freebsd-dev/sys/dev/usb/controller/xhci.c
Pedro F. Giffuni 057b4402bf sys/dev: extend use of the howmany() macro when available.
We have a howmany() macro in the <sys/param.h> header that is
convenient to re-use as it makes things easier to read.
2016-04-26 15:03:15 +00:00

4337 lines
101 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2010 Hans Petter Selasky. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* USB eXtensible Host Controller Interface, a.k.a. USB 3.0 controller.
*
* The XHCI 1.0 spec can be found at
* http://www.intel.com/technology/usb/download/xHCI_Specification_for_USB.pdf
* and the USB 3.0 spec at
* http://www.usb.org/developers/docs/usb_30_spec_060910.zip
*/
/*
* A few words about the design implementation: This driver emulates
* the concept about TDs which is found in EHCI specification. This
* way we achieve that the USB controller drivers look similar to
* eachother which makes it easier to understand the code.
*/
#ifdef USB_GLOBAL_INCLUDE_FILE
#include USB_GLOBAL_INCLUDE_FILE
#else
#include <sys/stdint.h>
#include <sys/stddef.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#define USB_DEBUG_VAR xhcidebug
#include <dev/usb/usb_core.h>
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_busdma.h>
#include <dev/usb/usb_process.h>
#include <dev/usb/usb_transfer.h>
#include <dev/usb/usb_device.h>
#include <dev/usb/usb_hub.h>
#include <dev/usb/usb_util.h>
#include <dev/usb/usb_controller.h>
#include <dev/usb/usb_bus.h>
#endif /* USB_GLOBAL_INCLUDE_FILE */
#include <dev/usb/controller/xhci.h>
#include <dev/usb/controller/xhcireg.h>
#define XHCI_BUS2SC(bus) \
((struct xhci_softc *)(((uint8_t *)(bus)) - \
((uint8_t *)&(((struct xhci_softc *)0)->sc_bus))))
static SYSCTL_NODE(_hw_usb, OID_AUTO, xhci, CTLFLAG_RW, 0, "USB XHCI");
static int xhcistreams;
SYSCTL_INT(_hw_usb_xhci, OID_AUTO, streams, CTLFLAG_RWTUN,
&xhcistreams, 0, "Set to enable streams mode support");
#ifdef USB_DEBUG
static int xhcidebug;
static int xhciroute;
static int xhcipolling;
static int xhcidma32;
SYSCTL_INT(_hw_usb_xhci, OID_AUTO, debug, CTLFLAG_RWTUN,
&xhcidebug, 0, "Debug level");
SYSCTL_INT(_hw_usb_xhci, OID_AUTO, xhci_port_route, CTLFLAG_RWTUN,
&xhciroute, 0, "Routing bitmap for switching EHCI ports to the XHCI controller");
SYSCTL_INT(_hw_usb_xhci, OID_AUTO, use_polling, CTLFLAG_RWTUN,
&xhcipolling, 0, "Set to enable software interrupt polling for the XHCI controller");
SYSCTL_INT(_hw_usb_xhci, OID_AUTO, dma32, CTLFLAG_RWTUN,
&xhcidma32, 0, "Set to only use 32-bit DMA for the XHCI controller");
#else
#define xhciroute 0
#define xhcidma32 0
#endif
#define XHCI_INTR_ENDPT 1
struct xhci_std_temp {
struct xhci_softc *sc;
struct usb_page_cache *pc;
struct xhci_td *td;
struct xhci_td *td_next;
uint32_t len;
uint32_t offset;
uint32_t max_packet_size;
uint32_t average;
uint16_t isoc_delta;
uint16_t isoc_frame;
uint8_t shortpkt;
uint8_t multishort;
uint8_t last_frame;
uint8_t trb_type;
uint8_t direction;
uint8_t tbc;
uint8_t tlbpc;
uint8_t step_td;
uint8_t do_isoc_sync;
};
static void xhci_do_poll(struct usb_bus *);
static void xhci_device_done(struct usb_xfer *, usb_error_t);
static void xhci_root_intr(struct xhci_softc *);
static void xhci_free_device_ext(struct usb_device *);
static struct xhci_endpoint_ext *xhci_get_endpoint_ext(struct usb_device *,
struct usb_endpoint_descriptor *);
static usb_proc_callback_t xhci_configure_msg;
static usb_error_t xhci_configure_device(struct usb_device *);
static usb_error_t xhci_configure_endpoint(struct usb_device *,
struct usb_endpoint_descriptor *, struct xhci_endpoint_ext *,
uint16_t, uint8_t, uint8_t, uint8_t, uint16_t, uint16_t,
uint8_t);
static usb_error_t xhci_configure_mask(struct usb_device *,
uint32_t, uint8_t);
static usb_error_t xhci_cmd_evaluate_ctx(struct xhci_softc *,
uint64_t, uint8_t);
static void xhci_endpoint_doorbell(struct usb_xfer *);
static void xhci_ctx_set_le32(struct xhci_softc *sc, volatile uint32_t *ptr, uint32_t val);
static uint32_t xhci_ctx_get_le32(struct xhci_softc *sc, volatile uint32_t *ptr);
static void xhci_ctx_set_le64(struct xhci_softc *sc, volatile uint64_t *ptr, uint64_t val);
#ifdef USB_DEBUG
static uint64_t xhci_ctx_get_le64(struct xhci_softc *sc, volatile uint64_t *ptr);
#endif
static const struct usb_bus_methods xhci_bus_methods;
#ifdef USB_DEBUG
static void
xhci_dump_trb(struct xhci_trb *trb)
{
DPRINTFN(5, "trb = %p\n", trb);
DPRINTFN(5, "qwTrb0 = 0x%016llx\n", (long long)le64toh(trb->qwTrb0));
DPRINTFN(5, "dwTrb2 = 0x%08x\n", le32toh(trb->dwTrb2));
DPRINTFN(5, "dwTrb3 = 0x%08x\n", le32toh(trb->dwTrb3));
}
static void
xhci_dump_endpoint(struct xhci_softc *sc, struct xhci_endp_ctx *pep)
{
DPRINTFN(5, "pep = %p\n", pep);
DPRINTFN(5, "dwEpCtx0=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx0));
DPRINTFN(5, "dwEpCtx1=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx1));
DPRINTFN(5, "qwEpCtx2=0x%016llx\n", (long long)xhci_ctx_get_le64(sc, &pep->qwEpCtx2));
DPRINTFN(5, "dwEpCtx4=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx4));
DPRINTFN(5, "dwEpCtx5=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx5));
DPRINTFN(5, "dwEpCtx6=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx6));
DPRINTFN(5, "dwEpCtx7=0x%08x\n", xhci_ctx_get_le32(sc, &pep->dwEpCtx7));
}
static void
xhci_dump_device(struct xhci_softc *sc, struct xhci_slot_ctx *psl)
{
DPRINTFN(5, "psl = %p\n", psl);
DPRINTFN(5, "dwSctx0=0x%08x\n", xhci_ctx_get_le32(sc, &psl->dwSctx0));
DPRINTFN(5, "dwSctx1=0x%08x\n", xhci_ctx_get_le32(sc, &psl->dwSctx1));
DPRINTFN(5, "dwSctx2=0x%08x\n", xhci_ctx_get_le32(sc, &psl->dwSctx2));
DPRINTFN(5, "dwSctx3=0x%08x\n", xhci_ctx_get_le32(sc, &psl->dwSctx3));
}
#endif
uint8_t
xhci_use_polling(void)
{
#ifdef USB_DEBUG
return (xhcipolling != 0);
#else
return (0);
#endif
}
static void
xhci_iterate_hw_softc(struct usb_bus *bus, usb_bus_mem_sub_cb_t *cb)
{
struct xhci_softc *sc = XHCI_BUS2SC(bus);
uint8_t i;
cb(bus, &sc->sc_hw.root_pc, &sc->sc_hw.root_pg,
sizeof(struct xhci_hw_root), XHCI_PAGE_SIZE);
cb(bus, &sc->sc_hw.ctx_pc, &sc->sc_hw.ctx_pg,
sizeof(struct xhci_dev_ctx_addr), XHCI_PAGE_SIZE);
for (i = 0; i != XHCI_MAX_SCRATCHPADS; i++) {
cb(bus, &sc->sc_hw.scratch_pc[i], &sc->sc_hw.scratch_pg[i],
XHCI_PAGE_SIZE, XHCI_PAGE_SIZE);
}
}
static void
xhci_ctx_set_le32(struct xhci_softc *sc, volatile uint32_t *ptr, uint32_t val)
{
if (sc->sc_ctx_is_64_byte) {
uint32_t offset;
/* exploit the fact that our structures are XHCI_PAGE_SIZE aligned */
/* all contexts are initially 32-bytes */
offset = ((uintptr_t)ptr) & ((XHCI_PAGE_SIZE - 1) & ~(31U));
ptr = (volatile uint32_t *)(((volatile uint8_t *)ptr) + offset);
}
*ptr = htole32(val);
}
static uint32_t
xhci_ctx_get_le32(struct xhci_softc *sc, volatile uint32_t *ptr)
{
if (sc->sc_ctx_is_64_byte) {
uint32_t offset;
/* exploit the fact that our structures are XHCI_PAGE_SIZE aligned */
/* all contexts are initially 32-bytes */
offset = ((uintptr_t)ptr) & ((XHCI_PAGE_SIZE - 1) & ~(31U));
ptr = (volatile uint32_t *)(((volatile uint8_t *)ptr) + offset);
}
return (le32toh(*ptr));
}
static void
xhci_ctx_set_le64(struct xhci_softc *sc, volatile uint64_t *ptr, uint64_t val)
{
if (sc->sc_ctx_is_64_byte) {
uint32_t offset;
/* exploit the fact that our structures are XHCI_PAGE_SIZE aligned */
/* all contexts are initially 32-bytes */
offset = ((uintptr_t)ptr) & ((XHCI_PAGE_SIZE - 1) & ~(31U));
ptr = (volatile uint64_t *)(((volatile uint8_t *)ptr) + offset);
}
*ptr = htole64(val);
}
#ifdef USB_DEBUG
static uint64_t
xhci_ctx_get_le64(struct xhci_softc *sc, volatile uint64_t *ptr)
{
if (sc->sc_ctx_is_64_byte) {
uint32_t offset;
/* exploit the fact that our structures are XHCI_PAGE_SIZE aligned */
/* all contexts are initially 32-bytes */
offset = ((uintptr_t)ptr) & ((XHCI_PAGE_SIZE - 1) & ~(31U));
ptr = (volatile uint64_t *)(((volatile uint8_t *)ptr) + offset);
}
return (le64toh(*ptr));
}
#endif
static int
xhci_reset_command_queue_locked(struct xhci_softc *sc)
{
struct usb_page_search buf_res;
struct xhci_hw_root *phwr;
uint64_t addr;
uint32_t temp;
DPRINTF("\n");
temp = XREAD4(sc, oper, XHCI_CRCR_LO);
if (temp & XHCI_CRCR_LO_CRR) {
DPRINTF("Command ring running\n");
temp &= ~(XHCI_CRCR_LO_CS | XHCI_CRCR_LO_CA);
/*
* Try to abort the last command as per section
* 4.6.1.2 "Aborting a Command" of the XHCI
* specification:
*/
/* stop and cancel */
XWRITE4(sc, oper, XHCI_CRCR_LO, temp | XHCI_CRCR_LO_CS);
XWRITE4(sc, oper, XHCI_CRCR_HI, 0);
XWRITE4(sc, oper, XHCI_CRCR_LO, temp | XHCI_CRCR_LO_CA);
XWRITE4(sc, oper, XHCI_CRCR_HI, 0);
/* wait 250ms */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 4);
/* check if command ring is still running */
temp = XREAD4(sc, oper, XHCI_CRCR_LO);
if (temp & XHCI_CRCR_LO_CRR) {
DPRINTF("Comand ring still running\n");
return (USB_ERR_IOERROR);
}
}
/* reset command ring */
sc->sc_command_ccs = 1;
sc->sc_command_idx = 0;
usbd_get_page(&sc->sc_hw.root_pc, 0, &buf_res);
/* set up command ring control base address */
addr = buf_res.physaddr;
phwr = buf_res.buffer;
addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_commands[0];
DPRINTF("CRCR=0x%016llx\n", (unsigned long long)addr);
memset(phwr->hwr_commands, 0, sizeof(phwr->hwr_commands));
phwr->hwr_commands[XHCI_MAX_COMMANDS - 1].qwTrb0 = htole64(addr);
usb_pc_cpu_flush(&sc->sc_hw.root_pc);
XWRITE4(sc, oper, XHCI_CRCR_LO, ((uint32_t)addr) | XHCI_CRCR_LO_RCS);
XWRITE4(sc, oper, XHCI_CRCR_HI, (uint32_t)(addr >> 32));
return (0);
}
usb_error_t
xhci_start_controller(struct xhci_softc *sc)
{
struct usb_page_search buf_res;
struct xhci_hw_root *phwr;
struct xhci_dev_ctx_addr *pdctxa;
uint64_t addr;
uint32_t temp;
uint16_t i;
DPRINTF("\n");
sc->sc_event_ccs = 1;
sc->sc_event_idx = 0;
sc->sc_command_ccs = 1;
sc->sc_command_idx = 0;
/* Reset controller */
XWRITE4(sc, oper, XHCI_USBCMD, XHCI_CMD_HCRST);
for (i = 0; i != 100; i++) {
usb_pause_mtx(NULL, hz / 100);
temp = (XREAD4(sc, oper, XHCI_USBCMD) & XHCI_CMD_HCRST) |
(XREAD4(sc, oper, XHCI_USBSTS) & XHCI_STS_CNR);
if (!temp)
break;
}
if (temp) {
device_printf(sc->sc_bus.parent, "Controller "
"reset timeout.\n");
return (USB_ERR_IOERROR);
}
/* set up number of device slots */
DPRINTF("CONFIG=0x%08x -> 0x%08x\n",
XREAD4(sc, oper, XHCI_CONFIG), sc->sc_noslot);
XWRITE4(sc, oper, XHCI_CONFIG, sc->sc_noslot);
temp = XREAD4(sc, oper, XHCI_USBSTS);
/* clear interrupts */
XWRITE4(sc, oper, XHCI_USBSTS, temp);
/* disable all device notifications */
XWRITE4(sc, oper, XHCI_DNCTRL, 0);
/* set up device context base address */
usbd_get_page(&sc->sc_hw.ctx_pc, 0, &buf_res);
pdctxa = buf_res.buffer;
memset(pdctxa, 0, sizeof(*pdctxa));
addr = buf_res.physaddr;
addr += (uintptr_t)&((struct xhci_dev_ctx_addr *)0)->qwSpBufPtr[0];
/* slot 0 points to the table of scratchpad pointers */
pdctxa->qwBaaDevCtxAddr[0] = htole64(addr);
for (i = 0; i != sc->sc_noscratch; i++) {
struct usb_page_search buf_scp;
usbd_get_page(&sc->sc_hw.scratch_pc[i], 0, &buf_scp);
pdctxa->qwSpBufPtr[i] = htole64((uint64_t)buf_scp.physaddr);
}
addr = buf_res.physaddr;
XWRITE4(sc, oper, XHCI_DCBAAP_LO, (uint32_t)addr);
XWRITE4(sc, oper, XHCI_DCBAAP_HI, (uint32_t)(addr >> 32));
XWRITE4(sc, oper, XHCI_DCBAAP_LO, (uint32_t)addr);
XWRITE4(sc, oper, XHCI_DCBAAP_HI, (uint32_t)(addr >> 32));
/* set up event table size */
DPRINTF("ERSTSZ=0x%08x -> 0x%08x\n",
XREAD4(sc, runt, XHCI_ERSTSZ(0)), sc->sc_erst_max);
XWRITE4(sc, runt, XHCI_ERSTSZ(0), XHCI_ERSTS_SET(sc->sc_erst_max));
/* set up interrupt rate */
XWRITE4(sc, runt, XHCI_IMOD(0), sc->sc_imod_default);
usbd_get_page(&sc->sc_hw.root_pc, 0, &buf_res);
phwr = buf_res.buffer;
addr = buf_res.physaddr;
addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_events[0];
/* reset hardware root structure */
memset(phwr, 0, sizeof(*phwr));
phwr->hwr_ring_seg[0].qwEvrsTablePtr = htole64(addr);
phwr->hwr_ring_seg[0].dwEvrsTableSize = htole32(XHCI_MAX_EVENTS);
DPRINTF("ERDP(0)=0x%016llx\n", (unsigned long long)addr);
XWRITE4(sc, runt, XHCI_ERDP_LO(0), (uint32_t)addr);
XWRITE4(sc, runt, XHCI_ERDP_HI(0), (uint32_t)(addr >> 32));
addr = buf_res.physaddr;
DPRINTF("ERSTBA(0)=0x%016llx\n", (unsigned long long)addr);
XWRITE4(sc, runt, XHCI_ERSTBA_LO(0), (uint32_t)addr);
XWRITE4(sc, runt, XHCI_ERSTBA_HI(0), (uint32_t)(addr >> 32));
/* set up interrupter registers */
temp = XREAD4(sc, runt, XHCI_IMAN(0));
temp |= XHCI_IMAN_INTR_ENA;
XWRITE4(sc, runt, XHCI_IMAN(0), temp);
/* set up command ring control base address */
addr = buf_res.physaddr;
addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_commands[0];
DPRINTF("CRCR=0x%016llx\n", (unsigned long long)addr);
XWRITE4(sc, oper, XHCI_CRCR_LO, ((uint32_t)addr) | XHCI_CRCR_LO_RCS);
XWRITE4(sc, oper, XHCI_CRCR_HI, (uint32_t)(addr >> 32));
phwr->hwr_commands[XHCI_MAX_COMMANDS - 1].qwTrb0 = htole64(addr);
usb_bus_mem_flush_all(&sc->sc_bus, &xhci_iterate_hw_softc);
/* Go! */
XWRITE4(sc, oper, XHCI_USBCMD, XHCI_CMD_RS |
XHCI_CMD_INTE | XHCI_CMD_HSEE);
for (i = 0; i != 100; i++) {
usb_pause_mtx(NULL, hz / 100);
temp = XREAD4(sc, oper, XHCI_USBSTS) & XHCI_STS_HCH;
if (!temp)
break;
}
if (temp) {
XWRITE4(sc, oper, XHCI_USBCMD, 0);
device_printf(sc->sc_bus.parent, "Run timeout.\n");
return (USB_ERR_IOERROR);
}
/* catch any lost interrupts */
xhci_do_poll(&sc->sc_bus);
if (sc->sc_port_route != NULL) {
/* Route all ports to the XHCI by default */
sc->sc_port_route(sc->sc_bus.parent,
~xhciroute, xhciroute);
}
return (0);
}
usb_error_t
xhci_halt_controller(struct xhci_softc *sc)
{
uint32_t temp;
uint16_t i;
DPRINTF("\n");
sc->sc_capa_off = 0;
sc->sc_oper_off = XREAD1(sc, capa, XHCI_CAPLENGTH);
sc->sc_runt_off = XREAD4(sc, capa, XHCI_RTSOFF) & ~0xF;
sc->sc_door_off = XREAD4(sc, capa, XHCI_DBOFF) & ~0x3;
/* Halt controller */
XWRITE4(sc, oper, XHCI_USBCMD, 0);
for (i = 0; i != 100; i++) {
usb_pause_mtx(NULL, hz / 100);
temp = XREAD4(sc, oper, XHCI_USBSTS) & XHCI_STS_HCH;
if (temp)
break;
}
if (!temp) {
device_printf(sc->sc_bus.parent, "Controller halt timeout.\n");
return (USB_ERR_IOERROR);
}
return (0);
}
usb_error_t
xhci_init(struct xhci_softc *sc, device_t self, uint8_t dma32)
{
uint32_t temp;
DPRINTF("\n");
/* initialize some bus fields */
sc->sc_bus.parent = self;
/* set the bus revision */
sc->sc_bus.usbrev = USB_REV_3_0;
/* set up the bus struct */
sc->sc_bus.methods = &xhci_bus_methods;
/* set up devices array */
sc->sc_bus.devices = sc->sc_devices;
sc->sc_bus.devices_max = XHCI_MAX_DEVICES;
/* set default cycle state in case of early interrupts */
sc->sc_event_ccs = 1;
sc->sc_command_ccs = 1;
/* set up bus space offsets */
sc->sc_capa_off = 0;
sc->sc_oper_off = XREAD1(sc, capa, XHCI_CAPLENGTH);
sc->sc_runt_off = XREAD4(sc, capa, XHCI_RTSOFF) & ~0x1F;
sc->sc_door_off = XREAD4(sc, capa, XHCI_DBOFF) & ~0x3;
DPRINTF("CAPLENGTH=0x%x\n", sc->sc_oper_off);
DPRINTF("RUNTIMEOFFSET=0x%x\n", sc->sc_runt_off);
DPRINTF("DOOROFFSET=0x%x\n", sc->sc_door_off);
DPRINTF("xHCI version = 0x%04x\n", XREAD2(sc, capa, XHCI_HCIVERSION));
if (!(XREAD4(sc, oper, XHCI_PAGESIZE) & XHCI_PAGESIZE_4K)) {
device_printf(sc->sc_bus.parent, "Controller does "
"not support 4K page size.\n");
return (ENXIO);
}
temp = XREAD4(sc, capa, XHCI_HCSPARAMS0);
DPRINTF("HCS0 = 0x%08x\n", temp);
/* set up context size */
if (XHCI_HCS0_CSZ(temp)) {
sc->sc_ctx_is_64_byte = 1;
} else {
sc->sc_ctx_is_64_byte = 0;
}
/* get DMA bits */
sc->sc_bus.dma_bits = (XHCI_HCS0_AC64(temp) &&
xhcidma32 == 0 && dma32 == 0) ? 64 : 32;
device_printf(self, "%d bytes context size, %d-bit DMA\n",
sc->sc_ctx_is_64_byte ? 64 : 32, (int)sc->sc_bus.dma_bits);
temp = XREAD4(sc, capa, XHCI_HCSPARAMS1);
/* get number of device slots */
sc->sc_noport = XHCI_HCS1_N_PORTS(temp);
if (sc->sc_noport == 0) {
device_printf(sc->sc_bus.parent, "Invalid number "
"of ports: %u\n", sc->sc_noport);
return (ENXIO);
}
sc->sc_noport = sc->sc_noport;
sc->sc_noslot = XHCI_HCS1_DEVSLOT_MAX(temp);
DPRINTF("Max slots: %u\n", sc->sc_noslot);
if (sc->sc_noslot > XHCI_MAX_DEVICES)
sc->sc_noslot = XHCI_MAX_DEVICES;
temp = XREAD4(sc, capa, XHCI_HCSPARAMS2);
DPRINTF("HCS2=0x%08x\n", temp);
/* get number of scratchpads */
sc->sc_noscratch = XHCI_HCS2_SPB_MAX(temp);
if (sc->sc_noscratch > XHCI_MAX_SCRATCHPADS) {
device_printf(sc->sc_bus.parent, "XHCI request "
"too many scratchpads\n");
return (ENOMEM);
}
DPRINTF("Max scratch: %u\n", sc->sc_noscratch);
/* get event table size */
sc->sc_erst_max = 1U << XHCI_HCS2_ERST_MAX(temp);
if (sc->sc_erst_max > XHCI_MAX_RSEG)
sc->sc_erst_max = XHCI_MAX_RSEG;
temp = XREAD4(sc, capa, XHCI_HCSPARAMS3);
/* get maximum exit latency */
sc->sc_exit_lat_max = XHCI_HCS3_U1_DEL(temp) +
XHCI_HCS3_U2_DEL(temp) + 250 /* us */;
/* Check if we should use the default IMOD value. */
if (sc->sc_imod_default == 0)
sc->sc_imod_default = XHCI_IMOD_DEFAULT;
/* get all DMA memory */
if (usb_bus_mem_alloc_all(&sc->sc_bus,
USB_GET_DMA_TAG(self), &xhci_iterate_hw_softc)) {
return (ENOMEM);
}
/* set up command queue mutex and condition varible */
cv_init(&sc->sc_cmd_cv, "CMDQ");
sx_init(&sc->sc_cmd_sx, "CMDQ lock");
sc->sc_config_msg[0].hdr.pm_callback = &xhci_configure_msg;
sc->sc_config_msg[0].bus = &sc->sc_bus;
sc->sc_config_msg[1].hdr.pm_callback = &xhci_configure_msg;
sc->sc_config_msg[1].bus = &sc->sc_bus;
return (0);
}
void
xhci_uninit(struct xhci_softc *sc)
{
/*
* NOTE: At this point the control transfer process is gone
* and "xhci_configure_msg" is no longer called. Consequently
* waiting for the configuration messages to complete is not
* needed.
*/
usb_bus_mem_free_all(&sc->sc_bus, &xhci_iterate_hw_softc);
cv_destroy(&sc->sc_cmd_cv);
sx_destroy(&sc->sc_cmd_sx);
}
static void
xhci_set_hw_power_sleep(struct usb_bus *bus, uint32_t state)
{
struct xhci_softc *sc = XHCI_BUS2SC(bus);
switch (state) {
case USB_HW_POWER_SUSPEND:
DPRINTF("Stopping the XHCI\n");
xhci_halt_controller(sc);
break;
case USB_HW_POWER_SHUTDOWN:
DPRINTF("Stopping the XHCI\n");
xhci_halt_controller(sc);
break;
case USB_HW_POWER_RESUME:
DPRINTF("Starting the XHCI\n");
xhci_start_controller(sc);
break;
default:
break;
}
}
static usb_error_t
xhci_generic_done_sub(struct usb_xfer *xfer)
{
struct xhci_td *td;
struct xhci_td *td_alt_next;
uint32_t len;
uint8_t status;
td = xfer->td_transfer_cache;
td_alt_next = td->alt_next;
if (xfer->aframes != xfer->nframes)
usbd_xfer_set_frame_len(xfer, xfer->aframes, 0);
while (1) {
usb_pc_cpu_invalidate(td->page_cache);
status = td->status;
len = td->remainder;
DPRINTFN(4, "xfer=%p[%u/%u] rem=%u/%u status=%u\n",
xfer, (unsigned int)xfer->aframes,
(unsigned int)xfer->nframes,
(unsigned int)len, (unsigned int)td->len,
(unsigned int)status);
/*
* Verify the status length and
* add the length to "frlengths[]":
*/
if (len > td->len) {
/* should not happen */
DPRINTF("Invalid status length, "
"0x%04x/0x%04x bytes\n", len, td->len);
status = XHCI_TRB_ERROR_LENGTH;
} else if (xfer->aframes != xfer->nframes) {
xfer->frlengths[xfer->aframes] += td->len - len;
}
/* Check for last transfer */
if (((void *)td) == xfer->td_transfer_last) {
td = NULL;
break;
}
/* Check for transfer error */
if (status != XHCI_TRB_ERROR_SHORT_PKT &&
status != XHCI_TRB_ERROR_SUCCESS) {
/* the transfer is finished */
td = NULL;
break;
}
/* Check for short transfer */
if (len > 0) {
if (xfer->flags_int.short_frames_ok ||
xfer->flags_int.isochronous_xfr ||
xfer->flags_int.control_xfr) {
/* follow alt next */
td = td->alt_next;
} else {
/* the transfer is finished */
td = NULL;
}
break;
}
td = td->obj_next;
if (td->alt_next != td_alt_next) {
/* this USB frame is complete */
break;
}
}
/* update transfer cache */
xfer->td_transfer_cache = td;
return ((status == XHCI_TRB_ERROR_STALL) ? USB_ERR_STALLED :
(status != XHCI_TRB_ERROR_SHORT_PKT &&
status != XHCI_TRB_ERROR_SUCCESS) ? USB_ERR_IOERROR :
USB_ERR_NORMAL_COMPLETION);
}
static void
xhci_generic_done(struct usb_xfer *xfer)
{
usb_error_t err = 0;
DPRINTFN(13, "xfer=%p endpoint=%p transfer done\n",
xfer, xfer->endpoint);
/* reset scanner */
xfer->td_transfer_cache = xfer->td_transfer_first;
if (xfer->flags_int.control_xfr) {
if (xfer->flags_int.control_hdr)
err = xhci_generic_done_sub(xfer);
xfer->aframes = 1;
if (xfer->td_transfer_cache == NULL)
goto done;
}
while (xfer->aframes != xfer->nframes) {
err = xhci_generic_done_sub(xfer);
xfer->aframes++;
if (xfer->td_transfer_cache == NULL)
goto done;
}
if (xfer->flags_int.control_xfr &&
!xfer->flags_int.control_act)
err = xhci_generic_done_sub(xfer);
done:
/* transfer is complete */
xhci_device_done(xfer, err);
}
static void
xhci_activate_transfer(struct usb_xfer *xfer)
{
struct xhci_td *td;
td = xfer->td_transfer_cache;
usb_pc_cpu_invalidate(td->page_cache);
if (!(td->td_trb[0].dwTrb3 & htole32(XHCI_TRB_3_CYCLE_BIT))) {
/* activate the transfer */
td->td_trb[0].dwTrb3 |= htole32(XHCI_TRB_3_CYCLE_BIT);
usb_pc_cpu_flush(td->page_cache);
xhci_endpoint_doorbell(xfer);
}
}
static void
xhci_skip_transfer(struct usb_xfer *xfer)
{
struct xhci_td *td;
struct xhci_td *td_last;
td = xfer->td_transfer_cache;
td_last = xfer->td_transfer_last;
td = td->alt_next;
usb_pc_cpu_invalidate(td->page_cache);
if (!(td->td_trb[0].dwTrb3 & htole32(XHCI_TRB_3_CYCLE_BIT))) {
usb_pc_cpu_invalidate(td_last->page_cache);
/* copy LINK TRB to current waiting location */
td->td_trb[0].qwTrb0 = td_last->td_trb[td_last->ntrb].qwTrb0;
td->td_trb[0].dwTrb2 = td_last->td_trb[td_last->ntrb].dwTrb2;
usb_pc_cpu_flush(td->page_cache);
td->td_trb[0].dwTrb3 = td_last->td_trb[td_last->ntrb].dwTrb3;
usb_pc_cpu_flush(td->page_cache);
xhci_endpoint_doorbell(xfer);
}
}
/*------------------------------------------------------------------------*
* xhci_check_transfer
*------------------------------------------------------------------------*/
static void
xhci_check_transfer(struct xhci_softc *sc, struct xhci_trb *trb)
{
struct xhci_endpoint_ext *pepext;
int64_t offset;
uint64_t td_event;
uint32_t temp;
uint32_t remainder;
uint16_t stream_id;
uint16_t i;
uint8_t status;
uint8_t halted;
uint8_t epno;
uint8_t index;
/* decode TRB */
td_event = le64toh(trb->qwTrb0);
temp = le32toh(trb->dwTrb2);
remainder = XHCI_TRB_2_REM_GET(temp);
status = XHCI_TRB_2_ERROR_GET(temp);
stream_id = XHCI_TRB_2_STREAM_GET(temp);
temp = le32toh(trb->dwTrb3);
epno = XHCI_TRB_3_EP_GET(temp);
index = XHCI_TRB_3_SLOT_GET(temp);
/* check if error means halted */
halted = (status != XHCI_TRB_ERROR_SHORT_PKT &&
status != XHCI_TRB_ERROR_SUCCESS);
DPRINTF("slot=%u epno=%u stream=%u remainder=%u status=%u\n",
index, epno, stream_id, remainder, status);
if (index > sc->sc_noslot) {
DPRINTF("Invalid slot.\n");
return;
}
if ((epno == 0) || (epno >= XHCI_MAX_ENDPOINTS)) {
DPRINTF("Invalid endpoint.\n");
return;
}
pepext = &sc->sc_hw.devs[index].endp[epno];
if (pepext->trb_ep_mode != USB_EP_MODE_STREAMS) {
stream_id = 0;
DPRINTF("stream_id=0\n");
} else if (stream_id >= XHCI_MAX_STREAMS) {
DPRINTF("Invalid stream ID.\n");
return;
}
/* try to find the USB transfer that generated the event */
for (i = 0; i != (XHCI_MAX_TRANSFERS - 1); i++) {
struct usb_xfer *xfer;
struct xhci_td *td;
xfer = pepext->xfer[i + (XHCI_MAX_TRANSFERS * stream_id)];
if (xfer == NULL)
continue;
td = xfer->td_transfer_cache;
DPRINTFN(5, "Checking if 0x%016llx == (0x%016llx .. 0x%016llx)\n",
(long long)td_event,
(long long)td->td_self,
(long long)td->td_self + sizeof(td->td_trb));
/*
* NOTE: Some XHCI implementations might not trigger
* an event on the last LINK TRB so we need to
* consider both the last and second last event
* address as conditions for a successful transfer.
*
* NOTE: We assume that the XHCI will only trigger one
* event per chain of TRBs.
*/
offset = td_event - td->td_self;
if (offset >= 0 &&
offset < (int64_t)sizeof(td->td_trb)) {
usb_pc_cpu_invalidate(td->page_cache);
/* compute rest of remainder, if any */
for (i = (offset / 16) + 1; i < td->ntrb; i++) {
temp = le32toh(td->td_trb[i].dwTrb2);
remainder += XHCI_TRB_2_BYTES_GET(temp);
}
DPRINTFN(5, "New remainder: %u\n", remainder);
/* clear isochronous transfer errors */
if (xfer->flags_int.isochronous_xfr) {
if (halted) {
halted = 0;
status = XHCI_TRB_ERROR_SUCCESS;
remainder = td->len;
}
}
/* "td->remainder" is verified later */
td->remainder = remainder;
td->status = status;
usb_pc_cpu_flush(td->page_cache);
/*
* 1) Last transfer descriptor makes the
* transfer done
*/
if (((void *)td) == xfer->td_transfer_last) {
DPRINTF("TD is last\n");
xhci_generic_done(xfer);
break;
}
/*
* 2) Any kind of error makes the transfer
* done
*/
if (halted) {
DPRINTF("TD has I/O error\n");
xhci_generic_done(xfer);
break;
}
/*
* 3) If there is no alternate next transfer,
* a short packet also makes the transfer done
*/
if (td->remainder > 0) {
if (td->alt_next == NULL) {
DPRINTF(
"short TD has no alternate next\n");
xhci_generic_done(xfer);
break;
}
DPRINTF("TD has short pkt\n");
if (xfer->flags_int.short_frames_ok ||
xfer->flags_int.isochronous_xfr ||
xfer->flags_int.control_xfr) {
/* follow the alt next */
xfer->td_transfer_cache = td->alt_next;
xhci_activate_transfer(xfer);
break;
}
xhci_skip_transfer(xfer);
xhci_generic_done(xfer);
break;
}
/*
* 4) Transfer complete - go to next TD
*/
DPRINTF("Following next TD\n");
xfer->td_transfer_cache = td->obj_next;
xhci_activate_transfer(xfer);
break; /* there should only be one match */
}
}
}
static int
xhci_check_command(struct xhci_softc *sc, struct xhci_trb *trb)
{
if (sc->sc_cmd_addr == trb->qwTrb0) {
DPRINTF("Received command event\n");
sc->sc_cmd_result[0] = trb->dwTrb2;
sc->sc_cmd_result[1] = trb->dwTrb3;
cv_signal(&sc->sc_cmd_cv);
return (1); /* command match */
}
return (0);
}
static int
xhci_interrupt_poll(struct xhci_softc *sc)
{
struct usb_page_search buf_res;
struct xhci_hw_root *phwr;
uint64_t addr;
uint32_t temp;
int retval = 0;
uint16_t i;
uint8_t event;
uint8_t j;
uint8_t k;
uint8_t t;
usbd_get_page(&sc->sc_hw.root_pc, 0, &buf_res);
phwr = buf_res.buffer;
/* Receive any events */
usb_pc_cpu_invalidate(&sc->sc_hw.root_pc);
i = sc->sc_event_idx;
j = sc->sc_event_ccs;
t = 2;
while (1) {
temp = le32toh(phwr->hwr_events[i].dwTrb3);
k = (temp & XHCI_TRB_3_CYCLE_BIT) ? 1 : 0;
if (j != k)
break;
event = XHCI_TRB_3_TYPE_GET(temp);
DPRINTFN(10, "event[%u] = %u (0x%016llx 0x%08lx 0x%08lx)\n",
i, event, (long long)le64toh(phwr->hwr_events[i].qwTrb0),
(long)le32toh(phwr->hwr_events[i].dwTrb2),
(long)le32toh(phwr->hwr_events[i].dwTrb3));
switch (event) {
case XHCI_TRB_EVENT_TRANSFER:
xhci_check_transfer(sc, &phwr->hwr_events[i]);
break;
case XHCI_TRB_EVENT_CMD_COMPLETE:
retval |= xhci_check_command(sc, &phwr->hwr_events[i]);
break;
default:
DPRINTF("Unhandled event = %u\n", event);
break;
}
i++;
if (i == XHCI_MAX_EVENTS) {
i = 0;
j ^= 1;
/* check for timeout */
if (!--t)
break;
}
}
sc->sc_event_idx = i;
sc->sc_event_ccs = j;
/*
* NOTE: The Event Ring Dequeue Pointer Register is 64-bit
* latched. That means to activate the register we need to
* write both the low and high double word of the 64-bit
* register.
*/
addr = buf_res.physaddr;
addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_events[i];
/* try to clear busy bit */
addr |= XHCI_ERDP_LO_BUSY;
XWRITE4(sc, runt, XHCI_ERDP_LO(0), (uint32_t)addr);
XWRITE4(sc, runt, XHCI_ERDP_HI(0), (uint32_t)(addr >> 32));
return (retval);
}
static usb_error_t
xhci_do_command(struct xhci_softc *sc, struct xhci_trb *trb,
uint16_t timeout_ms)
{
struct usb_page_search buf_res;
struct xhci_hw_root *phwr;
uint64_t addr;
uint32_t temp;
uint8_t i;
uint8_t j;
uint8_t timeout = 0;
int err;
XHCI_CMD_ASSERT_LOCKED(sc);
/* get hardware root structure */
usbd_get_page(&sc->sc_hw.root_pc, 0, &buf_res);
phwr = buf_res.buffer;
/* Queue command */
USB_BUS_LOCK(&sc->sc_bus);
retry:
i = sc->sc_command_idx;
j = sc->sc_command_ccs;
DPRINTFN(10, "command[%u] = %u (0x%016llx, 0x%08lx, 0x%08lx)\n",
i, XHCI_TRB_3_TYPE_GET(le32toh(trb->dwTrb3)),
(long long)le64toh(trb->qwTrb0),
(long)le32toh(trb->dwTrb2),
(long)le32toh(trb->dwTrb3));
phwr->hwr_commands[i].qwTrb0 = trb->qwTrb0;
phwr->hwr_commands[i].dwTrb2 = trb->dwTrb2;
usb_pc_cpu_flush(&sc->sc_hw.root_pc);
temp = trb->dwTrb3;
if (j)
temp |= htole32(XHCI_TRB_3_CYCLE_BIT);
else
temp &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
temp &= ~htole32(XHCI_TRB_3_TC_BIT);
phwr->hwr_commands[i].dwTrb3 = temp;
usb_pc_cpu_flush(&sc->sc_hw.root_pc);
addr = buf_res.physaddr;
addr += (uintptr_t)&((struct xhci_hw_root *)0)->hwr_commands[i];
sc->sc_cmd_addr = htole64(addr);
i++;
if (i == (XHCI_MAX_COMMANDS - 1)) {
if (j) {
temp = htole32(XHCI_TRB_3_TC_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
XHCI_TRB_3_CYCLE_BIT);
} else {
temp = htole32(XHCI_TRB_3_TC_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK));
}
phwr->hwr_commands[i].dwTrb3 = temp;
usb_pc_cpu_flush(&sc->sc_hw.root_pc);
i = 0;
j ^= 1;
}
sc->sc_command_idx = i;
sc->sc_command_ccs = j;
XWRITE4(sc, door, XHCI_DOORBELL(0), 0);
err = cv_timedwait(&sc->sc_cmd_cv, &sc->sc_bus.bus_mtx,
USB_MS_TO_TICKS(timeout_ms));
/*
* In some error cases event interrupts are not generated.
* Poll one time to see if the command has completed.
*/
if (err != 0 && xhci_interrupt_poll(sc) != 0) {
DPRINTF("Command was completed when polling\n");
err = 0;
}
if (err != 0) {
DPRINTF("Command timeout!\n");
/*
* After some weeks of continuous operation, it has
* been observed that the ASMedia Technology, ASM1042
* SuperSpeed USB Host Controller can suddenly stop
* accepting commands via the command queue. Try to
* first reset the command queue. If that fails do a
* host controller reset.
*/
if (timeout == 0 &&
xhci_reset_command_queue_locked(sc) == 0) {
temp = le32toh(trb->dwTrb3);
/*
* Avoid infinite XHCI reset loops if the set
* address command fails to respond due to a
* non-enumerating device:
*/
if (XHCI_TRB_3_TYPE_GET(temp) == XHCI_TRB_TYPE_ADDRESS_DEVICE &&
(temp & XHCI_TRB_3_BSR_BIT) == 0) {
DPRINTF("Set address timeout\n");
} else {
timeout = 1;
goto retry;
}
} else {
DPRINTF("Controller reset!\n");
usb_bus_reset_async_locked(&sc->sc_bus);
}
err = USB_ERR_TIMEOUT;
trb->dwTrb2 = 0;
trb->dwTrb3 = 0;
} else {
temp = le32toh(sc->sc_cmd_result[0]);
if (XHCI_TRB_2_ERROR_GET(temp) != XHCI_TRB_ERROR_SUCCESS)
err = USB_ERR_IOERROR;
trb->dwTrb2 = sc->sc_cmd_result[0];
trb->dwTrb3 = sc->sc_cmd_result[1];
}
USB_BUS_UNLOCK(&sc->sc_bus);
return (err);
}
#if 0
static usb_error_t
xhci_cmd_nop(struct xhci_softc *sc)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NOOP);
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 100 /* ms */));
}
#endif
static usb_error_t
xhci_cmd_enable_slot(struct xhci_softc *sc, uint8_t *pslot)
{
struct xhci_trb trb;
uint32_t temp;
usb_error_t err;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
trb.dwTrb3 = htole32(XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ENABLE_SLOT));
err = xhci_do_command(sc, &trb, 100 /* ms */);
if (err)
goto done;
temp = le32toh(trb.dwTrb3);
*pslot = XHCI_TRB_3_SLOT_GET(temp);
done:
return (err);
}
static usb_error_t
xhci_cmd_disable_slot(struct xhci_softc *sc, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DISABLE_SLOT) |
XHCI_TRB_3_SLOT_SET(slot_id);
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 100 /* ms */));
}
static usb_error_t
xhci_cmd_set_address(struct xhci_softc *sc, uint64_t input_ctx,
uint8_t bsr, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = htole64(input_ctx);
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ADDRESS_DEVICE) |
XHCI_TRB_3_SLOT_SET(slot_id);
if (bsr)
temp |= XHCI_TRB_3_BSR_BIT;
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 500 /* ms */));
}
static usb_error_t
xhci_set_address(struct usb_device *udev, struct mtx *mtx, uint16_t address)
{
struct usb_page_search buf_inp;
struct usb_page_search buf_dev;
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct xhci_hw_dev *hdev;
struct xhci_dev_ctx *pdev;
struct xhci_endpoint_ext *pepext;
uint32_t temp;
uint16_t mps;
usb_error_t err;
uint8_t index;
/* the root HUB case is not handled here */
if (udev->parent_hub == NULL)
return (USB_ERR_INVAL);
index = udev->controller_slot_id;
hdev = &sc->sc_hw.devs[index];
if (mtx != NULL)
mtx_unlock(mtx);
XHCI_CMD_LOCK(sc);
switch (hdev->state) {
case XHCI_ST_DEFAULT:
case XHCI_ST_ENABLED:
hdev->state = XHCI_ST_ENABLED;
/* set configure mask to slot and EP0 */
xhci_configure_mask(udev, 3, 0);
/* configure input slot context structure */
err = xhci_configure_device(udev);
if (err != 0) {
DPRINTF("Could not configure device\n");
break;
}
/* configure input endpoint context structure */
switch (udev->speed) {
case USB_SPEED_LOW:
case USB_SPEED_FULL:
mps = 8;
break;
case USB_SPEED_HIGH:
mps = 64;
break;
default:
mps = 512;
break;
}
pepext = xhci_get_endpoint_ext(udev,
&udev->ctrl_ep_desc);
/* ensure the control endpoint is setup again */
USB_BUS_LOCK(udev->bus);
pepext->trb_halted = 1;
pepext->trb_running = 0;
USB_BUS_UNLOCK(udev->bus);
err = xhci_configure_endpoint(udev,
&udev->ctrl_ep_desc, pepext,
0, 1, 1, 0, mps, mps, USB_EP_MODE_DEFAULT);
if (err != 0) {
DPRINTF("Could not configure default endpoint\n");
break;
}
/* execute set address command */
usbd_get_page(&hdev->input_pc, 0, &buf_inp);
err = xhci_cmd_set_address(sc, buf_inp.physaddr,
(address == 0), index);
if (err != 0) {
temp = le32toh(sc->sc_cmd_result[0]);
if (address == 0 && sc->sc_port_route != NULL &&
XHCI_TRB_2_ERROR_GET(temp) ==
XHCI_TRB_ERROR_PARAMETER) {
/* LynxPoint XHCI - ports are not switchable */
/* Un-route all ports from the XHCI */
sc->sc_port_route(sc->sc_bus.parent, 0, ~0);
}
DPRINTF("Could not set address "
"for slot %u.\n", index);
if (address != 0)
break;
}
/* update device address to new value */
usbd_get_page(&hdev->device_pc, 0, &buf_dev);
pdev = buf_dev.buffer;
usb_pc_cpu_invalidate(&hdev->device_pc);
temp = xhci_ctx_get_le32(sc, &pdev->ctx_slot.dwSctx3);
udev->address = XHCI_SCTX_3_DEV_ADDR_GET(temp);
/* update device state to new value */
if (address != 0)
hdev->state = XHCI_ST_ADDRESSED;
else
hdev->state = XHCI_ST_DEFAULT;
break;
default:
DPRINTF("Wrong state for set address.\n");
err = USB_ERR_IOERROR;
break;
}
XHCI_CMD_UNLOCK(sc);
if (mtx != NULL)
mtx_lock(mtx);
return (err);
}
static usb_error_t
xhci_cmd_configure_ep(struct xhci_softc *sc, uint64_t input_ctx,
uint8_t deconfigure, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = htole64(input_ctx);
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_CONFIGURE_EP) |
XHCI_TRB_3_SLOT_SET(slot_id);
if (deconfigure)
temp |= XHCI_TRB_3_DCEP_BIT;
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 100 /* ms */));
}
static usb_error_t
xhci_cmd_evaluate_ctx(struct xhci_softc *sc, uint64_t input_ctx,
uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = htole64(input_ctx);
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_EVALUATE_CTX) |
XHCI_TRB_3_SLOT_SET(slot_id);
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 100 /* ms */));
}
static usb_error_t
xhci_cmd_reset_ep(struct xhci_softc *sc, uint8_t preserve,
uint8_t ep_id, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_EP) |
XHCI_TRB_3_SLOT_SET(slot_id) |
XHCI_TRB_3_EP_SET(ep_id);
if (preserve)
temp |= XHCI_TRB_3_PRSV_BIT;
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 100 /* ms */));
}
static usb_error_t
xhci_cmd_set_tr_dequeue_ptr(struct xhci_softc *sc, uint64_t dequeue_ptr,
uint16_t stream_id, uint8_t ep_id, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = htole64(dequeue_ptr);
temp = XHCI_TRB_2_STREAM_SET(stream_id);
trb.dwTrb2 = htole32(temp);
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SET_TR_DEQUEUE) |
XHCI_TRB_3_SLOT_SET(slot_id) |
XHCI_TRB_3_EP_SET(ep_id);
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 100 /* ms */));
}
static usb_error_t
xhci_cmd_stop_ep(struct xhci_softc *sc, uint8_t suspend,
uint8_t ep_id, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STOP_EP) |
XHCI_TRB_3_SLOT_SET(slot_id) |
XHCI_TRB_3_EP_SET(ep_id);
if (suspend)
temp |= XHCI_TRB_3_SUSP_EP_BIT;
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 100 /* ms */));
}
static usb_error_t
xhci_cmd_reset_dev(struct xhci_softc *sc, uint8_t slot_id)
{
struct xhci_trb trb;
uint32_t temp;
DPRINTF("\n");
trb.qwTrb0 = 0;
trb.dwTrb2 = 0;
temp = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_RESET_DEVICE) |
XHCI_TRB_3_SLOT_SET(slot_id);
trb.dwTrb3 = htole32(temp);
return (xhci_do_command(sc, &trb, 100 /* ms */));
}
/*------------------------------------------------------------------------*
* xhci_interrupt - XHCI interrupt handler
*------------------------------------------------------------------------*/
void
xhci_interrupt(struct xhci_softc *sc)
{
uint32_t status;
uint32_t temp;
USB_BUS_LOCK(&sc->sc_bus);
status = XREAD4(sc, oper, XHCI_USBSTS);
/* acknowledge interrupts, if any */
if (status != 0) {
XWRITE4(sc, oper, XHCI_USBSTS, status);
DPRINTFN(16, "real interrupt (status=0x%08x)\n", status);
}
temp = XREAD4(sc, runt, XHCI_IMAN(0));
/* force clearing of pending interrupts */
if (temp & XHCI_IMAN_INTR_PEND)
XWRITE4(sc, runt, XHCI_IMAN(0), temp);
/* check for event(s) */
xhci_interrupt_poll(sc);
if (status & (XHCI_STS_PCD | XHCI_STS_HCH |
XHCI_STS_HSE | XHCI_STS_HCE)) {
if (status & XHCI_STS_PCD) {
xhci_root_intr(sc);
}
if (status & XHCI_STS_HCH) {
printf("%s: host controller halted\n",
__FUNCTION__);
}
if (status & XHCI_STS_HSE) {
printf("%s: host system error\n",
__FUNCTION__);
}
if (status & XHCI_STS_HCE) {
printf("%s: host controller error\n",
__FUNCTION__);
}
}
USB_BUS_UNLOCK(&sc->sc_bus);
}
/*------------------------------------------------------------------------*
* xhci_timeout - XHCI timeout handler
*------------------------------------------------------------------------*/
static void
xhci_timeout(void *arg)
{
struct usb_xfer *xfer = arg;
DPRINTF("xfer=%p\n", xfer);
USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
/* transfer is transferred */
xhci_device_done(xfer, USB_ERR_TIMEOUT);
}
static void
xhci_do_poll(struct usb_bus *bus)
{
struct xhci_softc *sc = XHCI_BUS2SC(bus);
USB_BUS_LOCK(&sc->sc_bus);
xhci_interrupt_poll(sc);
USB_BUS_UNLOCK(&sc->sc_bus);
}
static void
xhci_setup_generic_chain_sub(struct xhci_std_temp *temp)
{
struct usb_page_search buf_res;
struct xhci_td *td;
struct xhci_td *td_next;
struct xhci_td *td_alt_next;
struct xhci_td *td_first;
uint32_t buf_offset;
uint32_t average;
uint32_t len_old;
uint32_t npkt_off;
uint32_t dword;
uint8_t shortpkt_old;
uint8_t precompute;
uint8_t x;
td_alt_next = NULL;
buf_offset = 0;
shortpkt_old = temp->shortpkt;
len_old = temp->len;
npkt_off = 0;
precompute = 1;
restart:
td = temp->td;
td_next = td_first = temp->td_next;
while (1) {
if (temp->len == 0) {
if (temp->shortpkt)
break;
/* send a Zero Length Packet, ZLP, last */
temp->shortpkt = 1;
average = 0;
} else {
average = temp->average;
if (temp->len < average) {
if (temp->len % temp->max_packet_size) {
temp->shortpkt = 1;
}
average = temp->len;
}
}
if (td_next == NULL)
panic("%s: out of XHCI transfer descriptors!", __FUNCTION__);
/* get next TD */
td = td_next;
td_next = td->obj_next;
/* check if we are pre-computing */
if (precompute) {
/* update remaining length */
temp->len -= average;
continue;
}
/* fill out current TD */
td->len = average;
td->remainder = 0;
td->status = 0;
/* update remaining length */
temp->len -= average;
/* reset TRB index */
x = 0;
if (temp->trb_type == XHCI_TRB_TYPE_SETUP_STAGE) {
/* immediate data */
if (average > 8)
average = 8;
td->td_trb[0].qwTrb0 = 0;
usbd_copy_out(temp->pc, temp->offset + buf_offset,
(uint8_t *)(uintptr_t)&td->td_trb[0].qwTrb0,
average);
dword = XHCI_TRB_2_BYTES_SET(8) |
XHCI_TRB_2_TDSZ_SET(0) |
XHCI_TRB_2_IRQ_SET(0);
td->td_trb[0].dwTrb2 = htole32(dword);
dword = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_SETUP_STAGE) |
XHCI_TRB_3_IDT_BIT | XHCI_TRB_3_CYCLE_BIT;
/* check wLength */
if (td->td_trb[0].qwTrb0 &
htole64(XHCI_TRB_0_WLENGTH_MASK)) {
if (td->td_trb[0].qwTrb0 &
htole64(XHCI_TRB_0_DIR_IN_MASK))
dword |= XHCI_TRB_3_TRT_IN;
else
dword |= XHCI_TRB_3_TRT_OUT;
}
td->td_trb[0].dwTrb3 = htole32(dword);
#ifdef USB_DEBUG
xhci_dump_trb(&td->td_trb[x]);
#endif
x++;
} else do {
uint32_t npkt;
/* fill out buffer pointers */
if (average == 0) {
memset(&buf_res, 0, sizeof(buf_res));
} else {
usbd_get_page(temp->pc, temp->offset +
buf_offset, &buf_res);
/* get length to end of page */
if (buf_res.length > average)
buf_res.length = average;
/* check for maximum length */
if (buf_res.length > XHCI_TD_PAGE_SIZE)
buf_res.length = XHCI_TD_PAGE_SIZE;
npkt_off += buf_res.length;
}
/* set up npkt */
npkt = howmany(len_old - npkt_off,
temp->max_packet_size);
if (npkt == 0)
npkt = 1;
else if (npkt > 31)
npkt = 31;
/* fill out TRB's */
td->td_trb[x].qwTrb0 =
htole64((uint64_t)buf_res.physaddr);
dword =
XHCI_TRB_2_BYTES_SET(buf_res.length) |
XHCI_TRB_2_TDSZ_SET(npkt) |
XHCI_TRB_2_IRQ_SET(0);
td->td_trb[x].dwTrb2 = htole32(dword);
switch (temp->trb_type) {
case XHCI_TRB_TYPE_ISOCH:
dword = XHCI_TRB_3_CHAIN_BIT | XHCI_TRB_3_CYCLE_BIT |
XHCI_TRB_3_TBC_SET(temp->tbc) |
XHCI_TRB_3_TLBPC_SET(temp->tlbpc);
if (td != td_first) {
dword |= XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL);
} else if (temp->do_isoc_sync != 0) {
temp->do_isoc_sync = 0;
/* wait until "isoc_frame" */
dword |= XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ISOCH) |
XHCI_TRB_3_FRID_SET(temp->isoc_frame / 8);
} else {
/* start data transfer at next interval */
dword |= XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_ISOCH) |
XHCI_TRB_3_ISO_SIA_BIT;
}
if (temp->direction == UE_DIR_IN)
dword |= XHCI_TRB_3_ISP_BIT;
break;
case XHCI_TRB_TYPE_DATA_STAGE:
dword = XHCI_TRB_3_CHAIN_BIT | XHCI_TRB_3_CYCLE_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_DATA_STAGE);
if (temp->direction == UE_DIR_IN)
dword |= XHCI_TRB_3_DIR_IN | XHCI_TRB_3_ISP_BIT;
/*
* Section 3.2.9 in the XHCI
* specification about control
* transfers says that we should use a
* normal-TRB if there are more TRBs
* extending the data-stage
* TRB. Update the "trb_type".
*/
temp->trb_type = XHCI_TRB_TYPE_NORMAL;
break;
case XHCI_TRB_TYPE_STATUS_STAGE:
dword = XHCI_TRB_3_CHAIN_BIT | XHCI_TRB_3_CYCLE_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_STATUS_STAGE);
if (temp->direction == UE_DIR_IN)
dword |= XHCI_TRB_3_DIR_IN;
break;
default: /* XHCI_TRB_TYPE_NORMAL */
dword = XHCI_TRB_3_CHAIN_BIT | XHCI_TRB_3_CYCLE_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_NORMAL);
if (temp->direction == UE_DIR_IN)
dword |= XHCI_TRB_3_ISP_BIT;
break;
}
td->td_trb[x].dwTrb3 = htole32(dword);
average -= buf_res.length;
buf_offset += buf_res.length;
#ifdef USB_DEBUG
xhci_dump_trb(&td->td_trb[x]);
#endif
x++;
} while (average != 0);
td->td_trb[x-1].dwTrb3 |= htole32(XHCI_TRB_3_IOC_BIT);
/* store number of data TRB's */
td->ntrb = x;
DPRINTF("NTRB=%u\n", x);
/* fill out link TRB */
if (td_next != NULL) {
/* link the current TD with the next one */
td->td_trb[x].qwTrb0 = htole64((uint64_t)td_next->td_self);
DPRINTF("LINK=0x%08llx\n", (long long)td_next->td_self);
} else {
/* this field will get updated later */
DPRINTF("NOLINK\n");
}
dword = XHCI_TRB_2_IRQ_SET(0);
td->td_trb[x].dwTrb2 = htole32(dword);
dword = XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK) |
XHCI_TRB_3_CYCLE_BIT | XHCI_TRB_3_IOC_BIT |
/*
* CHAIN-BIT: Ensure that a multi-TRB IN-endpoint
* frame only receives a single short packet event
* by setting the CHAIN bit in the LINK field. In
* addition some XHCI controllers have problems
* sending a ZLP unless the CHAIN-BIT is set in
* the LINK TRB.
*/
XHCI_TRB_3_CHAIN_BIT;
td->td_trb[x].dwTrb3 = htole32(dword);
td->alt_next = td_alt_next;
#ifdef USB_DEBUG
xhci_dump_trb(&td->td_trb[x]);
#endif
usb_pc_cpu_flush(td->page_cache);
}
if (precompute) {
precompute = 0;
/* set up alt next pointer, if any */
if (temp->last_frame) {
td_alt_next = NULL;
} else {
/* we use this field internally */
td_alt_next = td_next;
}
/* restore */
temp->shortpkt = shortpkt_old;
temp->len = len_old;
goto restart;
}
/*
* Remove cycle bit from the first TRB if we are
* stepping them:
*/
if (temp->step_td != 0) {
td_first->td_trb[0].dwTrb3 &= ~htole32(XHCI_TRB_3_CYCLE_BIT);
usb_pc_cpu_flush(td_first->page_cache);
}
/* clear TD SIZE to zero, hence this is the last TRB */
/* remove chain bit because this is the last data TRB in the chain */
td->td_trb[td->ntrb - 1].dwTrb2 &= ~htole32(XHCI_TRB_2_TDSZ_SET(15));
td->td_trb[td->ntrb - 1].dwTrb3 &= ~htole32(XHCI_TRB_3_CHAIN_BIT);
/* remove CHAIN-BIT from last LINK TRB */
td->td_trb[td->ntrb].dwTrb3 &= ~htole32(XHCI_TRB_3_CHAIN_BIT);
usb_pc_cpu_flush(td->page_cache);
temp->td = td;
temp->td_next = td_next;
}
static void
xhci_setup_generic_chain(struct usb_xfer *xfer)
{
struct xhci_std_temp temp;
struct xhci_td *td;
uint32_t x;
uint32_t y;
uint8_t mult;
temp.do_isoc_sync = 0;
temp.step_td = 0;
temp.tbc = 0;
temp.tlbpc = 0;
temp.average = xfer->max_hc_frame_size;
temp.max_packet_size = xfer->max_packet_size;
temp.sc = XHCI_BUS2SC(xfer->xroot->bus);
temp.pc = NULL;
temp.last_frame = 0;
temp.offset = 0;
temp.multishort = xfer->flags_int.isochronous_xfr ||
xfer->flags_int.control_xfr ||
xfer->flags_int.short_frames_ok;
/* toggle the DMA set we are using */
xfer->flags_int.curr_dma_set ^= 1;
/* get next DMA set */
td = xfer->td_start[xfer->flags_int.curr_dma_set];
temp.td = NULL;
temp.td_next = td;
xfer->td_transfer_first = td;
xfer->td_transfer_cache = td;
if (xfer->flags_int.isochronous_xfr) {
uint8_t shift;
/* compute multiplier for ISOCHRONOUS transfers */
mult = xfer->endpoint->ecomp ?
UE_GET_SS_ISO_MULT(xfer->endpoint->ecomp->bmAttributes)
: 0;
/* check for USB 2.0 multiplier */
if (mult == 0) {
mult = (xfer->endpoint->edesc->
wMaxPacketSize[1] >> 3) & 3;
}
/* range check */
if (mult > 2)
mult = 3;
else
mult++;
x = XREAD4(temp.sc, runt, XHCI_MFINDEX);
DPRINTF("MFINDEX=0x%08x\n", x);
switch (usbd_get_speed(xfer->xroot->udev)) {
case USB_SPEED_FULL:
shift = 3;
temp.isoc_delta = 8; /* 1ms */
x += temp.isoc_delta - 1;
x &= ~(temp.isoc_delta - 1);
break;
default:
shift = usbd_xfer_get_fps_shift(xfer);
temp.isoc_delta = 1U << shift;
x += temp.isoc_delta - 1;
x &= ~(temp.isoc_delta - 1);
/* simple frame load balancing */
x += xfer->endpoint->usb_uframe;
break;
}
y = XHCI_MFINDEX_GET(x - xfer->endpoint->isoc_next);
if ((xfer->endpoint->is_synced == 0) ||
(y < (xfer->nframes << shift)) ||
(XHCI_MFINDEX_GET(-y) >= (128 * 8))) {
/*
* If there is data underflow or the pipe
* queue is empty we schedule the transfer a
* few frames ahead of the current frame
* position. Else two isochronous transfers
* might overlap.
*/
xfer->endpoint->isoc_next = XHCI_MFINDEX_GET(x + (3 * 8));
xfer->endpoint->is_synced = 1;
temp.do_isoc_sync = 1;
DPRINTFN(3, "start next=%d\n", xfer->endpoint->isoc_next);
}
/* compute isochronous completion time */
y = XHCI_MFINDEX_GET(xfer->endpoint->isoc_next - (x & ~7));
xfer->isoc_time_complete =
usb_isoc_time_expand(&temp.sc->sc_bus, x / 8) +
(y / 8) + (((xfer->nframes << shift) + 7) / 8);
x = 0;
temp.isoc_frame = xfer->endpoint->isoc_next;
temp.trb_type = XHCI_TRB_TYPE_ISOCH;
xfer->endpoint->isoc_next += xfer->nframes << shift;
} else if (xfer->flags_int.control_xfr) {
/* check if we should prepend a setup message */
if (xfer->flags_int.control_hdr) {
temp.len = xfer->frlengths[0];
temp.pc = xfer->frbuffers + 0;
temp.shortpkt = temp.len ? 1 : 0;
temp.trb_type = XHCI_TRB_TYPE_SETUP_STAGE;
temp.direction = 0;
/* check for last frame */
if (xfer->nframes == 1) {
/* no STATUS stage yet, SETUP is last */
if (xfer->flags_int.control_act)
temp.last_frame = 1;
}
xhci_setup_generic_chain_sub(&temp);
}
x = 1;
mult = 1;
temp.isoc_delta = 0;
temp.isoc_frame = 0;
temp.trb_type = xfer->flags_int.control_did_data ?
XHCI_TRB_TYPE_NORMAL : XHCI_TRB_TYPE_DATA_STAGE;
} else {
x = 0;
mult = 1;
temp.isoc_delta = 0;
temp.isoc_frame = 0;
temp.trb_type = XHCI_TRB_TYPE_NORMAL;
}
if (x != xfer->nframes) {
/* set up page_cache pointer */
temp.pc = xfer->frbuffers + x;
/* set endpoint direction */
temp.direction = UE_GET_DIR(xfer->endpointno);
}
while (x != xfer->nframes) {
/* DATA0 / DATA1 message */
temp.len = xfer->frlengths[x];
temp.step_td = ((xfer->endpointno & UE_DIR_IN) &&
x != 0 && temp.multishort == 0);
x++;
if (x == xfer->nframes) {
if (xfer->flags_int.control_xfr) {
/* no STATUS stage yet, DATA is last */
if (xfer->flags_int.control_act)
temp.last_frame = 1;
} else {
temp.last_frame = 1;
}
}
if (temp.len == 0) {
/* make sure that we send an USB packet */
temp.shortpkt = 0;
temp.tbc = 0;
temp.tlbpc = mult - 1;
} else if (xfer->flags_int.isochronous_xfr) {
uint8_t tdpc;
/*
* Isochronous transfers don't have short
* packet termination:
*/
temp.shortpkt = 1;
/* isochronous transfers have a transfer limit */
if (temp.len > xfer->max_frame_size)
temp.len = xfer->max_frame_size;
/* compute TD packet count */
tdpc = howmany(temp.len, xfer->max_packet_size);
temp.tbc = howmany(tdpc, mult) - 1;
temp.tlbpc = (tdpc % mult);
if (temp.tlbpc == 0)
temp.tlbpc = mult - 1;
else
temp.tlbpc--;
} else {
/* regular data transfer */
temp.shortpkt = xfer->flags.force_short_xfer ? 0 : 1;
}
xhci_setup_generic_chain_sub(&temp);
if (xfer->flags_int.isochronous_xfr) {
temp.offset += xfer->frlengths[x - 1];
temp.isoc_frame += temp.isoc_delta;
} else {
/* get next Page Cache pointer */
temp.pc = xfer->frbuffers + x;
}
}
/* check if we should append a status stage */
if (xfer->flags_int.control_xfr &&
!xfer->flags_int.control_act) {
/*
* Send a DATA1 message and invert the current
* endpoint direction.
*/
temp.step_td = (xfer->nframes != 0);
temp.direction = UE_GET_DIR(xfer->endpointno) ^ UE_DIR_IN;
temp.len = 0;
temp.pc = NULL;
temp.shortpkt = 0;
temp.last_frame = 1;
temp.trb_type = XHCI_TRB_TYPE_STATUS_STAGE;
xhci_setup_generic_chain_sub(&temp);
}
td = temp.td;
/* must have at least one frame! */
xfer->td_transfer_last = td;
DPRINTF("first=%p last=%p\n", xfer->td_transfer_first, td);
}
static void
xhci_set_slot_pointer(struct xhci_softc *sc, uint8_t index, uint64_t dev_addr)
{
struct usb_page_search buf_res;
struct xhci_dev_ctx_addr *pdctxa;
usbd_get_page(&sc->sc_hw.ctx_pc, 0, &buf_res);
pdctxa = buf_res.buffer;
DPRINTF("addr[%u]=0x%016llx\n", index, (long long)dev_addr);
pdctxa->qwBaaDevCtxAddr[index] = htole64(dev_addr);
usb_pc_cpu_flush(&sc->sc_hw.ctx_pc);
}
static usb_error_t
xhci_configure_mask(struct usb_device *udev, uint32_t mask, uint8_t drop)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct usb_page_search buf_inp;
struct xhci_input_dev_ctx *pinp;
uint32_t temp;
uint8_t index;
uint8_t x;
index = udev->controller_slot_id;
usbd_get_page(&sc->sc_hw.devs[index].input_pc, 0, &buf_inp);
pinp = buf_inp.buffer;
if (drop) {
mask &= XHCI_INCTX_NON_CTRL_MASK;
xhci_ctx_set_le32(sc, &pinp->ctx_input.dwInCtx0, mask);
xhci_ctx_set_le32(sc, &pinp->ctx_input.dwInCtx1, 0);
} else {
/*
* Some hardware requires that we drop the endpoint
* context before adding it again:
*/
xhci_ctx_set_le32(sc, &pinp->ctx_input.dwInCtx0,
mask & XHCI_INCTX_NON_CTRL_MASK);
/* Add new endpoint context */
xhci_ctx_set_le32(sc, &pinp->ctx_input.dwInCtx1, mask);
/* find most significant set bit */
for (x = 31; x != 1; x--) {
if (mask & (1 << x))
break;
}
/* adjust */
x--;
/* figure out the maximum number of contexts */
if (x > sc->sc_hw.devs[index].context_num)
sc->sc_hw.devs[index].context_num = x;
else
x = sc->sc_hw.devs[index].context_num;
/* update number of contexts */
temp = xhci_ctx_get_le32(sc, &pinp->ctx_slot.dwSctx0);
temp &= ~XHCI_SCTX_0_CTX_NUM_SET(31);
temp |= XHCI_SCTX_0_CTX_NUM_SET(x + 1);
xhci_ctx_set_le32(sc, &pinp->ctx_slot.dwSctx0, temp);
}
usb_pc_cpu_flush(&sc->sc_hw.devs[index].input_pc);
return (0);
}
static usb_error_t
xhci_configure_endpoint(struct usb_device *udev,
struct usb_endpoint_descriptor *edesc, struct xhci_endpoint_ext *pepext,
uint16_t interval, uint8_t max_packet_count,
uint8_t mult, uint8_t fps_shift, uint16_t max_packet_size,
uint16_t max_frame_size, uint8_t ep_mode)
{
struct usb_page_search buf_inp;
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct xhci_input_dev_ctx *pinp;
uint64_t ring_addr = pepext->physaddr;
uint32_t temp;
uint8_t index;
uint8_t epno;
uint8_t type;
index = udev->controller_slot_id;
usbd_get_page(&sc->sc_hw.devs[index].input_pc, 0, &buf_inp);
pinp = buf_inp.buffer;
epno = edesc->bEndpointAddress;
type = edesc->bmAttributes & UE_XFERTYPE;
if (type == UE_CONTROL)
epno |= UE_DIR_IN;
epno = XHCI_EPNO2EPID(epno);
if (epno == 0)
return (USB_ERR_NO_PIPE); /* invalid */
if (max_packet_count == 0)
return (USB_ERR_BAD_BUFSIZE);
max_packet_count--;
if (mult == 0)
return (USB_ERR_BAD_BUFSIZE);
/* store endpoint mode */
pepext->trb_ep_mode = ep_mode;
/* store bMaxPacketSize for control endpoints */
pepext->trb_ep_maxp = edesc->wMaxPacketSize[0];
usb_pc_cpu_flush(pepext->page_cache);
if (ep_mode == USB_EP_MODE_STREAMS) {
temp = XHCI_EPCTX_0_EPSTATE_SET(0) |
XHCI_EPCTX_0_MAXP_STREAMS_SET(XHCI_MAX_STREAMS_LOG - 1) |
XHCI_EPCTX_0_LSA_SET(1);
ring_addr += sizeof(struct xhci_trb) *
XHCI_MAX_TRANSFERS * XHCI_MAX_STREAMS;
} else {
temp = XHCI_EPCTX_0_EPSTATE_SET(0) |
XHCI_EPCTX_0_MAXP_STREAMS_SET(0) |
XHCI_EPCTX_0_LSA_SET(0);
ring_addr |= XHCI_EPCTX_2_DCS_SET(1);
}
switch (udev->speed) {
case USB_SPEED_FULL:
case USB_SPEED_LOW:
/* 1ms -> 125us */
fps_shift += 3;
break;
default:
break;
}
switch (type) {
case UE_INTERRUPT:
if (fps_shift > 3)
fps_shift--;
temp |= XHCI_EPCTX_0_IVAL_SET(fps_shift);
break;
case UE_ISOCHRONOUS:
temp |= XHCI_EPCTX_0_IVAL_SET(fps_shift);
switch (udev->speed) {
case USB_SPEED_SUPER:
if (mult > 3)
mult = 3;
temp |= XHCI_EPCTX_0_MULT_SET(mult - 1);
max_packet_count /= mult;
break;
default:
break;
}
break;
default:
break;
}
xhci_ctx_set_le32(sc, &pinp->ctx_ep[epno - 1].dwEpCtx0, temp);
temp =
XHCI_EPCTX_1_HID_SET(0) |
XHCI_EPCTX_1_MAXB_SET(max_packet_count) |
XHCI_EPCTX_1_MAXP_SIZE_SET(max_packet_size);
/*
* Always enable the "three strikes and you are gone" feature
* except for ISOCHRONOUS endpoints. This is suggested by
* section 4.3.3 in the XHCI specification about device slot
* initialisation.
*/
if (type != UE_ISOCHRONOUS)
temp |= XHCI_EPCTX_1_CERR_SET(3);
switch (type) {
case UE_CONTROL:
temp |= XHCI_EPCTX_1_EPTYPE_SET(4);
break;
case UE_ISOCHRONOUS:
temp |= XHCI_EPCTX_1_EPTYPE_SET(1);
break;
case UE_BULK:
temp |= XHCI_EPCTX_1_EPTYPE_SET(2);
break;
default:
temp |= XHCI_EPCTX_1_EPTYPE_SET(3);
break;
}
/* check for IN direction */
if (epno & 1)
temp |= XHCI_EPCTX_1_EPTYPE_SET(4);
xhci_ctx_set_le32(sc, &pinp->ctx_ep[epno - 1].dwEpCtx1, temp);
xhci_ctx_set_le64(sc, &pinp->ctx_ep[epno - 1].qwEpCtx2, ring_addr);
switch (edesc->bmAttributes & UE_XFERTYPE) {
case UE_INTERRUPT:
case UE_ISOCHRONOUS:
temp = XHCI_EPCTX_4_MAX_ESIT_PAYLOAD_SET(max_frame_size) |
XHCI_EPCTX_4_AVG_TRB_LEN_SET(MIN(XHCI_PAGE_SIZE,
max_frame_size));
break;
case UE_CONTROL:
temp = XHCI_EPCTX_4_AVG_TRB_LEN_SET(8);
break;
default:
temp = XHCI_EPCTX_4_AVG_TRB_LEN_SET(XHCI_PAGE_SIZE);
break;
}
xhci_ctx_set_le32(sc, &pinp->ctx_ep[epno - 1].dwEpCtx4, temp);
#ifdef USB_DEBUG
xhci_dump_endpoint(sc, &pinp->ctx_ep[epno - 1]);
#endif
usb_pc_cpu_flush(&sc->sc_hw.devs[index].input_pc);
return (0); /* success */
}
static usb_error_t
xhci_configure_endpoint_by_xfer(struct usb_xfer *xfer)
{
struct xhci_endpoint_ext *pepext;
struct usb_endpoint_ss_comp_descriptor *ecomp;
usb_stream_t x;
pepext = xhci_get_endpoint_ext(xfer->xroot->udev,
xfer->endpoint->edesc);
ecomp = xfer->endpoint->ecomp;
for (x = 0; x != XHCI_MAX_STREAMS; x++) {
uint64_t temp;
/* halt any transfers */
pepext->trb[x * XHCI_MAX_TRANSFERS].dwTrb3 = 0;
/* compute start of TRB ring for stream "x" */
temp = pepext->physaddr +
(x * XHCI_MAX_TRANSFERS * sizeof(struct xhci_trb)) +
XHCI_SCTX_0_SCT_SEC_TR_RING;
/* make tree structure */
pepext->trb[(XHCI_MAX_TRANSFERS *
XHCI_MAX_STREAMS) + x].qwTrb0 = htole64(temp);
/* reserved fields */
pepext->trb[(XHCI_MAX_TRANSFERS *
XHCI_MAX_STREAMS) + x].dwTrb2 = 0;
pepext->trb[(XHCI_MAX_TRANSFERS *
XHCI_MAX_STREAMS) + x].dwTrb3 = 0;
}
usb_pc_cpu_flush(pepext->page_cache);
return (xhci_configure_endpoint(xfer->xroot->udev,
xfer->endpoint->edesc, pepext,
xfer->interval, xfer->max_packet_count,
(ecomp != NULL) ? UE_GET_SS_ISO_MULT(ecomp->bmAttributes) + 1 : 1,
usbd_xfer_get_fps_shift(xfer), xfer->max_packet_size,
xfer->max_frame_size, xfer->endpoint->ep_mode));
}
static usb_error_t
xhci_configure_device(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct usb_page_search buf_inp;
struct usb_page_cache *pcinp;
struct xhci_input_dev_ctx *pinp;
struct usb_device *hubdev;
uint32_t temp;
uint32_t route;
uint32_t rh_port;
uint8_t is_hub;
uint8_t index;
uint8_t depth;
index = udev->controller_slot_id;
DPRINTF("index=%u\n", index);
pcinp = &sc->sc_hw.devs[index].input_pc;
usbd_get_page(pcinp, 0, &buf_inp);
pinp = buf_inp.buffer;
rh_port = 0;
route = 0;
/* figure out route string and root HUB port number */
for (hubdev = udev; hubdev != NULL; hubdev = hubdev->parent_hub) {
if (hubdev->parent_hub == NULL)
break;
depth = hubdev->parent_hub->depth;
/*
* NOTE: HS/FS/LS devices and the SS root HUB can have
* more than 15 ports
*/
rh_port = hubdev->port_no;
if (depth == 0)
break;
if (rh_port > 15)
rh_port = 15;
if (depth < 6)
route |= rh_port << (4 * (depth - 1));
}
DPRINTF("Route=0x%08x\n", route);
temp = XHCI_SCTX_0_ROUTE_SET(route) |
XHCI_SCTX_0_CTX_NUM_SET(
sc->sc_hw.devs[index].context_num + 1);
switch (udev->speed) {
case USB_SPEED_LOW:
temp |= XHCI_SCTX_0_SPEED_SET(2);
if (udev->parent_hs_hub != NULL &&
udev->parent_hs_hub->ddesc.bDeviceProtocol ==
UDPROTO_HSHUBMTT) {
DPRINTF("Device inherits MTT\n");
temp |= XHCI_SCTX_0_MTT_SET(1);
}
break;
case USB_SPEED_HIGH:
temp |= XHCI_SCTX_0_SPEED_SET(3);
if (sc->sc_hw.devs[index].nports != 0 &&
udev->ddesc.bDeviceProtocol == UDPROTO_HSHUBMTT) {
DPRINTF("HUB supports MTT\n");
temp |= XHCI_SCTX_0_MTT_SET(1);
}
break;
case USB_SPEED_FULL:
temp |= XHCI_SCTX_0_SPEED_SET(1);
if (udev->parent_hs_hub != NULL &&
udev->parent_hs_hub->ddesc.bDeviceProtocol ==
UDPROTO_HSHUBMTT) {
DPRINTF("Device inherits MTT\n");
temp |= XHCI_SCTX_0_MTT_SET(1);
}
break;
default:
temp |= XHCI_SCTX_0_SPEED_SET(4);
break;
}
is_hub = sc->sc_hw.devs[index].nports != 0 &&
(udev->speed == USB_SPEED_SUPER ||
udev->speed == USB_SPEED_HIGH);
if (is_hub)
temp |= XHCI_SCTX_0_HUB_SET(1);
xhci_ctx_set_le32(sc, &pinp->ctx_slot.dwSctx0, temp);
temp = XHCI_SCTX_1_RH_PORT_SET(rh_port);
if (is_hub) {
temp |= XHCI_SCTX_1_NUM_PORTS_SET(
sc->sc_hw.devs[index].nports);
}
switch (udev->speed) {
case USB_SPEED_SUPER:
switch (sc->sc_hw.devs[index].state) {
case XHCI_ST_ADDRESSED:
case XHCI_ST_CONFIGURED:
/* enable power save */
temp |= XHCI_SCTX_1_MAX_EL_SET(sc->sc_exit_lat_max);
break;
default:
/* disable power save */
break;
}
break;
default:
break;
}
xhci_ctx_set_le32(sc, &pinp->ctx_slot.dwSctx1, temp);
temp = XHCI_SCTX_2_IRQ_TARGET_SET(0);
if (is_hub) {
temp |= XHCI_SCTX_2_TT_THINK_TIME_SET(
sc->sc_hw.devs[index].tt);
}
hubdev = udev->parent_hs_hub;
/* check if we should activate the transaction translator */
switch (udev->speed) {
case USB_SPEED_FULL:
case USB_SPEED_LOW:
if (hubdev != NULL) {
temp |= XHCI_SCTX_2_TT_HUB_SID_SET(
hubdev->controller_slot_id);
temp |= XHCI_SCTX_2_TT_PORT_NUM_SET(
udev->hs_port_no);
}
break;
default:
break;
}
xhci_ctx_set_le32(sc, &pinp->ctx_slot.dwSctx2, temp);
/*
* These fields should be initialized to zero, according to
* XHCI section 6.2.2 - slot context:
*/
temp = XHCI_SCTX_3_DEV_ADDR_SET(0) |
XHCI_SCTX_3_SLOT_STATE_SET(0);
xhci_ctx_set_le32(sc, &pinp->ctx_slot.dwSctx3, temp);
#ifdef USB_DEBUG
xhci_dump_device(sc, &pinp->ctx_slot);
#endif
usb_pc_cpu_flush(pcinp);
return (0); /* success */
}
static usb_error_t
xhci_alloc_device_ext(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct usb_page_search buf_dev;
struct usb_page_search buf_ep;
struct xhci_trb *trb;
struct usb_page_cache *pc;
struct usb_page *pg;
uint64_t addr;
uint8_t index;
uint8_t i;
index = udev->controller_slot_id;
pc = &sc->sc_hw.devs[index].device_pc;
pg = &sc->sc_hw.devs[index].device_pg;
/* need to initialize the page cache */
pc->tag_parent = sc->sc_bus.dma_parent_tag;
if (usb_pc_alloc_mem(pc, pg, sc->sc_ctx_is_64_byte ?
(2 * sizeof(struct xhci_dev_ctx)) :
sizeof(struct xhci_dev_ctx), XHCI_PAGE_SIZE))
goto error;
usbd_get_page(pc, 0, &buf_dev);
pc = &sc->sc_hw.devs[index].input_pc;
pg = &sc->sc_hw.devs[index].input_pg;
/* need to initialize the page cache */
pc->tag_parent = sc->sc_bus.dma_parent_tag;
if (usb_pc_alloc_mem(pc, pg, sc->sc_ctx_is_64_byte ?
(2 * sizeof(struct xhci_input_dev_ctx)) :
sizeof(struct xhci_input_dev_ctx), XHCI_PAGE_SIZE)) {
goto error;
}
/* initialize all endpoint LINK TRBs */
for (i = 0; i != XHCI_MAX_ENDPOINTS; i++) {
pc = &sc->sc_hw.devs[index].endpoint_pc[i];
pg = &sc->sc_hw.devs[index].endpoint_pg[i];
/* need to initialize the page cache */
pc->tag_parent = sc->sc_bus.dma_parent_tag;
if (usb_pc_alloc_mem(pc, pg,
sizeof(struct xhci_dev_endpoint_trbs), XHCI_TRB_ALIGN)) {
goto error;
}
/* lookup endpoint TRB ring */
usbd_get_page(pc, 0, &buf_ep);
/* get TRB pointer */
trb = buf_ep.buffer;
trb += XHCI_MAX_TRANSFERS - 1;
/* get TRB start address */
addr = buf_ep.physaddr;
/* create LINK TRB */
trb->qwTrb0 = htole64(addr);
trb->dwTrb2 = htole32(XHCI_TRB_2_IRQ_SET(0));
trb->dwTrb3 = htole32(XHCI_TRB_3_CYCLE_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK));
usb_pc_cpu_flush(pc);
}
xhci_set_slot_pointer(sc, index, buf_dev.physaddr);
return (0);
error:
xhci_free_device_ext(udev);
return (USB_ERR_NOMEM);
}
static void
xhci_free_device_ext(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
uint8_t index;
uint8_t i;
index = udev->controller_slot_id;
xhci_set_slot_pointer(sc, index, 0);
usb_pc_free_mem(&sc->sc_hw.devs[index].device_pc);
usb_pc_free_mem(&sc->sc_hw.devs[index].input_pc);
for (i = 0; i != XHCI_MAX_ENDPOINTS; i++)
usb_pc_free_mem(&sc->sc_hw.devs[index].endpoint_pc[i]);
}
static struct xhci_endpoint_ext *
xhci_get_endpoint_ext(struct usb_device *udev, struct usb_endpoint_descriptor *edesc)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct xhci_endpoint_ext *pepext;
struct usb_page_cache *pc;
struct usb_page_search buf_ep;
uint8_t epno;
uint8_t index;
epno = edesc->bEndpointAddress;
if ((edesc->bmAttributes & UE_XFERTYPE) == UE_CONTROL)
epno |= UE_DIR_IN;
epno = XHCI_EPNO2EPID(epno);
index = udev->controller_slot_id;
pc = &sc->sc_hw.devs[index].endpoint_pc[epno];
usbd_get_page(pc, 0, &buf_ep);
pepext = &sc->sc_hw.devs[index].endp[epno];
pepext->page_cache = pc;
pepext->trb = buf_ep.buffer;
pepext->physaddr = buf_ep.physaddr;
return (pepext);
}
static void
xhci_endpoint_doorbell(struct usb_xfer *xfer)
{
struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus);
uint8_t epno;
uint8_t index;
epno = xfer->endpointno;
if (xfer->flags_int.control_xfr)
epno |= UE_DIR_IN;
epno = XHCI_EPNO2EPID(epno);
index = xfer->xroot->udev->controller_slot_id;
if (xfer->xroot->udev->flags.self_suspended == 0) {
XWRITE4(sc, door, XHCI_DOORBELL(index),
epno | XHCI_DB_SID_SET(xfer->stream_id));
}
}
static void
xhci_transfer_remove(struct usb_xfer *xfer, usb_error_t error)
{
struct xhci_endpoint_ext *pepext;
if (xfer->flags_int.bandwidth_reclaimed) {
xfer->flags_int.bandwidth_reclaimed = 0;
pepext = xhci_get_endpoint_ext(xfer->xroot->udev,
xfer->endpoint->edesc);
pepext->trb_used[xfer->stream_id]--;
pepext->xfer[xfer->qh_pos] = NULL;
if (error && pepext->trb_running != 0) {
pepext->trb_halted = 1;
pepext->trb_running = 0;
}
}
}
static usb_error_t
xhci_transfer_insert(struct usb_xfer *xfer)
{
struct xhci_td *td_first;
struct xhci_td *td_last;
struct xhci_trb *trb_link;
struct xhci_endpoint_ext *pepext;
uint64_t addr;
usb_stream_t id;
uint8_t i;
uint8_t inext;
uint8_t trb_limit;
DPRINTFN(8, "\n");
id = xfer->stream_id;
/* check if already inserted */
if (xfer->flags_int.bandwidth_reclaimed) {
DPRINTFN(8, "Already in schedule\n");
return (0);
}
pepext = xhci_get_endpoint_ext(xfer->xroot->udev,
xfer->endpoint->edesc);
td_first = xfer->td_transfer_first;
td_last = xfer->td_transfer_last;
addr = pepext->physaddr;
switch (xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
case UE_INTERRUPT:
/* single buffered */
trb_limit = 1;
break;
default:
/* multi buffered */
trb_limit = (XHCI_MAX_TRANSFERS - 2);
break;
}
if (pepext->trb_used[id] >= trb_limit) {
DPRINTFN(8, "Too many TDs queued.\n");
return (USB_ERR_NOMEM);
}
/* check if bMaxPacketSize changed */
if (xfer->flags_int.control_xfr != 0 &&
pepext->trb_ep_maxp != xfer->endpoint->edesc->wMaxPacketSize[0]) {
DPRINTFN(8, "Reconfigure control endpoint\n");
/* force driver to reconfigure endpoint */
pepext->trb_halted = 1;
pepext->trb_running = 0;
}
/* check for stopped condition, after putting transfer on interrupt queue */
if (pepext->trb_running == 0) {
struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus);
DPRINTFN(8, "Not running\n");
/* start configuration */
(void)usb_proc_msignal(USB_BUS_CONTROL_XFER_PROC(&sc->sc_bus),
&sc->sc_config_msg[0], &sc->sc_config_msg[1]);
return (0);
}
pepext->trb_used[id]++;
/* get current TRB index */
i = pepext->trb_index[id];
/* get next TRB index */
inext = (i + 1);
/* the last entry of the ring is a hardcoded link TRB */
if (inext >= (XHCI_MAX_TRANSFERS - 1))
inext = 0;
/* store next TRB index, before stream ID offset is added */
pepext->trb_index[id] = inext;
/* offset for stream */
i += id * XHCI_MAX_TRANSFERS;
inext += id * XHCI_MAX_TRANSFERS;
/* compute terminating return address */
addr += (inext * sizeof(struct xhci_trb));
/* compute link TRB pointer */
trb_link = td_last->td_trb + td_last->ntrb;
/* update next pointer of last link TRB */
trb_link->qwTrb0 = htole64(addr);
trb_link->dwTrb2 = htole32(XHCI_TRB_2_IRQ_SET(0));
trb_link->dwTrb3 = htole32(XHCI_TRB_3_IOC_BIT |
XHCI_TRB_3_CYCLE_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK));
#ifdef USB_DEBUG
xhci_dump_trb(&td_last->td_trb[td_last->ntrb]);
#endif
usb_pc_cpu_flush(td_last->page_cache);
/* write ahead chain end marker */
pepext->trb[inext].qwTrb0 = 0;
pepext->trb[inext].dwTrb2 = 0;
pepext->trb[inext].dwTrb3 = 0;
/* update next pointer of link TRB */
pepext->trb[i].qwTrb0 = htole64((uint64_t)td_first->td_self);
pepext->trb[i].dwTrb2 = htole32(XHCI_TRB_2_IRQ_SET(0));
#ifdef USB_DEBUG
xhci_dump_trb(&pepext->trb[i]);
#endif
usb_pc_cpu_flush(pepext->page_cache);
/* toggle cycle bit which activates the transfer chain */
pepext->trb[i].dwTrb3 = htole32(XHCI_TRB_3_CYCLE_BIT |
XHCI_TRB_3_TYPE_SET(XHCI_TRB_TYPE_LINK));
usb_pc_cpu_flush(pepext->page_cache);
DPRINTF("qh_pos = %u\n", i);
pepext->xfer[i] = xfer;
xfer->qh_pos = i;
xfer->flags_int.bandwidth_reclaimed = 1;
xhci_endpoint_doorbell(xfer);
return (0);
}
static void
xhci_root_intr(struct xhci_softc *sc)
{
uint16_t i;
USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED);
/* clear any old interrupt data */
memset(sc->sc_hub_idata, 0, sizeof(sc->sc_hub_idata));
for (i = 1; i <= sc->sc_noport; i++) {
/* pick out CHANGE bits from the status register */
if (XREAD4(sc, oper, XHCI_PORTSC(i)) & (
XHCI_PS_CSC | XHCI_PS_PEC |
XHCI_PS_OCC | XHCI_PS_WRC |
XHCI_PS_PRC | XHCI_PS_PLC |
XHCI_PS_CEC)) {
sc->sc_hub_idata[i / 8] |= 1 << (i % 8);
DPRINTF("port %d changed\n", i);
}
}
uhub_root_intr(&sc->sc_bus, sc->sc_hub_idata,
sizeof(sc->sc_hub_idata));
}
/*------------------------------------------------------------------------*
* xhci_device_done - XHCI done handler
*
* NOTE: This function can be called two times in a row on
* the same USB transfer. From close and from interrupt.
*------------------------------------------------------------------------*/
static void
xhci_device_done(struct usb_xfer *xfer, usb_error_t error)
{
DPRINTFN(2, "xfer=%p, endpoint=%p, error=%d\n",
xfer, xfer->endpoint, error);
/* remove transfer from HW queue */
xhci_transfer_remove(xfer, error);
/* dequeue transfer and start next transfer */
usbd_transfer_done(xfer, error);
}
/*------------------------------------------------------------------------*
* XHCI data transfer support (generic type)
*------------------------------------------------------------------------*/
static void
xhci_device_generic_open(struct usb_xfer *xfer)
{
if (xfer->flags_int.isochronous_xfr) {
switch (xfer->xroot->udev->speed) {
case USB_SPEED_FULL:
break;
default:
usb_hs_bandwidth_alloc(xfer);
break;
}
}
}
static void
xhci_device_generic_close(struct usb_xfer *xfer)
{
DPRINTF("\n");
xhci_device_done(xfer, USB_ERR_CANCELLED);
if (xfer->flags_int.isochronous_xfr) {
switch (xfer->xroot->udev->speed) {
case USB_SPEED_FULL:
break;
default:
usb_hs_bandwidth_free(xfer);
break;
}
}
}
static void
xhci_device_generic_multi_enter(struct usb_endpoint *ep,
usb_stream_t stream_id, struct usb_xfer *enter_xfer)
{
struct usb_xfer *xfer;
/* check if there is a current transfer */
xfer = ep->endpoint_q[stream_id].curr;
if (xfer == NULL)
return;
/*
* Check if the current transfer is started and then pickup
* the next one, if any. Else wait for next start event due to
* block on failure feature.
*/
if (!xfer->flags_int.bandwidth_reclaimed)
return;
xfer = TAILQ_FIRST(&ep->endpoint_q[stream_id].head);
if (xfer == NULL) {
/*
* In case of enter we have to consider that the
* transfer is queued by the USB core after the enter
* method is called.
*/
xfer = enter_xfer;
if (xfer == NULL)
return;
}
/* try to multi buffer */
xhci_transfer_insert(xfer);
}
static void
xhci_device_generic_enter(struct usb_xfer *xfer)
{
DPRINTF("\n");
/* set up TD's and QH */
xhci_setup_generic_chain(xfer);
xhci_device_generic_multi_enter(xfer->endpoint,
xfer->stream_id, xfer);
}
static void
xhci_device_generic_start(struct usb_xfer *xfer)
{
DPRINTF("\n");
/* try to insert xfer on HW queue */
xhci_transfer_insert(xfer);
/* try to multi buffer */
xhci_device_generic_multi_enter(xfer->endpoint,
xfer->stream_id, NULL);
/* add transfer last on interrupt queue */
usbd_transfer_enqueue(&xfer->xroot->bus->intr_q, xfer);
/* start timeout, if any */
if (xfer->timeout != 0)
usbd_transfer_timeout_ms(xfer, &xhci_timeout, xfer->timeout);
}
static const struct usb_pipe_methods xhci_device_generic_methods =
{
.open = xhci_device_generic_open,
.close = xhci_device_generic_close,
.enter = xhci_device_generic_enter,
.start = xhci_device_generic_start,
};
/*------------------------------------------------------------------------*
* xhci root HUB support
*------------------------------------------------------------------------*
* Simulate a hardware HUB by handling all the necessary requests.
*------------------------------------------------------------------------*/
#define HSETW(ptr, val) ptr = { (uint8_t)(val), (uint8_t)((val) >> 8) }
static const
struct usb_device_descriptor xhci_devd =
{
.bLength = sizeof(xhci_devd),
.bDescriptorType = UDESC_DEVICE, /* type */
HSETW(.bcdUSB, 0x0300), /* USB version */
.bDeviceClass = UDCLASS_HUB, /* class */
.bDeviceSubClass = UDSUBCLASS_HUB, /* subclass */
.bDeviceProtocol = UDPROTO_SSHUB, /* protocol */
.bMaxPacketSize = 9, /* max packet size */
HSETW(.idVendor, 0x0000), /* vendor */
HSETW(.idProduct, 0x0000), /* product */
HSETW(.bcdDevice, 0x0100), /* device version */
.iManufacturer = 1,
.iProduct = 2,
.iSerialNumber = 0,
.bNumConfigurations = 1, /* # of configurations */
};
static const
struct xhci_bos_desc xhci_bosd = {
.bosd = {
.bLength = sizeof(xhci_bosd.bosd),
.bDescriptorType = UDESC_BOS,
HSETW(.wTotalLength, sizeof(xhci_bosd)),
.bNumDeviceCaps = 3,
},
.usb2extd = {
.bLength = sizeof(xhci_bosd.usb2extd),
.bDescriptorType = 1,
.bDevCapabilityType = 2,
.bmAttributes[0] = 2,
},
.usbdcd = {
.bLength = sizeof(xhci_bosd.usbdcd),
.bDescriptorType = UDESC_DEVICE_CAPABILITY,
.bDevCapabilityType = 3,
.bmAttributes = 0, /* XXX */
HSETW(.wSpeedsSupported, 0x000C),
.bFunctionalitySupport = 8,
.bU1DevExitLat = 255, /* dummy - not used */
.wU2DevExitLat = { 0x00, 0x08 },
},
.cidd = {
.bLength = sizeof(xhci_bosd.cidd),
.bDescriptorType = 1,
.bDevCapabilityType = 4,
.bReserved = 0,
.bContainerID = 0, /* XXX */
},
};
static const
struct xhci_config_desc xhci_confd = {
.confd = {
.bLength = sizeof(xhci_confd.confd),
.bDescriptorType = UDESC_CONFIG,
.wTotalLength[0] = sizeof(xhci_confd),
.bNumInterface = 1,
.bConfigurationValue = 1,
.iConfiguration = 0,
.bmAttributes = UC_SELF_POWERED,
.bMaxPower = 0 /* max power */
},
.ifcd = {
.bLength = sizeof(xhci_confd.ifcd),
.bDescriptorType = UDESC_INTERFACE,
.bNumEndpoints = 1,
.bInterfaceClass = UICLASS_HUB,
.bInterfaceSubClass = UISUBCLASS_HUB,
.bInterfaceProtocol = 0,
},
.endpd = {
.bLength = sizeof(xhci_confd.endpd),
.bDescriptorType = UDESC_ENDPOINT,
.bEndpointAddress = UE_DIR_IN | XHCI_INTR_ENDPT,
.bmAttributes = UE_INTERRUPT,
.wMaxPacketSize[0] = 2, /* max 15 ports */
.bInterval = 255,
},
.endpcd = {
.bLength = sizeof(xhci_confd.endpcd),
.bDescriptorType = UDESC_ENDPOINT_SS_COMP,
.bMaxBurst = 0,
.bmAttributes = 0,
},
};
static const
struct usb_hub_ss_descriptor xhci_hubd = {
.bLength = sizeof(xhci_hubd),
.bDescriptorType = UDESC_SS_HUB,
};
static usb_error_t
xhci_roothub_exec(struct usb_device *udev,
struct usb_device_request *req, const void **pptr, uint16_t *plength)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
const char *str_ptr;
const void *ptr;
uint32_t port;
uint32_t v;
uint16_t len;
uint16_t i;
uint16_t value;
uint16_t index;
uint8_t j;
usb_error_t err;
USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED);
/* buffer reset */
ptr = (const void *)&sc->sc_hub_desc;
len = 0;
err = 0;
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
DPRINTFN(3, "type=0x%02x request=0x%02x wLen=0x%04x "
"wValue=0x%04x wIndex=0x%04x\n",
req->bmRequestType, req->bRequest,
UGETW(req->wLength), value, index);
#define C(x,y) ((x) | ((y) << 8))
switch (C(req->bRequest, req->bmRequestType)) {
case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE):
case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE):
case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT):
/*
* DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops
* for the integrated root hub.
*/
break;
case C(UR_GET_CONFIG, UT_READ_DEVICE):
len = 1;
sc->sc_hub_desc.temp[0] = sc->sc_conf;
break;
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
switch (value >> 8) {
case UDESC_DEVICE:
if ((value & 0xff) != 0) {
err = USB_ERR_IOERROR;
goto done;
}
len = sizeof(xhci_devd);
ptr = (const void *)&xhci_devd;
break;
case UDESC_BOS:
if ((value & 0xff) != 0) {
err = USB_ERR_IOERROR;
goto done;
}
len = sizeof(xhci_bosd);
ptr = (const void *)&xhci_bosd;
break;
case UDESC_CONFIG:
if ((value & 0xff) != 0) {
err = USB_ERR_IOERROR;
goto done;
}
len = sizeof(xhci_confd);
ptr = (const void *)&xhci_confd;
break;
case UDESC_STRING:
switch (value & 0xff) {
case 0: /* Language table */
str_ptr = "\001";
break;
case 1: /* Vendor */
str_ptr = sc->sc_vendor;
break;
case 2: /* Product */
str_ptr = "XHCI root HUB";
break;
default:
str_ptr = "";
break;
}
len = usb_make_str_desc(
sc->sc_hub_desc.temp,
sizeof(sc->sc_hub_desc.temp),
str_ptr);
break;
default:
err = USB_ERR_IOERROR;
goto done;
}
break;
case C(UR_GET_INTERFACE, UT_READ_INTERFACE):
len = 1;
sc->sc_hub_desc.temp[0] = 0;
break;
case C(UR_GET_STATUS, UT_READ_DEVICE):
len = 2;
USETW(sc->sc_hub_desc.stat.wStatus, UDS_SELF_POWERED);
break;
case C(UR_GET_STATUS, UT_READ_INTERFACE):
case C(UR_GET_STATUS, UT_READ_ENDPOINT):
len = 2;
USETW(sc->sc_hub_desc.stat.wStatus, 0);
break;
case C(UR_SET_ADDRESS, UT_WRITE_DEVICE):
if (value >= XHCI_MAX_DEVICES) {
err = USB_ERR_IOERROR;
goto done;
}
break;
case C(UR_SET_CONFIG, UT_WRITE_DEVICE):
if (value != 0 && value != 1) {
err = USB_ERR_IOERROR;
goto done;
}
sc->sc_conf = value;
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_DEVICE):
case C(UR_SET_FEATURE, UT_WRITE_INTERFACE):
case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT):
err = USB_ERR_IOERROR;
goto done;
case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE):
break;
case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT):
break;
/* Hub requests */
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
DPRINTFN(9, "UR_CLEAR_PORT_FEATURE\n");
if ((index < 1) ||
(index > sc->sc_noport)) {
err = USB_ERR_IOERROR;
goto done;
}
port = XHCI_PORTSC(index);
v = XREAD4(sc, oper, port);
i = XHCI_PS_PLS_GET(v);
v &= ~XHCI_PS_CLEAR;
switch (value) {
case UHF_C_BH_PORT_RESET:
XWRITE4(sc, oper, port, v | XHCI_PS_WRC);
break;
case UHF_C_PORT_CONFIG_ERROR:
XWRITE4(sc, oper, port, v | XHCI_PS_CEC);
break;
case UHF_C_PORT_SUSPEND:
case UHF_C_PORT_LINK_STATE:
XWRITE4(sc, oper, port, v | XHCI_PS_PLC);
break;
case UHF_C_PORT_CONNECTION:
XWRITE4(sc, oper, port, v | XHCI_PS_CSC);
break;
case UHF_C_PORT_ENABLE:
XWRITE4(sc, oper, port, v | XHCI_PS_PEC);
break;
case UHF_C_PORT_OVER_CURRENT:
XWRITE4(sc, oper, port, v | XHCI_PS_OCC);
break;
case UHF_C_PORT_RESET:
XWRITE4(sc, oper, port, v | XHCI_PS_PRC);
break;
case UHF_PORT_ENABLE:
XWRITE4(sc, oper, port, v | XHCI_PS_PED);
break;
case UHF_PORT_POWER:
XWRITE4(sc, oper, port, v & ~XHCI_PS_PP);
break;
case UHF_PORT_INDICATOR:
XWRITE4(sc, oper, port, v & ~XHCI_PS_PIC_SET(3));
break;
case UHF_PORT_SUSPEND:
/* U3 -> U15 */
if (i == 3) {
XWRITE4(sc, oper, port, v |
XHCI_PS_PLS_SET(0xF) | XHCI_PS_LWS);
}
/* wait 20ms for resume sequence to complete */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 50);
/* U0 */
XWRITE4(sc, oper, port, v |
XHCI_PS_PLS_SET(0) | XHCI_PS_LWS);
break;
default:
err = USB_ERR_IOERROR;
goto done;
}
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
if ((value & 0xff) != 0) {
err = USB_ERR_IOERROR;
goto done;
}
v = XREAD4(sc, capa, XHCI_HCSPARAMS0);
sc->sc_hub_desc.hubd = xhci_hubd;
sc->sc_hub_desc.hubd.bNbrPorts = sc->sc_noport;
if (XHCI_HCS0_PPC(v))
i = UHD_PWR_INDIVIDUAL;
else
i = UHD_PWR_GANGED;
if (XHCI_HCS0_PIND(v))
i |= UHD_PORT_IND;
i |= UHD_OC_INDIVIDUAL;
USETW(sc->sc_hub_desc.hubd.wHubCharacteristics, i);
/* see XHCI section 5.4.9: */
sc->sc_hub_desc.hubd.bPwrOn2PwrGood = 10;
for (j = 1; j <= sc->sc_noport; j++) {
v = XREAD4(sc, oper, XHCI_PORTSC(j));
if (v & XHCI_PS_DR) {
sc->sc_hub_desc.hubd.
DeviceRemovable[j / 8] |= 1U << (j % 8);
}
}
len = sc->sc_hub_desc.hubd.bLength;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
len = 16;
memset(sc->sc_hub_desc.temp, 0, 16);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
DPRINTFN(9, "UR_GET_STATUS i=%d\n", index);
if ((index < 1) ||
(index > sc->sc_noport)) {
err = USB_ERR_IOERROR;
goto done;
}
v = XREAD4(sc, oper, XHCI_PORTSC(index));
DPRINTFN(9, "port status=0x%08x\n", v);
i = UPS_PORT_LINK_STATE_SET(XHCI_PS_PLS_GET(v));
switch (XHCI_PS_SPEED_GET(v)) {
case 3:
i |= UPS_HIGH_SPEED;
break;
case 2:
i |= UPS_LOW_SPEED;
break;
case 1:
/* FULL speed */
break;
default:
i |= UPS_OTHER_SPEED;
break;
}
if (v & XHCI_PS_CCS)
i |= UPS_CURRENT_CONNECT_STATUS;
if (v & XHCI_PS_PED)
i |= UPS_PORT_ENABLED;
if (v & XHCI_PS_OCA)
i |= UPS_OVERCURRENT_INDICATOR;
if (v & XHCI_PS_PR)
i |= UPS_RESET;
if (v & XHCI_PS_PP) {
/*
* The USB 3.0 RH is using the
* USB 2.0's power bit
*/
i |= UPS_PORT_POWER;
}
USETW(sc->sc_hub_desc.ps.wPortStatus, i);
i = 0;
if (v & XHCI_PS_CSC)
i |= UPS_C_CONNECT_STATUS;
if (v & XHCI_PS_PEC)
i |= UPS_C_PORT_ENABLED;
if (v & XHCI_PS_OCC)
i |= UPS_C_OVERCURRENT_INDICATOR;
if (v & XHCI_PS_WRC)
i |= UPS_C_BH_PORT_RESET;
if (v & XHCI_PS_PRC)
i |= UPS_C_PORT_RESET;
if (v & XHCI_PS_PLC)
i |= UPS_C_PORT_LINK_STATE;
if (v & XHCI_PS_CEC)
i |= UPS_C_PORT_CONFIG_ERROR;
USETW(sc->sc_hub_desc.ps.wPortChange, i);
len = sizeof(sc->sc_hub_desc.ps);
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
err = USB_ERR_IOERROR;
goto done;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
i = index >> 8;
index &= 0x00FF;
if ((index < 1) ||
(index > sc->sc_noport)) {
err = USB_ERR_IOERROR;
goto done;
}
port = XHCI_PORTSC(index);
v = XREAD4(sc, oper, port) & ~XHCI_PS_CLEAR;
switch (value) {
case UHF_PORT_U1_TIMEOUT:
if (XHCI_PS_SPEED_GET(v) != 4) {
err = USB_ERR_IOERROR;
goto done;
}
port = XHCI_PORTPMSC(index);
v = XREAD4(sc, oper, port);
v &= ~XHCI_PM3_U1TO_SET(0xFF);
v |= XHCI_PM3_U1TO_SET(i);
XWRITE4(sc, oper, port, v);
break;
case UHF_PORT_U2_TIMEOUT:
if (XHCI_PS_SPEED_GET(v) != 4) {
err = USB_ERR_IOERROR;
goto done;
}
port = XHCI_PORTPMSC(index);
v = XREAD4(sc, oper, port);
v &= ~XHCI_PM3_U2TO_SET(0xFF);
v |= XHCI_PM3_U2TO_SET(i);
XWRITE4(sc, oper, port, v);
break;
case UHF_BH_PORT_RESET:
XWRITE4(sc, oper, port, v | XHCI_PS_WPR);
break;
case UHF_PORT_LINK_STATE:
XWRITE4(sc, oper, port, v |
XHCI_PS_PLS_SET(i) | XHCI_PS_LWS);
/* 4ms settle time */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 250);
break;
case UHF_PORT_ENABLE:
DPRINTFN(3, "set port enable %d\n", index);
break;
case UHF_PORT_SUSPEND:
DPRINTFN(6, "suspend port %u (LPM=%u)\n", index, i);
j = XHCI_PS_SPEED_GET(v);
if ((j < 1) || (j > 3)) {
/* non-supported speed */
err = USB_ERR_IOERROR;
goto done;
}
XWRITE4(sc, oper, port, v |
XHCI_PS_PLS_SET(i ? 2 /* LPM */ : 3) | XHCI_PS_LWS);
break;
case UHF_PORT_RESET:
DPRINTFN(6, "reset port %d\n", index);
XWRITE4(sc, oper, port, v | XHCI_PS_PR);
break;
case UHF_PORT_POWER:
DPRINTFN(3, "set port power %d\n", index);
XWRITE4(sc, oper, port, v | XHCI_PS_PP);
break;
case UHF_PORT_TEST:
DPRINTFN(3, "set port test %d\n", index);
break;
case UHF_PORT_INDICATOR:
DPRINTFN(3, "set port indicator %d\n", index);
v &= ~XHCI_PS_PIC_SET(3);
v |= XHCI_PS_PIC_SET(1);
XWRITE4(sc, oper, port, v);
break;
default:
err = USB_ERR_IOERROR;
goto done;
}
break;
case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER):
case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER):
case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER):
case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER):
break;
default:
err = USB_ERR_IOERROR;
goto done;
}
done:
*plength = len;
*pptr = ptr;
return (err);
}
static void
xhci_xfer_setup(struct usb_setup_params *parm)
{
struct usb_page_search page_info;
struct usb_page_cache *pc;
struct xhci_softc *sc;
struct usb_xfer *xfer;
void *last_obj;
uint32_t ntd;
uint32_t n;
sc = XHCI_BUS2SC(parm->udev->bus);
xfer = parm->curr_xfer;
/*
* The proof for the "ntd" formula is illustrated like this:
*
* +------------------------------------+
* | |
* | |remainder -> |
* | +-----+---+ |
* | | xxx | x | frm 0 |
* | +-----+---++ |
* | | xxx | xx | frm 1 |
* | +-----+----+ |
* | ... |
* +------------------------------------+
*
* "xxx" means a completely full USB transfer descriptor
*
* "x" and "xx" means a short USB packet
*
* For the remainder of an USB transfer modulo
* "max_data_length" we need two USB transfer descriptors.
* One to transfer the remaining data and one to finalise with
* a zero length packet in case the "force_short_xfer" flag is
* set. We only need two USB transfer descriptors in the case
* where the transfer length of the first one is a factor of
* "max_frame_size". The rest of the needed USB transfer
* descriptors is given by the buffer size divided by the
* maximum data payload.
*/
parm->hc_max_packet_size = 0x400;
parm->hc_max_packet_count = 16 * 3;
parm->hc_max_frame_size = XHCI_TD_PAYLOAD_MAX;
xfer->flags_int.bdma_enable = 1;
usbd_transfer_setup_sub(parm);
if (xfer->flags_int.isochronous_xfr) {
ntd = ((1 * xfer->nframes)
+ (xfer->max_data_length / xfer->max_hc_frame_size));
} else if (xfer->flags_int.control_xfr) {
ntd = ((2 * xfer->nframes) + 1 /* STATUS */
+ (xfer->max_data_length / xfer->max_hc_frame_size));
} else {
ntd = ((2 * xfer->nframes)
+ (xfer->max_data_length / xfer->max_hc_frame_size));
}
alloc_dma_set:
if (parm->err)
return;
/*
* Allocate queue heads and transfer descriptors
*/
last_obj = NULL;
if (usbd_transfer_setup_sub_malloc(
parm, &pc, sizeof(struct xhci_td),
XHCI_TD_ALIGN, ntd)) {
parm->err = USB_ERR_NOMEM;
return;
}
if (parm->buf) {
for (n = 0; n != ntd; n++) {
struct xhci_td *td;
usbd_get_page(pc + n, 0, &page_info);
td = page_info.buffer;
/* init TD */
td->td_self = page_info.physaddr;
td->obj_next = last_obj;
td->page_cache = pc + n;
last_obj = td;
usb_pc_cpu_flush(pc + n);
}
}
xfer->td_start[xfer->flags_int.curr_dma_set] = last_obj;
if (!xfer->flags_int.curr_dma_set) {
xfer->flags_int.curr_dma_set = 1;
goto alloc_dma_set;
}
}
static usb_error_t
xhci_configure_reset_endpoint(struct usb_xfer *xfer)
{
struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus);
struct usb_page_search buf_inp;
struct usb_device *udev;
struct xhci_endpoint_ext *pepext;
struct usb_endpoint_descriptor *edesc;
struct usb_page_cache *pcinp;
usb_error_t err;
usb_stream_t stream_id;
uint8_t index;
uint8_t epno;
pepext = xhci_get_endpoint_ext(xfer->xroot->udev,
xfer->endpoint->edesc);
udev = xfer->xroot->udev;
index = udev->controller_slot_id;
pcinp = &sc->sc_hw.devs[index].input_pc;
usbd_get_page(pcinp, 0, &buf_inp);
edesc = xfer->endpoint->edesc;
epno = edesc->bEndpointAddress;
stream_id = xfer->stream_id;
if ((edesc->bmAttributes & UE_XFERTYPE) == UE_CONTROL)
epno |= UE_DIR_IN;
epno = XHCI_EPNO2EPID(epno);
if (epno == 0)
return (USB_ERR_NO_PIPE); /* invalid */
XHCI_CMD_LOCK(sc);
/* configure endpoint */
err = xhci_configure_endpoint_by_xfer(xfer);
if (err != 0) {
XHCI_CMD_UNLOCK(sc);
return (err);
}
/*
* Get the endpoint into the stopped state according to the
* endpoint context state diagram in the XHCI specification:
*/
err = xhci_cmd_stop_ep(sc, 0, epno, index);
if (err != 0)
DPRINTF("Could not stop endpoint %u\n", epno);
err = xhci_cmd_reset_ep(sc, 0, epno, index);
if (err != 0)
DPRINTF("Could not reset endpoint %u\n", epno);
err = xhci_cmd_set_tr_dequeue_ptr(sc,
(pepext->physaddr + (stream_id * sizeof(struct xhci_trb) *
XHCI_MAX_TRANSFERS)) | XHCI_EPCTX_2_DCS_SET(1),
stream_id, epno, index);
if (err != 0)
DPRINTF("Could not set dequeue ptr for endpoint %u\n", epno);
/*
* Get the endpoint into the running state according to the
* endpoint context state diagram in the XHCI specification:
*/
xhci_configure_mask(udev, (1U << epno) | 1U, 0);
err = xhci_cmd_evaluate_ctx(sc, buf_inp.physaddr, index);
if (err != 0)
DPRINTF("Could not configure endpoint %u\n", epno);
err = xhci_cmd_configure_ep(sc, buf_inp.physaddr, 0, index);
if (err != 0)
DPRINTF("Could not configure endpoint %u\n", epno);
XHCI_CMD_UNLOCK(sc);
return (0);
}
static void
xhci_xfer_unsetup(struct usb_xfer *xfer)
{
return;
}
static void
xhci_start_dma_delay(struct usb_xfer *xfer)
{
struct xhci_softc *sc = XHCI_BUS2SC(xfer->xroot->bus);
/* put transfer on interrupt queue (again) */
usbd_transfer_enqueue(&sc->sc_bus.intr_q, xfer);
(void)usb_proc_msignal(USB_BUS_CONTROL_XFER_PROC(&sc->sc_bus),
&sc->sc_config_msg[0], &sc->sc_config_msg[1]);
}
static void
xhci_configure_msg(struct usb_proc_msg *pm)
{
struct xhci_softc *sc;
struct xhci_endpoint_ext *pepext;
struct usb_xfer *xfer;
sc = XHCI_BUS2SC(((struct usb_bus_msg *)pm)->bus);
restart:
TAILQ_FOREACH(xfer, &sc->sc_bus.intr_q.head, wait_entry) {
pepext = xhci_get_endpoint_ext(xfer->xroot->udev,
xfer->endpoint->edesc);
if ((pepext->trb_halted != 0) ||
(pepext->trb_running == 0)) {
uint16_t i;
/* clear halted and running */
pepext->trb_halted = 0;
pepext->trb_running = 0;
/* nuke remaining buffered transfers */
for (i = 0; i != (XHCI_MAX_TRANSFERS *
XHCI_MAX_STREAMS); i++) {
/*
* NOTE: We need to use the timeout
* error code here else existing
* isochronous clients can get
* confused:
*/
if (pepext->xfer[i] != NULL) {
xhci_device_done(pepext->xfer[i],
USB_ERR_TIMEOUT);
}
}
/*
* NOTE: The USB transfer cannot vanish in
* this state!
*/
USB_BUS_UNLOCK(&sc->sc_bus);
xhci_configure_reset_endpoint(xfer);
USB_BUS_LOCK(&sc->sc_bus);
/* check if halted is still cleared */
if (pepext->trb_halted == 0) {
pepext->trb_running = 1;
memset(pepext->trb_index, 0,
sizeof(pepext->trb_index));
}
goto restart;
}
if (xfer->flags_int.did_dma_delay) {
/* remove transfer from interrupt queue (again) */
usbd_transfer_dequeue(xfer);
/* we are finally done */
usb_dma_delay_done_cb(xfer);
/* queue changed - restart */
goto restart;
}
}
TAILQ_FOREACH(xfer, &sc->sc_bus.intr_q.head, wait_entry) {
/* try to insert xfer on HW queue */
xhci_transfer_insert(xfer);
/* try to multi buffer */
xhci_device_generic_multi_enter(xfer->endpoint,
xfer->stream_id, NULL);
}
}
static void
xhci_ep_init(struct usb_device *udev, struct usb_endpoint_descriptor *edesc,
struct usb_endpoint *ep)
{
struct xhci_endpoint_ext *pepext;
DPRINTFN(2, "endpoint=%p, addr=%d, endpt=%d, mode=%d\n",
ep, udev->address, edesc->bEndpointAddress, udev->flags.usb_mode);
if (udev->parent_hub == NULL) {
/* root HUB has special endpoint handling */
return;
}
ep->methods = &xhci_device_generic_methods;
pepext = xhci_get_endpoint_ext(udev, edesc);
USB_BUS_LOCK(udev->bus);
pepext->trb_halted = 1;
pepext->trb_running = 0;
USB_BUS_UNLOCK(udev->bus);
}
static void
xhci_ep_uninit(struct usb_device *udev, struct usb_endpoint *ep)
{
}
static void
xhci_ep_clear_stall(struct usb_device *udev, struct usb_endpoint *ep)
{
struct xhci_endpoint_ext *pepext;
DPRINTF("\n");
if (udev->flags.usb_mode != USB_MODE_HOST) {
/* not supported */
return;
}
if (udev->parent_hub == NULL) {
/* root HUB has special endpoint handling */
return;
}
pepext = xhci_get_endpoint_ext(udev, ep->edesc);
USB_BUS_LOCK(udev->bus);
pepext->trb_halted = 1;
pepext->trb_running = 0;
USB_BUS_UNLOCK(udev->bus);
}
static usb_error_t
xhci_device_init(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
usb_error_t err;
uint8_t temp;
/* no init for root HUB */
if (udev->parent_hub == NULL)
return (0);
XHCI_CMD_LOCK(sc);
/* set invalid default */
udev->controller_slot_id = sc->sc_noslot + 1;
/* try to get a new slot ID from the XHCI */
err = xhci_cmd_enable_slot(sc, &temp);
if (err) {
XHCI_CMD_UNLOCK(sc);
return (err);
}
if (temp > sc->sc_noslot) {
XHCI_CMD_UNLOCK(sc);
return (USB_ERR_BAD_ADDRESS);
}
if (sc->sc_hw.devs[temp].state != XHCI_ST_DISABLED) {
DPRINTF("slot %u already allocated.\n", temp);
XHCI_CMD_UNLOCK(sc);
return (USB_ERR_BAD_ADDRESS);
}
/* store slot ID for later reference */
udev->controller_slot_id = temp;
/* reset data structure */
memset(&sc->sc_hw.devs[temp], 0, sizeof(sc->sc_hw.devs[0]));
/* set mark slot allocated */
sc->sc_hw.devs[temp].state = XHCI_ST_ENABLED;
err = xhci_alloc_device_ext(udev);
XHCI_CMD_UNLOCK(sc);
/* get device into default state */
if (err == 0)
err = xhci_set_address(udev, NULL, 0);
return (err);
}
static void
xhci_device_uninit(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
uint8_t index;
/* no init for root HUB */
if (udev->parent_hub == NULL)
return;
XHCI_CMD_LOCK(sc);
index = udev->controller_slot_id;
if (index <= sc->sc_noslot) {
xhci_cmd_disable_slot(sc, index);
sc->sc_hw.devs[index].state = XHCI_ST_DISABLED;
/* free device extension */
xhci_free_device_ext(udev);
}
XHCI_CMD_UNLOCK(sc);
}
static void
xhci_get_dma_delay(struct usb_device *udev, uint32_t *pus)
{
/*
* Wait until the hardware has finished any possible use of
* the transfer descriptor(s)
*/
*pus = 2048; /* microseconds */
}
static void
xhci_device_resume(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
uint8_t index;
uint8_t n;
uint8_t p;
DPRINTF("\n");
/* check for root HUB */
if (udev->parent_hub == NULL)
return;
index = udev->controller_slot_id;
XHCI_CMD_LOCK(sc);
/* blindly resume all endpoints */
USB_BUS_LOCK(udev->bus);
for (n = 1; n != XHCI_MAX_ENDPOINTS; n++) {
for (p = 0; p != XHCI_MAX_STREAMS; p++) {
XWRITE4(sc, door, XHCI_DOORBELL(index),
n | XHCI_DB_SID_SET(p));
}
}
USB_BUS_UNLOCK(udev->bus);
XHCI_CMD_UNLOCK(sc);
}
static void
xhci_device_suspend(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
uint8_t index;
uint8_t n;
usb_error_t err;
DPRINTF("\n");
/* check for root HUB */
if (udev->parent_hub == NULL)
return;
index = udev->controller_slot_id;
XHCI_CMD_LOCK(sc);
/* blindly suspend all endpoints */
for (n = 1; n != XHCI_MAX_ENDPOINTS; n++) {
err = xhci_cmd_stop_ep(sc, 1, n, index);
if (err != 0) {
DPRINTF("Failed to suspend endpoint "
"%u on slot %u (ignored).\n", n, index);
}
}
XHCI_CMD_UNLOCK(sc);
}
static void
xhci_set_hw_power(struct usb_bus *bus)
{
DPRINTF("\n");
}
static void
xhci_device_state_change(struct usb_device *udev)
{
struct xhci_softc *sc = XHCI_BUS2SC(udev->bus);
struct usb_page_search buf_inp;
usb_error_t err;
uint8_t index;
/* check for root HUB */
if (udev->parent_hub == NULL)
return;
index = udev->controller_slot_id;
DPRINTF("\n");
if (usb_get_device_state(udev) == USB_STATE_CONFIGURED) {
err = uhub_query_info(udev, &sc->sc_hw.devs[index].nports,
&sc->sc_hw.devs[index].tt);
if (err != 0)
sc->sc_hw.devs[index].nports = 0;
}
XHCI_CMD_LOCK(sc);
switch (usb_get_device_state(udev)) {
case USB_STATE_POWERED:
if (sc->sc_hw.devs[index].state == XHCI_ST_DEFAULT)
break;
/* set default state */
sc->sc_hw.devs[index].state = XHCI_ST_DEFAULT;
/* reset number of contexts */
sc->sc_hw.devs[index].context_num = 0;
err = xhci_cmd_reset_dev(sc, index);
if (err != 0) {
DPRINTF("Device reset failed "
"for slot %u.\n", index);
}
break;
case USB_STATE_ADDRESSED:
if (sc->sc_hw.devs[index].state == XHCI_ST_ADDRESSED)
break;
sc->sc_hw.devs[index].state = XHCI_ST_ADDRESSED;
err = xhci_cmd_configure_ep(sc, 0, 1, index);
if (err) {
DPRINTF("Failed to deconfigure "
"slot %u.\n", index);
}
break;
case USB_STATE_CONFIGURED:
if (sc->sc_hw.devs[index].state == XHCI_ST_CONFIGURED)
break;
/* set configured state */
sc->sc_hw.devs[index].state = XHCI_ST_CONFIGURED;
/* reset number of contexts */
sc->sc_hw.devs[index].context_num = 0;
usbd_get_page(&sc->sc_hw.devs[index].input_pc, 0, &buf_inp);
xhci_configure_mask(udev, 3, 0);
err = xhci_configure_device(udev);
if (err != 0) {
DPRINTF("Could not configure device "
"at slot %u.\n", index);
}
err = xhci_cmd_evaluate_ctx(sc, buf_inp.physaddr, index);
if (err != 0) {
DPRINTF("Could not evaluate device "
"context at slot %u.\n", index);
}
break;
default:
break;
}
XHCI_CMD_UNLOCK(sc);
}
static usb_error_t
xhci_set_endpoint_mode(struct usb_device *udev, struct usb_endpoint *ep,
uint8_t ep_mode)
{
switch (ep_mode) {
case USB_EP_MODE_DEFAULT:
return (0);
case USB_EP_MODE_STREAMS:
if (xhcistreams == 0 ||
(ep->edesc->bmAttributes & UE_XFERTYPE) != UE_BULK ||
udev->speed != USB_SPEED_SUPER)
return (USB_ERR_INVAL);
return (0);
default:
return (USB_ERR_INVAL);
}
}
static const struct usb_bus_methods xhci_bus_methods = {
.endpoint_init = xhci_ep_init,
.endpoint_uninit = xhci_ep_uninit,
.xfer_setup = xhci_xfer_setup,
.xfer_unsetup = xhci_xfer_unsetup,
.get_dma_delay = xhci_get_dma_delay,
.device_init = xhci_device_init,
.device_uninit = xhci_device_uninit,
.device_resume = xhci_device_resume,
.device_suspend = xhci_device_suspend,
.set_hw_power = xhci_set_hw_power,
.roothub_exec = xhci_roothub_exec,
.xfer_poll = xhci_do_poll,
.start_dma_delay = xhci_start_dma_delay,
.set_address = xhci_set_address,
.clear_stall = xhci_ep_clear_stall,
.device_state_change = xhci_device_state_change,
.set_hw_power_sleep = xhci_set_hw_power_sleep,
.set_endpoint_mode = xhci_set_endpoint_mode,
};