1971 lines
54 KiB
C
1971 lines
54 KiB
C
/*-
|
|
* Copyright (c) 2011 Alexander Motin <mav@FreeBSD.org>
|
|
* Copyright (c) 2000 - 2008 Søren Schmidt <sos@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kobj.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/systm.h>
|
|
#include <geom/geom.h>
|
|
#include "geom/raid/g_raid.h"
|
|
#include "g_raid_md_if.h"
|
|
|
|
static MALLOC_DEFINE(M_MD_PROMISE, "md_promise_data", "GEOM_RAID Promise metadata");
|
|
|
|
#define PROMISE_MAX_DISKS 8
|
|
#define PROMISE_MAX_SUBDISKS 2
|
|
#define PROMISE_META_OFFSET 14
|
|
|
|
struct promise_raid_disk {
|
|
uint8_t flags; /* Subdisk status. */
|
|
#define PROMISE_F_VALID 0x01
|
|
#define PROMISE_F_ONLINE 0x02
|
|
#define PROMISE_F_ASSIGNED 0x04
|
|
#define PROMISE_F_SPARE 0x08
|
|
#define PROMISE_F_DUPLICATE 0x10
|
|
#define PROMISE_F_REDIR 0x20
|
|
#define PROMISE_F_DOWN 0x40
|
|
#define PROMISE_F_READY 0x80
|
|
|
|
uint8_t number; /* Position in a volume. */
|
|
uint8_t channel; /* ATA channel number. */
|
|
uint8_t device; /* ATA device number. */
|
|
uint64_t id __packed; /* Subdisk ID. */
|
|
} __packed;
|
|
|
|
struct promise_raid_conf {
|
|
char promise_id[24];
|
|
#define PROMISE_MAGIC "Promise Technology, Inc."
|
|
#define FREEBSD_MAGIC "FreeBSD ATA driver RAID "
|
|
|
|
uint32_t dummy_0;
|
|
uint64_t magic_0;
|
|
#define PROMISE_MAGIC0(x) (((uint64_t)(x.channel) << 48) | \
|
|
((uint64_t)(x.device != 0) << 56))
|
|
uint16_t magic_1;
|
|
uint32_t magic_2;
|
|
uint8_t filler1[470];
|
|
|
|
uint32_t integrity;
|
|
#define PROMISE_I_VALID 0x00000080
|
|
|
|
struct promise_raid_disk disk; /* This subdisk info. */
|
|
uint32_t disk_offset; /* Subdisk offset. */
|
|
uint32_t disk_sectors; /* Subdisk size */
|
|
uint32_t rebuild_lba; /* Rebuild position. */
|
|
uint16_t generation; /* Generation number. */
|
|
uint8_t status; /* Volume status. */
|
|
#define PROMISE_S_VALID 0x01
|
|
#define PROMISE_S_ONLINE 0x02
|
|
#define PROMISE_S_INITED 0x04
|
|
#define PROMISE_S_READY 0x08
|
|
#define PROMISE_S_DEGRADED 0x10
|
|
#define PROMISE_S_MARKED 0x20
|
|
#define PROMISE_S_MIGRATING 0x40
|
|
#define PROMISE_S_FUNCTIONAL 0x80
|
|
|
|
uint8_t type; /* Voluem type. */
|
|
#define PROMISE_T_RAID0 0x00
|
|
#define PROMISE_T_RAID1 0x01
|
|
#define PROMISE_T_RAID3 0x02
|
|
#define PROMISE_T_RAID5 0x04
|
|
#define PROMISE_T_SPAN 0x08
|
|
#define PROMISE_T_JBOD 0x10
|
|
|
|
uint8_t total_disks; /* Disks in this volume. */
|
|
uint8_t stripe_shift; /* Strip size. */
|
|
uint8_t array_width; /* Number of RAID0 stripes. */
|
|
uint8_t array_number; /* Global volume number. */
|
|
uint32_t total_sectors; /* Volume size. */
|
|
uint16_t cylinders; /* Volume geometry: C. */
|
|
uint8_t heads; /* Volume geometry: H. */
|
|
uint8_t sectors; /* Volume geometry: S. */
|
|
uint64_t volume_id __packed; /* Volume ID, */
|
|
struct promise_raid_disk disks[PROMISE_MAX_DISKS];
|
|
/* Subdisks in this volume. */
|
|
char name[32]; /* Volume label. */
|
|
|
|
uint32_t filler2[8];
|
|
uint32_t magic_3; /* Something related to rebuild. */
|
|
uint64_t rebuild_lba64; /* Per-volume rebuild position. */
|
|
uint32_t magic_4;
|
|
uint32_t magic_5;
|
|
uint32_t total_sectors_high;
|
|
uint32_t filler3[324];
|
|
uint32_t checksum;
|
|
} __packed;
|
|
|
|
struct g_raid_md_promise_perdisk {
|
|
int pd_updated;
|
|
int pd_subdisks;
|
|
struct promise_raid_conf *pd_meta[PROMISE_MAX_SUBDISKS];
|
|
};
|
|
|
|
struct g_raid_md_promise_pervolume {
|
|
struct promise_raid_conf *pv_meta;
|
|
uint64_t pv_id;
|
|
uint16_t pv_generation;
|
|
int pv_disks_present;
|
|
int pv_started;
|
|
struct callout pv_start_co; /* STARTING state timer. */
|
|
};
|
|
|
|
static g_raid_md_create_t g_raid_md_create_promise;
|
|
static g_raid_md_taste_t g_raid_md_taste_promise;
|
|
static g_raid_md_event_t g_raid_md_event_promise;
|
|
static g_raid_md_volume_event_t g_raid_md_volume_event_promise;
|
|
static g_raid_md_ctl_t g_raid_md_ctl_promise;
|
|
static g_raid_md_write_t g_raid_md_write_promise;
|
|
static g_raid_md_fail_disk_t g_raid_md_fail_disk_promise;
|
|
static g_raid_md_free_disk_t g_raid_md_free_disk_promise;
|
|
static g_raid_md_free_volume_t g_raid_md_free_volume_promise;
|
|
static g_raid_md_free_t g_raid_md_free_promise;
|
|
|
|
static kobj_method_t g_raid_md_promise_methods[] = {
|
|
KOBJMETHOD(g_raid_md_create, g_raid_md_create_promise),
|
|
KOBJMETHOD(g_raid_md_taste, g_raid_md_taste_promise),
|
|
KOBJMETHOD(g_raid_md_event, g_raid_md_event_promise),
|
|
KOBJMETHOD(g_raid_md_volume_event, g_raid_md_volume_event_promise),
|
|
KOBJMETHOD(g_raid_md_ctl, g_raid_md_ctl_promise),
|
|
KOBJMETHOD(g_raid_md_write, g_raid_md_write_promise),
|
|
KOBJMETHOD(g_raid_md_fail_disk, g_raid_md_fail_disk_promise),
|
|
KOBJMETHOD(g_raid_md_free_disk, g_raid_md_free_disk_promise),
|
|
KOBJMETHOD(g_raid_md_free_volume, g_raid_md_free_volume_promise),
|
|
KOBJMETHOD(g_raid_md_free, g_raid_md_free_promise),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static struct g_raid_md_class g_raid_md_promise_class = {
|
|
"Promise",
|
|
g_raid_md_promise_methods,
|
|
sizeof(struct g_raid_md_object),
|
|
.mdc_priority = 100
|
|
};
|
|
|
|
|
|
static void
|
|
g_raid_md_promise_print(struct promise_raid_conf *meta)
|
|
{
|
|
int i;
|
|
|
|
if (g_raid_debug < 1)
|
|
return;
|
|
|
|
printf("********* ATA Promise Metadata *********\n");
|
|
printf("promise_id <%.24s>\n", meta->promise_id);
|
|
printf("disk %02x %02x %02x %02x %016jx\n",
|
|
meta->disk.flags, meta->disk.number, meta->disk.channel,
|
|
meta->disk.device, meta->disk.id);
|
|
printf("disk_offset %u\n", meta->disk_offset);
|
|
printf("disk_sectors %u\n", meta->disk_sectors);
|
|
printf("rebuild_lba %u\n", meta->rebuild_lba);
|
|
printf("generation %u\n", meta->generation);
|
|
printf("status 0x%02x\n", meta->status);
|
|
printf("type %u\n", meta->type);
|
|
printf("total_disks %u\n", meta->total_disks);
|
|
printf("stripe_shift %u\n", meta->stripe_shift);
|
|
printf("array_width %u\n", meta->array_width);
|
|
printf("array_number %u\n", meta->array_number);
|
|
printf("total_sectors %u\n", meta->total_sectors);
|
|
printf("cylinders %u\n", meta->cylinders);
|
|
printf("heads %u\n", meta->heads);
|
|
printf("sectors %u\n", meta->sectors);
|
|
printf("volume_id 0x%016jx\n", meta->volume_id);
|
|
printf("disks:\n");
|
|
for (i = 0; i < PROMISE_MAX_DISKS; i++ ) {
|
|
printf(" %02x %02x %02x %02x %016jx\n",
|
|
meta->disks[i].flags, meta->disks[i].number,
|
|
meta->disks[i].channel, meta->disks[i].device,
|
|
meta->disks[i].id);
|
|
}
|
|
printf("name <%.32s>\n", meta->name);
|
|
printf("magic_3 0x%08x\n", meta->magic_3);
|
|
printf("rebuild_lba64 %ju\n", meta->rebuild_lba64);
|
|
printf("magic_4 0x%08x\n", meta->magic_4);
|
|
printf("magic_5 0x%08x\n", meta->magic_5);
|
|
printf("total_sectors_high 0x%08x\n", meta->total_sectors_high);
|
|
printf("=================================================\n");
|
|
}
|
|
|
|
static struct promise_raid_conf *
|
|
promise_meta_copy(struct promise_raid_conf *meta)
|
|
{
|
|
struct promise_raid_conf *nmeta;
|
|
|
|
nmeta = malloc(sizeof(*nmeta), M_MD_PROMISE, M_WAITOK);
|
|
memcpy(nmeta, meta, sizeof(*nmeta));
|
|
return (nmeta);
|
|
}
|
|
|
|
static int
|
|
promise_meta_find_disk(struct promise_raid_conf *meta, uint64_t id)
|
|
{
|
|
int pos;
|
|
|
|
for (pos = 0; pos < meta->total_disks; pos++) {
|
|
if (meta->disks[pos].id == id)
|
|
return (pos);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
static int
|
|
promise_meta_unused_range(struct promise_raid_conf **metaarr, int nsd,
|
|
uint32_t sectors, uint32_t *off, uint32_t *size)
|
|
{
|
|
uint32_t coff, csize;
|
|
int i, j;
|
|
|
|
sectors -= 131072;
|
|
*off = 0;
|
|
*size = 0;
|
|
coff = 0;
|
|
csize = sectors;
|
|
i = 0;
|
|
while (1) {
|
|
for (j = 0; j < nsd; j++) {
|
|
if (metaarr[j]->disk_offset >= coff) {
|
|
csize = MIN(csize,
|
|
metaarr[j]->disk_offset - coff);
|
|
}
|
|
}
|
|
if (csize > *size) {
|
|
*off = coff;
|
|
*size = csize;
|
|
}
|
|
if (i >= nsd)
|
|
break;
|
|
coff = metaarr[i]->disk_offset + metaarr[i]->disk_sectors;
|
|
csize = sectors - coff;
|
|
i++;
|
|
};
|
|
return ((*size > 0) ? 1 : 0);
|
|
}
|
|
|
|
static int
|
|
promise_meta_translate_disk(struct g_raid_volume *vol, int md_disk_pos)
|
|
{
|
|
int disk_pos, width;
|
|
|
|
if (md_disk_pos >= 0 && vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) {
|
|
width = vol->v_disks_count / 2;
|
|
disk_pos = (md_disk_pos / width) +
|
|
(md_disk_pos % width) * width;
|
|
} else
|
|
disk_pos = md_disk_pos;
|
|
return (disk_pos);
|
|
}
|
|
|
|
static void
|
|
promise_meta_get_name(struct promise_raid_conf *meta, char *buf)
|
|
{
|
|
int i;
|
|
|
|
strncpy(buf, meta->name, 32);
|
|
buf[32] = 0;
|
|
for (i = 31; i >= 0; i--) {
|
|
if (buf[i] > 0x20)
|
|
break;
|
|
buf[i] = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
promise_meta_put_name(struct promise_raid_conf *meta, char *buf)
|
|
{
|
|
|
|
memset(meta->name, 0x20, 32);
|
|
memcpy(meta->name, buf, MIN(strlen(buf), 32));
|
|
}
|
|
|
|
static int
|
|
promise_meta_read(struct g_consumer *cp, struct promise_raid_conf **metaarr)
|
|
{
|
|
struct g_provider *pp;
|
|
struct promise_raid_conf *meta;
|
|
char *buf;
|
|
int error, i, subdisks;
|
|
uint32_t checksum, *ptr;
|
|
|
|
pp = cp->provider;
|
|
subdisks = 0;
|
|
next:
|
|
/* Read metadata block. */
|
|
buf = g_read_data(cp, pp->mediasize - pp->sectorsize *
|
|
(63 - subdisks * PROMISE_META_OFFSET),
|
|
pp->sectorsize * 4, &error);
|
|
if (buf == NULL) {
|
|
G_RAID_DEBUG(1, "Cannot read metadata from %s (error=%d).",
|
|
pp->name, error);
|
|
return (subdisks);
|
|
}
|
|
meta = (struct promise_raid_conf *)buf;
|
|
|
|
/* Check if this is an Promise RAID struct */
|
|
if (strncmp(meta->promise_id, PROMISE_MAGIC, strlen(PROMISE_MAGIC)) &&
|
|
strncmp(meta->promise_id, FREEBSD_MAGIC, strlen(FREEBSD_MAGIC))) {
|
|
if (subdisks == 0)
|
|
G_RAID_DEBUG(1,
|
|
"Promise signature check failed on %s", pp->name);
|
|
g_free(buf);
|
|
return (subdisks);
|
|
}
|
|
meta = malloc(sizeof(*meta), M_MD_PROMISE, M_WAITOK);
|
|
memcpy(meta, buf, MIN(sizeof(*meta), pp->sectorsize * 4));
|
|
g_free(buf);
|
|
|
|
/* Check metadata checksum. */
|
|
for (checksum = 0, ptr = (uint32_t *)meta, i = 0; i < 511; i++)
|
|
checksum += *ptr++;
|
|
if (checksum != meta->checksum) {
|
|
G_RAID_DEBUG(1, "Promise checksum check failed on %s", pp->name);
|
|
free(meta, M_MD_PROMISE);
|
|
return (subdisks);
|
|
}
|
|
|
|
if ((meta->integrity & PROMISE_I_VALID) == 0) {
|
|
G_RAID_DEBUG(1, "Promise metadata is invalid on %s", pp->name);
|
|
free(meta, M_MD_PROMISE);
|
|
return (subdisks);
|
|
}
|
|
|
|
if (meta->total_disks > PROMISE_MAX_DISKS) {
|
|
G_RAID_DEBUG(1, "Wrong number of disks on %s (%d)",
|
|
pp->name, meta->total_disks);
|
|
free(meta, M_MD_PROMISE);
|
|
return (subdisks);
|
|
}
|
|
|
|
/* Save this part and look for next. */
|
|
*metaarr = meta;
|
|
metaarr++;
|
|
subdisks++;
|
|
if (subdisks < PROMISE_MAX_SUBDISKS)
|
|
goto next;
|
|
|
|
return (subdisks);
|
|
}
|
|
|
|
static int
|
|
promise_meta_write(struct g_consumer *cp,
|
|
struct promise_raid_conf **metaarr, int nsd)
|
|
{
|
|
struct g_provider *pp;
|
|
struct promise_raid_conf *meta;
|
|
char *buf;
|
|
int error, i, subdisk, fake;
|
|
uint32_t checksum, *ptr, off, size;
|
|
|
|
pp = cp->provider;
|
|
subdisk = 0;
|
|
fake = 0;
|
|
next:
|
|
buf = malloc(pp->sectorsize * 4, M_MD_PROMISE, M_WAITOK | M_ZERO);
|
|
meta = NULL;
|
|
if (subdisk < nsd) {
|
|
meta = metaarr[subdisk];
|
|
} else if (!fake && promise_meta_unused_range(metaarr, nsd,
|
|
cp->provider->mediasize / cp->provider->sectorsize,
|
|
&off, &size)) {
|
|
/* Optionally add record for unused space. */
|
|
meta = (struct promise_raid_conf *)buf;
|
|
memcpy(&meta->promise_id[0], PROMISE_MAGIC,
|
|
sizeof(PROMISE_MAGIC) - 1);
|
|
meta->dummy_0 = 0x00020000;
|
|
meta->integrity = PROMISE_I_VALID;
|
|
meta->disk.flags = PROMISE_F_ONLINE | PROMISE_F_VALID;
|
|
meta->disk.number = 0xff;
|
|
arc4rand(&meta->disk.id, sizeof(meta->disk.id), 0);
|
|
meta->disk_offset = off;
|
|
meta->disk_sectors = size;
|
|
meta->rebuild_lba = UINT32_MAX;
|
|
fake = 1;
|
|
}
|
|
if (meta != NULL) {
|
|
/* Recalculate checksum for case if metadata were changed. */
|
|
meta->checksum = 0;
|
|
for (checksum = 0, ptr = (uint32_t *)meta, i = 0; i < 511; i++)
|
|
checksum += *ptr++;
|
|
meta->checksum = checksum;
|
|
memcpy(buf, meta, MIN(pp->sectorsize * 4, sizeof(*meta)));
|
|
}
|
|
error = g_write_data(cp, pp->mediasize - pp->sectorsize *
|
|
(63 - subdisk * PROMISE_META_OFFSET),
|
|
buf, pp->sectorsize * 4);
|
|
if (error != 0) {
|
|
G_RAID_DEBUG(1, "Cannot write metadata to %s (error=%d).",
|
|
pp->name, error);
|
|
}
|
|
free(buf, M_MD_PROMISE);
|
|
|
|
subdisk++;
|
|
if (subdisk < PROMISE_MAX_SUBDISKS)
|
|
goto next;
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
promise_meta_erase(struct g_consumer *cp)
|
|
{
|
|
struct g_provider *pp;
|
|
char *buf;
|
|
int error, subdisk;
|
|
|
|
pp = cp->provider;
|
|
buf = malloc(4 * pp->sectorsize, M_MD_PROMISE, M_WAITOK | M_ZERO);
|
|
for (subdisk = 0; subdisk < PROMISE_MAX_SUBDISKS; subdisk++) {
|
|
error = g_write_data(cp, pp->mediasize - pp->sectorsize *
|
|
(63 - subdisk * PROMISE_META_OFFSET),
|
|
buf, 4 * pp->sectorsize);
|
|
if (error != 0) {
|
|
G_RAID_DEBUG(1, "Cannot erase metadata on %s (error=%d).",
|
|
pp->name, error);
|
|
}
|
|
}
|
|
free(buf, M_MD_PROMISE);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
promise_meta_write_spare(struct g_consumer *cp)
|
|
{
|
|
struct promise_raid_conf *meta;
|
|
int error;
|
|
|
|
meta = malloc(sizeof(*meta), M_MD_PROMISE, M_WAITOK | M_ZERO);
|
|
memcpy(&meta->promise_id[0], PROMISE_MAGIC, sizeof(PROMISE_MAGIC) - 1);
|
|
meta->dummy_0 = 0x00020000;
|
|
meta->integrity = PROMISE_I_VALID;
|
|
meta->disk.flags = PROMISE_F_SPARE | PROMISE_F_ONLINE | PROMISE_F_VALID;
|
|
meta->disk.number = 0xff;
|
|
arc4rand(&meta->disk.id, sizeof(meta->disk.id), 0);
|
|
meta->disk_sectors = cp->provider->mediasize / cp->provider->sectorsize;
|
|
meta->disk_sectors -= 131072;
|
|
meta->rebuild_lba = UINT32_MAX;
|
|
error = promise_meta_write(cp, &meta, 1);
|
|
free(meta, M_MD_PROMISE);
|
|
return (error);
|
|
}
|
|
|
|
static struct g_raid_volume *
|
|
g_raid_md_promise_get_volume(struct g_raid_softc *sc, uint64_t id)
|
|
{
|
|
struct g_raid_volume *vol;
|
|
struct g_raid_md_promise_pervolume *pv;
|
|
|
|
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
|
|
pv = vol->v_md_data;
|
|
if (pv->pv_id == id)
|
|
break;
|
|
}
|
|
return (vol);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_promise_purge_volumes(struct g_raid_softc *sc)
|
|
{
|
|
struct g_raid_volume *vol, *tvol;
|
|
struct g_raid_md_promise_pervolume *pv;
|
|
int i, res;
|
|
|
|
res = 0;
|
|
TAILQ_FOREACH_SAFE(vol, &sc->sc_volumes, v_next, tvol) {
|
|
pv = vol->v_md_data;
|
|
if (!pv->pv_started || vol->v_stopping)
|
|
continue;
|
|
for (i = 0; i < vol->v_disks_count; i++) {
|
|
if (vol->v_subdisks[i].sd_state != G_RAID_SUBDISK_S_NONE)
|
|
break;
|
|
}
|
|
if (i >= vol->v_disks_count) {
|
|
g_raid_destroy_volume(vol);
|
|
res = 1;
|
|
}
|
|
}
|
|
return (res);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_promise_purge_disks(struct g_raid_softc *sc)
|
|
{
|
|
struct g_raid_disk *disk, *tdisk;
|
|
struct g_raid_volume *vol;
|
|
struct g_raid_md_promise_perdisk *pd;
|
|
int i, j, res;
|
|
|
|
res = 0;
|
|
TAILQ_FOREACH_SAFE(disk, &sc->sc_disks, d_next, tdisk) {
|
|
if (disk->d_state == G_RAID_DISK_S_SPARE)
|
|
continue;
|
|
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
|
|
|
|
/* Scan for deleted volumes. */
|
|
for (i = 0; i < pd->pd_subdisks; ) {
|
|
vol = g_raid_md_promise_get_volume(sc,
|
|
pd->pd_meta[i]->volume_id);
|
|
if (vol != NULL && !vol->v_stopping) {
|
|
i++;
|
|
continue;
|
|
}
|
|
free(pd->pd_meta[i], M_MD_PROMISE);
|
|
for (j = i; j < pd->pd_subdisks - 1; j++)
|
|
pd->pd_meta[j] = pd->pd_meta[j + 1];
|
|
pd->pd_meta[PROMISE_MAX_SUBDISKS - 1] = NULL;
|
|
pd->pd_subdisks--;
|
|
pd->pd_updated = 1;
|
|
}
|
|
|
|
/* If there is no metadata left - erase and delete disk. */
|
|
if (pd->pd_subdisks == 0) {
|
|
promise_meta_erase(disk->d_consumer);
|
|
g_raid_destroy_disk(disk);
|
|
res = 1;
|
|
}
|
|
}
|
|
return (res);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_promise_supported(int level, int qual, int disks, int force)
|
|
{
|
|
|
|
if (disks > PROMISE_MAX_DISKS)
|
|
return (0);
|
|
switch (level) {
|
|
case G_RAID_VOLUME_RL_RAID0:
|
|
if (disks < 1)
|
|
return (0);
|
|
if (!force && disks < 2)
|
|
return (0);
|
|
break;
|
|
case G_RAID_VOLUME_RL_RAID1:
|
|
if (disks < 1)
|
|
return (0);
|
|
if (!force && (disks != 2))
|
|
return (0);
|
|
break;
|
|
case G_RAID_VOLUME_RL_RAID1E:
|
|
if (disks < 2)
|
|
return (0);
|
|
if (disks % 2 != 0)
|
|
return (0);
|
|
if (!force && (disks != 4))
|
|
return (0);
|
|
break;
|
|
case G_RAID_VOLUME_RL_SINGLE:
|
|
if (disks != 1)
|
|
return (0);
|
|
break;
|
|
case G_RAID_VOLUME_RL_CONCAT:
|
|
if (disks < 2)
|
|
return (0);
|
|
break;
|
|
case G_RAID_VOLUME_RL_RAID5:
|
|
if (disks < 3)
|
|
return (0);
|
|
if (qual != G_RAID_VOLUME_RLQ_R5LA)
|
|
return (0);
|
|
break;
|
|
default:
|
|
return (0);
|
|
}
|
|
if (level != G_RAID_VOLUME_RL_RAID5 && qual != G_RAID_VOLUME_RLQ_NONE)
|
|
return (0);
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_promise_start_disk(struct g_raid_disk *disk, int sdn,
|
|
struct g_raid_volume *vol)
|
|
{
|
|
struct g_raid_softc *sc;
|
|
struct g_raid_subdisk *sd;
|
|
struct g_raid_md_promise_perdisk *pd;
|
|
struct g_raid_md_promise_pervolume *pv;
|
|
struct promise_raid_conf *meta;
|
|
off_t size;
|
|
int disk_pos, md_disk_pos, i, resurrection = 0;
|
|
uint32_t eoff, esize;
|
|
|
|
sc = disk->d_softc;
|
|
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
|
|
|
|
pv = vol->v_md_data;
|
|
meta = pv->pv_meta;
|
|
|
|
if (sdn >= 0) {
|
|
/* Find disk position in metadata by it's serial. */
|
|
md_disk_pos = promise_meta_find_disk(meta, pd->pd_meta[sdn]->disk.id);
|
|
/* For RAID0+1 we need to translate order. */
|
|
disk_pos = promise_meta_translate_disk(vol, md_disk_pos);
|
|
} else {
|
|
md_disk_pos = -1;
|
|
disk_pos = -1;
|
|
}
|
|
if (disk_pos < 0) {
|
|
G_RAID_DEBUG1(1, sc, "Disk %s is not part of the volume %s",
|
|
g_raid_get_diskname(disk), vol->v_name);
|
|
/* Failed stale disk is useless for us. */
|
|
if (sdn >= 0 &&
|
|
pd->pd_meta[sdn]->disk.flags & PROMISE_F_DOWN) {
|
|
g_raid_change_disk_state(disk, G_RAID_DISK_S_STALE_FAILED);
|
|
return (0);
|
|
}
|
|
/* If we were given specific metadata subdisk - erase it. */
|
|
if (sdn >= 0) {
|
|
free(pd->pd_meta[sdn], M_MD_PROMISE);
|
|
for (i = sdn; i < pd->pd_subdisks - 1; i++)
|
|
pd->pd_meta[i] = pd->pd_meta[i + 1];
|
|
pd->pd_meta[PROMISE_MAX_SUBDISKS - 1] = NULL;
|
|
pd->pd_subdisks--;
|
|
}
|
|
/* If we are in the start process, that's all for now. */
|
|
if (!pv->pv_started)
|
|
goto nofit;
|
|
/*
|
|
* If we have already started - try to get use of the disk.
|
|
* Try to replace OFFLINE disks first, then FAILED.
|
|
*/
|
|
promise_meta_unused_range(pd->pd_meta, pd->pd_subdisks,
|
|
disk->d_consumer->provider->mediasize /
|
|
disk->d_consumer->provider->sectorsize,
|
|
&eoff, &esize);
|
|
if (esize == 0) {
|
|
G_RAID_DEBUG1(1, sc, "No free space on disk %s",
|
|
g_raid_get_diskname(disk));
|
|
goto nofit;
|
|
}
|
|
size = INT64_MAX;
|
|
for (i = 0; i < vol->v_disks_count; i++) {
|
|
sd = &vol->v_subdisks[i];
|
|
if (sd->sd_state != G_RAID_SUBDISK_S_NONE)
|
|
size = sd->sd_size;
|
|
if (sd->sd_state <= G_RAID_SUBDISK_S_FAILED &&
|
|
(disk_pos < 0 ||
|
|
vol->v_subdisks[i].sd_state < sd->sd_state))
|
|
disk_pos = i;
|
|
}
|
|
if (disk_pos >= 0 &&
|
|
vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT &&
|
|
(off_t)esize * 512 < size) {
|
|
G_RAID_DEBUG1(1, sc, "Disk %s free space "
|
|
"is too small (%ju < %ju)",
|
|
g_raid_get_diskname(disk),
|
|
(off_t)esize * 512, size);
|
|
disk_pos = -1;
|
|
}
|
|
if (disk_pos >= 0) {
|
|
if (vol->v_raid_level != G_RAID_VOLUME_RL_CONCAT)
|
|
esize = size / 512;
|
|
/* For RAID0+1 we need to translate order. */
|
|
md_disk_pos = promise_meta_translate_disk(vol, disk_pos);
|
|
} else {
|
|
nofit:
|
|
if (pd->pd_subdisks == 0) {
|
|
g_raid_change_disk_state(disk,
|
|
G_RAID_DISK_S_SPARE);
|
|
}
|
|
return (0);
|
|
}
|
|
G_RAID_DEBUG1(1, sc, "Disk %s takes pos %d in the volume %s",
|
|
g_raid_get_diskname(disk), disk_pos, vol->v_name);
|
|
resurrection = 1;
|
|
}
|
|
|
|
sd = &vol->v_subdisks[disk_pos];
|
|
|
|
if (resurrection && sd->sd_disk != NULL) {
|
|
g_raid_change_disk_state(sd->sd_disk,
|
|
G_RAID_DISK_S_STALE_FAILED);
|
|
TAILQ_REMOVE(&sd->sd_disk->d_subdisks,
|
|
sd, sd_next);
|
|
}
|
|
vol->v_subdisks[disk_pos].sd_disk = disk;
|
|
TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
|
|
|
|
/* Welcome the new disk. */
|
|
if (resurrection)
|
|
g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
|
|
else if (meta->disks[md_disk_pos].flags & PROMISE_F_DOWN)
|
|
g_raid_change_disk_state(disk, G_RAID_DISK_S_FAILED);
|
|
else
|
|
g_raid_change_disk_state(disk, G_RAID_DISK_S_ACTIVE);
|
|
|
|
if (resurrection) {
|
|
sd->sd_offset = (off_t)eoff * 512;
|
|
sd->sd_size = (off_t)esize * 512;
|
|
} else {
|
|
sd->sd_offset = (off_t)pd->pd_meta[sdn]->disk_offset * 512;
|
|
sd->sd_size = (off_t)pd->pd_meta[sdn]->disk_sectors * 512;
|
|
}
|
|
|
|
if (resurrection) {
|
|
/* Stale disk, almost same as new. */
|
|
g_raid_change_subdisk_state(sd,
|
|
G_RAID_SUBDISK_S_NEW);
|
|
} else if (meta->disks[md_disk_pos].flags & PROMISE_F_DOWN) {
|
|
/* Failed disk. */
|
|
g_raid_change_subdisk_state(sd,
|
|
G_RAID_SUBDISK_S_FAILED);
|
|
} else if (meta->disks[md_disk_pos].flags & PROMISE_F_REDIR) {
|
|
/* Rebuilding disk. */
|
|
g_raid_change_subdisk_state(sd,
|
|
G_RAID_SUBDISK_S_REBUILD);
|
|
if (pd->pd_meta[sdn]->generation != meta->generation)
|
|
sd->sd_rebuild_pos = 0;
|
|
else {
|
|
sd->sd_rebuild_pos =
|
|
(off_t)pd->pd_meta[sdn]->rebuild_lba * 512;
|
|
}
|
|
} else if (!(meta->disks[md_disk_pos].flags & PROMISE_F_ONLINE)) {
|
|
/* Rebuilding disk. */
|
|
g_raid_change_subdisk_state(sd,
|
|
G_RAID_SUBDISK_S_NEW);
|
|
} else if (pd->pd_meta[sdn]->generation != meta->generation ||
|
|
(meta->status & PROMISE_S_MARKED)) {
|
|
/* Stale disk or dirty volume (unclean shutdown). */
|
|
g_raid_change_subdisk_state(sd,
|
|
G_RAID_SUBDISK_S_STALE);
|
|
} else {
|
|
/* Up to date disk. */
|
|
g_raid_change_subdisk_state(sd,
|
|
G_RAID_SUBDISK_S_ACTIVE);
|
|
}
|
|
g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
|
|
G_RAID_EVENT_SUBDISK);
|
|
|
|
return (resurrection);
|
|
}
|
|
|
|
static void
|
|
g_raid_md_promise_refill(struct g_raid_softc *sc)
|
|
{
|
|
struct g_raid_volume *vol;
|
|
struct g_raid_subdisk *sd;
|
|
struct g_raid_disk *disk;
|
|
struct g_raid_md_object *md;
|
|
struct g_raid_md_promise_perdisk *pd;
|
|
struct g_raid_md_promise_pervolume *pv;
|
|
int update, updated, i, bad;
|
|
|
|
md = sc->sc_md;
|
|
restart:
|
|
updated = 0;
|
|
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
|
|
pv = vol->v_md_data;
|
|
if (!pv->pv_started || vol->v_stopping)
|
|
continue;
|
|
|
|
/* Search for subdisk that needs replacement. */
|
|
bad = 0;
|
|
for (i = 0; i < vol->v_disks_count; i++) {
|
|
sd = &vol->v_subdisks[i];
|
|
if (sd->sd_state == G_RAID_SUBDISK_S_NONE ||
|
|
sd->sd_state == G_RAID_SUBDISK_S_FAILED)
|
|
bad = 1;
|
|
}
|
|
if (!bad)
|
|
continue;
|
|
|
|
G_RAID_DEBUG1(1, sc, "Volume %s is not complete, "
|
|
"trying to refill.", vol->v_name);
|
|
|
|
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
|
|
/* Skip failed. */
|
|
if (disk->d_state < G_RAID_DISK_S_SPARE)
|
|
continue;
|
|
/* Skip already used by this volume. */
|
|
for (i = 0; i < vol->v_disks_count; i++) {
|
|
sd = &vol->v_subdisks[i];
|
|
if (sd->sd_disk == disk)
|
|
break;
|
|
}
|
|
if (i < vol->v_disks_count)
|
|
continue;
|
|
|
|
/* Try to use disk if it has empty extents. */
|
|
pd = disk->d_md_data;
|
|
if (pd->pd_subdisks < PROMISE_MAX_SUBDISKS) {
|
|
update =
|
|
g_raid_md_promise_start_disk(disk, -1, vol);
|
|
} else
|
|
update = 0;
|
|
if (update) {
|
|
updated = 1;
|
|
g_raid_md_write_promise(md, vol, NULL, disk);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (updated)
|
|
goto restart;
|
|
}
|
|
|
|
static void
|
|
g_raid_md_promise_start(struct g_raid_volume *vol)
|
|
{
|
|
struct g_raid_softc *sc;
|
|
struct g_raid_subdisk *sd;
|
|
struct g_raid_disk *disk;
|
|
struct g_raid_md_object *md;
|
|
struct g_raid_md_promise_perdisk *pd;
|
|
struct g_raid_md_promise_pervolume *pv;
|
|
struct promise_raid_conf *meta;
|
|
int i;
|
|
|
|
sc = vol->v_softc;
|
|
md = sc->sc_md;
|
|
pv = vol->v_md_data;
|
|
meta = pv->pv_meta;
|
|
|
|
vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_NONE;
|
|
if (meta->type == PROMISE_T_RAID0)
|
|
vol->v_raid_level = G_RAID_VOLUME_RL_RAID0;
|
|
else if (meta->type == PROMISE_T_RAID1) {
|
|
if (meta->array_width == 1)
|
|
vol->v_raid_level = G_RAID_VOLUME_RL_RAID1;
|
|
else
|
|
vol->v_raid_level = G_RAID_VOLUME_RL_RAID1E;
|
|
} else if (meta->type == PROMISE_T_RAID3)
|
|
vol->v_raid_level = G_RAID_VOLUME_RL_RAID3;
|
|
else if (meta->type == PROMISE_T_RAID5) {
|
|
vol->v_raid_level = G_RAID_VOLUME_RL_RAID5;
|
|
vol->v_raid_level_qualifier = G_RAID_VOLUME_RLQ_R5LA;
|
|
} else if (meta->type == PROMISE_T_SPAN)
|
|
vol->v_raid_level = G_RAID_VOLUME_RL_CONCAT;
|
|
else if (meta->type == PROMISE_T_JBOD)
|
|
vol->v_raid_level = G_RAID_VOLUME_RL_SINGLE;
|
|
else
|
|
vol->v_raid_level = G_RAID_VOLUME_RL_UNKNOWN;
|
|
vol->v_strip_size = 512 << meta->stripe_shift; //ZZZ
|
|
vol->v_disks_count = meta->total_disks;
|
|
vol->v_mediasize = (off_t)meta->total_sectors * 512; //ZZZ
|
|
if (meta->total_sectors_high < 256) /* If value looks sane. */
|
|
vol->v_mediasize |=
|
|
((off_t)meta->total_sectors_high << 32) * 512; //ZZZ
|
|
vol->v_sectorsize = 512; //ZZZ
|
|
for (i = 0; i < vol->v_disks_count; i++) {
|
|
sd = &vol->v_subdisks[i];
|
|
sd->sd_offset = (off_t)meta->disk_offset * 512; //ZZZ
|
|
sd->sd_size = (off_t)meta->disk_sectors * 512; //ZZZ
|
|
}
|
|
g_raid_start_volume(vol);
|
|
|
|
/* Make all disks found till the moment take their places. */
|
|
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
|
|
pd = disk->d_md_data;
|
|
for (i = 0; i < pd->pd_subdisks; i++) {
|
|
if (pd->pd_meta[i]->volume_id == meta->volume_id)
|
|
g_raid_md_promise_start_disk(disk, i, vol);
|
|
}
|
|
}
|
|
|
|
pv->pv_started = 1;
|
|
callout_stop(&pv->pv_start_co);
|
|
G_RAID_DEBUG1(0, sc, "Volume started.");
|
|
g_raid_md_write_promise(md, vol, NULL, NULL);
|
|
|
|
/* Pickup any STALE/SPARE disks to refill array if needed. */
|
|
g_raid_md_promise_refill(sc);
|
|
|
|
g_raid_event_send(vol, G_RAID_VOLUME_E_START, G_RAID_EVENT_VOLUME);
|
|
}
|
|
|
|
static void
|
|
g_raid_promise_go(void *arg)
|
|
{
|
|
struct g_raid_volume *vol;
|
|
struct g_raid_softc *sc;
|
|
struct g_raid_md_promise_pervolume *pv;
|
|
|
|
vol = arg;
|
|
pv = vol->v_md_data;
|
|
sc = vol->v_softc;
|
|
if (!pv->pv_started) {
|
|
G_RAID_DEBUG1(0, sc, "Force volume start due to timeout.");
|
|
g_raid_event_send(vol, G_RAID_VOLUME_E_STARTMD,
|
|
G_RAID_EVENT_VOLUME);
|
|
}
|
|
}
|
|
|
|
static void
|
|
g_raid_md_promise_new_disk(struct g_raid_disk *disk)
|
|
{
|
|
struct g_raid_softc *sc;
|
|
struct g_raid_md_object *md;
|
|
struct promise_raid_conf *pdmeta;
|
|
struct g_raid_md_promise_perdisk *pd;
|
|
struct g_raid_md_promise_pervolume *pv;
|
|
struct g_raid_volume *vol;
|
|
int i;
|
|
char buf[33];
|
|
|
|
sc = disk->d_softc;
|
|
md = sc->sc_md;
|
|
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
|
|
|
|
if (pd->pd_subdisks == 0) {
|
|
g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
|
|
g_raid_md_promise_refill(sc);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < pd->pd_subdisks; i++) {
|
|
pdmeta = pd->pd_meta[i];
|
|
|
|
/* Look for volume with matching ID. */
|
|
vol = g_raid_md_promise_get_volume(sc, pdmeta->volume_id);
|
|
if (vol == NULL) {
|
|
promise_meta_get_name(pdmeta, buf);
|
|
vol = g_raid_create_volume(sc, buf, pdmeta->array_number);
|
|
pv = malloc(sizeof(*pv), M_MD_PROMISE, M_WAITOK | M_ZERO);
|
|
pv->pv_id = pdmeta->volume_id;
|
|
vol->v_md_data = pv;
|
|
callout_init(&pv->pv_start_co, 1);
|
|
callout_reset(&pv->pv_start_co,
|
|
g_raid_start_timeout * hz,
|
|
g_raid_promise_go, vol);
|
|
} else
|
|
pv = vol->v_md_data;
|
|
|
|
/* If we haven't started yet - check metadata freshness. */
|
|
if (pv->pv_meta == NULL || !pv->pv_started) {
|
|
if (pv->pv_meta == NULL ||
|
|
((int16_t)(pdmeta->generation - pv->pv_generation)) > 0) {
|
|
G_RAID_DEBUG1(1, sc, "Newer disk");
|
|
if (pv->pv_meta != NULL)
|
|
free(pv->pv_meta, M_MD_PROMISE);
|
|
pv->pv_meta = promise_meta_copy(pdmeta);
|
|
pv->pv_generation = pv->pv_meta->generation;
|
|
pv->pv_disks_present = 1;
|
|
} else if (pdmeta->generation == pv->pv_generation) {
|
|
pv->pv_disks_present++;
|
|
G_RAID_DEBUG1(1, sc, "Matching disk (%d of %d up)",
|
|
pv->pv_disks_present,
|
|
pv->pv_meta->total_disks);
|
|
} else {
|
|
G_RAID_DEBUG1(1, sc, "Older disk");
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < pd->pd_subdisks; i++) {
|
|
pdmeta = pd->pd_meta[i];
|
|
|
|
/* Look for volume with matching ID. */
|
|
vol = g_raid_md_promise_get_volume(sc, pdmeta->volume_id);
|
|
if (vol == NULL)
|
|
continue;
|
|
pv = vol->v_md_data;
|
|
|
|
if (pv->pv_started) {
|
|
if (g_raid_md_promise_start_disk(disk, i, vol))
|
|
g_raid_md_write_promise(md, vol, NULL, NULL);
|
|
} else {
|
|
/* If we collected all needed disks - start array. */
|
|
if (pv->pv_disks_present == pv->pv_meta->total_disks)
|
|
g_raid_md_promise_start(vol);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
g_raid_md_create_promise(struct g_raid_md_object *md, struct g_class *mp,
|
|
struct g_geom **gp)
|
|
{
|
|
struct g_geom *geom;
|
|
struct g_raid_softc *sc;
|
|
|
|
/* Search for existing node. */
|
|
LIST_FOREACH(geom, &mp->geom, geom) {
|
|
sc = geom->softc;
|
|
if (sc == NULL)
|
|
continue;
|
|
if (sc->sc_stopping != 0)
|
|
continue;
|
|
if (sc->sc_md->mdo_class != md->mdo_class)
|
|
continue;
|
|
break;
|
|
}
|
|
if (geom != NULL) {
|
|
*gp = geom;
|
|
return (G_RAID_MD_TASTE_EXISTING);
|
|
}
|
|
|
|
/* Create new one if not found. */
|
|
sc = g_raid_create_node(mp, "Promise", md);
|
|
if (sc == NULL)
|
|
return (G_RAID_MD_TASTE_FAIL);
|
|
md->mdo_softc = sc;
|
|
*gp = sc->sc_geom;
|
|
return (G_RAID_MD_TASTE_NEW);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_taste_promise(struct g_raid_md_object *md, struct g_class *mp,
|
|
struct g_consumer *cp, struct g_geom **gp)
|
|
{
|
|
struct g_consumer *rcp;
|
|
struct g_provider *pp;
|
|
struct g_raid_softc *sc;
|
|
struct g_raid_disk *disk;
|
|
struct promise_raid_conf *meta, *metaarr[4];
|
|
struct g_raid_md_promise_perdisk *pd;
|
|
struct g_geom *geom;
|
|
int error, i, j, result, len, subdisks;
|
|
char name[16];
|
|
uint16_t vendor;
|
|
|
|
G_RAID_DEBUG(1, "Tasting Promise on %s", cp->provider->name);
|
|
pp = cp->provider;
|
|
|
|
/* Read metadata from device. */
|
|
meta = NULL;
|
|
vendor = 0xffff;
|
|
if (g_access(cp, 1, 0, 0) != 0)
|
|
return (G_RAID_MD_TASTE_FAIL);
|
|
g_topology_unlock();
|
|
len = 2;
|
|
if (pp->geom->rank == 1)
|
|
g_io_getattr("GEOM::hba_vendor", cp, &len, &vendor);
|
|
subdisks = promise_meta_read(cp, metaarr);
|
|
g_topology_lock();
|
|
g_access(cp, -1, 0, 0);
|
|
if (subdisks == 0) {
|
|
if (g_raid_aggressive_spare) {
|
|
if (vendor == 0x105a || vendor == 0x1002) {
|
|
G_RAID_DEBUG(1,
|
|
"No Promise metadata, forcing spare.");
|
|
goto search;
|
|
} else {
|
|
G_RAID_DEBUG(1,
|
|
"Promise/ATI vendor mismatch "
|
|
"0x%04x != 0x105a/0x1002",
|
|
vendor);
|
|
}
|
|
}
|
|
return (G_RAID_MD_TASTE_FAIL);
|
|
}
|
|
|
|
/* Metadata valid. Print it. */
|
|
for (i = 0; i < subdisks; i++)
|
|
g_raid_md_promise_print(metaarr[i]);
|
|
|
|
/* Purge meaningless (empty/spare) records. */
|
|
for (i = 0; i < subdisks; ) {
|
|
if (metaarr[i]->disk.flags & PROMISE_F_ASSIGNED) {
|
|
i++;
|
|
continue;
|
|
}
|
|
free(metaarr[i], M_MD_PROMISE);
|
|
for (j = i; j < subdisks - 1; j++)
|
|
metaarr[i] = metaarr[j + 1];
|
|
metaarr[PROMISE_MAX_SUBDISKS - 1] = NULL;
|
|
subdisks--;
|
|
}
|
|
|
|
search:
|
|
/* Search for matching node. */
|
|
sc = NULL;
|
|
LIST_FOREACH(geom, &mp->geom, geom) {
|
|
sc = geom->softc;
|
|
if (sc == NULL)
|
|
continue;
|
|
if (sc->sc_stopping != 0)
|
|
continue;
|
|
if (sc->sc_md->mdo_class != md->mdo_class)
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
/* Found matching node. */
|
|
if (geom != NULL) {
|
|
G_RAID_DEBUG(1, "Found matching array %s", sc->sc_name);
|
|
result = G_RAID_MD_TASTE_EXISTING;
|
|
|
|
} else { /* Not found matching node -- create one. */
|
|
result = G_RAID_MD_TASTE_NEW;
|
|
snprintf(name, sizeof(name), "Promise");
|
|
sc = g_raid_create_node(mp, name, md);
|
|
md->mdo_softc = sc;
|
|
geom = sc->sc_geom;
|
|
}
|
|
|
|
rcp = g_new_consumer(geom);
|
|
g_attach(rcp, pp);
|
|
if (g_access(rcp, 1, 1, 1) != 0)
|
|
; //goto fail1;
|
|
|
|
g_topology_unlock();
|
|
sx_xlock(&sc->sc_lock);
|
|
|
|
pd = malloc(sizeof(*pd), M_MD_PROMISE, M_WAITOK | M_ZERO);
|
|
pd->pd_subdisks = subdisks;
|
|
for (i = 0; i < subdisks; i++)
|
|
pd->pd_meta[i] = metaarr[i];
|
|
disk = g_raid_create_disk(sc);
|
|
disk->d_md_data = (void *)pd;
|
|
disk->d_consumer = rcp;
|
|
rcp->private = disk;
|
|
|
|
/* Read kernel dumping information. */
|
|
disk->d_kd.offset = 0;
|
|
disk->d_kd.length = OFF_MAX;
|
|
len = sizeof(disk->d_kd);
|
|
error = g_io_getattr("GEOM::kerneldump", rcp, &len, &disk->d_kd);
|
|
if (disk->d_kd.di.dumper == NULL)
|
|
G_RAID_DEBUG1(2, sc, "Dumping not supported by %s: %d.",
|
|
rcp->provider->name, error);
|
|
|
|
g_raid_md_promise_new_disk(disk);
|
|
|
|
sx_xunlock(&sc->sc_lock);
|
|
g_topology_lock();
|
|
*gp = geom;
|
|
return (result);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_event_promise(struct g_raid_md_object *md,
|
|
struct g_raid_disk *disk, u_int event)
|
|
{
|
|
struct g_raid_softc *sc;
|
|
|
|
sc = md->mdo_softc;
|
|
if (disk == NULL)
|
|
return (-1);
|
|
switch (event) {
|
|
case G_RAID_DISK_E_DISCONNECTED:
|
|
/* Delete disk. */
|
|
g_raid_change_disk_state(disk, G_RAID_DISK_S_NONE);
|
|
g_raid_destroy_disk(disk);
|
|
g_raid_md_promise_purge_volumes(sc);
|
|
|
|
/* Write updated metadata to all disks. */
|
|
g_raid_md_write_promise(md, NULL, NULL, NULL);
|
|
|
|
/* Check if anything left. */
|
|
if (g_raid_ndisks(sc, -1) == 0)
|
|
g_raid_destroy_node(sc, 0);
|
|
else
|
|
g_raid_md_promise_refill(sc);
|
|
return (0);
|
|
}
|
|
return (-2);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_volume_event_promise(struct g_raid_md_object *md,
|
|
struct g_raid_volume *vol, u_int event)
|
|
{
|
|
struct g_raid_md_promise_pervolume *pv;
|
|
|
|
pv = (struct g_raid_md_promise_pervolume *)vol->v_md_data;
|
|
switch (event) {
|
|
case G_RAID_VOLUME_E_STARTMD:
|
|
if (!pv->pv_started)
|
|
g_raid_md_promise_start(vol);
|
|
return (0);
|
|
}
|
|
return (-2);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_ctl_promise(struct g_raid_md_object *md,
|
|
struct gctl_req *req)
|
|
{
|
|
struct g_raid_softc *sc;
|
|
struct g_raid_volume *vol, *vol1;
|
|
struct g_raid_subdisk *sd;
|
|
struct g_raid_disk *disk, *disks[PROMISE_MAX_DISKS];
|
|
struct g_raid_md_promise_perdisk *pd;
|
|
struct g_raid_md_promise_pervolume *pv;
|
|
struct g_consumer *cp;
|
|
struct g_provider *pp;
|
|
char arg[16];
|
|
const char *verb, *volname, *levelname, *diskname;
|
|
char *tmp;
|
|
int *nargs, *force;
|
|
off_t size, sectorsize, strip;
|
|
intmax_t *sizearg, *striparg;
|
|
uint32_t offs[PROMISE_MAX_DISKS], esize;
|
|
int numdisks, i, len, level, qual;
|
|
int error;
|
|
|
|
sc = md->mdo_softc;
|
|
verb = gctl_get_param(req, "verb", NULL);
|
|
nargs = gctl_get_paraml(req, "nargs", sizeof(*nargs));
|
|
error = 0;
|
|
if (strcmp(verb, "label") == 0) {
|
|
|
|
if (*nargs < 4) {
|
|
gctl_error(req, "Invalid number of arguments.");
|
|
return (-1);
|
|
}
|
|
volname = gctl_get_asciiparam(req, "arg1");
|
|
if (volname == NULL) {
|
|
gctl_error(req, "No volume name.");
|
|
return (-2);
|
|
}
|
|
levelname = gctl_get_asciiparam(req, "arg2");
|
|
if (levelname == NULL) {
|
|
gctl_error(req, "No RAID level.");
|
|
return (-3);
|
|
}
|
|
if (strcasecmp(levelname, "RAID5") == 0)
|
|
levelname = "RAID5-LA";
|
|
if (g_raid_volume_str2level(levelname, &level, &qual)) {
|
|
gctl_error(req, "Unknown RAID level '%s'.", levelname);
|
|
return (-4);
|
|
}
|
|
numdisks = *nargs - 3;
|
|
force = gctl_get_paraml(req, "force", sizeof(*force));
|
|
if (!g_raid_md_promise_supported(level, qual, numdisks,
|
|
force ? *force : 0)) {
|
|
gctl_error(req, "Unsupported RAID level "
|
|
"(0x%02x/0x%02x), or number of disks (%d).",
|
|
level, qual, numdisks);
|
|
return (-5);
|
|
}
|
|
|
|
/* Search for disks, connect them and probe. */
|
|
size = INT64_MAX;
|
|
sectorsize = 0;
|
|
bzero(disks, sizeof(disks));
|
|
bzero(offs, sizeof(offs));
|
|
for (i = 0; i < numdisks; i++) {
|
|
snprintf(arg, sizeof(arg), "arg%d", i + 3);
|
|
diskname = gctl_get_asciiparam(req, arg);
|
|
if (diskname == NULL) {
|
|
gctl_error(req, "No disk name (%s).", arg);
|
|
error = -6;
|
|
break;
|
|
}
|
|
if (strcmp(diskname, "NONE") == 0)
|
|
continue;
|
|
|
|
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
|
|
if (disk->d_consumer != NULL &&
|
|
disk->d_consumer->provider != NULL &&
|
|
strcmp(disk->d_consumer->provider->name,
|
|
diskname) == 0)
|
|
break;
|
|
}
|
|
if (disk != NULL) {
|
|
if (disk->d_state != G_RAID_DISK_S_ACTIVE) {
|
|
gctl_error(req, "Disk '%s' is in a "
|
|
"wrong state (%s).", diskname,
|
|
g_raid_disk_state2str(disk->d_state));
|
|
error = -7;
|
|
break;
|
|
}
|
|
pd = disk->d_md_data;
|
|
if (pd->pd_subdisks >= PROMISE_MAX_SUBDISKS) {
|
|
gctl_error(req, "Disk '%s' already "
|
|
"used by %d volumes.",
|
|
diskname, pd->pd_subdisks);
|
|
error = -7;
|
|
break;
|
|
}
|
|
pp = disk->d_consumer->provider;
|
|
disks[i] = disk;
|
|
promise_meta_unused_range(pd->pd_meta,
|
|
pd->pd_subdisks,
|
|
pp->mediasize / pp->sectorsize,
|
|
&offs[i], &esize);
|
|
size = MIN(size, (off_t)esize * pp->sectorsize);
|
|
sectorsize = MAX(sectorsize, pp->sectorsize);
|
|
continue;
|
|
}
|
|
|
|
g_topology_lock();
|
|
cp = g_raid_open_consumer(sc, diskname);
|
|
if (cp == NULL) {
|
|
gctl_error(req, "Can't open disk '%s'.",
|
|
diskname);
|
|
g_topology_unlock();
|
|
error = -8;
|
|
break;
|
|
}
|
|
pp = cp->provider;
|
|
pd = malloc(sizeof(*pd), M_MD_PROMISE, M_WAITOK | M_ZERO);
|
|
disk = g_raid_create_disk(sc);
|
|
disk->d_md_data = (void *)pd;
|
|
disk->d_consumer = cp;
|
|
disks[i] = disk;
|
|
cp->private = disk;
|
|
g_topology_unlock();
|
|
|
|
if (pp->mediasize / pp->sectorsize > UINT32_MAX) {
|
|
gctl_error(req,
|
|
"Disk '%s' is too big.", diskname);
|
|
error = -8;
|
|
break;
|
|
}
|
|
|
|
/* Read kernel dumping information. */
|
|
disk->d_kd.offset = 0;
|
|
disk->d_kd.length = OFF_MAX;
|
|
len = sizeof(disk->d_kd);
|
|
g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
|
|
if (disk->d_kd.di.dumper == NULL)
|
|
G_RAID_DEBUG1(2, sc,
|
|
"Dumping not supported by %s.",
|
|
cp->provider->name);
|
|
|
|
/* Reserve some space for metadata. */
|
|
size = MIN(size, pp->mediasize - 131072llu * pp->sectorsize);
|
|
sectorsize = MAX(sectorsize, pp->sectorsize);
|
|
}
|
|
if (error != 0) {
|
|
for (i = 0; i < numdisks; i++) {
|
|
if (disks[i] != NULL &&
|
|
disks[i]->d_state == G_RAID_DISK_S_NONE)
|
|
g_raid_destroy_disk(disks[i]);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
if (sectorsize <= 0) {
|
|
gctl_error(req, "Can't get sector size.");
|
|
return (-8);
|
|
}
|
|
|
|
/* Handle size argument. */
|
|
len = sizeof(*sizearg);
|
|
sizearg = gctl_get_param(req, "size", &len);
|
|
if (sizearg != NULL && len == sizeof(*sizearg) &&
|
|
*sizearg > 0) {
|
|
if (*sizearg > size) {
|
|
gctl_error(req, "Size too big %lld > %lld.",
|
|
(long long)*sizearg, (long long)size);
|
|
return (-9);
|
|
}
|
|
size = *sizearg;
|
|
}
|
|
|
|
/* Handle strip argument. */
|
|
strip = 131072;
|
|
len = sizeof(*striparg);
|
|
striparg = gctl_get_param(req, "strip", &len);
|
|
if (striparg != NULL && len == sizeof(*striparg) &&
|
|
*striparg > 0) {
|
|
if (*striparg < sectorsize) {
|
|
gctl_error(req, "Strip size too small.");
|
|
return (-10);
|
|
}
|
|
if (*striparg % sectorsize != 0) {
|
|
gctl_error(req, "Incorrect strip size.");
|
|
return (-11);
|
|
}
|
|
strip = *striparg;
|
|
}
|
|
|
|
/* Round size down to strip or sector. */
|
|
if (level == G_RAID_VOLUME_RL_RAID1 ||
|
|
level == G_RAID_VOLUME_RL_SINGLE ||
|
|
level == G_RAID_VOLUME_RL_CONCAT)
|
|
size -= (size % sectorsize);
|
|
else if (level == G_RAID_VOLUME_RL_RAID1E &&
|
|
(numdisks & 1) != 0)
|
|
size -= (size % (2 * strip));
|
|
else
|
|
size -= (size % strip);
|
|
if (size <= 0) {
|
|
gctl_error(req, "Size too small.");
|
|
return (-13);
|
|
}
|
|
if (size > 0xffffffffllu * sectorsize) {
|
|
gctl_error(req, "Size too big.");
|
|
return (-14);
|
|
}
|
|
|
|
/* We have all we need, create things: volume, ... */
|
|
pv = malloc(sizeof(*pv), M_MD_PROMISE, M_WAITOK | M_ZERO);
|
|
arc4rand(&pv->pv_id, sizeof(pv->pv_id), 0);
|
|
pv->pv_generation = 0;
|
|
pv->pv_started = 1;
|
|
vol = g_raid_create_volume(sc, volname, -1);
|
|
vol->v_md_data = pv;
|
|
vol->v_raid_level = level;
|
|
vol->v_raid_level_qualifier = qual;
|
|
vol->v_strip_size = strip;
|
|
vol->v_disks_count = numdisks;
|
|
if (level == G_RAID_VOLUME_RL_RAID0 ||
|
|
level == G_RAID_VOLUME_RL_CONCAT ||
|
|
level == G_RAID_VOLUME_RL_SINGLE)
|
|
vol->v_mediasize = size * numdisks;
|
|
else if (level == G_RAID_VOLUME_RL_RAID1)
|
|
vol->v_mediasize = size;
|
|
else if (level == G_RAID_VOLUME_RL_RAID3 ||
|
|
level == G_RAID_VOLUME_RL_RAID5)
|
|
vol->v_mediasize = size * (numdisks - 1);
|
|
else { /* RAID1E */
|
|
vol->v_mediasize = ((size * numdisks) / strip / 2) *
|
|
strip;
|
|
}
|
|
vol->v_sectorsize = sectorsize;
|
|
g_raid_start_volume(vol);
|
|
|
|
/* , and subdisks. */
|
|
for (i = 0; i < numdisks; i++) {
|
|
disk = disks[i];
|
|
sd = &vol->v_subdisks[i];
|
|
sd->sd_disk = disk;
|
|
sd->sd_offset = (off_t)offs[i] * 512;
|
|
sd->sd_size = size;
|
|
if (disk == NULL)
|
|
continue;
|
|
TAILQ_INSERT_TAIL(&disk->d_subdisks, sd, sd_next);
|
|
g_raid_change_disk_state(disk,
|
|
G_RAID_DISK_S_ACTIVE);
|
|
g_raid_change_subdisk_state(sd,
|
|
G_RAID_SUBDISK_S_ACTIVE);
|
|
g_raid_event_send(sd, G_RAID_SUBDISK_E_NEW,
|
|
G_RAID_EVENT_SUBDISK);
|
|
}
|
|
|
|
/* Write metadata based on created entities. */
|
|
G_RAID_DEBUG1(0, sc, "Array started.");
|
|
g_raid_md_write_promise(md, vol, NULL, NULL);
|
|
|
|
/* Pickup any STALE/SPARE disks to refill array if needed. */
|
|
g_raid_md_promise_refill(sc);
|
|
|
|
g_raid_event_send(vol, G_RAID_VOLUME_E_START,
|
|
G_RAID_EVENT_VOLUME);
|
|
return (0);
|
|
}
|
|
if (strcmp(verb, "add") == 0) {
|
|
|
|
gctl_error(req, "`add` command is not applicable, "
|
|
"use `label` instead.");
|
|
return (-99);
|
|
}
|
|
if (strcmp(verb, "delete") == 0) {
|
|
|
|
/* Full node destruction. */
|
|
if (*nargs == 1) {
|
|
/* Check if some volume is still open. */
|
|
force = gctl_get_paraml(req, "force", sizeof(*force));
|
|
if (force != NULL && *force == 0 &&
|
|
g_raid_nopens(sc) != 0) {
|
|
gctl_error(req, "Some volume is still open.");
|
|
return (-4);
|
|
}
|
|
|
|
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
|
|
if (disk->d_consumer)
|
|
promise_meta_erase(disk->d_consumer);
|
|
}
|
|
g_raid_destroy_node(sc, 0);
|
|
return (0);
|
|
}
|
|
|
|
/* Destroy specified volume. If it was last - all node. */
|
|
if (*nargs != 2) {
|
|
gctl_error(req, "Invalid number of arguments.");
|
|
return (-1);
|
|
}
|
|
volname = gctl_get_asciiparam(req, "arg1");
|
|
if (volname == NULL) {
|
|
gctl_error(req, "No volume name.");
|
|
return (-2);
|
|
}
|
|
|
|
/* Search for volume. */
|
|
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
|
|
if (strcmp(vol->v_name, volname) == 0)
|
|
break;
|
|
}
|
|
if (vol == NULL) {
|
|
i = strtol(volname, &tmp, 10);
|
|
if (verb != volname && tmp[0] == 0) {
|
|
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
|
|
if (vol->v_global_id == i)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (vol == NULL) {
|
|
gctl_error(req, "Volume '%s' not found.", volname);
|
|
return (-3);
|
|
}
|
|
|
|
/* Check if volume is still open. */
|
|
force = gctl_get_paraml(req, "force", sizeof(*force));
|
|
if (force != NULL && *force == 0 &&
|
|
vol->v_provider_open != 0) {
|
|
gctl_error(req, "Volume is still open.");
|
|
return (-4);
|
|
}
|
|
|
|
/* Destroy volume and potentially node. */
|
|
i = 0;
|
|
TAILQ_FOREACH(vol1, &sc->sc_volumes, v_next)
|
|
i++;
|
|
if (i >= 2) {
|
|
g_raid_destroy_volume(vol);
|
|
g_raid_md_promise_purge_disks(sc);
|
|
g_raid_md_write_promise(md, NULL, NULL, NULL);
|
|
} else {
|
|
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
|
|
if (disk->d_consumer)
|
|
promise_meta_erase(disk->d_consumer);
|
|
}
|
|
g_raid_destroy_node(sc, 0);
|
|
}
|
|
return (0);
|
|
}
|
|
if (strcmp(verb, "remove") == 0 ||
|
|
strcmp(verb, "fail") == 0) {
|
|
if (*nargs < 2) {
|
|
gctl_error(req, "Invalid number of arguments.");
|
|
return (-1);
|
|
}
|
|
for (i = 1; i < *nargs; i++) {
|
|
snprintf(arg, sizeof(arg), "arg%d", i);
|
|
diskname = gctl_get_asciiparam(req, arg);
|
|
if (diskname == NULL) {
|
|
gctl_error(req, "No disk name (%s).", arg);
|
|
error = -2;
|
|
break;
|
|
}
|
|
if (strncmp(diskname, "/dev/", 5) == 0)
|
|
diskname += 5;
|
|
|
|
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
|
|
if (disk->d_consumer != NULL &&
|
|
disk->d_consumer->provider != NULL &&
|
|
strcmp(disk->d_consumer->provider->name,
|
|
diskname) == 0)
|
|
break;
|
|
}
|
|
if (disk == NULL) {
|
|
gctl_error(req, "Disk '%s' not found.",
|
|
diskname);
|
|
error = -3;
|
|
break;
|
|
}
|
|
|
|
if (strcmp(verb, "fail") == 0) {
|
|
g_raid_md_fail_disk_promise(md, NULL, disk);
|
|
continue;
|
|
}
|
|
|
|
/* Erase metadata on deleting disk and destroy it. */
|
|
promise_meta_erase(disk->d_consumer);
|
|
g_raid_destroy_disk(disk);
|
|
}
|
|
g_raid_md_promise_purge_volumes(sc);
|
|
|
|
/* Write updated metadata to remaining disks. */
|
|
g_raid_md_write_promise(md, NULL, NULL, NULL);
|
|
|
|
/* Check if anything left. */
|
|
if (g_raid_ndisks(sc, -1) == 0)
|
|
g_raid_destroy_node(sc, 0);
|
|
else
|
|
g_raid_md_promise_refill(sc);
|
|
return (error);
|
|
}
|
|
if (strcmp(verb, "insert") == 0) {
|
|
if (*nargs < 2) {
|
|
gctl_error(req, "Invalid number of arguments.");
|
|
return (-1);
|
|
}
|
|
for (i = 1; i < *nargs; i++) {
|
|
/* Get disk name. */
|
|
snprintf(arg, sizeof(arg), "arg%d", i);
|
|
diskname = gctl_get_asciiparam(req, arg);
|
|
if (diskname == NULL) {
|
|
gctl_error(req, "No disk name (%s).", arg);
|
|
error = -3;
|
|
break;
|
|
}
|
|
|
|
/* Try to find provider with specified name. */
|
|
g_topology_lock();
|
|
cp = g_raid_open_consumer(sc, diskname);
|
|
if (cp == NULL) {
|
|
gctl_error(req, "Can't open disk '%s'.",
|
|
diskname);
|
|
g_topology_unlock();
|
|
error = -4;
|
|
break;
|
|
}
|
|
pp = cp->provider;
|
|
g_topology_unlock();
|
|
|
|
if (pp->mediasize / pp->sectorsize > UINT32_MAX) {
|
|
gctl_error(req,
|
|
"Disk '%s' is too big.", diskname);
|
|
g_raid_kill_consumer(sc, cp);
|
|
error = -8;
|
|
break;
|
|
}
|
|
|
|
pd = malloc(sizeof(*pd), M_MD_PROMISE, M_WAITOK | M_ZERO);
|
|
|
|
disk = g_raid_create_disk(sc);
|
|
disk->d_consumer = cp;
|
|
disk->d_md_data = (void *)pd;
|
|
cp->private = disk;
|
|
|
|
/* Read kernel dumping information. */
|
|
disk->d_kd.offset = 0;
|
|
disk->d_kd.length = OFF_MAX;
|
|
len = sizeof(disk->d_kd);
|
|
g_io_getattr("GEOM::kerneldump", cp, &len, &disk->d_kd);
|
|
if (disk->d_kd.di.dumper == NULL)
|
|
G_RAID_DEBUG1(2, sc,
|
|
"Dumping not supported by %s.",
|
|
cp->provider->name);
|
|
|
|
/* Welcome the "new" disk. */
|
|
g_raid_change_disk_state(disk, G_RAID_DISK_S_SPARE);
|
|
promise_meta_write_spare(cp);
|
|
g_raid_md_promise_refill(sc);
|
|
}
|
|
return (error);
|
|
}
|
|
return (-100);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_write_promise(struct g_raid_md_object *md, struct g_raid_volume *tvol,
|
|
struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
|
|
{
|
|
struct g_raid_softc *sc;
|
|
struct g_raid_volume *vol;
|
|
struct g_raid_subdisk *sd;
|
|
struct g_raid_disk *disk;
|
|
struct g_raid_md_promise_perdisk *pd;
|
|
struct g_raid_md_promise_pervolume *pv;
|
|
struct promise_raid_conf *meta;
|
|
off_t rebuild_lba64;
|
|
int i, j, pos, rebuild;
|
|
|
|
sc = md->mdo_softc;
|
|
|
|
if (sc->sc_stopping == G_RAID_DESTROY_HARD)
|
|
return (0);
|
|
|
|
/* Generate new per-volume metadata for affected volumes. */
|
|
TAILQ_FOREACH(vol, &sc->sc_volumes, v_next) {
|
|
if (vol->v_stopping)
|
|
continue;
|
|
|
|
/* Skip volumes not related to specified targets. */
|
|
if (tvol != NULL && vol != tvol)
|
|
continue;
|
|
if (tsd != NULL && vol != tsd->sd_volume)
|
|
continue;
|
|
if (tdisk != NULL) {
|
|
for (i = 0; i < vol->v_disks_count; i++) {
|
|
if (vol->v_subdisks[i].sd_disk == tdisk)
|
|
break;
|
|
}
|
|
if (i >= vol->v_disks_count)
|
|
continue;
|
|
}
|
|
|
|
pv = (struct g_raid_md_promise_pervolume *)vol->v_md_data;
|
|
pv->pv_generation++;
|
|
|
|
meta = malloc(sizeof(*meta), M_MD_PROMISE, M_WAITOK | M_ZERO);
|
|
if (pv->pv_meta != NULL)
|
|
memcpy(meta, pv->pv_meta, sizeof(*meta));
|
|
memcpy(meta->promise_id, PROMISE_MAGIC,
|
|
sizeof(PROMISE_MAGIC) - 1);
|
|
meta->dummy_0 = 0x00020000;
|
|
meta->integrity = PROMISE_I_VALID;
|
|
|
|
meta->generation = pv->pv_generation;
|
|
meta->status = PROMISE_S_VALID | PROMISE_S_ONLINE |
|
|
PROMISE_S_INITED | PROMISE_S_READY;
|
|
if (vol->v_state <= G_RAID_VOLUME_S_DEGRADED)
|
|
meta->status |= PROMISE_S_DEGRADED;
|
|
if (vol->v_dirty)
|
|
meta->status |= PROMISE_S_MARKED; /* XXX: INVENTED! */
|
|
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID0 ||
|
|
vol->v_raid_level == G_RAID_VOLUME_RL_SINGLE)
|
|
meta->type = PROMISE_T_RAID0;
|
|
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
|
|
vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
|
|
meta->type = PROMISE_T_RAID1;
|
|
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3)
|
|
meta->type = PROMISE_T_RAID3;
|
|
else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID5)
|
|
meta->type = PROMISE_T_RAID5;
|
|
else if (vol->v_raid_level == G_RAID_VOLUME_RL_CONCAT)
|
|
meta->type = PROMISE_T_SPAN;
|
|
else
|
|
meta->type = PROMISE_T_JBOD;
|
|
meta->total_disks = vol->v_disks_count;
|
|
meta->stripe_shift = ffs(vol->v_strip_size / 1024);
|
|
meta->array_width = vol->v_disks_count;
|
|
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
|
|
vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E)
|
|
meta->array_width /= 2;
|
|
meta->array_number = vol->v_global_id;
|
|
meta->total_sectors = vol->v_mediasize / vol->v_sectorsize;
|
|
meta->total_sectors_high =
|
|
(vol->v_mediasize / vol->v_sectorsize) >> 32;
|
|
meta->cylinders = meta->total_sectors / (255 * 63) - 1;
|
|
meta->heads = 254;
|
|
meta->sectors = 63;
|
|
meta->volume_id = pv->pv_id;
|
|
rebuild_lba64 = UINT64_MAX;
|
|
rebuild = 0;
|
|
for (i = 0; i < vol->v_disks_count; i++) {
|
|
sd = &vol->v_subdisks[i];
|
|
/* For RAID0+1 we need to translate order. */
|
|
pos = promise_meta_translate_disk(vol, i);
|
|
meta->disks[pos].flags = PROMISE_F_VALID |
|
|
PROMISE_F_ASSIGNED;
|
|
if (sd->sd_state == G_RAID_SUBDISK_S_NONE) {
|
|
meta->disks[pos].flags |= 0;
|
|
} else if (sd->sd_state == G_RAID_SUBDISK_S_FAILED) {
|
|
meta->disks[pos].flags |=
|
|
PROMISE_F_DOWN | PROMISE_F_REDIR;
|
|
} else if (sd->sd_state <= G_RAID_SUBDISK_S_REBUILD) {
|
|
meta->disks[pos].flags |=
|
|
PROMISE_F_ONLINE | PROMISE_F_REDIR;
|
|
if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD) {
|
|
rebuild_lba64 = MIN(rebuild_lba64,
|
|
sd->sd_rebuild_pos / 512);
|
|
} else
|
|
rebuild_lba64 = 0;
|
|
rebuild = 1;
|
|
} else {
|
|
meta->disks[pos].flags |= PROMISE_F_ONLINE;
|
|
if (sd->sd_state < G_RAID_SUBDISK_S_ACTIVE) {
|
|
meta->status |= PROMISE_S_MARKED;
|
|
if (sd->sd_state == G_RAID_SUBDISK_S_RESYNC) {
|
|
rebuild_lba64 = MIN(rebuild_lba64,
|
|
sd->sd_rebuild_pos / 512);
|
|
} else
|
|
rebuild_lba64 = 0;
|
|
}
|
|
}
|
|
if (pv->pv_meta != NULL) {
|
|
meta->disks[pos].id = pv->pv_meta->disks[pos].id;
|
|
} else {
|
|
meta->disks[pos].number = i * 2;
|
|
arc4rand(&meta->disks[pos].id,
|
|
sizeof(meta->disks[pos].id), 0);
|
|
}
|
|
}
|
|
promise_meta_put_name(meta, vol->v_name);
|
|
|
|
/* Try to mimic AMD BIOS rebuild/resync behavior. */
|
|
if (rebuild_lba64 != UINT64_MAX) {
|
|
if (rebuild)
|
|
meta->magic_3 = 0x03040010UL; /* Rebuild? */
|
|
else
|
|
meta->magic_3 = 0x03040008UL; /* Resync? */
|
|
/* Translate from per-disk to per-volume LBA. */
|
|
if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID1 ||
|
|
vol->v_raid_level == G_RAID_VOLUME_RL_RAID1E) {
|
|
rebuild_lba64 *= meta->array_width;
|
|
} else if (vol->v_raid_level == G_RAID_VOLUME_RL_RAID3 ||
|
|
vol->v_raid_level == G_RAID_VOLUME_RL_RAID5) {
|
|
rebuild_lba64 *= meta->array_width - 1;
|
|
} else
|
|
rebuild_lba64 = 0;
|
|
} else
|
|
meta->magic_3 = 0x03000000UL;
|
|
meta->rebuild_lba64 = rebuild_lba64;
|
|
meta->magic_4 = 0x04010101UL;
|
|
|
|
/* Replace per-volume metadata with new. */
|
|
if (pv->pv_meta != NULL)
|
|
free(pv->pv_meta, M_MD_PROMISE);
|
|
pv->pv_meta = meta;
|
|
|
|
/* Copy new metadata to the disks, adding or replacing old. */
|
|
for (i = 0; i < vol->v_disks_count; i++) {
|
|
sd = &vol->v_subdisks[i];
|
|
disk = sd->sd_disk;
|
|
if (disk == NULL)
|
|
continue;
|
|
/* For RAID0+1 we need to translate order. */
|
|
pos = promise_meta_translate_disk(vol, i);
|
|
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
|
|
for (j = 0; j < pd->pd_subdisks; j++) {
|
|
if (pd->pd_meta[j]->volume_id == meta->volume_id)
|
|
break;
|
|
}
|
|
if (j == pd->pd_subdisks)
|
|
pd->pd_subdisks++;
|
|
if (pd->pd_meta[j] != NULL)
|
|
free(pd->pd_meta[j], M_MD_PROMISE);
|
|
pd->pd_meta[j] = promise_meta_copy(meta);
|
|
pd->pd_meta[j]->disk = meta->disks[pos];
|
|
pd->pd_meta[j]->disk.number = pos;
|
|
pd->pd_meta[j]->disk_offset = sd->sd_offset / 512;
|
|
pd->pd_meta[j]->disk_sectors = sd->sd_size / 512;
|
|
if (sd->sd_state == G_RAID_SUBDISK_S_REBUILD) {
|
|
pd->pd_meta[j]->rebuild_lba =
|
|
sd->sd_rebuild_pos / 512;
|
|
} else if (sd->sd_state < G_RAID_SUBDISK_S_REBUILD)
|
|
pd->pd_meta[j]->rebuild_lba = 0;
|
|
else
|
|
pd->pd_meta[j]->rebuild_lba = UINT32_MAX;
|
|
pd->pd_updated = 1;
|
|
}
|
|
}
|
|
|
|
TAILQ_FOREACH(disk, &sc->sc_disks, d_next) {
|
|
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
|
|
if (disk->d_state != G_RAID_DISK_S_ACTIVE)
|
|
continue;
|
|
if (!pd->pd_updated)
|
|
continue;
|
|
G_RAID_DEBUG(1, "Writing Promise metadata to %s",
|
|
g_raid_get_diskname(disk));
|
|
for (i = 0; i < pd->pd_subdisks; i++)
|
|
g_raid_md_promise_print(pd->pd_meta[i]);
|
|
promise_meta_write(disk->d_consumer,
|
|
pd->pd_meta, pd->pd_subdisks);
|
|
pd->pd_updated = 0;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_fail_disk_promise(struct g_raid_md_object *md,
|
|
struct g_raid_subdisk *tsd, struct g_raid_disk *tdisk)
|
|
{
|
|
struct g_raid_softc *sc;
|
|
struct g_raid_md_promise_perdisk *pd;
|
|
struct g_raid_subdisk *sd;
|
|
int i, pos;
|
|
|
|
sc = md->mdo_softc;
|
|
pd = (struct g_raid_md_promise_perdisk *)tdisk->d_md_data;
|
|
|
|
/* We can't fail disk that is not a part of array now. */
|
|
if (tdisk->d_state != G_RAID_DISK_S_ACTIVE)
|
|
return (-1);
|
|
|
|
/*
|
|
* Mark disk as failed in metadata and try to write that metadata
|
|
* to the disk itself to prevent it's later resurrection as STALE.
|
|
*/
|
|
if (pd->pd_subdisks > 0 && tdisk->d_consumer != NULL)
|
|
G_RAID_DEBUG(1, "Writing Promise metadata to %s",
|
|
g_raid_get_diskname(tdisk));
|
|
for (i = 0; i < pd->pd_subdisks; i++) {
|
|
pd->pd_meta[i]->disk.flags |=
|
|
PROMISE_F_DOWN | PROMISE_F_REDIR;
|
|
pos = pd->pd_meta[i]->disk.number;
|
|
if (pos >= 0 && pos < PROMISE_MAX_DISKS) {
|
|
pd->pd_meta[i]->disks[pos].flags |=
|
|
PROMISE_F_DOWN | PROMISE_F_REDIR;
|
|
}
|
|
g_raid_md_promise_print(pd->pd_meta[i]);
|
|
}
|
|
if (tdisk->d_consumer != NULL)
|
|
promise_meta_write(tdisk->d_consumer,
|
|
pd->pd_meta, pd->pd_subdisks);
|
|
|
|
/* Change states. */
|
|
g_raid_change_disk_state(tdisk, G_RAID_DISK_S_FAILED);
|
|
TAILQ_FOREACH(sd, &tdisk->d_subdisks, sd_next) {
|
|
g_raid_change_subdisk_state(sd,
|
|
G_RAID_SUBDISK_S_FAILED);
|
|
g_raid_event_send(sd, G_RAID_SUBDISK_E_FAILED,
|
|
G_RAID_EVENT_SUBDISK);
|
|
}
|
|
|
|
/* Write updated metadata to remaining disks. */
|
|
g_raid_md_write_promise(md, NULL, NULL, tdisk);
|
|
|
|
g_raid_md_promise_refill(sc);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_free_disk_promise(struct g_raid_md_object *md,
|
|
struct g_raid_disk *disk)
|
|
{
|
|
struct g_raid_md_promise_perdisk *pd;
|
|
int i;
|
|
|
|
pd = (struct g_raid_md_promise_perdisk *)disk->d_md_data;
|
|
for (i = 0; i < pd->pd_subdisks; i++) {
|
|
if (pd->pd_meta[i] != NULL) {
|
|
free(pd->pd_meta[i], M_MD_PROMISE);
|
|
pd->pd_meta[i] = NULL;
|
|
}
|
|
}
|
|
free(pd, M_MD_PROMISE);
|
|
disk->d_md_data = NULL;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_free_volume_promise(struct g_raid_md_object *md,
|
|
struct g_raid_volume *vol)
|
|
{
|
|
struct g_raid_md_promise_pervolume *pv;
|
|
|
|
pv = (struct g_raid_md_promise_pervolume *)vol->v_md_data;
|
|
if (pv && pv->pv_meta != NULL) {
|
|
free(pv->pv_meta, M_MD_PROMISE);
|
|
pv->pv_meta = NULL;
|
|
}
|
|
if (pv && !pv->pv_started) {
|
|
pv->pv_started = 1;
|
|
callout_stop(&pv->pv_start_co);
|
|
}
|
|
free(pv, M_MD_PROMISE);
|
|
vol->v_md_data = NULL;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
g_raid_md_free_promise(struct g_raid_md_object *md)
|
|
{
|
|
|
|
return (0);
|
|
}
|
|
|
|
G_RAID_MD_DECLARE(g_raid_md_promise);
|