1848 lines
52 KiB
C
1848 lines
52 KiB
C
/* Control flow optimization code for GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
/* This file contains optimizer of the control flow. The main entrypoint is
|
||
cleanup_cfg. Following optimizations are performed:
|
||
|
||
- Unreachable blocks removal
|
||
- Edge forwarding (edge to the forwarder block is forwarded to it's
|
||
successor. Simplification of the branch instruction is performed by
|
||
underlying infrastructure so branch can be converted to simplejump or
|
||
eliminated).
|
||
- Cross jumping (tail merging)
|
||
- Conditional jump-around-simplejump simplification
|
||
- Basic block merging. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "rtl.h"
|
||
#include "hard-reg-set.h"
|
||
#include "basic-block.h"
|
||
#include "timevar.h"
|
||
#include "output.h"
|
||
#include "insn-config.h"
|
||
#include "flags.h"
|
||
#include "recog.h"
|
||
#include "toplev.h"
|
||
#include "cselib.h"
|
||
#include "params.h"
|
||
#include "tm_p.h"
|
||
#include "target.h"
|
||
|
||
/* cleanup_cfg maintains following flags for each basic block. */
|
||
|
||
enum bb_flags
|
||
{
|
||
/* Set if BB is the forwarder block to avoid too many
|
||
forwarder_block_p calls. */
|
||
BB_FORWARDER_BLOCK = 1,
|
||
BB_NONTHREADABLE_BLOCK = 2
|
||
};
|
||
|
||
#define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
|
||
#define BB_SET_FLAG(BB, FLAG) \
|
||
(BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
|
||
#define BB_CLEAR_FLAG(BB, FLAG) \
|
||
(BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
|
||
|
||
#define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
|
||
|
||
static bool try_crossjump_to_edge PARAMS ((int, edge, edge));
|
||
static bool try_crossjump_bb PARAMS ((int, basic_block));
|
||
static bool outgoing_edges_match PARAMS ((int,
|
||
basic_block, basic_block));
|
||
static int flow_find_cross_jump PARAMS ((int, basic_block, basic_block,
|
||
rtx *, rtx *));
|
||
static bool insns_match_p PARAMS ((int, rtx, rtx));
|
||
|
||
static bool label_is_jump_target_p PARAMS ((rtx, rtx));
|
||
static bool tail_recursion_label_p PARAMS ((rtx));
|
||
static void merge_blocks_move_predecessor_nojumps PARAMS ((basic_block,
|
||
basic_block));
|
||
static void merge_blocks_move_successor_nojumps PARAMS ((basic_block,
|
||
basic_block));
|
||
static bool merge_blocks PARAMS ((edge,basic_block,basic_block,
|
||
int));
|
||
static bool try_optimize_cfg PARAMS ((int));
|
||
static bool try_simplify_condjump PARAMS ((basic_block));
|
||
static bool try_forward_edges PARAMS ((int, basic_block));
|
||
static edge thread_jump PARAMS ((int, edge, basic_block));
|
||
static bool mark_effect PARAMS ((rtx, bitmap));
|
||
static void notice_new_block PARAMS ((basic_block));
|
||
static void update_forwarder_flag PARAMS ((basic_block));
|
||
static int mentions_nonequal_regs PARAMS ((rtx *, void *));
|
||
|
||
/* Set flags for newly created block. */
|
||
|
||
static void
|
||
notice_new_block (bb)
|
||
basic_block bb;
|
||
{
|
||
if (!bb)
|
||
return;
|
||
|
||
if (forwarder_block_p (bb))
|
||
BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
|
||
}
|
||
|
||
/* Recompute forwarder flag after block has been modified. */
|
||
|
||
static void
|
||
update_forwarder_flag (bb)
|
||
basic_block bb;
|
||
{
|
||
if (forwarder_block_p (bb))
|
||
BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
|
||
else
|
||
BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
|
||
}
|
||
|
||
/* Simplify a conditional jump around an unconditional jump.
|
||
Return true if something changed. */
|
||
|
||
static bool
|
||
try_simplify_condjump (cbranch_block)
|
||
basic_block cbranch_block;
|
||
{
|
||
basic_block jump_block, jump_dest_block, cbranch_dest_block;
|
||
edge cbranch_jump_edge, cbranch_fallthru_edge;
|
||
rtx cbranch_insn;
|
||
rtx insn, next;
|
||
rtx end;
|
||
|
||
/* Verify that there are exactly two successors. */
|
||
if (!cbranch_block->succ
|
||
|| !cbranch_block->succ->succ_next
|
||
|| cbranch_block->succ->succ_next->succ_next)
|
||
return false;
|
||
|
||
/* Verify that we've got a normal conditional branch at the end
|
||
of the block. */
|
||
cbranch_insn = cbranch_block->end;
|
||
if (!any_condjump_p (cbranch_insn))
|
||
return false;
|
||
|
||
cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
|
||
cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
|
||
|
||
/* The next block must not have multiple predecessors, must not
|
||
be the last block in the function, and must contain just the
|
||
unconditional jump. */
|
||
jump_block = cbranch_fallthru_edge->dest;
|
||
if (jump_block->pred->pred_next
|
||
|| jump_block->next_bb == EXIT_BLOCK_PTR
|
||
|| !FORWARDER_BLOCK_P (jump_block))
|
||
return false;
|
||
jump_dest_block = jump_block->succ->dest;
|
||
|
||
/* The conditional branch must target the block after the
|
||
unconditional branch. */
|
||
cbranch_dest_block = cbranch_jump_edge->dest;
|
||
|
||
if (!can_fallthru (jump_block, cbranch_dest_block))
|
||
return false;
|
||
|
||
/* Invert the conditional branch. */
|
||
if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
|
||
return false;
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Simplifying condjump %i around jump %i\n",
|
||
INSN_UID (cbranch_insn), INSN_UID (jump_block->end));
|
||
|
||
/* Success. Update the CFG to match. Note that after this point
|
||
the edge variable names appear backwards; the redirection is done
|
||
this way to preserve edge profile data. */
|
||
cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
|
||
cbranch_dest_block);
|
||
cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
|
||
jump_dest_block);
|
||
cbranch_jump_edge->flags |= EDGE_FALLTHRU;
|
||
cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
|
||
update_br_prob_note (cbranch_block);
|
||
|
||
end = jump_block->end;
|
||
/* Deleting a block may produce unreachable code warning even when we are
|
||
not deleting anything live. Supress it by moving all the line number
|
||
notes out of the block. */
|
||
for (insn = jump_block->head; insn != NEXT_INSN (jump_block->end);
|
||
insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
|
||
{
|
||
if (insn == jump_block->end)
|
||
{
|
||
jump_block->end = PREV_INSN (insn);
|
||
if (insn == end)
|
||
break;
|
||
}
|
||
reorder_insns_nobb (insn, insn, end);
|
||
end = insn;
|
||
}
|
||
}
|
||
/* Delete the block with the unconditional jump, and clean up the mess. */
|
||
flow_delete_block (jump_block);
|
||
tidy_fallthru_edge (cbranch_jump_edge, cbranch_block, cbranch_dest_block);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Attempt to prove that operation is NOOP using CSElib or mark the effect
|
||
on register. Used by jump threading. */
|
||
|
||
static bool
|
||
mark_effect (exp, nonequal)
|
||
rtx exp;
|
||
regset nonequal;
|
||
{
|
||
int regno;
|
||
rtx dest;
|
||
switch (GET_CODE (exp))
|
||
{
|
||
/* In case we do clobber the register, mark it as equal, as we know the
|
||
value is dead so it don't have to match. */
|
||
case CLOBBER:
|
||
if (REG_P (XEXP (exp, 0)))
|
||
{
|
||
dest = XEXP (exp, 0);
|
||
regno = REGNO (dest);
|
||
CLEAR_REGNO_REG_SET (nonequal, regno);
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
|
||
while (--n > 0)
|
||
CLEAR_REGNO_REG_SET (nonequal, regno + n);
|
||
}
|
||
}
|
||
return false;
|
||
|
||
case SET:
|
||
if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
|
||
return false;
|
||
dest = SET_DEST (exp);
|
||
if (dest == pc_rtx)
|
||
return false;
|
||
if (!REG_P (dest))
|
||
return true;
|
||
regno = REGNO (dest);
|
||
SET_REGNO_REG_SET (nonequal, regno);
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
|
||
while (--n > 0)
|
||
SET_REGNO_REG_SET (nonequal, regno + n);
|
||
}
|
||
return false;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if X is an register set in regset DATA.
|
||
Called via for_each_rtx. */
|
||
static int
|
||
mentions_nonequal_regs (x, data)
|
||
rtx *x;
|
||
void *data;
|
||
{
|
||
regset nonequal = (regset) data;
|
||
if (REG_P (*x))
|
||
{
|
||
int regno;
|
||
|
||
regno = REGNO (*x);
|
||
if (REGNO_REG_SET_P (nonequal, regno))
|
||
return 1;
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
int n = HARD_REGNO_NREGS (regno, GET_MODE (*x));
|
||
while (--n > 0)
|
||
if (REGNO_REG_SET_P (nonequal, regno + n))
|
||
return 1;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
/* Attempt to prove that the basic block B will have no side effects and
|
||
allways continues in the same edge if reached via E. Return the edge
|
||
if exist, NULL otherwise. */
|
||
|
||
static edge
|
||
thread_jump (mode, e, b)
|
||
int mode;
|
||
edge e;
|
||
basic_block b;
|
||
{
|
||
rtx set1, set2, cond1, cond2, insn;
|
||
enum rtx_code code1, code2, reversed_code2;
|
||
bool reverse1 = false;
|
||
int i;
|
||
regset nonequal;
|
||
bool failed = false;
|
||
|
||
if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
|
||
return NULL;
|
||
|
||
/* At the moment, we do handle only conditional jumps, but later we may
|
||
want to extend this code to tablejumps and others. */
|
||
if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
|
||
return NULL;
|
||
if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
|
||
{
|
||
BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
|
||
return NULL;
|
||
}
|
||
|
||
/* Second branch must end with onlyjump, as we will eliminate the jump. */
|
||
if (!any_condjump_p (e->src->end))
|
||
return NULL;
|
||
|
||
if (!any_condjump_p (b->end) || !onlyjump_p (b->end))
|
||
{
|
||
BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
|
||
return NULL;
|
||
}
|
||
|
||
set1 = pc_set (e->src->end);
|
||
set2 = pc_set (b->end);
|
||
if (((e->flags & EDGE_FALLTHRU) != 0)
|
||
!= (XEXP (SET_SRC (set1), 1) == pc_rtx))
|
||
reverse1 = true;
|
||
|
||
cond1 = XEXP (SET_SRC (set1), 0);
|
||
cond2 = XEXP (SET_SRC (set2), 0);
|
||
if (reverse1)
|
||
code1 = reversed_comparison_code (cond1, e->src->end);
|
||
else
|
||
code1 = GET_CODE (cond1);
|
||
|
||
code2 = GET_CODE (cond2);
|
||
reversed_code2 = reversed_comparison_code (cond2, b->end);
|
||
|
||
if (!comparison_dominates_p (code1, code2)
|
||
&& !comparison_dominates_p (code1, reversed_code2))
|
||
return NULL;
|
||
|
||
/* Ensure that the comparison operators are equivalent.
|
||
??? This is far too pesimistic. We should allow swapped operands,
|
||
different CCmodes, or for example comparisons for interval, that
|
||
dominate even when operands are not equivalent. */
|
||
if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
|
||
|| !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
|
||
return NULL;
|
||
|
||
/* Short circuit cases where block B contains some side effects, as we can't
|
||
safely bypass it. */
|
||
for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end);
|
||
insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
|
||
{
|
||
BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
|
||
return NULL;
|
||
}
|
||
|
||
cselib_init ();
|
||
|
||
/* First process all values computed in the source basic block. */
|
||
for (insn = NEXT_INSN (e->src->head); insn != NEXT_INSN (e->src->end);
|
||
insn = NEXT_INSN (insn))
|
||
if (INSN_P (insn))
|
||
cselib_process_insn (insn);
|
||
|
||
nonequal = BITMAP_XMALLOC();
|
||
CLEAR_REG_SET (nonequal);
|
||
|
||
/* Now assume that we've continued by the edge E to B and continue
|
||
processing as if it were same basic block.
|
||
Our goal is to prove that whole block is an NOOP. */
|
||
|
||
for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end) && !failed;
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
if (INSN_P (insn))
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
|
||
}
|
||
else
|
||
failed |= mark_effect (pat, nonequal);
|
||
}
|
||
|
||
cselib_process_insn (insn);
|
||
}
|
||
|
||
/* Later we should clear nonequal of dead registers. So far we don't
|
||
have life information in cfg_cleanup. */
|
||
if (failed)
|
||
{
|
||
BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
|
||
goto failed_exit;
|
||
}
|
||
|
||
/* cond2 must not mention any register that is not equal to the
|
||
former block. */
|
||
if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
|
||
goto failed_exit;
|
||
|
||
/* In case liveness information is available, we need to prove equivalence
|
||
only of the live values. */
|
||
if (mode & CLEANUP_UPDATE_LIFE)
|
||
AND_REG_SET (nonequal, b->global_live_at_end);
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
|
||
|
||
BITMAP_XFREE (nonequal);
|
||
cselib_finish ();
|
||
if ((comparison_dominates_p (code1, code2) != 0)
|
||
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
|
||
return BRANCH_EDGE (b);
|
||
else
|
||
return FALLTHRU_EDGE (b);
|
||
|
||
failed_exit:
|
||
BITMAP_XFREE (nonequal);
|
||
cselib_finish ();
|
||
return NULL;
|
||
}
|
||
|
||
/* Attempt to forward edges leaving basic block B.
|
||
Return true if successful. */
|
||
|
||
static bool
|
||
try_forward_edges (mode, b)
|
||
basic_block b;
|
||
int mode;
|
||
{
|
||
bool changed = false;
|
||
edge e, next, *threaded_edges = NULL;
|
||
|
||
for (e = b->succ; e; e = next)
|
||
{
|
||
basic_block target, first;
|
||
int counter;
|
||
bool threaded = false;
|
||
int nthreaded_edges = 0;
|
||
|
||
next = e->succ_next;
|
||
|
||
/* Skip complex edges because we don't know how to update them.
|
||
|
||
Still handle fallthru edges, as we can succeed to forward fallthru
|
||
edge to the same place as the branch edge of conditional branch
|
||
and turn conditional branch to an unconditional branch. */
|
||
if (e->flags & EDGE_COMPLEX)
|
||
continue;
|
||
|
||
target = first = e->dest;
|
||
counter = 0;
|
||
|
||
while (counter < n_basic_blocks)
|
||
{
|
||
basic_block new_target = NULL;
|
||
bool new_target_threaded = false;
|
||
|
||
if (FORWARDER_BLOCK_P (target)
|
||
&& target->succ->dest != EXIT_BLOCK_PTR)
|
||
{
|
||
/* Bypass trivial infinite loops. */
|
||
if (target == target->succ->dest)
|
||
counter = n_basic_blocks;
|
||
new_target = target->succ->dest;
|
||
}
|
||
|
||
/* Allow to thread only over one edge at time to simplify updating
|
||
of probabilities. */
|
||
else if (mode & CLEANUP_THREADING)
|
||
{
|
||
edge t = thread_jump (mode, e, target);
|
||
if (t)
|
||
{
|
||
if (!threaded_edges)
|
||
threaded_edges = xmalloc (sizeof (*threaded_edges)
|
||
* n_basic_blocks);
|
||
else
|
||
{
|
||
int i;
|
||
|
||
/* Detect an infinite loop across blocks not
|
||
including the start block. */
|
||
for (i = 0; i < nthreaded_edges; ++i)
|
||
if (threaded_edges[i] == t)
|
||
break;
|
||
if (i < nthreaded_edges)
|
||
{
|
||
counter = n_basic_blocks;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Detect an infinite loop across the start block. */
|
||
if (t->dest == b)
|
||
break;
|
||
|
||
if (nthreaded_edges >= n_basic_blocks)
|
||
abort ();
|
||
threaded_edges[nthreaded_edges++] = t;
|
||
|
||
new_target = t->dest;
|
||
new_target_threaded = true;
|
||
}
|
||
}
|
||
|
||
if (!new_target)
|
||
break;
|
||
|
||
/* Avoid killing of loop pre-headers, as it is the place loop
|
||
optimizer wants to hoist code to.
|
||
|
||
For fallthru forwarders, the LOOP_BEG note must appear between
|
||
the header of block and CODE_LABEL of the loop, for non forwarders
|
||
it must appear before the JUMP_INSN. */
|
||
if ((mode & CLEANUP_PRE_LOOP) && optimize)
|
||
{
|
||
rtx insn = (target->succ->flags & EDGE_FALLTHRU
|
||
? target->head : prev_nonnote_insn (target->end));
|
||
|
||
if (GET_CODE (insn) != NOTE)
|
||
insn = NEXT_INSN (insn);
|
||
|
||
for (; insn && GET_CODE (insn) != CODE_LABEL && !INSN_P (insn);
|
||
insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
|
||
break;
|
||
|
||
if (GET_CODE (insn) == NOTE)
|
||
break;
|
||
|
||
/* Do not clean up branches to just past the end of a loop
|
||
at this time; it can mess up the loop optimizer's
|
||
recognition of some patterns. */
|
||
|
||
insn = PREV_INSN (target->head);
|
||
if (insn && GET_CODE (insn) == NOTE
|
||
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
|
||
break;
|
||
}
|
||
|
||
counter++;
|
||
target = new_target;
|
||
threaded |= new_target_threaded;
|
||
}
|
||
|
||
if (counter >= n_basic_blocks)
|
||
{
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Infinite loop in BB %i.\n",
|
||
target->index);
|
||
}
|
||
else if (target == first)
|
||
; /* We didn't do anything. */
|
||
else
|
||
{
|
||
/* Save the values now, as the edge may get removed. */
|
||
gcov_type edge_count = e->count;
|
||
int edge_probability = e->probability;
|
||
int edge_frequency;
|
||
int n = 0;
|
||
|
||
/* Don't force if target is exit block. */
|
||
if (threaded && target != EXIT_BLOCK_PTR)
|
||
{
|
||
notice_new_block (redirect_edge_and_branch_force (e, target));
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Conditionals threaded.\n");
|
||
}
|
||
else if (!redirect_edge_and_branch (e, target))
|
||
{
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file,
|
||
"Forwarding edge %i->%i to %i failed.\n",
|
||
b->index, e->dest->index, target->index);
|
||
continue;
|
||
}
|
||
|
||
/* We successfully forwarded the edge. Now update profile
|
||
data: for each edge we traversed in the chain, remove
|
||
the original edge's execution count. */
|
||
edge_frequency = ((edge_probability * b->frequency
|
||
+ REG_BR_PROB_BASE / 2)
|
||
/ REG_BR_PROB_BASE);
|
||
|
||
if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
|
||
BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
|
||
|
||
do
|
||
{
|
||
edge t;
|
||
|
||
first->count -= edge_count;
|
||
if (first->count < 0)
|
||
first->count = 0;
|
||
first->frequency -= edge_frequency;
|
||
if (first->frequency < 0)
|
||
first->frequency = 0;
|
||
if (first->succ->succ_next)
|
||
{
|
||
edge e;
|
||
int prob;
|
||
if (n >= nthreaded_edges)
|
||
abort ();
|
||
t = threaded_edges [n++];
|
||
if (t->src != first)
|
||
abort ();
|
||
if (first->frequency)
|
||
prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
|
||
else
|
||
prob = 0;
|
||
if (prob > t->probability)
|
||
prob = t->probability;
|
||
t->probability -= prob;
|
||
prob = REG_BR_PROB_BASE - prob;
|
||
if (prob <= 0)
|
||
{
|
||
first->succ->probability = REG_BR_PROB_BASE;
|
||
first->succ->succ_next->probability = 0;
|
||
}
|
||
else
|
||
for (e = first->succ; e; e = e->succ_next)
|
||
e->probability = ((e->probability * REG_BR_PROB_BASE)
|
||
/ (double) prob);
|
||
update_br_prob_note (first);
|
||
}
|
||
else
|
||
{
|
||
/* It is possible that as the result of
|
||
threading we've removed edge as it is
|
||
threaded to the fallthru edge. Avoid
|
||
getting out of sync. */
|
||
if (n < nthreaded_edges
|
||
&& first == threaded_edges [n]->src)
|
||
n++;
|
||
t = first->succ;
|
||
}
|
||
|
||
t->count -= edge_count;
|
||
if (t->count < 0)
|
||
t->count = 0;
|
||
first = t->dest;
|
||
}
|
||
while (first != target);
|
||
|
||
changed = true;
|
||
}
|
||
}
|
||
|
||
if (threaded_edges)
|
||
free (threaded_edges);
|
||
return changed;
|
||
}
|
||
|
||
/* Return true if LABEL is a target of JUMP_INSN. This applies only
|
||
to non-complex jumps. That is, direct unconditional, conditional,
|
||
and tablejumps, but not computed jumps or returns. It also does
|
||
not apply to the fallthru case of a conditional jump. */
|
||
|
||
static bool
|
||
label_is_jump_target_p (label, jump_insn)
|
||
rtx label, jump_insn;
|
||
{
|
||
rtx tmp = JUMP_LABEL (jump_insn);
|
||
|
||
if (label == tmp)
|
||
return true;
|
||
|
||
if (tmp != NULL_RTX
|
||
&& (tmp = NEXT_INSN (tmp)) != NULL_RTX
|
||
&& GET_CODE (tmp) == JUMP_INSN
|
||
&& (tmp = PATTERN (tmp),
|
||
GET_CODE (tmp) == ADDR_VEC
|
||
|| GET_CODE (tmp) == ADDR_DIFF_VEC))
|
||
{
|
||
rtvec vec = XVEC (tmp, GET_CODE (tmp) == ADDR_DIFF_VEC);
|
||
int i, veclen = GET_NUM_ELEM (vec);
|
||
|
||
for (i = 0; i < veclen; ++i)
|
||
if (XEXP (RTVEC_ELT (vec, i), 0) == label)
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if LABEL is used for tail recursion. */
|
||
|
||
static bool
|
||
tail_recursion_label_p (label)
|
||
rtx label;
|
||
{
|
||
rtx x;
|
||
|
||
for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
|
||
if (label == XEXP (x, 0))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Blocks A and B are to be merged into a single block. A has no incoming
|
||
fallthru edge, so it can be moved before B without adding or modifying
|
||
any jumps (aside from the jump from A to B). */
|
||
|
||
static void
|
||
merge_blocks_move_predecessor_nojumps (a, b)
|
||
basic_block a, b;
|
||
{
|
||
rtx barrier;
|
||
|
||
barrier = next_nonnote_insn (a->end);
|
||
if (GET_CODE (barrier) != BARRIER)
|
||
abort ();
|
||
delete_insn (barrier);
|
||
|
||
/* Move block and loop notes out of the chain so that we do not
|
||
disturb their order.
|
||
|
||
??? A better solution would be to squeeze out all the non-nested notes
|
||
and adjust the block trees appropriately. Even better would be to have
|
||
a tighter connection between block trees and rtl so that this is not
|
||
necessary. */
|
||
if (squeeze_notes (&a->head, &a->end))
|
||
abort ();
|
||
|
||
/* Scramble the insn chain. */
|
||
if (a->end != PREV_INSN (b->head))
|
||
reorder_insns_nobb (a->head, a->end, PREV_INSN (b->head));
|
||
a->flags |= BB_DIRTY;
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
|
||
a->index, b->index);
|
||
|
||
/* Swap the records for the two blocks around. */
|
||
|
||
unlink_block (a);
|
||
link_block (a, b->prev_bb);
|
||
|
||
/* Now blocks A and B are contiguous. Merge them. */
|
||
merge_blocks_nomove (a, b);
|
||
}
|
||
|
||
/* Blocks A and B are to be merged into a single block. B has no outgoing
|
||
fallthru edge, so it can be moved after A without adding or modifying
|
||
any jumps (aside from the jump from A to B). */
|
||
|
||
static void
|
||
merge_blocks_move_successor_nojumps (a, b)
|
||
basic_block a, b;
|
||
{
|
||
rtx barrier, real_b_end;
|
||
|
||
real_b_end = b->end;
|
||
barrier = NEXT_INSN (b->end);
|
||
|
||
/* Recognize a jump table following block B. */
|
||
if (barrier
|
||
&& GET_CODE (barrier) == CODE_LABEL
|
||
&& NEXT_INSN (barrier)
|
||
&& GET_CODE (NEXT_INSN (barrier)) == JUMP_INSN
|
||
&& (GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_DIFF_VEC))
|
||
{
|
||
/* Temporarily add the table jump insn to b, so that it will also
|
||
be moved to the correct location. */
|
||
b->end = NEXT_INSN (barrier);
|
||
barrier = NEXT_INSN (b->end);
|
||
}
|
||
|
||
/* There had better have been a barrier there. Delete it. */
|
||
if (barrier && GET_CODE (barrier) == BARRIER)
|
||
delete_insn (barrier);
|
||
|
||
/* Move block and loop notes out of the chain so that we do not
|
||
disturb their order.
|
||
|
||
??? A better solution would be to squeeze out all the non-nested notes
|
||
and adjust the block trees appropriately. Even better would be to have
|
||
a tighter connection between block trees and rtl so that this is not
|
||
necessary. */
|
||
if (squeeze_notes (&b->head, &b->end))
|
||
abort ();
|
||
|
||
/* Scramble the insn chain. */
|
||
reorder_insns_nobb (b->head, b->end, a->end);
|
||
|
||
/* Restore the real end of b. */
|
||
b->end = real_b_end;
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
|
||
b->index, a->index);
|
||
|
||
/* Now blocks A and B are contiguous. Merge them. */
|
||
merge_blocks_nomove (a, b);
|
||
}
|
||
|
||
/* Attempt to merge basic blocks that are potentially non-adjacent.
|
||
Return true iff the attempt succeeded. */
|
||
|
||
static bool
|
||
merge_blocks (e, b, c, mode)
|
||
edge e;
|
||
basic_block b, c;
|
||
int mode;
|
||
{
|
||
/* If C has a tail recursion label, do not merge. There is no
|
||
edge recorded from the call_placeholder back to this label, as
|
||
that would make optimize_sibling_and_tail_recursive_calls more
|
||
complex for no gain. */
|
||
if ((mode & CLEANUP_PRE_SIBCALL)
|
||
&& GET_CODE (c->head) == CODE_LABEL
|
||
&& tail_recursion_label_p (c->head))
|
||
return false;
|
||
|
||
/* If B has a fallthru edge to C, no need to move anything. */
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
{
|
||
int b_index = b->index, c_index = c->index;
|
||
merge_blocks_nomove (b, c);
|
||
update_forwarder_flag (b);
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
|
||
b_index, c_index);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Otherwise we will need to move code around. Do that only if expensive
|
||
transformations are allowed. */
|
||
else if (mode & CLEANUP_EXPENSIVE)
|
||
{
|
||
edge tmp_edge, b_fallthru_edge;
|
||
bool c_has_outgoing_fallthru;
|
||
bool b_has_incoming_fallthru;
|
||
|
||
/* Avoid overactive code motion, as the forwarder blocks should be
|
||
eliminated by edge redirection instead. One exception might have
|
||
been if B is a forwarder block and C has no fallthru edge, but
|
||
that should be cleaned up by bb-reorder instead. */
|
||
if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
|
||
return false;
|
||
|
||
/* We must make sure to not munge nesting of lexical blocks,
|
||
and loop notes. This is done by squeezing out all the notes
|
||
and leaving them there to lie. Not ideal, but functional. */
|
||
|
||
for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
|
||
if (tmp_edge->flags & EDGE_FALLTHRU)
|
||
break;
|
||
|
||
c_has_outgoing_fallthru = (tmp_edge != NULL);
|
||
|
||
for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
|
||
if (tmp_edge->flags & EDGE_FALLTHRU)
|
||
break;
|
||
|
||
b_has_incoming_fallthru = (tmp_edge != NULL);
|
||
b_fallthru_edge = tmp_edge;
|
||
|
||
/* Otherwise, we're going to try to move C after B. If C does
|
||
not have an outgoing fallthru, then it can be moved
|
||
immediately after B without introducing or modifying jumps. */
|
||
if (! c_has_outgoing_fallthru)
|
||
{
|
||
merge_blocks_move_successor_nojumps (b, c);
|
||
return true;
|
||
}
|
||
|
||
/* If B does not have an incoming fallthru, then it can be moved
|
||
immediately before C without introducing or modifying jumps.
|
||
C cannot be the first block, so we do not have to worry about
|
||
accessing a non-existent block. */
|
||
|
||
if (b_has_incoming_fallthru)
|
||
{
|
||
basic_block bb;
|
||
|
||
if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
|
||
return false;
|
||
bb = force_nonfallthru (b_fallthru_edge);
|
||
if (bb)
|
||
notice_new_block (bb);
|
||
}
|
||
|
||
merge_blocks_move_predecessor_nojumps (b, c);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
|
||
|
||
static bool
|
||
insns_match_p (mode, i1, i2)
|
||
int mode ATTRIBUTE_UNUSED;
|
||
rtx i1, i2;
|
||
{
|
||
rtx p1, p2;
|
||
|
||
/* Verify that I1 and I2 are equivalent. */
|
||
if (GET_CODE (i1) != GET_CODE (i2))
|
||
return false;
|
||
|
||
p1 = PATTERN (i1);
|
||
p2 = PATTERN (i2);
|
||
|
||
if (GET_CODE (p1) != GET_CODE (p2))
|
||
return false;
|
||
|
||
/* If this is a CALL_INSN, compare register usage information.
|
||
If we don't check this on stack register machines, the two
|
||
CALL_INSNs might be merged leaving reg-stack.c with mismatching
|
||
numbers of stack registers in the same basic block.
|
||
If we don't check this on machines with delay slots, a delay slot may
|
||
be filled that clobbers a parameter expected by the subroutine.
|
||
|
||
??? We take the simple route for now and assume that if they're
|
||
equal, they were constructed identically. */
|
||
|
||
if (GET_CODE (i1) == CALL_INSN
|
||
&& (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
|
||
CALL_INSN_FUNCTION_USAGE (i2))
|
||
|| SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
|
||
return false;
|
||
|
||
#ifdef STACK_REGS
|
||
/* If cross_jump_death_matters is not 0, the insn's mode
|
||
indicates whether or not the insn contains any stack-like
|
||
regs. */
|
||
|
||
if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
|
||
{
|
||
/* If register stack conversion has already been done, then
|
||
death notes must also be compared before it is certain that
|
||
the two instruction streams match. */
|
||
|
||
rtx note;
|
||
HARD_REG_SET i1_regset, i2_regset;
|
||
|
||
CLEAR_HARD_REG_SET (i1_regset);
|
||
CLEAR_HARD_REG_SET (i2_regset);
|
||
|
||
for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
||
SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
|
||
|
||
for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
|
||
SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
|
||
|
||
GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
|
||
|
||
return false;
|
||
|
||
done:
|
||
;
|
||
}
|
||
#endif
|
||
|
||
if (reload_completed
|
||
? ! rtx_renumbered_equal_p (p1, p2) : ! rtx_equal_p (p1, p2))
|
||
{
|
||
/* The following code helps take care of G++ cleanups. */
|
||
rtx equiv1 = find_reg_equal_equiv_note (i1);
|
||
rtx equiv2 = find_reg_equal_equiv_note (i2);
|
||
|
||
if (equiv1 && equiv2
|
||
/* If the equivalences are not to a constant, they may
|
||
reference pseudos that no longer exist, so we can't
|
||
use them. */
|
||
&& (! reload_completed
|
||
|| (CONSTANT_P (XEXP (equiv1, 0))
|
||
&& rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
|
||
{
|
||
rtx s1 = single_set (i1);
|
||
rtx s2 = single_set (i2);
|
||
if (s1 != 0 && s2 != 0
|
||
&& rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
|
||
{
|
||
validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
|
||
validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
|
||
if (! rtx_renumbered_equal_p (p1, p2))
|
||
cancel_changes (0);
|
||
else if (apply_change_group ())
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Look through the insns at the end of BB1 and BB2 and find the longest
|
||
sequence that are equivalent. Store the first insns for that sequence
|
||
in *F1 and *F2 and return the sequence length.
|
||
|
||
To simplify callers of this function, if the blocks match exactly,
|
||
store the head of the blocks in *F1 and *F2. */
|
||
|
||
static int
|
||
flow_find_cross_jump (mode, bb1, bb2, f1, f2)
|
||
int mode ATTRIBUTE_UNUSED;
|
||
basic_block bb1, bb2;
|
||
rtx *f1, *f2;
|
||
{
|
||
rtx i1, i2, last1, last2, afterlast1, afterlast2;
|
||
int ninsns = 0;
|
||
|
||
/* Skip simple jumps at the end of the blocks. Complex jumps still
|
||
need to be compared for equivalence, which we'll do below. */
|
||
|
||
i1 = bb1->end;
|
||
last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
|
||
if (onlyjump_p (i1)
|
||
|| (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
|
||
{
|
||
last1 = i1;
|
||
i1 = PREV_INSN (i1);
|
||
}
|
||
|
||
i2 = bb2->end;
|
||
if (onlyjump_p (i2)
|
||
|| (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
|
||
{
|
||
last2 = i2;
|
||
/* Count everything except for unconditional jump as insn. */
|
||
if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
|
||
ninsns++;
|
||
i2 = PREV_INSN (i2);
|
||
}
|
||
|
||
while (true)
|
||
{
|
||
/* Ignore notes. */
|
||
while (!INSN_P (i1) && i1 != bb1->head)
|
||
i1 = PREV_INSN (i1);
|
||
|
||
while (!INSN_P (i2) && i2 != bb2->head)
|
||
i2 = PREV_INSN (i2);
|
||
|
||
if (i1 == bb1->head || i2 == bb2->head)
|
||
break;
|
||
|
||
if (!insns_match_p (mode, i1, i2))
|
||
break;
|
||
|
||
/* Don't begin a cross-jump with a NOTE insn. */
|
||
if (INSN_P (i1))
|
||
{
|
||
/* If the merged insns have different REG_EQUAL notes, then
|
||
remove them. */
|
||
rtx equiv1 = find_reg_equal_equiv_note (i1);
|
||
rtx equiv2 = find_reg_equal_equiv_note (i2);
|
||
|
||
if (equiv1 && !equiv2)
|
||
remove_note (i1, equiv1);
|
||
else if (!equiv1 && equiv2)
|
||
remove_note (i2, equiv2);
|
||
else if (equiv1 && equiv2
|
||
&& !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
|
||
{
|
||
remove_note (i1, equiv1);
|
||
remove_note (i2, equiv2);
|
||
}
|
||
|
||
afterlast1 = last1, afterlast2 = last2;
|
||
last1 = i1, last2 = i2;
|
||
ninsns++;
|
||
}
|
||
|
||
i1 = PREV_INSN (i1);
|
||
i2 = PREV_INSN (i2);
|
||
}
|
||
|
||
#ifdef HAVE_cc0
|
||
/* Don't allow the insn after a compare to be shared by
|
||
cross-jumping unless the compare is also shared. */
|
||
if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
|
||
last1 = afterlast1, last2 = afterlast2, ninsns--;
|
||
#endif
|
||
|
||
/* Include preceding notes and labels in the cross-jump. One,
|
||
this may bring us to the head of the blocks as requested above.
|
||
Two, it keeps line number notes as matched as may be. */
|
||
if (ninsns)
|
||
{
|
||
while (last1 != bb1->head && !INSN_P (PREV_INSN (last1)))
|
||
last1 = PREV_INSN (last1);
|
||
|
||
if (last1 != bb1->head && GET_CODE (PREV_INSN (last1)) == CODE_LABEL)
|
||
last1 = PREV_INSN (last1);
|
||
|
||
while (last2 != bb2->head && !INSN_P (PREV_INSN (last2)))
|
||
last2 = PREV_INSN (last2);
|
||
|
||
if (last2 != bb2->head && GET_CODE (PREV_INSN (last2)) == CODE_LABEL)
|
||
last2 = PREV_INSN (last2);
|
||
|
||
*f1 = last1;
|
||
*f2 = last2;
|
||
}
|
||
|
||
return ninsns;
|
||
}
|
||
|
||
/* Return true iff outgoing edges of BB1 and BB2 match, together with
|
||
the branch instruction. This means that if we commonize the control
|
||
flow before end of the basic block, the semantic remains unchanged.
|
||
|
||
We may assume that there exists one edge with a common destination. */
|
||
|
||
static bool
|
||
outgoing_edges_match (mode, bb1, bb2)
|
||
int mode;
|
||
basic_block bb1;
|
||
basic_block bb2;
|
||
{
|
||
int nehedges1 = 0, nehedges2 = 0;
|
||
edge fallthru1 = 0, fallthru2 = 0;
|
||
edge e1, e2;
|
||
|
||
/* If BB1 has only one successor, we may be looking at either an
|
||
unconditional jump, or a fake edge to exit. */
|
||
if (bb1->succ && !bb1->succ->succ_next
|
||
&& (bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
|
||
&& (GET_CODE (bb1->end) != JUMP_INSN || simplejump_p (bb1->end)))
|
||
return (bb2->succ && !bb2->succ->succ_next
|
||
&& (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
|
||
&& (GET_CODE (bb2->end) != JUMP_INSN || simplejump_p (bb2->end)));
|
||
|
||
/* Match conditional jumps - this may get tricky when fallthru and branch
|
||
edges are crossed. */
|
||
if (bb1->succ
|
||
&& bb1->succ->succ_next
|
||
&& !bb1->succ->succ_next->succ_next
|
||
&& any_condjump_p (bb1->end)
|
||
&& onlyjump_p (bb1->end))
|
||
{
|
||
edge b1, f1, b2, f2;
|
||
bool reverse, match;
|
||
rtx set1, set2, cond1, cond2;
|
||
enum rtx_code code1, code2;
|
||
|
||
if (!bb2->succ
|
||
|| !bb2->succ->succ_next
|
||
|| bb2->succ->succ_next->succ_next
|
||
|| !any_condjump_p (bb2->end)
|
||
|| !onlyjump_p (bb2->end))
|
||
return false;
|
||
|
||
/* Do not crossjump across loop boundaries. This is a temporary
|
||
workaround for the common scenario in which crossjumping results
|
||
in killing the duplicated loop condition, making bb-reorder rotate
|
||
the loop incorectly, leaving an extra unconditional jump inside
|
||
the loop.
|
||
|
||
This check should go away once bb-reorder knows how to duplicate
|
||
code in this case or rotate the loops to avoid this scenario. */
|
||
if (bb1->loop_depth != bb2->loop_depth)
|
||
return false;
|
||
|
||
b1 = BRANCH_EDGE (bb1);
|
||
b2 = BRANCH_EDGE (bb2);
|
||
f1 = FALLTHRU_EDGE (bb1);
|
||
f2 = FALLTHRU_EDGE (bb2);
|
||
|
||
/* Get around possible forwarders on fallthru edges. Other cases
|
||
should be optimized out already. */
|
||
if (FORWARDER_BLOCK_P (f1->dest))
|
||
f1 = f1->dest->succ;
|
||
|
||
if (FORWARDER_BLOCK_P (f2->dest))
|
||
f2 = f2->dest->succ;
|
||
|
||
/* To simplify use of this function, return false if there are
|
||
unneeded forwarder blocks. These will get eliminated later
|
||
during cleanup_cfg. */
|
||
if (FORWARDER_BLOCK_P (f1->dest)
|
||
|| FORWARDER_BLOCK_P (f2->dest)
|
||
|| FORWARDER_BLOCK_P (b1->dest)
|
||
|| FORWARDER_BLOCK_P (b2->dest))
|
||
return false;
|
||
|
||
if (f1->dest == f2->dest && b1->dest == b2->dest)
|
||
reverse = false;
|
||
else if (f1->dest == b2->dest && b1->dest == f2->dest)
|
||
reverse = true;
|
||
else
|
||
return false;
|
||
|
||
set1 = pc_set (bb1->end);
|
||
set2 = pc_set (bb2->end);
|
||
if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
|
||
!= (XEXP (SET_SRC (set2), 1) == pc_rtx))
|
||
reverse = !reverse;
|
||
|
||
cond1 = XEXP (SET_SRC (set1), 0);
|
||
cond2 = XEXP (SET_SRC (set2), 0);
|
||
code1 = GET_CODE (cond1);
|
||
if (reverse)
|
||
code2 = reversed_comparison_code (cond2, bb2->end);
|
||
else
|
||
code2 = GET_CODE (cond2);
|
||
|
||
if (code2 == UNKNOWN)
|
||
return false;
|
||
|
||
/* Verify codes and operands match. */
|
||
match = ((code1 == code2
|
||
&& rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
|
||
&& rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
|
||
|| (code1 == swap_condition (code2)
|
||
&& rtx_renumbered_equal_p (XEXP (cond1, 1),
|
||
XEXP (cond2, 0))
|
||
&& rtx_renumbered_equal_p (XEXP (cond1, 0),
|
||
XEXP (cond2, 1))));
|
||
|
||
/* If we return true, we will join the blocks. Which means that
|
||
we will only have one branch prediction bit to work with. Thus
|
||
we require the existing branches to have probabilities that are
|
||
roughly similar. */
|
||
if (match
|
||
&& !optimize_size
|
||
&& maybe_hot_bb_p (bb1)
|
||
&& maybe_hot_bb_p (bb2))
|
||
{
|
||
int prob2;
|
||
|
||
if (b1->dest == b2->dest)
|
||
prob2 = b2->probability;
|
||
else
|
||
/* Do not use f2 probability as f2 may be forwarded. */
|
||
prob2 = REG_BR_PROB_BASE - b2->probability;
|
||
|
||
/* Fail if the difference in probabilities is greater than 50%.
|
||
This rules out two well-predicted branches with opposite
|
||
outcomes. */
|
||
if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
|
||
{
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file,
|
||
"Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
|
||
bb1->index, bb2->index, b1->probability, prob2);
|
||
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (rtl_dump_file && match)
|
||
fprintf (rtl_dump_file, "Conditionals in bb %i and %i match.\n",
|
||
bb1->index, bb2->index);
|
||
|
||
return match;
|
||
}
|
||
|
||
/* Generic case - we are seeing a computed jump, table jump or trapping
|
||
instruction. */
|
||
|
||
/* First ensure that the instructions match. There may be many outgoing
|
||
edges so this test is generally cheaper.
|
||
??? Currently the tablejumps will never match, as they do have
|
||
different tables. */
|
||
if (!insns_match_p (mode, bb1->end, bb2->end))
|
||
return false;
|
||
|
||
/* Search the outgoing edges, ensure that the counts do match, find possible
|
||
fallthru and exception handling edges since these needs more
|
||
validation. */
|
||
for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
|
||
e1 = e1->succ_next, e2 = e2->succ_next)
|
||
{
|
||
if (e1->flags & EDGE_EH)
|
||
nehedges1++;
|
||
|
||
if (e2->flags & EDGE_EH)
|
||
nehedges2++;
|
||
|
||
if (e1->flags & EDGE_FALLTHRU)
|
||
fallthru1 = e1;
|
||
if (e2->flags & EDGE_FALLTHRU)
|
||
fallthru2 = e2;
|
||
}
|
||
|
||
/* If number of edges of various types does not match, fail. */
|
||
if (e1 || e2
|
||
|| nehedges1 != nehedges2
|
||
|| (fallthru1 != 0) != (fallthru2 != 0))
|
||
return false;
|
||
|
||
/* fallthru edges must be forwarded to the same destination. */
|
||
if (fallthru1)
|
||
{
|
||
basic_block d1 = (forwarder_block_p (fallthru1->dest)
|
||
? fallthru1->dest->succ->dest: fallthru1->dest);
|
||
basic_block d2 = (forwarder_block_p (fallthru2->dest)
|
||
? fallthru2->dest->succ->dest: fallthru2->dest);
|
||
|
||
if (d1 != d2)
|
||
return false;
|
||
}
|
||
|
||
/* In case we do have EH edges, ensure we are in the same region. */
|
||
if (nehedges1)
|
||
{
|
||
rtx n1 = find_reg_note (bb1->end, REG_EH_REGION, 0);
|
||
rtx n2 = find_reg_note (bb2->end, REG_EH_REGION, 0);
|
||
|
||
if (XEXP (n1, 0) != XEXP (n2, 0))
|
||
return false;
|
||
}
|
||
|
||
/* We don't need to match the rest of edges as above checks should be enought
|
||
to ensure that they are equivalent. */
|
||
return true;
|
||
}
|
||
|
||
/* E1 and E2 are edges with the same destination block. Search their
|
||
predecessors for common code. If found, redirect control flow from
|
||
(maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
|
||
|
||
static bool
|
||
try_crossjump_to_edge (mode, e1, e2)
|
||
int mode;
|
||
edge e1, e2;
|
||
{
|
||
int nmatch;
|
||
basic_block src1 = e1->src, src2 = e2->src;
|
||
basic_block redirect_to, redirect_from, to_remove;
|
||
rtx newpos1, newpos2;
|
||
edge s;
|
||
|
||
/* Search backward through forwarder blocks. We don't need to worry
|
||
about multiple entry or chained forwarders, as they will be optimized
|
||
away. We do this to look past the unconditional jump following a
|
||
conditional jump that is required due to the current CFG shape. */
|
||
if (src1->pred
|
||
&& !src1->pred->pred_next
|
||
&& FORWARDER_BLOCK_P (src1))
|
||
e1 = src1->pred, src1 = e1->src;
|
||
|
||
if (src2->pred
|
||
&& !src2->pred->pred_next
|
||
&& FORWARDER_BLOCK_P (src2))
|
||
e2 = src2->pred, src2 = e2->src;
|
||
|
||
/* Nothing to do if we reach ENTRY, or a common source block. */
|
||
if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
|
||
return false;
|
||
if (src1 == src2)
|
||
return false;
|
||
|
||
/* Seeing more than 1 forwarder blocks would confuse us later... */
|
||
if (FORWARDER_BLOCK_P (e1->dest)
|
||
&& FORWARDER_BLOCK_P (e1->dest->succ->dest))
|
||
return false;
|
||
|
||
if (FORWARDER_BLOCK_P (e2->dest)
|
||
&& FORWARDER_BLOCK_P (e2->dest->succ->dest))
|
||
return false;
|
||
|
||
/* Likewise with dead code (possibly newly created by the other optimizations
|
||
of cfg_cleanup). */
|
||
if (!src1->pred || !src2->pred)
|
||
return false;
|
||
|
||
/* Look for the common insn sequence, part the first ... */
|
||
if (!outgoing_edges_match (mode, src1, src2))
|
||
return false;
|
||
|
||
/* ... and part the second. */
|
||
nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
|
||
if (!nmatch)
|
||
return false;
|
||
|
||
/* Avoid splitting if possible. */
|
||
if (newpos2 == src2->head)
|
||
redirect_to = src2;
|
||
else
|
||
{
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Splitting bb %i before %i insns\n",
|
||
src2->index, nmatch);
|
||
redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
|
||
}
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file,
|
||
"Cross jumping from bb %i to bb %i; %i common insns\n",
|
||
src1->index, src2->index, nmatch);
|
||
|
||
redirect_to->count += src1->count;
|
||
redirect_to->frequency += src1->frequency;
|
||
/* We may have some registers visible trought the block. */
|
||
redirect_to->flags |= BB_DIRTY;
|
||
|
||
/* Recompute the frequencies and counts of outgoing edges. */
|
||
for (s = redirect_to->succ; s; s = s->succ_next)
|
||
{
|
||
edge s2;
|
||
basic_block d = s->dest;
|
||
|
||
if (FORWARDER_BLOCK_P (d))
|
||
d = d->succ->dest;
|
||
|
||
for (s2 = src1->succ; ; s2 = s2->succ_next)
|
||
{
|
||
basic_block d2 = s2->dest;
|
||
if (FORWARDER_BLOCK_P (d2))
|
||
d2 = d2->succ->dest;
|
||
if (d == d2)
|
||
break;
|
||
}
|
||
|
||
s->count += s2->count;
|
||
|
||
/* Take care to update possible forwarder blocks. We verified
|
||
that there is no more than one in the chain, so we can't run
|
||
into infinite loop. */
|
||
if (FORWARDER_BLOCK_P (s->dest))
|
||
{
|
||
s->dest->succ->count += s2->count;
|
||
s->dest->count += s2->count;
|
||
s->dest->frequency += EDGE_FREQUENCY (s);
|
||
}
|
||
|
||
if (FORWARDER_BLOCK_P (s2->dest))
|
||
{
|
||
s2->dest->succ->count -= s2->count;
|
||
if (s2->dest->succ->count < 0)
|
||
s2->dest->succ->count = 0;
|
||
s2->dest->count -= s2->count;
|
||
s2->dest->frequency -= EDGE_FREQUENCY (s);
|
||
if (s2->dest->frequency < 0)
|
||
s2->dest->frequency = 0;
|
||
if (s2->dest->count < 0)
|
||
s2->dest->count = 0;
|
||
}
|
||
|
||
if (!redirect_to->frequency && !src1->frequency)
|
||
s->probability = (s->probability + s2->probability) / 2;
|
||
else
|
||
s->probability
|
||
= ((s->probability * redirect_to->frequency +
|
||
s2->probability * src1->frequency)
|
||
/ (redirect_to->frequency + src1->frequency));
|
||
}
|
||
|
||
update_br_prob_note (redirect_to);
|
||
|
||
/* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
|
||
|
||
/* Skip possible basic block header. */
|
||
if (GET_CODE (newpos1) == CODE_LABEL)
|
||
newpos1 = NEXT_INSN (newpos1);
|
||
|
||
if (GET_CODE (newpos1) == NOTE)
|
||
newpos1 = NEXT_INSN (newpos1);
|
||
|
||
redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
|
||
to_remove = redirect_from->succ->dest;
|
||
|
||
redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
|
||
flow_delete_block (to_remove);
|
||
|
||
update_forwarder_flag (redirect_from);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Search the predecessors of BB for common insn sequences. When found,
|
||
share code between them by redirecting control flow. Return true if
|
||
any changes made. */
|
||
|
||
static bool
|
||
try_crossjump_bb (mode, bb)
|
||
int mode;
|
||
basic_block bb;
|
||
{
|
||
edge e, e2, nexte2, nexte, fallthru;
|
||
bool changed;
|
||
int n = 0, max;
|
||
|
||
/* Nothing to do if there is not at least two incoming edges. */
|
||
if (!bb->pred || !bb->pred->pred_next)
|
||
return false;
|
||
|
||
/* It is always cheapest to redirect a block that ends in a branch to
|
||
a block that falls through into BB, as that adds no branches to the
|
||
program. We'll try that combination first. */
|
||
fallthru = NULL;
|
||
max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
|
||
for (e = bb->pred; e ; e = e->pred_next, n++)
|
||
{
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
fallthru = e;
|
||
if (n > max)
|
||
return false;
|
||
}
|
||
|
||
changed = false;
|
||
for (e = bb->pred; e; e = nexte)
|
||
{
|
||
nexte = e->pred_next;
|
||
|
||
/* As noted above, first try with the fallthru predecessor. */
|
||
if (fallthru)
|
||
{
|
||
/* Don't combine the fallthru edge into anything else.
|
||
If there is a match, we'll do it the other way around. */
|
||
if (e == fallthru)
|
||
continue;
|
||
|
||
if (try_crossjump_to_edge (mode, e, fallthru))
|
||
{
|
||
changed = true;
|
||
nexte = bb->pred;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Non-obvious work limiting check: Recognize that we're going
|
||
to call try_crossjump_bb on every basic block. So if we have
|
||
two blocks with lots of outgoing edges (a switch) and they
|
||
share lots of common destinations, then we would do the
|
||
cross-jump check once for each common destination.
|
||
|
||
Now, if the blocks actually are cross-jump candidates, then
|
||
all of their destinations will be shared. Which means that
|
||
we only need check them for cross-jump candidacy once. We
|
||
can eliminate redundant checks of crossjump(A,B) by arbitrarily
|
||
choosing to do the check from the block for which the edge
|
||
in question is the first successor of A. */
|
||
if (e->src->succ != e)
|
||
continue;
|
||
|
||
for (e2 = bb->pred; e2; e2 = nexte2)
|
||
{
|
||
nexte2 = e2->pred_next;
|
||
|
||
if (e2 == e)
|
||
continue;
|
||
|
||
/* We've already checked the fallthru edge above. */
|
||
if (e2 == fallthru)
|
||
continue;
|
||
|
||
/* The "first successor" check above only prevents multiple
|
||
checks of crossjump(A,B). In order to prevent redundant
|
||
checks of crossjump(B,A), require that A be the block
|
||
with the lowest index. */
|
||
if (e->src->index > e2->src->index)
|
||
continue;
|
||
|
||
if (try_crossjump_to_edge (mode, e, e2))
|
||
{
|
||
changed = true;
|
||
nexte = bb->pred;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Do simple CFG optimizations - basic block merging, simplifying of jump
|
||
instructions etc. Return nonzero if changes were made. */
|
||
|
||
static bool
|
||
try_optimize_cfg (mode)
|
||
int mode;
|
||
{
|
||
bool changed_overall = false;
|
||
bool changed;
|
||
int iterations = 0;
|
||
basic_block bb, b;
|
||
|
||
if (mode & CLEANUP_CROSSJUMP)
|
||
add_noreturn_fake_exit_edges ();
|
||
|
||
FOR_EACH_BB (bb)
|
||
update_forwarder_flag (bb);
|
||
|
||
if (mode & CLEANUP_UPDATE_LIFE)
|
||
clear_bb_flags ();
|
||
|
||
if (! (* targetm.cannot_modify_jumps_p) ())
|
||
{
|
||
/* Attempt to merge blocks as made possible by edge removal. If
|
||
a block has only one successor, and the successor has only
|
||
one predecessor, they may be combined. */
|
||
do
|
||
{
|
||
changed = false;
|
||
iterations++;
|
||
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file,
|
||
"\n\ntry_optimize_cfg iteration %i\n\n",
|
||
iterations);
|
||
|
||
for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
|
||
{
|
||
basic_block c;
|
||
edge s;
|
||
bool changed_here = false;
|
||
|
||
/* Delete trivially dead basic blocks. */
|
||
while (b->pred == NULL)
|
||
{
|
||
c = b->prev_bb;
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Deleting block %i.\n",
|
||
b->index);
|
||
|
||
flow_delete_block (b);
|
||
changed = true;
|
||
b = c;
|
||
}
|
||
|
||
/* Remove code labels no longer used. Don't do this
|
||
before CALL_PLACEHOLDER is removed, as some branches
|
||
may be hidden within. */
|
||
if (b->pred->pred_next == NULL
|
||
&& (b->pred->flags & EDGE_FALLTHRU)
|
||
&& !(b->pred->flags & EDGE_COMPLEX)
|
||
&& GET_CODE (b->head) == CODE_LABEL
|
||
&& (!(mode & CLEANUP_PRE_SIBCALL)
|
||
|| !tail_recursion_label_p (b->head))
|
||
/* If the previous block ends with a branch to this
|
||
block, we can't delete the label. Normally this
|
||
is a condjump that is yet to be simplified, but
|
||
if CASE_DROPS_THRU, this can be a tablejump with
|
||
some element going to the same place as the
|
||
default (fallthru). */
|
||
&& (b->pred->src == ENTRY_BLOCK_PTR
|
||
|| GET_CODE (b->pred->src->end) != JUMP_INSN
|
||
|| ! label_is_jump_target_p (b->head,
|
||
b->pred->src->end)))
|
||
{
|
||
rtx label = b->head;
|
||
|
||
b->head = NEXT_INSN (b->head);
|
||
delete_insn_chain (label, label);
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file, "Deleted label in block %i.\n",
|
||
b->index);
|
||
}
|
||
|
||
/* If we fall through an empty block, we can remove it. */
|
||
if (b->pred->pred_next == NULL
|
||
&& (b->pred->flags & EDGE_FALLTHRU)
|
||
&& GET_CODE (b->head) != CODE_LABEL
|
||
&& FORWARDER_BLOCK_P (b)
|
||
/* Note that forwarder_block_p true ensures that
|
||
there is a successor for this block. */
|
||
&& (b->succ->flags & EDGE_FALLTHRU)
|
||
&& n_basic_blocks > 1)
|
||
{
|
||
if (rtl_dump_file)
|
||
fprintf (rtl_dump_file,
|
||
"Deleting fallthru block %i.\n",
|
||
b->index);
|
||
|
||
c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
|
||
redirect_edge_succ_nodup (b->pred, b->succ->dest);
|
||
flow_delete_block (b);
|
||
changed = true;
|
||
b = c;
|
||
}
|
||
|
||
/* Merge blocks. Loop because chains of blocks might be
|
||
combineable. */
|
||
while ((s = b->succ) != NULL
|
||
&& s->succ_next == NULL
|
||
&& !(s->flags & EDGE_COMPLEX)
|
||
&& (c = s->dest) != EXIT_BLOCK_PTR
|
||
&& c->pred->pred_next == NULL
|
||
&& b != c
|
||
/* If the jump insn has side effects,
|
||
we can't kill the edge. */
|
||
&& (GET_CODE (b->end) != JUMP_INSN
|
||
|| (flow2_completed
|
||
? simplejump_p (b->end)
|
||
: onlyjump_p (b->end)))
|
||
&& merge_blocks (s, b, c, mode))
|
||
changed_here = true;
|
||
|
||
/* Simplify branch over branch. */
|
||
if ((mode & CLEANUP_EXPENSIVE) && try_simplify_condjump (b))
|
||
changed_here = true;
|
||
|
||
/* If B has a single outgoing edge, but uses a
|
||
non-trivial jump instruction without side-effects, we
|
||
can either delete the jump entirely, or replace it
|
||
with a simple unconditional jump. Use
|
||
redirect_edge_and_branch to do the dirty work. */
|
||
if (b->succ
|
||
&& ! b->succ->succ_next
|
||
&& b->succ->dest != EXIT_BLOCK_PTR
|
||
&& onlyjump_p (b->end)
|
||
&& redirect_edge_and_branch (b->succ, b->succ->dest))
|
||
{
|
||
update_forwarder_flag (b);
|
||
changed_here = true;
|
||
}
|
||
|
||
/* Simplify branch to branch. */
|
||
if (try_forward_edges (mode, b))
|
||
changed_here = true;
|
||
|
||
/* Look for shared code between blocks. */
|
||
if ((mode & CLEANUP_CROSSJUMP)
|
||
&& try_crossjump_bb (mode, b))
|
||
changed_here = true;
|
||
|
||
/* Don't get confused by the index shift caused by
|
||
deleting blocks. */
|
||
if (!changed_here)
|
||
b = b->next_bb;
|
||
else
|
||
changed = true;
|
||
}
|
||
|
||
if ((mode & CLEANUP_CROSSJUMP)
|
||
&& try_crossjump_bb (mode, EXIT_BLOCK_PTR))
|
||
changed = true;
|
||
|
||
#ifdef ENABLE_CHECKING
|
||
if (changed)
|
||
verify_flow_info ();
|
||
#endif
|
||
|
||
changed_overall |= changed;
|
||
}
|
||
while (changed);
|
||
}
|
||
|
||
if (mode & CLEANUP_CROSSJUMP)
|
||
remove_fake_edges ();
|
||
|
||
clear_aux_for_blocks ();
|
||
|
||
return changed_overall;
|
||
}
|
||
|
||
/* Delete all unreachable basic blocks. */
|
||
|
||
bool
|
||
delete_unreachable_blocks ()
|
||
{
|
||
bool changed = false;
|
||
basic_block b, next_bb;
|
||
|
||
find_unreachable_blocks ();
|
||
|
||
/* Delete all unreachable basic blocks. */
|
||
|
||
for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
|
||
{
|
||
next_bb = b->next_bb;
|
||
|
||
if (!(b->flags & BB_REACHABLE))
|
||
{
|
||
flow_delete_block (b);
|
||
changed = true;
|
||
}
|
||
}
|
||
|
||
if (changed)
|
||
tidy_fallthru_edges ();
|
||
return changed;
|
||
}
|
||
|
||
/* Tidy the CFG by deleting unreachable code and whatnot. */
|
||
|
||
bool
|
||
cleanup_cfg (mode)
|
||
int mode;
|
||
{
|
||
bool changed = false;
|
||
|
||
timevar_push (TV_CLEANUP_CFG);
|
||
if (delete_unreachable_blocks ())
|
||
{
|
||
changed = true;
|
||
/* We've possibly created trivially dead code. Cleanup it right
|
||
now to introduce more oppurtunities for try_optimize_cfg. */
|
||
if (!(mode & (CLEANUP_NO_INSN_DEL
|
||
| CLEANUP_UPDATE_LIFE | CLEANUP_PRE_SIBCALL))
|
||
&& !reload_completed)
|
||
delete_trivially_dead_insns (get_insns(), max_reg_num ());
|
||
}
|
||
|
||
compact_blocks ();
|
||
|
||
while (try_optimize_cfg (mode))
|
||
{
|
||
delete_unreachable_blocks (), changed = true;
|
||
if (mode & CLEANUP_UPDATE_LIFE)
|
||
{
|
||
/* Cleaning up CFG introduces more oppurtunities for dead code
|
||
removal that in turn may introduce more oppurtunities for
|
||
cleaning up the CFG. */
|
||
if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
|
||
PROP_DEATH_NOTES
|
||
| PROP_SCAN_DEAD_CODE
|
||
| PROP_KILL_DEAD_CODE
|
||
| PROP_LOG_LINKS))
|
||
break;
|
||
}
|
||
else if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_PRE_SIBCALL))
|
||
&& (mode & CLEANUP_EXPENSIVE)
|
||
&& !reload_completed)
|
||
{
|
||
if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
delete_dead_jumptables ();
|
||
}
|
||
|
||
/* Kill the data we won't maintain. */
|
||
free_EXPR_LIST_list (&label_value_list);
|
||
timevar_pop (TV_CLEANUP_CFG);
|
||
|
||
return changed;
|
||
}
|