freebsd-dev/sys/arm/lpc/lpc_mmc.c
Marius Strobl 55dae242e6 Add and use a MMC_DECLARE_BRIDGE macro for declaring mmc(4) bridges
as kernel drivers and their dependency onto mmc(4); this allows for
incrementing the mmc(4) module version but also for entire omission
of these bridge declarations for mmccam(4) in a single place, i. e.
in dev/mmc/bridge.h.
2017-03-07 22:42:44 +00:00

765 lines
20 KiB
C

/*-
* Copyright (c) 2011 Jakub Wojciech Klama <jceel@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/intr.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcbrvar.h>
#include <arm/lpc/lpcreg.h>
#include <arm/lpc/lpcvar.h>
#ifdef DEBUG
#define debugf(fmt, args...) do { printf("%s(): ", __func__); \
printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
struct lpc_mmc_dmamap_arg {
bus_addr_t lm_dma_busaddr;
};
struct lpc_mmc_softc {
device_t lm_dev;
struct mtx lm_mtx;
struct resource * lm_mem_res;
struct resource * lm_irq_res;
bus_space_tag_t lm_bst;
bus_space_handle_t lm_bsh;
void * lm_intrhand;
struct mmc_host lm_host;
struct mmc_request * lm_req;
struct mmc_data * lm_data;
uint32_t lm_flags;
#define LPC_SD_FLAGS_IGNORECRC (1 << 0)
int lm_xfer_direction;
#define DIRECTION_READ 0
#define DIRECTION_WRITE 1
int lm_xfer_done;
int lm_bus_busy;
bus_dma_tag_t lm_dma_tag;
bus_dmamap_t lm_dma_map;
bus_addr_t lm_buffer_phys;
void * lm_buffer;
};
#define LPC_SD_MAX_BLOCKSIZE 1024
/* XXX */
#define LPC_MMC_DMACH_READ 1
#define LPC_MMC_DMACH_WRITE 0
static int lpc_mmc_probe(device_t);
static int lpc_mmc_attach(device_t);
static int lpc_mmc_detach(device_t);
static void lpc_mmc_intr(void *);
static void lpc_mmc_cmd(struct lpc_mmc_softc *, struct mmc_command *);
static void lpc_mmc_setup_xfer(struct lpc_mmc_softc *, struct mmc_data *);
static int lpc_mmc_update_ios(device_t, device_t);
static int lpc_mmc_request(device_t, device_t, struct mmc_request *);
static int lpc_mmc_get_ro(device_t, device_t);
static int lpc_mmc_acquire_host(device_t, device_t);
static int lpc_mmc_release_host(device_t, device_t);
static void lpc_mmc_dma_rxfinish(void *);
static void lpc_mmc_dma_rxerror(void *);
static void lpc_mmc_dma_txfinish(void *);
static void lpc_mmc_dma_txerror(void *);
static void lpc_mmc_dmamap_cb(void *, bus_dma_segment_t *, int, int);
#define lpc_mmc_lock(_sc) \
mtx_lock(&_sc->lm_mtx);
#define lpc_mmc_unlock(_sc) \
mtx_unlock(&_sc->lm_mtx);
#define lpc_mmc_read_4(_sc, _reg) \
bus_space_read_4(_sc->lm_bst, _sc->lm_bsh, _reg)
#define lpc_mmc_write_4(_sc, _reg, _value) \
bus_space_write_4(_sc->lm_bst, _sc->lm_bsh, _reg, _value)
static struct lpc_dmac_channel_config lpc_mmc_dma_rxconf = {
.ldc_fcntl = LPC_DMAC_FLOW_D_P2M,
.ldc_src_periph = LPC_DMAC_SD_ID,
.ldc_src_width = LPC_DMAC_CH_CONTROL_WIDTH_4,
.ldc_src_incr = 0,
.ldc_src_burst = LPC_DMAC_CH_CONTROL_BURST_8,
.ldc_dst_periph = LPC_DMAC_SD_ID,
.ldc_dst_width = LPC_DMAC_CH_CONTROL_WIDTH_4,
.ldc_dst_incr = 1,
.ldc_dst_burst = LPC_DMAC_CH_CONTROL_BURST_8,
.ldc_success_handler = lpc_mmc_dma_rxfinish,
.ldc_error_handler = lpc_mmc_dma_rxerror,
};
static struct lpc_dmac_channel_config lpc_mmc_dma_txconf = {
.ldc_fcntl = LPC_DMAC_FLOW_P_M2P,
.ldc_src_periph = LPC_DMAC_SD_ID,
.ldc_src_width = LPC_DMAC_CH_CONTROL_WIDTH_4,
.ldc_src_incr = 1,
.ldc_src_burst = LPC_DMAC_CH_CONTROL_BURST_8,
.ldc_dst_periph = LPC_DMAC_SD_ID,
.ldc_dst_width = LPC_DMAC_CH_CONTROL_WIDTH_4,
.ldc_dst_incr = 0,
.ldc_dst_burst = LPC_DMAC_CH_CONTROL_BURST_8,
.ldc_success_handler = lpc_mmc_dma_txfinish,
.ldc_error_handler = lpc_mmc_dma_txerror,
};
static int
lpc_mmc_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "lpc,mmc"))
return (ENXIO);
device_set_desc(dev, "LPC32x0 MMC/SD controller");
return (BUS_PROBE_DEFAULT);
}
static int
lpc_mmc_attach(device_t dev)
{
struct lpc_mmc_softc *sc = device_get_softc(dev);
struct lpc_mmc_dmamap_arg ctx;
device_t child;
int rid, err;
sc->lm_dev = dev;
sc->lm_req = NULL;
mtx_init(&sc->lm_mtx, "lpcmmc", "mmc", MTX_DEF);
rid = 0;
sc->lm_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (!sc->lm_mem_res) {
device_printf(dev, "cannot allocate memory window\n");
return (ENXIO);
}
sc->lm_bst = rman_get_bustag(sc->lm_mem_res);
sc->lm_bsh = rman_get_bushandle(sc->lm_mem_res);
debugf("virtual register space: 0x%08lx\n", sc->lm_bsh);
rid = 0;
sc->lm_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (!sc->lm_irq_res) {
device_printf(dev, "cannot allocate interrupt\n");
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->lm_mem_res);
return (ENXIO);
}
if (bus_setup_intr(dev, sc->lm_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
NULL, lpc_mmc_intr, sc, &sc->lm_intrhand))
{
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->lm_mem_res);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lm_irq_res);
device_printf(dev, "cannot setup interrupt handler\n");
return (ENXIO);
}
sc->lm_host.f_min = 312500;
sc->lm_host.f_max = 2500000;
sc->lm_host.host_ocr = MMC_OCR_300_310 | MMC_OCR_310_320 |
MMC_OCR_320_330 | MMC_OCR_330_340;
#if 0
sc->lm_host.caps = MMC_CAP_4_BIT_DATA;
#endif
lpc_pwr_write(dev, LPC_CLKPWR_MS_CTRL,
LPC_CLKPWR_MS_CTRL_CLOCK_EN | LPC_CLKPWR_MS_CTRL_SD_CLOCK | 1);
lpc_mmc_write_4(sc, LPC_SD_POWER, LPC_SD_POWER_CTRL_ON);
device_set_ivars(dev, &sc->lm_host);
child = device_add_child(dev, "mmc", -1);
if (!child) {
device_printf(dev, "attaching MMC bus failed!\n");
bus_teardown_intr(dev, sc->lm_irq_res, sc->lm_intrhand);
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->lm_mem_res);
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lm_irq_res);
return (ENXIO);
}
/* Alloc DMA memory */
err = bus_dma_tag_create(
bus_get_dma_tag(sc->lm_dev),
4, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
LPC_SD_MAX_BLOCKSIZE, 1, /* maxsize, nsegments */
LPC_SD_MAX_BLOCKSIZE, 0, /* maxsegsize, flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->lm_dma_tag);
err = bus_dmamem_alloc(sc->lm_dma_tag, (void **)&sc->lm_buffer,
0, &sc->lm_dma_map);
if (err) {
device_printf(dev, "cannot allocate framebuffer\n");
goto fail;
}
err = bus_dmamap_load(sc->lm_dma_tag, sc->lm_dma_map, sc->lm_buffer,
LPC_SD_MAX_BLOCKSIZE, lpc_mmc_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
if (err) {
device_printf(dev, "cannot load DMA map\n");
goto fail;
}
sc->lm_buffer_phys = ctx.lm_dma_busaddr;
lpc_mmc_dma_rxconf.ldc_handler_arg = (void *)sc;
err = lpc_dmac_config_channel(dev, LPC_MMC_DMACH_READ, &lpc_mmc_dma_rxconf);
if (err) {
device_printf(dev, "cannot allocate RX DMA channel\n");
goto fail;
}
lpc_mmc_dma_txconf.ldc_handler_arg = (void *)sc;
err = lpc_dmac_config_channel(dev, LPC_MMC_DMACH_WRITE, &lpc_mmc_dma_txconf);
if (err) {
device_printf(dev, "cannot allocate TX DMA channel\n");
goto fail;
}
bus_generic_probe(dev);
bus_generic_attach(dev);
return (0);
fail:
if (sc->lm_intrhand)
bus_teardown_intr(dev, sc->lm_irq_res, sc->lm_intrhand);
if (sc->lm_irq_res)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lm_irq_res);
if (sc->lm_mem_res)
bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->lm_mem_res);
return (err);
}
static int
lpc_mmc_detach(device_t dev)
{
return (EBUSY);
}
static void
lpc_mmc_intr(void *arg)
{
struct lpc_mmc_softc *sc = (struct lpc_mmc_softc *)arg;
struct mmc_command *cmd;
uint32_t status;
status = lpc_mmc_read_4(sc, LPC_SD_STATUS);
debugf("interrupt: 0x%08x\n", status);
if (status & LPC_SD_STATUS_CMDCRCFAIL) {
cmd = sc->lm_req->cmd;
cmd->error = sc->lm_flags & LPC_SD_FLAGS_IGNORECRC
? MMC_ERR_NONE : MMC_ERR_BADCRC;
cmd->resp[0] = lpc_mmc_read_4(sc, LPC_SD_RESP0);
sc->lm_req->done(sc->lm_req);
sc->lm_req = NULL;
lpc_mmc_write_4(sc, LPC_SD_CLEAR, LPC_SD_STATUS_CMDCRCFAIL);
}
if (status & LPC_SD_STATUS_CMDACTIVE)
{
debugf("command active\n");
cmd = sc->lm_req->cmd;
cmd->resp[0] = lpc_mmc_read_4(sc, LPC_SD_RESP0);
sc->lm_req->done(sc->lm_req);
sc->lm_req = NULL;
}
if (status & LPC_SD_STATUS_DATATIMEOUT) {
device_printf(sc->lm_dev, "data timeout\n");
lpc_mmc_write_4(sc, LPC_SD_CLEAR, LPC_SD_STATUS_DATATIMEOUT);
}
if (status & LPC_SD_STATUS_TXUNDERRUN) {
device_printf(sc->lm_dev, "TX underrun\n");
lpc_mmc_write_4(sc, LPC_SD_CLEAR, LPC_SD_STATUS_TXUNDERRUN);
}
if (status & LPC_SD_STATUS_CMDRESPEND) {
debugf("command response\n");
cmd = sc->lm_req->cmd;
if (cmd->flags & MMC_RSP_136) {
cmd->resp[3] = lpc_mmc_read_4(sc, LPC_SD_RESP3);
cmd->resp[2] = lpc_mmc_read_4(sc, LPC_SD_RESP2);
cmd->resp[1] = lpc_mmc_read_4(sc, LPC_SD_RESP1);
}
cmd->resp[0] = lpc_mmc_read_4(sc, LPC_SD_RESP0);
cmd->error = MMC_ERR_NONE;
if (cmd->data && (cmd->data->flags & MMC_DATA_WRITE))
lpc_mmc_setup_xfer(sc, sc->lm_req->cmd->data);
if (!cmd->data) {
sc->lm_req->done(sc->lm_req);
sc->lm_req = NULL;
}
lpc_mmc_write_4(sc, LPC_SD_CLEAR, LPC_SD_STATUS_CMDRESPEND);
}
if (status & LPC_SD_STATUS_CMDSENT) {
debugf("command sent\n");
cmd = sc->lm_req->cmd;
cmd->error = MMC_ERR_NONE;
sc->lm_req->done(sc->lm_req);
sc->lm_req = NULL;
lpc_mmc_write_4(sc, LPC_SD_CLEAR, LPC_SD_STATUS_CMDSENT);
}
if (status & LPC_SD_STATUS_DATAEND) {
if (sc->lm_xfer_direction == DIRECTION_READ)
lpc_dmac_start_burst(sc->lm_dev, LPC_DMAC_SD_ID);
lpc_mmc_write_4(sc, LPC_SD_CLEAR, LPC_SD_STATUS_DATAEND);
}
if (status & LPC_SD_STATUS_CMDTIMEOUT) {
device_printf(sc->lm_dev, "command response timeout\n");
cmd = sc->lm_req->cmd;
cmd->error = MMC_ERR_TIMEOUT;
sc->lm_req->done(sc->lm_req);
sc->lm_req = NULL;
lpc_mmc_write_4(sc, LPC_SD_CLEAR, LPC_SD_STATUS_CMDTIMEOUT);
return;
}
if (status & LPC_SD_STATUS_STARTBITERR) {
device_printf(sc->lm_dev, "start bit error\n");
lpc_mmc_write_4(sc, LPC_SD_CLEAR, LPC_SD_STATUS_STARTBITERR);
}
if (status & LPC_SD_STATUS_DATACRCFAIL) {
device_printf(sc->lm_dev, "data CRC error\n");
debugf("data buffer: %p\n", sc->lm_buffer);
cmd = sc->lm_req->cmd;
cmd->error = MMC_ERR_BADCRC;
sc->lm_req->done(sc->lm_req);
sc->lm_req = NULL;
if (sc->lm_xfer_direction == DIRECTION_READ)
lpc_dmac_start_burst(sc->lm_dev, LPC_DMAC_SD_ID);
lpc_mmc_write_4(sc, LPC_SD_CLEAR, LPC_SD_STATUS_DATACRCFAIL);
}
if (status & LPC_SD_STATUS_DATABLOCKEND) {
debugf("data block end\n");
if (sc->lm_xfer_direction == DIRECTION_READ)
memcpy(sc->lm_data->data, sc->lm_buffer, sc->lm_data->len);
if (sc->lm_xfer_direction == DIRECTION_WRITE) {
lpc_dmac_disable_channel(sc->lm_dev, LPC_MMC_DMACH_WRITE);
lpc_mmc_write_4(sc, LPC_SD_DATACTRL, 0);
}
sc->lm_req->done(sc->lm_req);
sc->lm_req = NULL;
lpc_mmc_write_4(sc, LPC_SD_CLEAR, LPC_SD_STATUS_DATABLOCKEND);
}
debugf("done\n");
}
static int
lpc_mmc_request(device_t bus, device_t child, struct mmc_request *req)
{
struct lpc_mmc_softc *sc = device_get_softc(bus);
debugf("request: %p\n", req);
lpc_mmc_lock(sc);
if (sc->lm_req)
return (EBUSY);
sc->lm_req = req;
if (req->cmd->data && req->cmd->data->flags & MMC_DATA_WRITE) {
memcpy(sc->lm_buffer, req->cmd->data->data, req->cmd->data->len);
lpc_mmc_cmd(sc, req->cmd);
lpc_mmc_unlock(sc);
return (0);
}
if (req->cmd->data)
lpc_mmc_setup_xfer(sc, req->cmd->data);
lpc_mmc_cmd(sc, req->cmd);
lpc_mmc_unlock(sc);
return (0);
}
static void
lpc_mmc_cmd(struct lpc_mmc_softc *sc, struct mmc_command *cmd)
{
uint32_t cmdreg = 0;
debugf("cmd: %d arg: 0x%08x\n", cmd->opcode, cmd->arg);
if (lpc_mmc_read_4(sc, LPC_SD_COMMAND) & LPC_SD_COMMAND_ENABLE) {
lpc_mmc_write_4(sc, LPC_SD_COMMAND, 0);
DELAY(1000);
}
sc->lm_flags &= ~LPC_SD_FLAGS_IGNORECRC;
if (cmd->flags & MMC_RSP_PRESENT)
cmdreg |= LPC_SD_COMMAND_RESPONSE;
if (MMC_RSP(cmd->flags) == MMC_RSP_R2)
cmdreg |= LPC_SD_COMMAND_LONGRSP;
if (MMC_RSP(cmd->flags) == MMC_RSP_R3)
sc->lm_flags |= LPC_SD_FLAGS_IGNORECRC;
cmdreg |= LPC_SD_COMMAND_ENABLE;
cmdreg |= (cmd->opcode & LPC_SD_COMMAND_CMDINDEXMASK);
lpc_mmc_write_4(sc, LPC_SD_MASK0, 0xffffffff);
lpc_mmc_write_4(sc, LPC_SD_MASK1, 0xffffffff);
lpc_mmc_write_4(sc, LPC_SD_ARGUMENT, cmd->arg);
lpc_mmc_write_4(sc, LPC_SD_COMMAND, cmdreg);
}
static void
lpc_mmc_setup_xfer(struct lpc_mmc_softc *sc, struct mmc_data *data)
{
uint32_t datactrl = 0;
int data_words = data->len / 4;
sc->lm_data = data;
sc->lm_xfer_done = 0;
debugf("data: %p, len: %d, %s\n", data,
data->len, (data->flags & MMC_DATA_READ) ? "read" : "write");
if (data->flags & MMC_DATA_READ) {
sc->lm_xfer_direction = DIRECTION_READ;
lpc_dmac_setup_transfer(sc->lm_dev, LPC_MMC_DMACH_READ,
LPC_SD_PHYS_BASE + LPC_SD_FIFO, sc->lm_buffer_phys,
data_words, 0);
}
if (data->flags & MMC_DATA_WRITE) {
sc->lm_xfer_direction = DIRECTION_WRITE;
lpc_dmac_setup_transfer(sc->lm_dev, LPC_MMC_DMACH_WRITE,
sc->lm_buffer_phys, LPC_SD_PHYS_BASE + LPC_SD_FIFO,
data_words, 0);
}
datactrl |= (sc->lm_xfer_direction
? LPC_SD_DATACTRL_WRITE
: LPC_SD_DATACTRL_READ);
datactrl |= LPC_SD_DATACTRL_DMAENABLE | LPC_SD_DATACTRL_ENABLE;
datactrl |= (ffs(data->len) - 1) << 4;
debugf("datactrl: 0x%08x\n", datactrl);
lpc_mmc_write_4(sc, LPC_SD_DATATIMER, 0xFFFF0000);
lpc_mmc_write_4(sc, LPC_SD_DATALENGTH, data->len);
lpc_mmc_write_4(sc, LPC_SD_DATACTRL, datactrl);
}
static int
lpc_mmc_read_ivar(device_t bus, device_t child, int which,
uintptr_t *result)
{
struct lpc_mmc_softc *sc = device_get_softc(bus);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
*(int *)result = sc->lm_host.ios.bus_mode;
break;
case MMCBR_IVAR_BUS_WIDTH:
*(int *)result = sc->lm_host.ios.bus_width;
break;
case MMCBR_IVAR_CHIP_SELECT:
*(int *)result = sc->lm_host.ios.chip_select;
break;
case MMCBR_IVAR_CLOCK:
*(int *)result = sc->lm_host.ios.clock;
break;
case MMCBR_IVAR_F_MIN:
*(int *)result = sc->lm_host.f_min;
break;
case MMCBR_IVAR_F_MAX:
*(int *)result = sc->lm_host.f_max;
break;
case MMCBR_IVAR_HOST_OCR:
*(int *)result = sc->lm_host.host_ocr;
break;
case MMCBR_IVAR_MODE:
*(int *)result = sc->lm_host.mode;
break;
case MMCBR_IVAR_OCR:
*(int *)result = sc->lm_host.ocr;
break;
case MMCBR_IVAR_POWER_MODE:
*(int *)result = sc->lm_host.ios.power_mode;
break;
case MMCBR_IVAR_VDD:
*(int *)result = sc->lm_host.ios.vdd;
break;
case MMCBR_IVAR_CAPS:
*(int *)result = sc->lm_host.caps;
break;
case MMCBR_IVAR_MAX_DATA:
*(int *)result = 1;
break;
}
return (0);
}
static int
lpc_mmc_write_ivar(device_t bus, device_t child, int which,
uintptr_t value)
{
struct lpc_mmc_softc *sc = device_get_softc(bus);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
sc->lm_host.ios.bus_mode = value;
break;
case MMCBR_IVAR_BUS_WIDTH:
sc->lm_host.ios.bus_width = value;
break;
case MMCBR_IVAR_CHIP_SELECT:
sc->lm_host.ios.chip_select = value;
break;
case MMCBR_IVAR_CLOCK:
sc->lm_host.ios.clock = value;
break;
case MMCBR_IVAR_MODE:
sc->lm_host.mode = value;
break;
case MMCBR_IVAR_OCR:
sc->lm_host.ocr = value;
break;
case MMCBR_IVAR_POWER_MODE:
sc->lm_host.ios.power_mode = value;
break;
case MMCBR_IVAR_VDD:
sc->lm_host.ios.vdd = value;
break;
/* These are read-only */
case MMCBR_IVAR_CAPS:
case MMCBR_IVAR_HOST_OCR:
case MMCBR_IVAR_F_MIN:
case MMCBR_IVAR_F_MAX:
case MMCBR_IVAR_MAX_DATA:
return (EINVAL);
}
return (0);
}
static int
lpc_mmc_update_ios(device_t bus, device_t child)
{
struct lpc_mmc_softc *sc = device_get_softc(bus);
struct mmc_ios *ios = &sc->lm_host.ios;
uint32_t clkdiv = 0, pwr = 0;
if (ios->bus_width == bus_width_4)
clkdiv |= LPC_SD_CLOCK_WIDEBUS;
/* Calculate clock divider */
clkdiv = (LPC_SD_CLK / (2 * ios->clock)) - 1;
/* Clock rate should not exceed rate requested in ios */
if ((LPC_SD_CLK / (2 * (clkdiv + 1))) > ios->clock)
clkdiv++;
debugf("clock: %dHz, clkdiv: %d\n", ios->clock, clkdiv);
if (ios->bus_width == bus_width_4) {
debugf("using wide bus mode\n");
clkdiv |= LPC_SD_CLOCK_WIDEBUS;
}
lpc_mmc_write_4(sc, LPC_SD_CLOCK, clkdiv | LPC_SD_CLOCK_ENABLE);
switch (ios->power_mode) {
case power_off:
pwr |= LPC_SD_POWER_CTRL_OFF;
break;
case power_up:
pwr |= LPC_SD_POWER_CTRL_UP;
break;
case power_on:
pwr |= LPC_SD_POWER_CTRL_ON;
break;
}
if (ios->bus_mode == opendrain)
pwr |= LPC_SD_POWER_OPENDRAIN;
lpc_mmc_write_4(sc, LPC_SD_POWER, pwr);
return (0);
}
static int
lpc_mmc_get_ro(device_t bus, device_t child)
{
return (0);
}
static int
lpc_mmc_acquire_host(device_t bus, device_t child)
{
struct lpc_mmc_softc *sc = device_get_softc(bus);
int error = 0;
lpc_mmc_lock(sc);
while (sc->lm_bus_busy)
error = mtx_sleep(sc, &sc->lm_mtx, PZERO, "mmcah", 0);
sc->lm_bus_busy++;
lpc_mmc_unlock(sc);
return (error);
}
static int
lpc_mmc_release_host(device_t bus, device_t child)
{
struct lpc_mmc_softc *sc = device_get_softc(bus);
lpc_mmc_lock(sc);
sc->lm_bus_busy--;
wakeup(sc);
lpc_mmc_unlock(sc);
return (0);
}
static void lpc_mmc_dma_rxfinish(void *arg)
{
}
static void lpc_mmc_dma_rxerror(void *arg)
{
struct lpc_mmc_softc *sc = (struct lpc_mmc_softc *)arg;
device_printf(sc->lm_dev, "DMA RX error\n");
}
static void lpc_mmc_dma_txfinish(void *arg)
{
}
static void lpc_mmc_dma_txerror(void *arg)
{
struct lpc_mmc_softc *sc = (struct lpc_mmc_softc *)arg;
device_printf(sc->lm_dev, "DMA TX error\n");
}
static void
lpc_mmc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int err)
{
struct lpc_mmc_dmamap_arg *ctx;
if (err)
return;
ctx = (struct lpc_mmc_dmamap_arg *)arg;
ctx->lm_dma_busaddr = segs[0].ds_addr;
}
static device_method_t lpc_mmc_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, lpc_mmc_probe),
DEVMETHOD(device_attach, lpc_mmc_attach),
DEVMETHOD(device_detach, lpc_mmc_detach),
/* Bus interface */
DEVMETHOD(bus_read_ivar, lpc_mmc_read_ivar),
DEVMETHOD(bus_write_ivar, lpc_mmc_write_ivar),
/* MMC bridge interface */
DEVMETHOD(mmcbr_update_ios, lpc_mmc_update_ios),
DEVMETHOD(mmcbr_request, lpc_mmc_request),
DEVMETHOD(mmcbr_get_ro, lpc_mmc_get_ro),
DEVMETHOD(mmcbr_acquire_host, lpc_mmc_acquire_host),
DEVMETHOD(mmcbr_release_host, lpc_mmc_release_host),
DEVMETHOD_END
};
static devclass_t lpc_mmc_devclass;
static driver_t lpc_mmc_driver = {
"lpcmmc",
lpc_mmc_methods,
sizeof(struct lpc_mmc_softc),
};
DRIVER_MODULE(lpcmmc, simplebus, lpc_mmc_driver, lpc_mmc_devclass, NULL, NULL);
MMC_DECLARE_BRIDGE(lpcmmc);