||
if (DBX_BLOCKS_FUNCTION_RELATIVE)
|
||
dbxout_stab_value_label_diff (label, begin_label);
|
||
else
|
||
dbxout_stab_value_label (label);
|
||
}
|
||
|
||
/* Output everything about a symbol block (a BLOCK node
|
||
that represents a scope level),
|
||
including recursive output of contained blocks.
|
||
|
||
BLOCK is the BLOCK node.
|
||
DEPTH is its depth within containing symbol blocks.
|
||
ARGS is usually zero; but for the outermost block of the
|
||
body of a function, it is a chain of PARM_DECLs for the function parameters.
|
||
We output definitions of all the register parms
|
||
as if they were local variables of that block.
|
||
|
||
If -g1 was used, we count blocks just the same, but output nothing
|
||
except for the outermost block.
|
||
|
||
Actually, BLOCK may be several blocks chained together.
|
||
We handle them all in sequence. */
|
||
|
||
static void
|
||
dbxout_block (tree block, int depth, tree args)
|
||
{
|
||
char begin_label[20];
|
||
/* Reference current function start using LFBB. */
|
||
ASM_GENERATE_INTERNAL_LABEL (begin_label, "LFBB", scope_labelno);
|
||
|
||
while (block)
|
||
{
|
||
/* Ignore blocks never expanded or otherwise marked as real. */
|
||
if (TREE_USED (block) && TREE_ASM_WRITTEN (block))
|
||
{
|
||
int did_output;
|
||
int blocknum = BLOCK_NUMBER (block);
|
||
|
||
/* In dbx format, the syms of a block come before the N_LBRAC.
|
||
If nothing is output, we don't need the N_LBRAC, either. */
|
||
did_output = 0;
|
||
if (debug_info_level != DINFO_LEVEL_TERSE || depth == 0)
|
||
did_output = dbxout_syms (BLOCK_VARS (block));
|
||
if (args)
|
||
dbxout_reg_parms (args);
|
||
|
||
/* Now output an N_LBRAC symbol to represent the beginning of
|
||
the block. Use the block's tree-walk order to generate
|
||
the assembler symbols LBBn and LBEn
|
||
that final will define around the code in this block. */
|
||
if (did_output)
|
||
{
|
||
char buf[20];
|
||
const char *scope_start;
|
||
|
||
if (depth == 0)
|
||
/* The outermost block doesn't get LBB labels; use
|
||
the LFBB local symbol emitted by dbxout_begin_prologue. */
|
||
scope_start = begin_label;
|
||
else
|
||
{
|
||
ASM_GENERATE_INTERNAL_LABEL (buf, "LBB", blocknum);
|
||
scope_start = buf;
|
||
}
|
||
|
||
if (BLOCK_HANDLER_BLOCK (block))
|
||
{
|
||
/* A catch block. Must precede N_LBRAC. */
|
||
tree decl = BLOCK_VARS (block);
|
||
while (decl)
|
||
{
|
||
dbxout_begin_complex_stabs ();
|
||
stabstr_I (DECL_NAME (decl));
|
||
stabstr_S (":C1");
|
||
dbxout_finish_complex_stabs (0, N_CATCH, 0,
|
||
scope_start, 0);
|
||
decl = TREE_CHAIN (decl);
|
||
}
|
||
}
|
||
dbx_output_lbrac (scope_start, begin_label);
|
||
}
|
||
|
||
/* Output the subblocks. */
|
||
dbxout_block (BLOCK_SUBBLOCKS (block), depth + 1, NULL_TREE);
|
||
|
||
/* Refer to the marker for the end of the block. */
|
||
if (did_output)
|
||
{
|
||
char buf[100];
|
||
if (depth == 0)
|
||
/* The outermost block doesn't get LBE labels;
|
||
use the "scope" label which will be emitted
|
||
by dbxout_function_end. */
|
||
ASM_GENERATE_INTERNAL_LABEL (buf, "Lscope", scope_labelno);
|
||
else
|
||
ASM_GENERATE_INTERNAL_LABEL (buf, "LBE", blocknum);
|
||
|
||
dbx_output_rbrac (buf, begin_label);
|
||
}
|
||
}
|
||
block = BLOCK_CHAIN (block);
|
||
}
|
||
}
|
||
|
||
/* Output the information about a function and its arguments and result.
|
||
Usually this follows the function's code,
|
||
but on some systems, it comes before. */
|
||
|
||
#if defined (DBX_DEBUGGING_INFO)
|
||
static void
|
||
dbxout_begin_function (tree decl)
|
||
{
|
||
int saved_tree_used1;
|
||
|
||
if (DECL_IGNORED_P (decl))
|
||
return;
|
||
|
||
saved_tree_used1 = TREE_USED (decl);
|
||
TREE_USED (decl) = 1;
|
||
if (DECL_NAME (DECL_RESULT (decl)) != 0)
|
||
{
|
||
int saved_tree_used2 = TREE_USED (DECL_RESULT (decl));
|
||
TREE_USED (DECL_RESULT (decl)) = 1;
|
||
dbxout_symbol (decl, 0);
|
||
TREE_USED (DECL_RESULT (decl)) = saved_tree_used2;
|
||
}
|
||
else
|
||
dbxout_symbol (decl, 0);
|
||
TREE_USED (decl) = saved_tree_used1;
|
||
|
||
dbxout_parms (DECL_ARGUMENTS (decl));
|
||
if (DECL_NAME (DECL_RESULT (decl)) != 0)
|
||
dbxout_symbol (DECL_RESULT (decl), 1);
|
||
}
|
||
#endif /* DBX_DEBUGGING_INFO */
|
||
|
||
#endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
|
||
|
||
#include "gt-dbxout.h"
|