freebsd-dev/sbin/camcontrol/camcontrol.c
2009-09-27 22:00:26 +00:00

4552 lines
117 KiB
C

/*
* Copyright (c) 1997-2007 Kenneth D. Merry
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/ioctl.h>
#include <sys/stdint.h>
#include <sys/types.h>
#include <sys/endian.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <ctype.h>
#include <err.h>
#include <libutil.h>
#include <cam/cam.h>
#include <cam/cam_debug.h>
#include <cam/cam_ccb.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_da.h>
#include <cam/scsi/scsi_pass.h>
#include <cam/scsi/scsi_message.h>
#include <cam/ata/ata_all.h>
#include <camlib.h>
#include "camcontrol.h"
typedef enum {
CAM_CMD_NONE = 0x00000000,
CAM_CMD_DEVLIST = 0x00000001,
CAM_CMD_TUR = 0x00000002,
CAM_CMD_INQUIRY = 0x00000003,
CAM_CMD_STARTSTOP = 0x00000004,
CAM_CMD_RESCAN = 0x00000005,
CAM_CMD_READ_DEFECTS = 0x00000006,
CAM_CMD_MODE_PAGE = 0x00000007,
CAM_CMD_SCSI_CMD = 0x00000008,
CAM_CMD_DEVTREE = 0x00000009,
CAM_CMD_USAGE = 0x0000000a,
CAM_CMD_DEBUG = 0x0000000b,
CAM_CMD_RESET = 0x0000000c,
CAM_CMD_FORMAT = 0x0000000d,
CAM_CMD_TAG = 0x0000000e,
CAM_CMD_RATE = 0x0000000f,
CAM_CMD_DETACH = 0x00000010,
CAM_CMD_REPORTLUNS = 0x00000011,
CAM_CMD_READCAP = 0x00000012,
CAM_CMD_IDENTIFY = 0x00000013
} cam_cmdmask;
typedef enum {
CAM_ARG_NONE = 0x00000000,
CAM_ARG_VERBOSE = 0x00000001,
CAM_ARG_DEVICE = 0x00000002,
CAM_ARG_BUS = 0x00000004,
CAM_ARG_TARGET = 0x00000008,
CAM_ARG_LUN = 0x00000010,
CAM_ARG_EJECT = 0x00000020,
CAM_ARG_UNIT = 0x00000040,
CAM_ARG_FORMAT_BLOCK = 0x00000080,
CAM_ARG_FORMAT_BFI = 0x00000100,
CAM_ARG_FORMAT_PHYS = 0x00000200,
CAM_ARG_PLIST = 0x00000400,
CAM_ARG_GLIST = 0x00000800,
CAM_ARG_GET_SERIAL = 0x00001000,
CAM_ARG_GET_STDINQ = 0x00002000,
CAM_ARG_GET_XFERRATE = 0x00004000,
CAM_ARG_INQ_MASK = 0x00007000,
CAM_ARG_MODE_EDIT = 0x00008000,
CAM_ARG_PAGE_CNTL = 0x00010000,
CAM_ARG_TIMEOUT = 0x00020000,
CAM_ARG_CMD_IN = 0x00040000,
CAM_ARG_CMD_OUT = 0x00080000,
CAM_ARG_DBD = 0x00100000,
CAM_ARG_ERR_RECOVER = 0x00200000,
CAM_ARG_RETRIES = 0x00400000,
CAM_ARG_START_UNIT = 0x00800000,
CAM_ARG_DEBUG_INFO = 0x01000000,
CAM_ARG_DEBUG_TRACE = 0x02000000,
CAM_ARG_DEBUG_SUBTRACE = 0x04000000,
CAM_ARG_DEBUG_CDB = 0x08000000,
CAM_ARG_DEBUG_XPT = 0x10000000,
CAM_ARG_DEBUG_PERIPH = 0x20000000,
} cam_argmask;
struct camcontrol_opts {
const char *optname;
cam_cmdmask cmdnum;
cam_argmask argnum;
const char *subopt;
};
#ifndef MINIMALISTIC
static const char scsicmd_opts[] = "a:c:i:o:r";
static const char readdefect_opts[] = "f:GP";
static const char negotiate_opts[] = "acD:O:qR:T:UW:";
#endif
struct camcontrol_opts option_table[] = {
#ifndef MINIMALISTIC
{"tur", CAM_CMD_TUR, CAM_ARG_NONE, NULL},
{"inquiry", CAM_CMD_INQUIRY, CAM_ARG_NONE, "DSR"},
{"identify", CAM_CMD_IDENTIFY, CAM_ARG_NONE, NULL},
{"start", CAM_CMD_STARTSTOP, CAM_ARG_START_UNIT, NULL},
{"stop", CAM_CMD_STARTSTOP, CAM_ARG_NONE, NULL},
{"load", CAM_CMD_STARTSTOP, CAM_ARG_START_UNIT | CAM_ARG_EJECT, NULL},
{"eject", CAM_CMD_STARTSTOP, CAM_ARG_EJECT, NULL},
{"reportluns", CAM_CMD_REPORTLUNS, CAM_ARG_NONE, "clr:"},
{"readcapacity", CAM_CMD_READCAP, CAM_ARG_NONE, "bhHNqs"},
#endif /* MINIMALISTIC */
{"rescan", CAM_CMD_RESCAN, CAM_ARG_NONE, NULL},
{"reset", CAM_CMD_RESET, CAM_ARG_NONE, NULL},
#ifndef MINIMALISTIC
{"cmd", CAM_CMD_SCSI_CMD, CAM_ARG_NONE, scsicmd_opts},
{"command", CAM_CMD_SCSI_CMD, CAM_ARG_NONE, scsicmd_opts},
{"defects", CAM_CMD_READ_DEFECTS, CAM_ARG_NONE, readdefect_opts},
{"defectlist", CAM_CMD_READ_DEFECTS, CAM_ARG_NONE, readdefect_opts},
#endif /* MINIMALISTIC */
{"devlist", CAM_CMD_DEVTREE, CAM_ARG_NONE, NULL},
#ifndef MINIMALISTIC
{"periphlist", CAM_CMD_DEVLIST, CAM_ARG_NONE, NULL},
{"modepage", CAM_CMD_MODE_PAGE, CAM_ARG_NONE, "bdelm:P:"},
{"tags", CAM_CMD_TAG, CAM_ARG_NONE, "N:q"},
{"negotiate", CAM_CMD_RATE, CAM_ARG_NONE, negotiate_opts},
{"rate", CAM_CMD_RATE, CAM_ARG_NONE, negotiate_opts},
{"debug", CAM_CMD_DEBUG, CAM_ARG_NONE, "IPTSXc"},
{"format", CAM_CMD_FORMAT, CAM_ARG_NONE, "qrwy"},
#endif /* MINIMALISTIC */
{"help", CAM_CMD_USAGE, CAM_ARG_NONE, NULL},
{"-?", CAM_CMD_USAGE, CAM_ARG_NONE, NULL},
{"-h", CAM_CMD_USAGE, CAM_ARG_NONE, NULL},
{NULL, 0, 0, NULL}
};
typedef enum {
CC_OR_NOT_FOUND,
CC_OR_AMBIGUOUS,
CC_OR_FOUND
} camcontrol_optret;
cam_cmdmask cmdlist;
cam_argmask arglist;
camcontrol_optret getoption(char *arg, cam_cmdmask *cmdnum, cam_argmask *argnum,
const char **subopt);
#ifndef MINIMALISTIC
static int getdevlist(struct cam_device *device);
#endif /* MINIMALISTIC */
static int getdevtree(void);
#ifndef MINIMALISTIC
static int testunitready(struct cam_device *device, int retry_count,
int timeout, int quiet);
static int scsistart(struct cam_device *device, int startstop, int loadeject,
int retry_count, int timeout);
static int scsidoinquiry(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout);
static int scsiinquiry(struct cam_device *device, int retry_count, int timeout);
static int scsiserial(struct cam_device *device, int retry_count, int timeout);
static int scsixferrate(struct cam_device *device);
#endif /* MINIMALISTIC */
static int parse_btl(char *tstr, int *bus, int *target, int *lun,
cam_argmask *arglst);
static int dorescan_or_reset(int argc, char **argv, int rescan);
static int rescan_or_reset_bus(int bus, int rescan);
static int scanlun_or_reset_dev(int bus, int target, int lun, int scan);
#ifndef MINIMALISTIC
static int readdefects(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout);
static void modepage(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout);
static int scsicmd(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout);
static int tagcontrol(struct cam_device *device, int argc, char **argv,
char *combinedopt);
static void cts_print(struct cam_device *device,
struct ccb_trans_settings *cts);
static void cpi_print(struct ccb_pathinq *cpi);
static int get_cpi(struct cam_device *device, struct ccb_pathinq *cpi);
static int get_cgd(struct cam_device *device, struct ccb_getdev *cgd);
static int get_print_cts(struct cam_device *device, int user_settings,
int quiet, struct ccb_trans_settings *cts);
static int ratecontrol(struct cam_device *device, int retry_count,
int timeout, int argc, char **argv, char *combinedopt);
static int scsiformat(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout);
static int scsireportluns(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout);
static int scsireadcapacity(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout);
#endif /* MINIMALISTIC */
camcontrol_optret
getoption(char *arg, cam_cmdmask *cmdnum, cam_argmask *argnum,
const char **subopt)
{
struct camcontrol_opts *opts;
int num_matches = 0;
for (opts = option_table; (opts != NULL) && (opts->optname != NULL);
opts++) {
if (strncmp(opts->optname, arg, strlen(arg)) == 0) {
*cmdnum = opts->cmdnum;
*argnum = opts->argnum;
*subopt = opts->subopt;
if (++num_matches > 1)
return(CC_OR_AMBIGUOUS);
}
}
if (num_matches > 0)
return(CC_OR_FOUND);
else
return(CC_OR_NOT_FOUND);
}
#ifndef MINIMALISTIC
static int
getdevlist(struct cam_device *device)
{
union ccb *ccb;
char status[32];
int error = 0;
ccb = cam_getccb(device);
ccb->ccb_h.func_code = XPT_GDEVLIST;
ccb->ccb_h.flags = CAM_DIR_NONE;
ccb->ccb_h.retry_count = 1;
ccb->cgdl.index = 0;
ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
if (cam_send_ccb(device, ccb) < 0) {
perror("error getting device list");
cam_freeccb(ccb);
return(1);
}
status[0] = '\0';
switch (ccb->cgdl.status) {
case CAM_GDEVLIST_MORE_DEVS:
strcpy(status, "MORE");
break;
case CAM_GDEVLIST_LAST_DEVICE:
strcpy(status, "LAST");
break;
case CAM_GDEVLIST_LIST_CHANGED:
strcpy(status, "CHANGED");
break;
case CAM_GDEVLIST_ERROR:
strcpy(status, "ERROR");
error = 1;
break;
}
fprintf(stdout, "%s%d: generation: %d index: %d status: %s\n",
ccb->cgdl.periph_name,
ccb->cgdl.unit_number,
ccb->cgdl.generation,
ccb->cgdl.index,
status);
/*
* If the list has changed, we need to start over from the
* beginning.
*/
if (ccb->cgdl.status == CAM_GDEVLIST_LIST_CHANGED)
ccb->cgdl.index = 0;
}
cam_freeccb(ccb);
return(error);
}
#endif /* MINIMALISTIC */
static int
getdevtree(void)
{
union ccb ccb;
int bufsize, fd;
unsigned int i;
int need_close = 0;
int error = 0;
int skip_device = 0;
if ((fd = open(XPT_DEVICE, O_RDWR)) == -1) {
warn("couldn't open %s", XPT_DEVICE);
return(1);
}
bzero(&ccb, sizeof(union ccb));
ccb.ccb_h.path_id = CAM_XPT_PATH_ID;
ccb.ccb_h.target_id = CAM_TARGET_WILDCARD;
ccb.ccb_h.target_lun = CAM_LUN_WILDCARD;
ccb.ccb_h.func_code = XPT_DEV_MATCH;
bufsize = sizeof(struct dev_match_result) * 100;
ccb.cdm.match_buf_len = bufsize;
ccb.cdm.matches = (struct dev_match_result *)malloc(bufsize);
if (ccb.cdm.matches == NULL) {
warnx("can't malloc memory for matches");
close(fd);
return(1);
}
ccb.cdm.num_matches = 0;
/*
* We fetch all nodes, since we display most of them in the default
* case, and all in the verbose case.
*/
ccb.cdm.num_patterns = 0;
ccb.cdm.pattern_buf_len = 0;
/*
* We do the ioctl multiple times if necessary, in case there are
* more than 100 nodes in the EDT.
*/
do {
if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) {
warn("error sending CAMIOCOMMAND ioctl");
error = 1;
break;
}
if ((ccb.ccb_h.status != CAM_REQ_CMP)
|| ((ccb.cdm.status != CAM_DEV_MATCH_LAST)
&& (ccb.cdm.status != CAM_DEV_MATCH_MORE))) {
warnx("got CAM error %#x, CDM error %d\n",
ccb.ccb_h.status, ccb.cdm.status);
error = 1;
break;
}
for (i = 0; i < ccb.cdm.num_matches; i++) {
switch (ccb.cdm.matches[i].type) {
case DEV_MATCH_BUS: {
struct bus_match_result *bus_result;
/*
* Only print the bus information if the
* user turns on the verbose flag.
*/
if ((arglist & CAM_ARG_VERBOSE) == 0)
break;
bus_result =
&ccb.cdm.matches[i].result.bus_result;
if (need_close) {
fprintf(stdout, ")\n");
need_close = 0;
}
fprintf(stdout, "scbus%d on %s%d bus %d:\n",
bus_result->path_id,
bus_result->dev_name,
bus_result->unit_number,
bus_result->bus_id);
break;
}
case DEV_MATCH_DEVICE: {
struct device_match_result *dev_result;
char vendor[16], product[48], revision[16];
char tmpstr[256];
dev_result =
&ccb.cdm.matches[i].result.device_result;
if ((dev_result->flags
& DEV_RESULT_UNCONFIGURED)
&& ((arglist & CAM_ARG_VERBOSE) == 0)) {
skip_device = 1;
break;
} else
skip_device = 0;
if (dev_result->protocol == PROTO_SCSI) {
cam_strvis(vendor, dev_result->inq_data.vendor,
sizeof(dev_result->inq_data.vendor),
sizeof(vendor));
cam_strvis(product,
dev_result->inq_data.product,
sizeof(dev_result->inq_data.product),
sizeof(product));
cam_strvis(revision,
dev_result->inq_data.revision,
sizeof(dev_result->inq_data.revision),
sizeof(revision));
sprintf(tmpstr, "<%s %s %s>", vendor, product,
revision);
} else if (dev_result->protocol == PROTO_ATA ||
dev_result->protocol == PROTO_SATAPM) {
cam_strvis(product,
dev_result->ident_data.model,
sizeof(dev_result->ident_data.model),
sizeof(product));
cam_strvis(revision,
dev_result->ident_data.revision,
sizeof(dev_result->ident_data.revision),
sizeof(revision));
sprintf(tmpstr, "<%s %s>", product,
revision);
} else {
sprintf(tmpstr, "<>");
}
if (need_close) {
fprintf(stdout, ")\n");
need_close = 0;
}
fprintf(stdout, "%-33s at scbus%d "
"target %d lun %d (",
tmpstr,
dev_result->path_id,
dev_result->target_id,
dev_result->target_lun);
need_close = 1;
break;
}
case DEV_MATCH_PERIPH: {
struct periph_match_result *periph_result;
periph_result =
&ccb.cdm.matches[i].result.periph_result;
if (skip_device != 0)
break;
if (need_close > 1)
fprintf(stdout, ",");
fprintf(stdout, "%s%d",
periph_result->periph_name,
periph_result->unit_number);
need_close++;
break;
}
default:
fprintf(stdout, "unknown match type\n");
break;
}
}
} while ((ccb.ccb_h.status == CAM_REQ_CMP)
&& (ccb.cdm.status == CAM_DEV_MATCH_MORE));
if (need_close)
fprintf(stdout, ")\n");
close(fd);
return(error);
}
#ifndef MINIMALISTIC
static int
testunitready(struct cam_device *device, int retry_count, int timeout,
int quiet)
{
int error = 0;
union ccb *ccb;
ccb = cam_getccb(device);
scsi_test_unit_ready(&ccb->csio,
/* retries */ retry_count,
/* cbfcnp */ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
if (quiet == 0)
perror("error sending test unit ready");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
cam_freeccb(ccb);
return(1);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
if (quiet == 0)
fprintf(stdout, "Unit is ready\n");
} else {
if (quiet == 0)
fprintf(stdout, "Unit is not ready\n");
error = 1;
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
}
cam_freeccb(ccb);
return(error);
}
static int
scsistart(struct cam_device *device, int startstop, int loadeject,
int retry_count, int timeout)
{
union ccb *ccb;
int error = 0;
ccb = cam_getccb(device);
/*
* If we're stopping, send an ordered tag so the drive in question
* will finish any previously queued writes before stopping. If
* the device isn't capable of tagged queueing, or if tagged
* queueing is turned off, the tag action is a no-op.
*/
scsi_start_stop(&ccb->csio,
/* retries */ retry_count,
/* cbfcnp */ NULL,
/* tag_action */ startstop ? MSG_SIMPLE_Q_TAG :
MSG_ORDERED_Q_TAG,
/* start/stop */ startstop,
/* load_eject */ loadeject,
/* immediate */ 0,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 120000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
perror("error sending start unit");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
cam_freeccb(ccb);
return(1);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
if (startstop) {
fprintf(stdout, "Unit started successfully");
if (loadeject)
fprintf(stdout,", Media loaded\n");
else
fprintf(stdout,"\n");
} else {
fprintf(stdout, "Unit stopped successfully");
if (loadeject)
fprintf(stdout, ", Media ejected\n");
else
fprintf(stdout, "\n");
}
else {
error = 1;
if (startstop)
fprintf(stdout,
"Error received from start unit command\n");
else
fprintf(stdout,
"Error received from stop unit command\n");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
}
cam_freeccb(ccb);
return(error);
}
static int
scsidoinquiry(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout)
{
int c;
int error = 0;
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c) {
case 'D':
arglist |= CAM_ARG_GET_STDINQ;
break;
case 'R':
arglist |= CAM_ARG_GET_XFERRATE;
break;
case 'S':
arglist |= CAM_ARG_GET_SERIAL;
break;
default:
break;
}
}
/*
* If the user didn't specify any inquiry options, he wants all of
* them.
*/
if ((arglist & CAM_ARG_INQ_MASK) == 0)
arglist |= CAM_ARG_INQ_MASK;
if (arglist & CAM_ARG_GET_STDINQ)
error = scsiinquiry(device, retry_count, timeout);
if (error != 0)
return(error);
if (arglist & CAM_ARG_GET_SERIAL)
scsiserial(device, retry_count, timeout);
if (error != 0)
return(error);
if (arglist & CAM_ARG_GET_XFERRATE)
error = scsixferrate(device);
return(error);
}
static int
scsiinquiry(struct cam_device *device, int retry_count, int timeout)
{
union ccb *ccb;
struct scsi_inquiry_data *inq_buf;
int error = 0;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("couldn't allocate CCB");
return(1);
}
/* cam_getccb cleans up the header, caller has to zero the payload */
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
inq_buf = (struct scsi_inquiry_data *)malloc(
sizeof(struct scsi_inquiry_data));
if (inq_buf == NULL) {
cam_freeccb(ccb);
warnx("can't malloc memory for inquiry\n");
return(1);
}
bzero(inq_buf, sizeof(*inq_buf));
/*
* Note that although the size of the inquiry buffer is the full
* 256 bytes specified in the SCSI spec, we only tell the device
* that we have allocated SHORT_INQUIRY_LENGTH bytes. There are
* two reasons for this:
*
* - The SCSI spec says that when a length field is only 1 byte,
* a value of 0 will be interpreted as 256. Therefore
* scsi_inquiry() will convert an inq_len (which is passed in as
* a u_int32_t, but the field in the CDB is only 1 byte) of 256
* to 0. Evidently, very few devices meet the spec in that
* regard. Some devices, like many Seagate disks, take the 0 as
* 0, and don't return any data. One Pioneer DVD-R drive
* returns more data than the command asked for.
*
* So, since there are numerous devices that just don't work
* right with the full inquiry size, we don't send the full size.
*
* - The second reason not to use the full inquiry data length is
* that we don't need it here. The only reason we issue a
* standard inquiry is to get the vendor name, device name,
* and revision so scsi_print_inquiry() can print them.
*
* If, at some point in the future, more inquiry data is needed for
* some reason, this code should use a procedure similar to the
* probe code. i.e., issue a short inquiry, and determine from
* the additional length passed back from the device how much
* inquiry data the device supports. Once the amount the device
* supports is determined, issue an inquiry for that amount and no
* more.
*
* KDM, 2/18/2000
*/
scsi_inquiry(&ccb->csio,
/* retries */ retry_count,
/* cbfcnp */ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* inq_buf */ (u_int8_t *)inq_buf,
/* inq_len */ SHORT_INQUIRY_LENGTH,
/* evpd */ 0,
/* page_code */ 0,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
perror("error sending SCSI inquiry");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
cam_freeccb(ccb);
return(1);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
error = 1;
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
}
cam_freeccb(ccb);
if (error != 0) {
free(inq_buf);
return(error);
}
fprintf(stdout, "%s%d: ", device->device_name,
device->dev_unit_num);
scsi_print_inquiry(inq_buf);
free(inq_buf);
return(0);
}
static int
scsiserial(struct cam_device *device, int retry_count, int timeout)
{
union ccb *ccb;
struct scsi_vpd_unit_serial_number *serial_buf;
char serial_num[SVPD_SERIAL_NUM_SIZE + 1];
int error = 0;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("couldn't allocate CCB");
return(1);
}
/* cam_getccb cleans up the header, caller has to zero the payload */
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
serial_buf = (struct scsi_vpd_unit_serial_number *)
malloc(sizeof(*serial_buf));
if (serial_buf == NULL) {
cam_freeccb(ccb);
warnx("can't malloc memory for serial number");
return(1);
}
scsi_inquiry(&ccb->csio,
/*retries*/ retry_count,
/*cbfcnp*/ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* inq_buf */ (u_int8_t *)serial_buf,
/* inq_len */ sizeof(*serial_buf),
/* evpd */ 1,
/* page_code */ SVPD_UNIT_SERIAL_NUMBER,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
warn("error getting serial number");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
cam_freeccb(ccb);
free(serial_buf);
return(1);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
error = 1;
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
}
cam_freeccb(ccb);
if (error != 0) {
free(serial_buf);
return(error);
}
bcopy(serial_buf->serial_num, serial_num, serial_buf->length);
serial_num[serial_buf->length] = '\0';
if ((arglist & CAM_ARG_GET_STDINQ)
|| (arglist & CAM_ARG_GET_XFERRATE))
fprintf(stdout, "%s%d: Serial Number ",
device->device_name, device->dev_unit_num);
fprintf(stdout, "%.60s\n", serial_num);
free(serial_buf);
return(0);
}
static int
scsixferrate(struct cam_device *device)
{
u_int32_t freq = 0;
u_int32_t speed = 0;
union ccb *ccb;
u_int mb;
int retval = 0;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("couldn't allocate CCB");
return(1);
}
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_trans_settings) - sizeof(struct ccb_hdr));
ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
ccb->cts.type = CTS_TYPE_CURRENT_SETTINGS;
if (((retval = cam_send_ccb(device, ccb)) < 0)
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
const char error_string[] = "error getting transfer settings";
if (retval < 0)
warn(error_string);
else
warnx(error_string);
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto xferrate_bailout;
}
if (ccb->cts.transport == XPORT_SPI) {
struct ccb_trans_settings_spi *spi =
&ccb->cts.xport_specific.spi;
if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) {
freq = scsi_calc_syncsrate(spi->sync_period);
speed = freq;
} else {
struct ccb_pathinq cpi;
retval = get_cpi(device, &cpi);
if (retval == 0) {
speed = cpi.base_transfer_speed;
freq = 0;
}
}
fprintf(stdout, "%s%d: ", device->device_name,
device->dev_unit_num);
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) {
speed *= (0x01 << spi->bus_width);
}
mb = speed / 1000;
if (mb > 0)
fprintf(stdout, "%d.%03dMB/s transfers ",
mb, speed % 1000);
else
fprintf(stdout, "%dKB/s transfers ",
speed);
if (((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
&& (spi->sync_offset != 0))
fprintf(stdout, "(%d.%03dMHz, offset %d", freq / 1000,
freq % 1000, spi->sync_offset);
if (((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
&& (spi->bus_width > 0)) {
if (((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
&& (spi->sync_offset != 0)) {
fprintf(stdout, ", ");
} else {
fprintf(stdout, " (");
}
fprintf(stdout, "%dbit)", 8 * (0x01 << spi->bus_width));
} else if (((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)
&& (spi->sync_offset != 0)) {
fprintf(stdout, ")");
}
} else {
struct ccb_pathinq cpi;
retval = get_cpi(device, &cpi);
if (retval != 0)
goto xferrate_bailout;
speed = cpi.base_transfer_speed;
freq = 0;
mb = speed / 1000;
if (mb > 0)
fprintf(stdout, "%d.%03dMB/s transfers ",
mb, speed % 1000);
else
fprintf(stdout, "%dKB/s transfers ",
speed);
}
if (ccb->cts.protocol == PROTO_SCSI) {
struct ccb_trans_settings_scsi *scsi =
&ccb->cts.proto_specific.scsi;
if (scsi->valid & CTS_SCSI_VALID_TQ) {
if (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) {
fprintf(stdout, ", Command Queueing Enabled");
}
}
}
fprintf(stdout, "\n");
xferrate_bailout:
cam_freeccb(ccb);
return(retval);
}
static void
atacapprint(struct ata_params *parm)
{
u_int32_t lbasize = (u_int32_t)parm->lba_size_1 |
((u_int32_t)parm->lba_size_2 << 16);
u_int64_t lbasize48 = ((u_int64_t)parm->lba_size48_1) |
((u_int64_t)parm->lba_size48_2 << 16) |
((u_int64_t)parm->lba_size48_3 << 32) |
((u_int64_t)parm->lba_size48_4 << 48);
printf("\n");
printf("protocol ");
printf("ATA/ATAPI-%d", ata_version(parm->version_major));
if (parm->satacapabilities && parm->satacapabilities != 0xffff) {
if (parm->satacapabilities & ATA_SATA_GEN3)
printf(" SATA 3.x\n");
else if (parm->satacapabilities & ATA_SATA_GEN2)
printf(" SATA 2.x\n");
else if (parm->satacapabilities & ATA_SATA_GEN1)
printf(" SATA 1.x\n");
else
printf(" SATA\n");
}
else
printf("\n");
printf("device model %.40s\n", parm->model);
printf("firmware revision %.8s\n", parm->revision);
printf("serial number %.20s\n", parm->serial);
if (parm->enabled.extension & ATA_SUPPORT_64BITWWN) {
printf("WWN %02x%02x%02x%02x\n",
parm->wwn[0], parm->wwn[1], parm->wwn[2], parm->wwn[3]);
}
if (parm->enabled.extension & ATA_SUPPORT_MEDIASN) {
printf("media serial number %.30s\n",
parm->media_serial);
}
printf("cylinders %d\n", parm->cylinders);
printf("heads %d\n", parm->heads);
printf("sectors/track %d\n", parm->sectors);
if (parm->config == ATA_PROTO_CFA ||
(parm->support.command2 & ATA_SUPPORT_CFA))
printf("CFA supported\n");
printf("LBA%ssupported ",
parm->capabilities1 & ATA_SUPPORT_LBA ? " " : " not ");
if (lbasize)
printf("%d sectors\n", lbasize);
else
printf("\n");
printf("LBA48%ssupported ",
parm->support.command2 & ATA_SUPPORT_ADDRESS48 ? " " : " not ");
if (lbasize48)
printf("%ju sectors\n", (uintmax_t)lbasize48);
else
printf("\n");
printf("PIO supported PIO");
switch (ata_max_pmode(parm)) {
case ATA_PIO4:
printf("4");
break;
case ATA_PIO3:
printf("3");
break;
case ATA_PIO2:
printf("2");
break;
case ATA_PIO1:
printf("1");
break;
default:
printf("0");
}
if ((parm->capabilities1 & ATA_SUPPORT_IORDY) == 0)
printf(" w/o IORDY");
printf("\n");
printf("DMA%ssupported ",
parm->capabilities1 & ATA_SUPPORT_DMA ? " " : " not ");
if (parm->capabilities1 & ATA_SUPPORT_DMA) {
if (parm->mwdmamodes & 0xff) {
printf("WDMA");
if (parm->mwdmamodes & 0x04)
printf("2");
else if (parm->mwdmamodes & 0x02)
printf("1");
else if (parm->mwdmamodes & 0x01)
printf("0");
printf(" ");
}
if ((parm->atavalid & ATA_FLAG_88) &&
(parm->udmamodes & 0xff)) {
printf("UDMA");
if (parm->udmamodes & 0x40)
printf("6");
else if (parm->udmamodes & 0x20)
printf("5");
else if (parm->udmamodes & 0x10)
printf("4");
else if (parm->udmamodes & 0x08)
printf("3");
else if (parm->udmamodes & 0x04)
printf("2");
else if (parm->udmamodes & 0x02)
printf("1");
else if (parm->udmamodes & 0x01)
printf("0");
printf(" ");
}
}
printf("\n");
printf("overlap%ssupported\n",
parm->capabilities1 & ATA_SUPPORT_OVERLAP ? " " : " not ");
if (parm->media_rotation_rate == 1) {
printf("media RPM non-rotating\n");
} else if (parm->media_rotation_rate >= 0x0401 &&
parm->media_rotation_rate <= 0xFFFE) {
printf("media RPM %d\n",
parm->media_rotation_rate);
}
printf("\nFeature "
"Support Enable Value Vendor\n");
printf("read ahead %s %s\n",
parm->support.command1 & ATA_SUPPORT_LOOKAHEAD ? "yes" : "no",
parm->enabled.command1 & ATA_SUPPORT_LOOKAHEAD ? "yes" : "no");
printf("write cache %s %s\n",
parm->support.command1 & ATA_SUPPORT_WRITECACHE ? "yes" : "no",
parm->enabled.command1 & ATA_SUPPORT_WRITECACHE ? "yes" : "no");
printf("flush cache %s %s\n",
parm->support.command2 & ATA_SUPPORT_FLUSHCACHE ? "yes" : "no",
parm->enabled.command2 & ATA_SUPPORT_FLUSHCACHE ? "yes" : "no");
if (parm->satacapabilities && parm->satacapabilities != 0xffff) {
printf("Native Command Queuing (NCQ) %s "
" %d/0x%02X\n",
parm->satacapabilities & ATA_SUPPORT_NCQ ?
"yes" : "no",
(parm->satacapabilities & ATA_SUPPORT_NCQ) ?
ATA_QUEUE_LEN(parm->queue) : 0,
(parm->satacapabilities & ATA_SUPPORT_NCQ) ?
ATA_QUEUE_LEN(parm->queue) : 0);
}
printf("Tagged Command Queuing (TCQ) %s %s %d/0x%02X\n",
parm->support.command2 & ATA_SUPPORT_QUEUED ? "yes" : "no",
parm->enabled.command2 & ATA_SUPPORT_QUEUED ? "yes" : "no",
ATA_QUEUE_LEN(parm->queue), ATA_QUEUE_LEN(parm->queue));
printf("SMART %s %s\n",
parm->support.command1 & ATA_SUPPORT_SMART ? "yes" : "no",
parm->enabled.command1 & ATA_SUPPORT_SMART ? "yes" : "no");
printf("microcode download %s %s\n",
parm->support.command2 & ATA_SUPPORT_MICROCODE ? "yes" : "no",
parm->enabled.command2 & ATA_SUPPORT_MICROCODE ? "yes" : "no");
printf("security %s %s\n",
parm->support.command1 & ATA_SUPPORT_SECURITY ? "yes" : "no",
parm->enabled.command1 & ATA_SUPPORT_SECURITY ? "yes" : "no");
printf("power management %s %s\n",
parm->support.command1 & ATA_SUPPORT_POWERMGT ? "yes" : "no",
parm->enabled.command1 & ATA_SUPPORT_POWERMGT ? "yes" : "no");
printf("advanced power management %s %s %d/0x%02X\n",
parm->support.command2 & ATA_SUPPORT_APM ? "yes" : "no",
parm->enabled.command2 & ATA_SUPPORT_APM ? "yes" : "no",
parm->apm_value, parm->apm_value);
printf("automatic acoustic management %s %s "
"%d/0x%02X %d/0x%02X\n",
parm->support.command2 & ATA_SUPPORT_AUTOACOUSTIC ? "yes" :"no",
parm->enabled.command2 & ATA_SUPPORT_AUTOACOUSTIC ? "yes" :"no",
ATA_ACOUSTIC_CURRENT(parm->acoustic),
ATA_ACOUSTIC_CURRENT(parm->acoustic),
ATA_ACOUSTIC_VENDOR(parm->acoustic),
ATA_ACOUSTIC_VENDOR(parm->acoustic));
printf("media status notification %s %s\n",
parm->support.command2 & ATA_SUPPORT_NOTIFY ? "yes" : "no",
parm->enabled.command2 & ATA_SUPPORT_NOTIFY ? "yes" : "no");
printf("power-up in Standby %s %s\n",
parm->support.command2 & ATA_SUPPORT_STANDBY ? "yes" : "no",
parm->enabled.command2 & ATA_SUPPORT_STANDBY ? "yes" : "no");
printf("write-read-verify %s %s %d/0x%x\n",
parm->support2 & ATA_SUPPORT_WRITEREADVERIFY ? "yes" : "no",
parm->enabled2 & ATA_SUPPORT_WRITEREADVERIFY ? "yes" : "no",
parm->wrv_mode, parm->wrv_mode);
printf("unload %s %s\n",
parm->support.extension & ATA_SUPPORT_UNLOAD ? "yes" : "no",
parm->enabled.extension & ATA_SUPPORT_UNLOAD ? "yes" : "no");
printf("free-fall %s %s\n",
parm->support2 & ATA_SUPPORT_FREEFALL ? "yes" : "no",
parm->enabled2 & ATA_SUPPORT_FREEFALL ? "yes" : "no");
}
static int
ataidentify(struct cam_device *device, int retry_count, int timeout)
{
union ccb *ccb;
struct ata_params *ident_buf;
struct ccb_getdev cgd;
u_int i, error = 0;
int16_t *ptr;
if (get_cgd(device, &cgd) != 0) {
warnx("couldn't get CGD");
return(1);
}
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("couldn't allocate CCB");
return(1);
}
/* cam_getccb cleans up the header, caller has to zero the payload */
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_ataio) - sizeof(struct ccb_hdr));
ptr = (uint16_t *)malloc(sizeof(struct ata_params));
if (ptr == NULL) {
cam_freeccb(ccb);
warnx("can't malloc memory for identify\n");
return(1);
}
bzero(ptr, sizeof(struct ata_params));
cam_fill_ataio(&ccb->ataio,
retry_count,
NULL,
/*flags*/CAM_DIR_IN,
MSG_SIMPLE_Q_TAG,
/*data_ptr*/(u_int8_t *)ptr,
/*dxfer_len*/sizeof(struct ata_params),
timeout ? timeout : 30 * 1000);
if (cgd.protocol == PROTO_ATA)
ata_28bit_cmd(&ccb->ataio, ATA_ATA_IDENTIFY, 0, 0, 0);
else
ata_28bit_cmd(&ccb->ataio, ATA_ATAPI_IDENTIFY, 0, 0, 0);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
perror("error sending ATA identify");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
free(ptr);
cam_freeccb(ccb);
return(1);
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
error = 1;
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
}
cam_freeccb(ccb);
if (error != 0) {
free(ptr);
return(error);
}
for (i = 0; i < sizeof(struct ata_params) / 2; i++)
ptr[i] = le16toh(ptr[i]);
ident_buf = (struct ata_params *)ptr;
if (strncmp(ident_buf->model, "FX", 2) &&
strncmp(ident_buf->model, "NEC", 3) &&
strncmp(ident_buf->model, "Pioneer", 7) &&
strncmp(ident_buf->model, "SHARP", 5)) {
ata_bswap(ident_buf->model, sizeof(ident_buf->model));
ata_bswap(ident_buf->revision, sizeof(ident_buf->revision));
ata_bswap(ident_buf->serial, sizeof(ident_buf->serial));
ata_bswap(ident_buf->media_serial, sizeof(ident_buf->media_serial));
}
ata_btrim(ident_buf->model, sizeof(ident_buf->model));
ata_bpack(ident_buf->model, ident_buf->model, sizeof(ident_buf->model));
ata_btrim(ident_buf->revision, sizeof(ident_buf->revision));
ata_bpack(ident_buf->revision, ident_buf->revision, sizeof(ident_buf->revision));
ata_btrim(ident_buf->serial, sizeof(ident_buf->serial));
ata_bpack(ident_buf->serial, ident_buf->serial, sizeof(ident_buf->serial));
ata_btrim(ident_buf->media_serial, sizeof(ident_buf->media_serial));
ata_bpack(ident_buf->media_serial, ident_buf->media_serial,
sizeof(ident_buf->media_serial));
fprintf(stdout, "%s%d: ", device->device_name,
device->dev_unit_num);
ata_print_ident(ident_buf);
atacapprint(ident_buf);
free(ident_buf);
return(0);
}
#endif /* MINIMALISTIC */
/*
* Parse out a bus, or a bus, target and lun in the following
* format:
* bus
* bus:target
* bus:target:lun
*
* Returns the number of parsed components, or 0.
*/
static int
parse_btl(char *tstr, int *bus, int *target, int *lun, cam_argmask *arglst)
{
char *tmpstr;
int convs = 0;
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
tmpstr = (char *)strtok(tstr, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')) {
*bus = strtol(tmpstr, NULL, 0);
*arglst |= CAM_ARG_BUS;
convs++;
tmpstr = (char *)strtok(NULL, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')) {
*target = strtol(tmpstr, NULL, 0);
*arglst |= CAM_ARG_TARGET;
convs++;
tmpstr = (char *)strtok(NULL, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')) {
*lun = strtol(tmpstr, NULL, 0);
*arglst |= CAM_ARG_LUN;
convs++;
}
}
}
return convs;
}
static int
dorescan_or_reset(int argc, char **argv, int rescan)
{
static const char must[] =
"you must specify \"all\", a bus, or a bus:target:lun to %s";
int rv, error = 0;
int bus = -1, target = -1, lun = -1;
char *tstr;
if (argc < 3) {
warnx(must, rescan? "rescan" : "reset");
return(1);
}
tstr = argv[optind];
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
if (strncasecmp(tstr, "all", strlen("all")) == 0)
arglist |= CAM_ARG_BUS;
else {
rv = parse_btl(argv[optind], &bus, &target, &lun, &arglist);
if (rv != 1 && rv != 3) {
warnx(must, rescan? "rescan" : "reset");
return(1);
}
}
if ((arglist & CAM_ARG_BUS)
&& (arglist & CAM_ARG_TARGET)
&& (arglist & CAM_ARG_LUN))
error = scanlun_or_reset_dev(bus, target, lun, rescan);
else
error = rescan_or_reset_bus(bus, rescan);
return(error);
}
static int
rescan_or_reset_bus(int bus, int rescan)
{
union ccb ccb, matchccb;
int fd, retval;
int bufsize;
retval = 0;
if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) {
warnx("error opening transport layer device %s", XPT_DEVICE);
warn("%s", XPT_DEVICE);
return(1);
}
if (bus != -1) {
ccb.ccb_h.func_code = rescan ? XPT_SCAN_BUS : XPT_RESET_BUS;
ccb.ccb_h.path_id = bus;
ccb.ccb_h.target_id = CAM_TARGET_WILDCARD;
ccb.ccb_h.target_lun = CAM_LUN_WILDCARD;
ccb.crcn.flags = CAM_FLAG_NONE;
/* run this at a low priority */
ccb.ccb_h.pinfo.priority = 5;
if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) {
warn("CAMIOCOMMAND ioctl failed");
close(fd);
return(1);
}
if ((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
fprintf(stdout, "%s of bus %d was successful\n",
rescan ? "Re-scan" : "Reset", bus);
} else {
fprintf(stdout, "%s of bus %d returned error %#x\n",
rescan ? "Re-scan" : "Reset", bus,
ccb.ccb_h.status & CAM_STATUS_MASK);
retval = 1;
}
close(fd);
return(retval);
}
/*
* The right way to handle this is to modify the xpt so that it can
* handle a wildcarded bus in a rescan or reset CCB. At the moment
* that isn't implemented, so instead we enumerate the busses and
* send the rescan or reset to those busses in the case where the
* given bus is -1 (wildcard). We don't send a rescan or reset
* to the xpt bus; sending a rescan to the xpt bus is effectively a
* no-op, sending a rescan to the xpt bus would result in a status of
* CAM_REQ_INVALID.
*/
bzero(&(&matchccb.ccb_h)[1],
sizeof(struct ccb_dev_match) - sizeof(struct ccb_hdr));
matchccb.ccb_h.func_code = XPT_DEV_MATCH;
bufsize = sizeof(struct dev_match_result) * 20;
matchccb.cdm.match_buf_len = bufsize;
matchccb.cdm.matches=(struct dev_match_result *)malloc(bufsize);
if (matchccb.cdm.matches == NULL) {
warnx("can't malloc memory for matches");
retval = 1;
goto bailout;
}
matchccb.cdm.num_matches = 0;
matchccb.cdm.num_patterns = 1;
matchccb.cdm.pattern_buf_len = sizeof(struct dev_match_pattern);
matchccb.cdm.patterns = (struct dev_match_pattern *)malloc(
matchccb.cdm.pattern_buf_len);
if (matchccb.cdm.patterns == NULL) {
warnx("can't malloc memory for patterns");
retval = 1;
goto bailout;
}
matchccb.cdm.patterns[0].type = DEV_MATCH_BUS;
matchccb.cdm.patterns[0].pattern.bus_pattern.flags = BUS_MATCH_ANY;
do {
unsigned int i;
if (ioctl(fd, CAMIOCOMMAND, &matchccb) == -1) {
warn("CAMIOCOMMAND ioctl failed");
retval = 1;
goto bailout;
}
if ((matchccb.ccb_h.status != CAM_REQ_CMP)
|| ((matchccb.cdm.status != CAM_DEV_MATCH_LAST)
&& (matchccb.cdm.status != CAM_DEV_MATCH_MORE))) {
warnx("got CAM error %#x, CDM error %d\n",
matchccb.ccb_h.status, matchccb.cdm.status);
retval = 1;
goto bailout;
}
for (i = 0; i < matchccb.cdm.num_matches; i++) {
struct bus_match_result *bus_result;
/* This shouldn't happen. */
if (matchccb.cdm.matches[i].type != DEV_MATCH_BUS)
continue;
bus_result = &matchccb.cdm.matches[i].result.bus_result;
/*
* We don't want to rescan or reset the xpt bus.
* See above.
*/
if ((int)bus_result->path_id == -1)
continue;
ccb.ccb_h.func_code = rescan ? XPT_SCAN_BUS :
XPT_RESET_BUS;
ccb.ccb_h.path_id = bus_result->path_id;
ccb.ccb_h.target_id = CAM_TARGET_WILDCARD;
ccb.ccb_h.target_lun = CAM_LUN_WILDCARD;
ccb.crcn.flags = CAM_FLAG_NONE;
/* run this at a low priority */
ccb.ccb_h.pinfo.priority = 5;
if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) {
warn("CAMIOCOMMAND ioctl failed");
retval = 1;
goto bailout;
}
if ((ccb.ccb_h.status & CAM_STATUS_MASK) ==CAM_REQ_CMP){
fprintf(stdout, "%s of bus %d was successful\n",
rescan? "Re-scan" : "Reset",
bus_result->path_id);
} else {
/*
* Don't bail out just yet, maybe the other
* rescan or reset commands will complete
* successfully.
*/
fprintf(stderr, "%s of bus %d returned error "
"%#x\n", rescan? "Re-scan" : "Reset",
bus_result->path_id,
ccb.ccb_h.status & CAM_STATUS_MASK);
retval = 1;
}
}
} while ((matchccb.ccb_h.status == CAM_REQ_CMP)
&& (matchccb.cdm.status == CAM_DEV_MATCH_MORE));
bailout:
if (fd != -1)
close(fd);
if (matchccb.cdm.patterns != NULL)
free(matchccb.cdm.patterns);
if (matchccb.cdm.matches != NULL)
free(matchccb.cdm.matches);
return(retval);
}
static int
scanlun_or_reset_dev(int bus, int target, int lun, int scan)
{
union ccb ccb;
struct cam_device *device;
int fd;
device = NULL;
if (bus < 0) {
warnx("invalid bus number %d", bus);
return(1);
}
if (target < 0) {
warnx("invalid target number %d", target);
return(1);
}
if (lun < 0) {
warnx("invalid lun number %d", lun);
return(1);
}
fd = -1;
bzero(&ccb, sizeof(union ccb));
if (scan) {
if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) {
warnx("error opening transport layer device %s\n",
XPT_DEVICE);
warn("%s", XPT_DEVICE);
return(1);
}
} else {
device = cam_open_btl(bus, target, lun, O_RDWR, NULL);
if (device == NULL) {
warnx("%s", cam_errbuf);
return(1);
}
}
ccb.ccb_h.func_code = (scan)? XPT_SCAN_LUN : XPT_RESET_DEV;
ccb.ccb_h.path_id = bus;
ccb.ccb_h.target_id = target;
ccb.ccb_h.target_lun = lun;
ccb.ccb_h.timeout = 5000;
ccb.crcn.flags = CAM_FLAG_NONE;
/* run this at a low priority */
ccb.ccb_h.pinfo.priority = 5;
if (scan) {
if (ioctl(fd, CAMIOCOMMAND, &ccb) < 0) {
warn("CAMIOCOMMAND ioctl failed");
close(fd);
return(1);
}
} else {
if (cam_send_ccb(device, &ccb) < 0) {
warn("error sending XPT_RESET_DEV CCB");
cam_close_device(device);
return(1);
}
}
if (scan)
close(fd);
else
cam_close_device(device);
/*
* An error code of CAM_BDR_SENT is normal for a BDR request.
*/
if (((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
|| ((!scan)
&& ((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_BDR_SENT))) {
fprintf(stdout, "%s of %d:%d:%d was successful\n",
scan? "Re-scan" : "Reset", bus, target, lun);
return(0);
} else {
fprintf(stdout, "%s of %d:%d:%d returned error %#x\n",
scan? "Re-scan" : "Reset", bus, target, lun,
ccb.ccb_h.status & CAM_STATUS_MASK);
return(1);
}
}
#ifndef MINIMALISTIC
static int
readdefects(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout)
{
union ccb *ccb = NULL;
struct scsi_read_defect_data_10 *rdd_cdb;
u_int8_t *defect_list = NULL;
u_int32_t dlist_length = 65000;
u_int32_t returned_length = 0;
u_int32_t num_returned = 0;
u_int8_t returned_format;
unsigned int i;
int c, error = 0;
int lists_specified = 0;
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c){
case 'f':
{
char *tstr;
tstr = optarg;
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
if (strcmp(tstr, "block") == 0)
arglist |= CAM_ARG_FORMAT_BLOCK;
else if (strcmp(tstr, "bfi") == 0)
arglist |= CAM_ARG_FORMAT_BFI;
else if (strcmp(tstr, "phys") == 0)
arglist |= CAM_ARG_FORMAT_PHYS;
else {
error = 1;
warnx("invalid defect format %s", tstr);
goto defect_bailout;
}
break;
}
case 'G':
arglist |= CAM_ARG_GLIST;
break;
case 'P':
arglist |= CAM_ARG_PLIST;
break;
default:
break;
}
}
ccb = cam_getccb(device);
/*
* Hopefully 65000 bytes is enough to hold the defect list. If it
* isn't, the disk is probably dead already. We'd have to go with
* 12 byte command (i.e. alloc_length is 32 bits instead of 16)
* to hold them all.
*/
defect_list = malloc(dlist_length);
if (defect_list == NULL) {
warnx("can't malloc memory for defect list");
error = 1;
goto defect_bailout;
}
rdd_cdb =(struct scsi_read_defect_data_10 *)&ccb->csio.cdb_io.cdb_bytes;
/*
* cam_getccb() zeros the CCB header only. So we need to zero the
* payload portion of the ccb.
*/
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
cam_fill_csio(&ccb->csio,
/*retries*/ retry_count,
/*cbfcnp*/ NULL,
/*flags*/ CAM_DIR_IN | ((arglist & CAM_ARG_ERR_RECOVER) ?
CAM_PASS_ERR_RECOVER : 0),
/*tag_action*/ MSG_SIMPLE_Q_TAG,
/*data_ptr*/ defect_list,
/*dxfer_len*/ dlist_length,
/*sense_len*/ SSD_FULL_SIZE,
/*cdb_len*/ sizeof(struct scsi_read_defect_data_10),
/*timeout*/ timeout ? timeout : 5000);
rdd_cdb->opcode = READ_DEFECT_DATA_10;
if (arglist & CAM_ARG_FORMAT_BLOCK)
rdd_cdb->format = SRDD10_BLOCK_FORMAT;
else if (arglist & CAM_ARG_FORMAT_BFI)
rdd_cdb->format = SRDD10_BYTES_FROM_INDEX_FORMAT;
else if (arglist & CAM_ARG_FORMAT_PHYS)
rdd_cdb->format = SRDD10_PHYSICAL_SECTOR_FORMAT;
else {
error = 1;
warnx("no defect list format specified");
goto defect_bailout;
}
if (arglist & CAM_ARG_PLIST) {
rdd_cdb->format |= SRDD10_PLIST;
lists_specified++;
}
if (arglist & CAM_ARG_GLIST) {
rdd_cdb->format |= SRDD10_GLIST;
lists_specified++;
}
scsi_ulto2b(dlist_length, rdd_cdb->alloc_length);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (cam_send_ccb(device, ccb) < 0) {
perror("error reading defect list");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
error = 1;
goto defect_bailout;
}
returned_length = scsi_2btoul(((struct
scsi_read_defect_data_hdr_10 *)defect_list)->length);
returned_format = ((struct scsi_read_defect_data_hdr_10 *)
defect_list)->format;
if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR)
&& (ccb->csio.scsi_status == SCSI_STATUS_CHECK_COND)
&& ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)) {
struct scsi_sense_data *sense;
int error_code, sense_key, asc, ascq;
sense = &ccb->csio.sense_data;
scsi_extract_sense(sense, &error_code, &sense_key, &asc, &ascq);
/*
* According to the SCSI spec, if the disk doesn't support
* the requested format, it will generally return a sense
* key of RECOVERED ERROR, and an additional sense code
* of "DEFECT LIST NOT FOUND". So, we check for that, and
* also check to make sure that the returned length is
* greater than 0, and then print out whatever format the
* disk gave us.
*/
if ((sense_key == SSD_KEY_RECOVERED_ERROR)
&& (asc == 0x1c) && (ascq == 0x00)
&& (returned_length > 0)) {
warnx("requested defect format not available");
switch(returned_format & SRDDH10_DLIST_FORMAT_MASK) {
case SRDD10_BLOCK_FORMAT:
warnx("Device returned block format");
break;
case SRDD10_BYTES_FROM_INDEX_FORMAT:
warnx("Device returned bytes from index"
" format");
break;
case SRDD10_PHYSICAL_SECTOR_FORMAT:
warnx("Device returned physical sector format");
break;
default:
error = 1;
warnx("Device returned unknown defect"
" data format %#x", returned_format);
goto defect_bailout;
break; /* NOTREACHED */
}
} else {
error = 1;
warnx("Error returned from read defect data command");
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
goto defect_bailout;
}
} else if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
error = 1;
warnx("Error returned from read defect data command");
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
goto defect_bailout;
}
/*
* XXX KDM I should probably clean up the printout format for the
* disk defects.
*/
switch (returned_format & SRDDH10_DLIST_FORMAT_MASK){
case SRDDH10_PHYSICAL_SECTOR_FORMAT:
{
struct scsi_defect_desc_phys_sector *dlist;
dlist = (struct scsi_defect_desc_phys_sector *)
(defect_list +
sizeof(struct scsi_read_defect_data_hdr_10));
num_returned = returned_length /
sizeof(struct scsi_defect_desc_phys_sector);
fprintf(stderr, "Got %d defect", num_returned);
if ((lists_specified == 0) || (num_returned == 0)) {
fprintf(stderr, "s.\n");
break;
} else if (num_returned == 1)
fprintf(stderr, ":\n");
else
fprintf(stderr, "s:\n");
for (i = 0; i < num_returned; i++) {
fprintf(stdout, "%d:%d:%d\n",
scsi_3btoul(dlist[i].cylinder),
dlist[i].head,
scsi_4btoul(dlist[i].sector));
}
break;
}
case SRDDH10_BYTES_FROM_INDEX_FORMAT:
{
struct scsi_defect_desc_bytes_from_index *dlist;
dlist = (struct scsi_defect_desc_bytes_from_index *)
(defect_list +
sizeof(struct scsi_read_defect_data_hdr_10));
num_returned = returned_length /
sizeof(struct scsi_defect_desc_bytes_from_index);
fprintf(stderr, "Got %d defect", num_returned);
if ((lists_specified == 0) || (num_returned == 0)) {
fprintf(stderr, "s.\n");
break;
} else if (num_returned == 1)
fprintf(stderr, ":\n");
else
fprintf(stderr, "s:\n");
for (i = 0; i < num_returned; i++) {
fprintf(stdout, "%d:%d:%d\n",
scsi_3btoul(dlist[i].cylinder),
dlist[i].head,
scsi_4btoul(dlist[i].bytes_from_index));
}
break;
}
case SRDDH10_BLOCK_FORMAT:
{
struct scsi_defect_desc_block *dlist;
dlist = (struct scsi_defect_desc_block *)(defect_list +
sizeof(struct scsi_read_defect_data_hdr_10));
num_returned = returned_length /
sizeof(struct scsi_defect_desc_block);
fprintf(stderr, "Got %d defect", num_returned);
if ((lists_specified == 0) || (num_returned == 0)) {
fprintf(stderr, "s.\n");
break;
} else if (num_returned == 1)
fprintf(stderr, ":\n");
else
fprintf(stderr, "s:\n");
for (i = 0; i < num_returned; i++)
fprintf(stdout, "%u\n",
scsi_4btoul(dlist[i].address));
break;
}
default:
fprintf(stderr, "Unknown defect format %d\n",
returned_format & SRDDH10_DLIST_FORMAT_MASK);
error = 1;
break;
}
defect_bailout:
if (defect_list != NULL)
free(defect_list);
if (ccb != NULL)
cam_freeccb(ccb);
return(error);
}
#endif /* MINIMALISTIC */
#if 0
void
reassignblocks(struct cam_device *device, u_int32_t *blocks, int num_blocks)
{
union ccb *ccb;
ccb = cam_getccb(device);
cam_freeccb(ccb);
}
#endif
#ifndef MINIMALISTIC
void
mode_sense(struct cam_device *device, int mode_page, int page_control,
int dbd, int retry_count, int timeout, u_int8_t *data, int datalen)
{
union ccb *ccb;
int retval;
ccb = cam_getccb(device);
if (ccb == NULL)
errx(1, "mode_sense: couldn't allocate CCB");
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
scsi_mode_sense(&ccb->csio,
/* retries */ retry_count,
/* cbfcnp */ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* dbd */ dbd,
/* page_code */ page_control << 6,
/* page */ mode_page,
/* param_buf */ data,
/* param_len */ datalen,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 5000);
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (((retval = cam_send_ccb(device, ccb)) < 0)
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
cam_freeccb(ccb);
cam_close_device(device);
if (retval < 0)
err(1, "error sending mode sense command");
else
errx(1, "error sending mode sense command");
}
cam_freeccb(ccb);
}
void
mode_select(struct cam_device *device, int save_pages, int retry_count,
int timeout, u_int8_t *data, int datalen)
{
union ccb *ccb;
int retval;
ccb = cam_getccb(device);
if (ccb == NULL)
errx(1, "mode_select: couldn't allocate CCB");
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
scsi_mode_select(&ccb->csio,
/* retries */ retry_count,
/* cbfcnp */ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* scsi_page_fmt */ 1,
/* save_pages */ save_pages,
/* param_buf */ data,
/* param_len */ datalen,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ timeout ? timeout : 5000);
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (((retval = cam_send_ccb(device, ccb)) < 0)
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
cam_freeccb(ccb);
cam_close_device(device);
if (retval < 0)
err(1, "error sending mode select command");
else
errx(1, "error sending mode select command");
}
cam_freeccb(ccb);
}
void
modepage(struct cam_device *device, int argc, char **argv, char *combinedopt,
int retry_count, int timeout)
{
int c, mode_page = -1, page_control = 0;
int binary = 0, list = 0;
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c) {
case 'b':
binary = 1;
break;
case 'd':
arglist |= CAM_ARG_DBD;
break;
case 'e':
arglist |= CAM_ARG_MODE_EDIT;
break;
case 'l':
list = 1;
break;
case 'm':
mode_page = strtol(optarg, NULL, 0);
if (mode_page < 0)
errx(1, "invalid mode page %d", mode_page);
break;
case 'P':
page_control = strtol(optarg, NULL, 0);
if ((page_control < 0) || (page_control > 3))
errx(1, "invalid page control field %d",
page_control);
arglist |= CAM_ARG_PAGE_CNTL;
break;
default:
break;
}
}
if (mode_page == -1 && list == 0)
errx(1, "you must specify a mode page!");
if (list) {
mode_list(device, page_control, arglist & CAM_ARG_DBD,
retry_count, timeout);
} else {
mode_edit(device, mode_page, page_control,
arglist & CAM_ARG_DBD, arglist & CAM_ARG_MODE_EDIT, binary,
retry_count, timeout);
}
}
static int
scsicmd(struct cam_device *device, int argc, char **argv, char *combinedopt,
int retry_count, int timeout)
{
union ccb *ccb;
u_int32_t flags = CAM_DIR_NONE;
u_int8_t *data_ptr = NULL;
u_int8_t cdb[20];
u_int8_t atacmd[12];
struct get_hook hook;
int c, data_bytes = 0;
int cdb_len = 0;
int atacmd_len = 0;
int need_res = 0;
char *datastr = NULL, *tstr, *resstr = NULL;
int error = 0;
int fd_data = 0, fd_res = 0;
int retval;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("scsicmd: error allocating ccb");
return(1);
}
bzero(&(&ccb->ccb_h)[1],
sizeof(union ccb) - sizeof(struct ccb_hdr));
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c) {
case 'a':
tstr = optarg;
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
hook.argc = argc - optind;
hook.argv = argv + optind;
hook.got = 0;
atacmd_len = buff_encode_visit(atacmd, sizeof(atacmd), tstr,
iget, &hook);
/*
* Increment optind by the number of arguments the
* encoding routine processed. After each call to
* getopt(3), optind points to the argument that
* getopt should process _next_. In this case,
* that means it points to the first command string
* argument, if there is one. Once we increment
* this, it should point to either the next command
* line argument, or it should be past the end of
* the list.
*/
optind += hook.got;
break;
case 'c':
tstr = optarg;
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
hook.argc = argc - optind;
hook.argv = argv + optind;
hook.got = 0;
cdb_len = buff_encode_visit(cdb, sizeof(cdb), tstr,
iget, &hook);
/*
* Increment optind by the number of arguments the
* encoding routine processed. After each call to
* getopt(3), optind points to the argument that
* getopt should process _next_. In this case,
* that means it points to the first command string
* argument, if there is one. Once we increment
* this, it should point to either the next command
* line argument, or it should be past the end of
* the list.
*/
optind += hook.got;
break;
case 'i':
if (arglist & CAM_ARG_CMD_OUT) {
warnx("command must either be "
"read or write, not both");
error = 1;
goto scsicmd_bailout;
}
arglist |= CAM_ARG_CMD_IN;
flags = CAM_DIR_IN;
data_bytes = strtol(optarg, NULL, 0);
if (data_bytes <= 0) {
warnx("invalid number of input bytes %d",
data_bytes);
error = 1;
goto scsicmd_bailout;
}
hook.argc = argc - optind;
hook.argv = argv + optind;
hook.got = 0;
optind++;
datastr = cget(&hook, NULL);
/*
* If the user supplied "-" instead of a format, he
* wants the data to be written to stdout.
*/
if ((datastr != NULL)
&& (datastr[0] == '-'))
fd_data = 1;
data_ptr = (u_int8_t *)malloc(data_bytes);
if (data_ptr == NULL) {
warnx("can't malloc memory for data_ptr");
error = 1;
goto scsicmd_bailout;
}
break;
case 'o':
if (arglist & CAM_ARG_CMD_IN) {
warnx("command must either be "
"read or write, not both");
error = 1;
goto scsicmd_bailout;
}
arglist |= CAM_ARG_CMD_OUT;
flags = CAM_DIR_OUT;
data_bytes = strtol(optarg, NULL, 0);
if (data_bytes <= 0) {
warnx("invalid number of output bytes %d",
data_bytes);
error = 1;
goto scsicmd_bailout;
}
hook.argc = argc - optind;
hook.argv = argv + optind;
hook.got = 0;
datastr = cget(&hook, NULL);
data_ptr = (u_int8_t *)malloc(data_bytes);
if (data_ptr == NULL) {
warnx("can't malloc memory for data_ptr");
error = 1;
goto scsicmd_bailout;
}
/*
* If the user supplied "-" instead of a format, he
* wants the data to be read from stdin.
*/
if ((datastr != NULL)
&& (datastr[0] == '-'))
fd_data = 1;
else
buff_encode_visit(data_ptr, data_bytes, datastr,
iget, &hook);
optind += hook.got;
break;
case 'r':
need_res = 1;
hook.argc = argc - optind;
hook.argv = argv + optind;
hook.got = 0;
resstr = cget(&hook, NULL);
if ((resstr != NULL) && (resstr[0] == '-'))
fd_res = 1;
optind += hook.got;
break;
default:
break;
}
}
/*
* If fd_data is set, and we're writing to the device, we need to
* read the data the user wants written from stdin.
*/
if ((fd_data == 1) && (arglist & CAM_ARG_CMD_OUT)) {
ssize_t amt_read;
int amt_to_read = data_bytes;
u_int8_t *buf_ptr = data_ptr;
for (amt_read = 0; amt_to_read > 0;
amt_read = read(STDIN_FILENO, buf_ptr, amt_to_read)) {
if (amt_read == -1) {
warn("error reading data from stdin");
error = 1;
goto scsicmd_bailout;
}
amt_to_read -= amt_read;
buf_ptr += amt_read;
}
}
if (arglist & CAM_ARG_ERR_RECOVER)
flags |= CAM_PASS_ERR_RECOVER;
/* Disable freezing the device queue */
flags |= CAM_DEV_QFRZDIS;
if (cdb_len) {
/*
* This is taken from the SCSI-3 draft spec.
* (T10/1157D revision 0.3)
* The top 3 bits of an opcode are the group code.
* The next 5 bits are the command code.
* Group 0: six byte commands
* Group 1: ten byte commands
* Group 2: ten byte commands
* Group 3: reserved
* Group 4: sixteen byte commands
* Group 5: twelve byte commands
* Group 6: vendor specific
* Group 7: vendor specific
*/
switch((cdb[0] >> 5) & 0x7) {
case 0:
cdb_len = 6;
break;
case 1:
case 2:
cdb_len = 10;
break;
case 3:
case 6:
case 7:
/* computed by buff_encode_visit */
break;
case 4:
cdb_len = 16;
break;
case 5:
cdb_len = 12;
break;
}
/*
* We should probably use csio_build_visit or something like that
* here, but it's easier to encode arguments as you go. The
* alternative would be skipping the CDB argument and then encoding
* it here, since we've got the data buffer argument by now.
*/
bcopy(cdb, &ccb->csio.cdb_io.cdb_bytes, cdb_len);
cam_fill_csio(&ccb->csio,
/*retries*/ retry_count,
/*cbfcnp*/ NULL,
/*flags*/ flags,
/*tag_action*/ MSG_SIMPLE_Q_TAG,
/*data_ptr*/ data_ptr,
/*dxfer_len*/ data_bytes,
/*sense_len*/ SSD_FULL_SIZE,
/*cdb_len*/ cdb_len,
/*timeout*/ timeout ? timeout : 5000);
} else {
atacmd_len = 12;
bcopy(atacmd, &ccb->ataio.cmd.command, atacmd_len);
if (need_res)
ccb->ataio.cmd.flags |= CAM_ATAIO_NEEDRESULT;
cam_fill_ataio(&ccb->ataio,
/*retries*/ retry_count,
/*cbfcnp*/ NULL,
/*flags*/ flags,
/*tag_action*/ 0,
/*data_ptr*/ data_ptr,
/*dxfer_len*/ data_bytes,
/*timeout*/ timeout ? timeout : 5000);
}
if (((retval = cam_send_ccb(device, ccb)) < 0)
|| ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
if (retval < 0)
warn("error sending command");
else
warnx("error sending command");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
error = 1;
goto scsicmd_bailout;
}
if (atacmd_len && need_res) {
if (fd_res == 0) {
buff_decode_visit(&ccb->ataio.res.status, 11, resstr,
arg_put, NULL);
fprintf(stdout, "\n");
} else {
fprintf(stdout,
"%02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X\n",
ccb->ataio.res.status,
ccb->ataio.res.error,
ccb->ataio.res.lba_low,
ccb->ataio.res.lba_mid,
ccb->ataio.res.lba_high,
ccb->ataio.res.device,
ccb->ataio.res.lba_low_exp,
ccb->ataio.res.lba_mid_exp,
ccb->ataio.res.lba_high_exp,
ccb->ataio.res.sector_count,
ccb->ataio.res.sector_count_exp);
fflush(stdout);
}
}
if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
&& (arglist & CAM_ARG_CMD_IN)
&& (data_bytes > 0)) {
if (fd_data == 0) {
buff_decode_visit(data_ptr, data_bytes, datastr,
arg_put, NULL);
fprintf(stdout, "\n");
} else {
ssize_t amt_written;
int amt_to_write = data_bytes;
u_int8_t *buf_ptr = data_ptr;
for (amt_written = 0; (amt_to_write > 0) &&
(amt_written =write(1, buf_ptr,amt_to_write))> 0;){
amt_to_write -= amt_written;
buf_ptr += amt_written;
}
if (amt_written == -1) {
warn("error writing data to stdout");
error = 1;
goto scsicmd_bailout;
} else if ((amt_written == 0)
&& (amt_to_write > 0)) {
warnx("only wrote %u bytes out of %u",
data_bytes - amt_to_write, data_bytes);
}
}
}
scsicmd_bailout:
if ((data_bytes > 0) && (data_ptr != NULL))
free(data_ptr);
cam_freeccb(ccb);
return(error);
}
static int
camdebug(int argc, char **argv, char *combinedopt)
{
int c, fd;
int bus = -1, target = -1, lun = -1;
char *tstr, *tmpstr = NULL;
union ccb ccb;
int error = 0;
bzero(&ccb, sizeof(union ccb));
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c) {
case 'I':
arglist |= CAM_ARG_DEBUG_INFO;
ccb.cdbg.flags |= CAM_DEBUG_INFO;
break;
case 'P':
arglist |= CAM_ARG_DEBUG_PERIPH;
ccb.cdbg.flags |= CAM_DEBUG_PERIPH;
break;
case 'S':
arglist |= CAM_ARG_DEBUG_SUBTRACE;
ccb.cdbg.flags |= CAM_DEBUG_SUBTRACE;
break;
case 'T':
arglist |= CAM_ARG_DEBUG_TRACE;
ccb.cdbg.flags |= CAM_DEBUG_TRACE;
break;
case 'X':
arglist |= CAM_ARG_DEBUG_XPT;
ccb.cdbg.flags |= CAM_DEBUG_XPT;
break;
case 'c':
arglist |= CAM_ARG_DEBUG_CDB;
ccb.cdbg.flags |= CAM_DEBUG_CDB;
break;
default:
break;
}
}
if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) {
warnx("error opening transport layer device %s", XPT_DEVICE);
warn("%s", XPT_DEVICE);
return(1);
}
argc -= optind;
argv += optind;
if (argc <= 0) {
warnx("you must specify \"off\", \"all\" or a bus,");
warnx("bus:target, or bus:target:lun");
close(fd);
return(1);
}
tstr = *argv;
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
if (strncmp(tstr, "off", 3) == 0) {
ccb.cdbg.flags = CAM_DEBUG_NONE;
arglist &= ~(CAM_ARG_DEBUG_INFO|CAM_ARG_DEBUG_PERIPH|
CAM_ARG_DEBUG_TRACE|CAM_ARG_DEBUG_SUBTRACE|
CAM_ARG_DEBUG_XPT);
} else if (strncmp(tstr, "all", 3) != 0) {
tmpstr = (char *)strtok(tstr, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')){
bus = strtol(tmpstr, NULL, 0);
arglist |= CAM_ARG_BUS;
tmpstr = (char *)strtok(NULL, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')){
target = strtol(tmpstr, NULL, 0);
arglist |= CAM_ARG_TARGET;
tmpstr = (char *)strtok(NULL, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')){
lun = strtol(tmpstr, NULL, 0);
arglist |= CAM_ARG_LUN;
}
}
} else {
error = 1;
warnx("you must specify \"all\", \"off\", or a bus,");
warnx("bus:target, or bus:target:lun to debug");
}
}
if (error == 0) {
ccb.ccb_h.func_code = XPT_DEBUG;
ccb.ccb_h.path_id = bus;
ccb.ccb_h.target_id = target;
ccb.ccb_h.target_lun = lun;
if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) {
warn("CAMIOCOMMAND ioctl failed");
error = 1;
}
if (error == 0) {
if ((ccb.ccb_h.status & CAM_STATUS_MASK) ==
CAM_FUNC_NOTAVAIL) {
warnx("CAM debugging not available");
warnx("you need to put options CAMDEBUG in"
" your kernel config file!");
error = 1;
} else if ((ccb.ccb_h.status & CAM_STATUS_MASK) !=
CAM_REQ_CMP) {
warnx("XPT_DEBUG CCB failed with status %#x",
ccb.ccb_h.status);
error = 1;
} else {
if (ccb.cdbg.flags == CAM_DEBUG_NONE) {
fprintf(stderr,
"Debugging turned off\n");
} else {
fprintf(stderr,
"Debugging enabled for "
"%d:%d:%d\n",
bus, target, lun);
}
}
}
close(fd);
}
return(error);
}
static int
tagcontrol(struct cam_device *device, int argc, char **argv,
char *combinedopt)
{
int c;
union ccb *ccb;
int numtags = -1;
int retval = 0;
int quiet = 0;
char pathstr[1024];
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("tagcontrol: error allocating ccb");
return(1);
}
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c) {
case 'N':
numtags = strtol(optarg, NULL, 0);
if (numtags < 0) {
warnx("tag count %d is < 0", numtags);
retval = 1;
goto tagcontrol_bailout;
}
break;
case 'q':
quiet++;
break;
default:
break;
}
}
cam_path_string(device, pathstr, sizeof(pathstr));
if (numtags >= 0) {
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_relsim) - sizeof(struct ccb_hdr));
ccb->ccb_h.func_code = XPT_REL_SIMQ;
ccb->crs.release_flags = RELSIM_ADJUST_OPENINGS;
ccb->crs.openings = numtags;
if (cam_send_ccb(device, ccb) < 0) {
perror("error sending XPT_REL_SIMQ CCB");
retval = 1;
goto tagcontrol_bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
warnx("XPT_REL_SIMQ CCB failed");
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto tagcontrol_bailout;
}
if (quiet == 0)
fprintf(stdout, "%stagged openings now %d\n",
pathstr, ccb->crs.openings);
}
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_getdevstats) - sizeof(struct ccb_hdr));
ccb->ccb_h.func_code = XPT_GDEV_STATS;
if (cam_send_ccb(device, ccb) < 0) {
perror("error sending XPT_GDEV_STATS CCB");
retval = 1;
goto tagcontrol_bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
warnx("XPT_GDEV_STATS CCB failed");
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto tagcontrol_bailout;
}
if (arglist & CAM_ARG_VERBOSE) {
fprintf(stdout, "%s", pathstr);
fprintf(stdout, "dev_openings %d\n", ccb->cgds.dev_openings);
fprintf(stdout, "%s", pathstr);
fprintf(stdout, "dev_active %d\n", ccb->cgds.dev_active);
fprintf(stdout, "%s", pathstr);
fprintf(stdout, "devq_openings %d\n", ccb->cgds.devq_openings);
fprintf(stdout, "%s", pathstr);
fprintf(stdout, "devq_queued %d\n", ccb->cgds.devq_queued);
fprintf(stdout, "%s", pathstr);
fprintf(stdout, "held %d\n", ccb->cgds.held);
fprintf(stdout, "%s", pathstr);
fprintf(stdout, "mintags %d\n", ccb->cgds.mintags);
fprintf(stdout, "%s", pathstr);
fprintf(stdout, "maxtags %d\n", ccb->cgds.maxtags);
} else {
if (quiet == 0) {
fprintf(stdout, "%s", pathstr);
fprintf(stdout, "device openings: ");
}
fprintf(stdout, "%d\n", ccb->cgds.dev_openings +
ccb->cgds.dev_active);
}
tagcontrol_bailout:
cam_freeccb(ccb);
return(retval);
}
static void
cts_print(struct cam_device *device, struct ccb_trans_settings *cts)
{
char pathstr[1024];
cam_path_string(device, pathstr, sizeof(pathstr));
if (cts->transport == XPORT_SPI) {
struct ccb_trans_settings_spi *spi =
&cts->xport_specific.spi;
if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0) {
fprintf(stdout, "%ssync parameter: %d\n", pathstr,
spi->sync_period);
if (spi->sync_offset != 0) {
u_int freq;
freq = scsi_calc_syncsrate(spi->sync_period);
fprintf(stdout, "%sfrequency: %d.%03dMHz\n",
pathstr, freq / 1000, freq % 1000);
}
}
if (spi->valid & CTS_SPI_VALID_SYNC_OFFSET) {
fprintf(stdout, "%soffset: %d\n", pathstr,
spi->sync_offset);
}
if (spi->valid & CTS_SPI_VALID_BUS_WIDTH) {
fprintf(stdout, "%sbus width: %d bits\n", pathstr,
(0x01 << spi->bus_width) * 8);
}
if (spi->valid & CTS_SPI_VALID_DISC) {
fprintf(stdout, "%sdisconnection is %s\n", pathstr,
(spi->flags & CTS_SPI_FLAGS_DISC_ENB) ?
"enabled" : "disabled");
}
}
if (cts->protocol == PROTO_SCSI) {
struct ccb_trans_settings_scsi *scsi=
&cts->proto_specific.scsi;
if (scsi->valid & CTS_SCSI_VALID_TQ) {
fprintf(stdout, "%stagged queueing is %s\n", pathstr,
(scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) ?
"enabled" : "disabled");
}
}
}
/*
* Get a path inquiry CCB for the specified device.
*/
static int
get_cpi(struct cam_device *device, struct ccb_pathinq *cpi)
{
union ccb *ccb;
int retval = 0;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("get_cpi: couldn't allocate CCB");
return(1);
}
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_pathinq) - sizeof(struct ccb_hdr));
ccb->ccb_h.func_code = XPT_PATH_INQ;
if (cam_send_ccb(device, ccb) < 0) {
warn("get_cpi: error sending Path Inquiry CCB");
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto get_cpi_bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto get_cpi_bailout;
}
bcopy(&ccb->cpi, cpi, sizeof(struct ccb_pathinq));
get_cpi_bailout:
cam_freeccb(ccb);
return(retval);
}
/*
* Get a get device CCB for the specified device.
*/
static int
get_cgd(struct cam_device *device, struct ccb_getdev *cgd)
{
union ccb *ccb;
int retval = 0;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("get_cgd: couldn't allocate CCB");
return(1);
}
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_pathinq) - sizeof(struct ccb_hdr));
ccb->ccb_h.func_code = XPT_GDEV_TYPE;
if (cam_send_ccb(device, ccb) < 0) {
warn("get_cgd: error sending Path Inquiry CCB");
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto get_cgd_bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto get_cgd_bailout;
}
bcopy(&ccb->cgd, cgd, sizeof(struct ccb_getdev));
get_cgd_bailout:
cam_freeccb(ccb);
return(retval);
}
static void
cpi_print(struct ccb_pathinq *cpi)
{
char adapter_str[1024];
int i;
snprintf(adapter_str, sizeof(adapter_str),
"%s%d:", cpi->dev_name, cpi->unit_number);
fprintf(stdout, "%s SIM/HBA version: %d\n", adapter_str,
cpi->version_num);
for (i = 1; i < 0xff; i = i << 1) {
const char *str;
if ((i & cpi->hba_inquiry) == 0)
continue;
fprintf(stdout, "%s supports ", adapter_str);
switch(i) {
case PI_MDP_ABLE:
str = "MDP message";
break;
case PI_WIDE_32:
str = "32 bit wide SCSI";
break;
case PI_WIDE_16:
str = "16 bit wide SCSI";
break;
case PI_SDTR_ABLE:
str = "SDTR message";
break;
case PI_LINKED_CDB:
str = "linked CDBs";
break;
case PI_TAG_ABLE:
str = "tag queue messages";
break;
case PI_SOFT_RST:
str = "soft reset alternative";
break;
case PI_SATAPM:
str = "SATA Port Multiplier";
break;
default:
str = "unknown PI bit set";
break;
}
fprintf(stdout, "%s\n", str);
}
for (i = 1; i < 0xff; i = i << 1) {
const char *str;
if ((i & cpi->hba_misc) == 0)
continue;
fprintf(stdout, "%s ", adapter_str);
switch(i) {
case PIM_SCANHILO:
str = "bus scans from high ID to low ID";
break;
case PIM_NOREMOVE:
str = "removable devices not included in scan";
break;
case PIM_NOINITIATOR:
str = "initiator role not supported";
break;
case PIM_NOBUSRESET:
str = "user has disabled initial BUS RESET or"
" controller is in target/mixed mode";
break;
case PIM_NO_6_BYTE:
str = "do not send 6-byte commands";
break;
case PIM_SEQSCAN:
str = "scan bus sequentially";
break;
default:
str = "unknown PIM bit set";
break;
}
fprintf(stdout, "%s\n", str);
}
for (i = 1; i < 0xff; i = i << 1) {
const char *str;
if ((i & cpi->target_sprt) == 0)
continue;
fprintf(stdout, "%s supports ", adapter_str);
switch(i) {
case PIT_PROCESSOR:
str = "target mode processor mode";
break;
case PIT_PHASE:
str = "target mode phase cog. mode";
break;
case PIT_DISCONNECT:
str = "disconnects in target mode";
break;
case PIT_TERM_IO:
str = "terminate I/O message in target mode";
break;
case PIT_GRP_6:
str = "group 6 commands in target mode";
break;
case PIT_GRP_7:
str = "group 7 commands in target mode";
break;
default:
str = "unknown PIT bit set";
break;
}
fprintf(stdout, "%s\n", str);
}
fprintf(stdout, "%s HBA engine count: %d\n", adapter_str,
cpi->hba_eng_cnt);
fprintf(stdout, "%s maximum target: %d\n", adapter_str,
cpi->max_target);
fprintf(stdout, "%s maximum LUN: %d\n", adapter_str,
cpi->max_lun);
fprintf(stdout, "%s highest path ID in subsystem: %d\n",
adapter_str, cpi->hpath_id);
fprintf(stdout, "%s initiator ID: %d\n", adapter_str,
cpi->initiator_id);
fprintf(stdout, "%s SIM vendor: %s\n", adapter_str, cpi->sim_vid);
fprintf(stdout, "%s HBA vendor: %s\n", adapter_str, cpi->hba_vid);
fprintf(stdout, "%s bus ID: %d\n", adapter_str, cpi->bus_id);
fprintf(stdout, "%s base transfer speed: ", adapter_str);
if (cpi->base_transfer_speed > 1000)
fprintf(stdout, "%d.%03dMB/sec\n",
cpi->base_transfer_speed / 1000,
cpi->base_transfer_speed % 1000);
else
fprintf(stdout, "%dKB/sec\n",
(cpi->base_transfer_speed % 1000) * 1000);
}
static int
get_print_cts(struct cam_device *device, int user_settings, int quiet,
struct ccb_trans_settings *cts)
{
int retval;
union ccb *ccb;
retval = 0;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("get_print_cts: error allocating ccb");
return(1);
}
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_trans_settings) - sizeof(struct ccb_hdr));
ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
if (user_settings == 0)
ccb->cts.type = CTS_TYPE_CURRENT_SETTINGS;
else
ccb->cts.type = CTS_TYPE_USER_SETTINGS;
if (cam_send_ccb(device, ccb) < 0) {
perror("error sending XPT_GET_TRAN_SETTINGS CCB");
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto get_print_cts_bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
warnx("XPT_GET_TRANS_SETTINGS CCB failed");
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto get_print_cts_bailout;
}
if (quiet == 0)
cts_print(device, &ccb->cts);
if (cts != NULL)
bcopy(&ccb->cts, cts, sizeof(struct ccb_trans_settings));
get_print_cts_bailout:
cam_freeccb(ccb);
return(retval);
}
static int
ratecontrol(struct cam_device *device, int retry_count, int timeout,
int argc, char **argv, char *combinedopt)
{
int c;
union ccb *ccb;
int user_settings = 0;
int retval = 0;
int disc_enable = -1, tag_enable = -1;
int offset = -1;
double syncrate = -1;
int bus_width = -1;
int quiet = 0;
int change_settings = 0, send_tur = 0;
struct ccb_pathinq cpi;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("ratecontrol: error allocating ccb");
return(1);
}
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c){
case 'a':
send_tur = 1;
break;
case 'c':
user_settings = 0;
break;
case 'D':
if (strncasecmp(optarg, "enable", 6) == 0)
disc_enable = 1;
else if (strncasecmp(optarg, "disable", 7) == 0)
disc_enable = 0;
else {
warnx("-D argument \"%s\" is unknown", optarg);
retval = 1;
goto ratecontrol_bailout;
}
change_settings = 1;
break;
case 'O':
offset = strtol(optarg, NULL, 0);
if (offset < 0) {
warnx("offset value %d is < 0", offset);
retval = 1;
goto ratecontrol_bailout;
}
change_settings = 1;
break;
case 'q':
quiet++;
break;
case 'R':
syncrate = atof(optarg);
if (syncrate < 0) {
warnx("sync rate %f is < 0", syncrate);
retval = 1;
goto ratecontrol_bailout;
}
change_settings = 1;
break;
case 'T':
if (strncasecmp(optarg, "enable", 6) == 0)
tag_enable = 1;
else if (strncasecmp(optarg, "disable", 7) == 0)
tag_enable = 0;
else {
warnx("-T argument \"%s\" is unknown", optarg);
retval = 1;
goto ratecontrol_bailout;
}
change_settings = 1;
break;
case 'U':
user_settings = 1;
break;
case 'W':
bus_width = strtol(optarg, NULL, 0);
if (bus_width < 0) {
warnx("bus width %d is < 0", bus_width);
retval = 1;
goto ratecontrol_bailout;
}
change_settings = 1;
break;
default:
break;
}
}
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_pathinq) - sizeof(struct ccb_hdr));
/*
* Grab path inquiry information, so we can determine whether
* or not the initiator is capable of the things that the user
* requests.
*/
ccb->ccb_h.func_code = XPT_PATH_INQ;
if (cam_send_ccb(device, ccb) < 0) {
perror("error sending XPT_PATH_INQ CCB");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
retval = 1;
goto ratecontrol_bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
warnx("XPT_PATH_INQ CCB failed");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
retval = 1;
goto ratecontrol_bailout;
}
bcopy(&ccb->cpi, &cpi, sizeof(struct ccb_pathinq));
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_trans_settings) - sizeof(struct ccb_hdr));
if (quiet == 0)
fprintf(stdout, "Current Parameters:\n");
retval = get_print_cts(device, user_settings, quiet, &ccb->cts);
if (retval != 0)
goto ratecontrol_bailout;
if (arglist & CAM_ARG_VERBOSE)
cpi_print(&cpi);
if (change_settings) {
int didsettings = 0;
struct ccb_trans_settings_spi *spi = NULL;
struct ccb_trans_settings_scsi *scsi = NULL;
if (ccb->cts.transport == XPORT_SPI) {
spi = &ccb->cts.xport_specific.spi;
spi->valid = 0;
}
if (ccb->cts.protocol == PROTO_SCSI) {
scsi = &ccb->cts.proto_specific.scsi;
scsi->valid = 0;
}
if (spi && disc_enable != -1) {
spi->valid |= CTS_SPI_VALID_DISC;
if (disc_enable == 0)
spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
else
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
}
if (scsi && tag_enable != -1) {
if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0) {
warnx("HBA does not support tagged queueing, "
"so you cannot modify tag settings");
retval = 1;
goto ratecontrol_bailout;
}
scsi->valid |= CTS_SCSI_VALID_TQ;
if (tag_enable == 0)
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
else
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
didsettings++;
}
if (spi && offset != -1) {
if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) {
warnx("HBA at %s%d is not cable of changing "
"offset", cpi.dev_name,
cpi.unit_number);
retval = 1;
goto ratecontrol_bailout;
}
spi->valid |= CTS_SPI_VALID_SYNC_OFFSET;
spi->sync_offset = offset;
didsettings++;
}
if (spi && syncrate != -1) {
int prelim_sync_period;
u_int freq;
if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) {
warnx("HBA at %s%d is not cable of changing "
"transfer rates", cpi.dev_name,
cpi.unit_number);
retval = 1;
goto ratecontrol_bailout;
}
spi->valid |= CTS_SPI_VALID_SYNC_RATE;
/*
* The sync rate the user gives us is in MHz.
* We need to translate it into KHz for this
* calculation.
*/
syncrate *= 1000;
/*
* Next, we calculate a "preliminary" sync period
* in tenths of a nanosecond.
*/
if (syncrate == 0)
prelim_sync_period = 0;
else
prelim_sync_period = 10000000 / syncrate;
spi->sync_period =
scsi_calc_syncparam(prelim_sync_period);
freq = scsi_calc_syncsrate(spi->sync_period);
didsettings++;
}
/*
* The bus_width argument goes like this:
* 0 == 8 bit
* 1 == 16 bit
* 2 == 32 bit
* Therefore, if you shift the number of bits given on the
* command line right by 4, you should get the correct
* number.
*/
if (spi && bus_width != -1) {
/*
* We might as well validate things here with a
* decipherable error message, rather than what
* will probably be an indecipherable error message
* by the time it gets back to us.
*/
if ((bus_width == 16)
&& ((cpi.hba_inquiry & PI_WIDE_16) == 0)) {
warnx("HBA does not support 16 bit bus width");
retval = 1;
goto ratecontrol_bailout;
} else if ((bus_width == 32)
&& ((cpi.hba_inquiry & PI_WIDE_32) == 0)) {
warnx("HBA does not support 32 bit bus width");
retval = 1;
goto ratecontrol_bailout;
} else if ((bus_width != 8)
&& (bus_width != 16)
&& (bus_width != 32)) {
warnx("Invalid bus width %d", bus_width);
retval = 1;
goto ratecontrol_bailout;
}
spi->valid |= CTS_SPI_VALID_BUS_WIDTH;
spi->bus_width = bus_width >> 4;
didsettings++;
}
if (didsettings == 0) {
goto ratecontrol_bailout;
}
ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
if (cam_send_ccb(device, ccb) < 0) {
perror("error sending XPT_SET_TRAN_SETTINGS CCB");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
retval = 1;
goto ratecontrol_bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
warnx("XPT_SET_TRANS_SETTINGS CCB failed");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
retval = 1;
goto ratecontrol_bailout;
}
}
if (send_tur) {
retval = testunitready(device, retry_count, timeout,
(arglist & CAM_ARG_VERBOSE) ? 0 : 1);
/*
* If the TUR didn't succeed, just bail.
*/
if (retval != 0) {
if (quiet == 0)
fprintf(stderr, "Test Unit Ready failed\n");
goto ratecontrol_bailout;
}
/*
* If the user wants things quiet, there's no sense in
* getting the transfer settings, if we're not going
* to print them.
*/
if (quiet != 0)
goto ratecontrol_bailout;
fprintf(stdout, "New Parameters:\n");
retval = get_print_cts(device, user_settings, 0, NULL);
}
ratecontrol_bailout:
cam_freeccb(ccb);
return(retval);
}
static int
scsiformat(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout)
{
union ccb *ccb;
int c;
int ycount = 0, quiet = 0;
int error = 0, response = 0, retval = 0;
int use_timeout = 10800 * 1000;
int immediate = 1;
struct format_defect_list_header fh;
u_int8_t *data_ptr = NULL;
u_int32_t dxfer_len = 0;
u_int8_t byte2 = 0;
int num_warnings = 0;
int reportonly = 0;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("scsiformat: error allocating ccb");
return(1);
}
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch(c) {
case 'q':
quiet++;
break;
case 'r':
reportonly = 1;
break;
case 'w':
immediate = 0;
break;
case 'y':
ycount++;
break;
}
}
if (reportonly)
goto doreport;
if (quiet == 0) {
fprintf(stdout, "You are about to REMOVE ALL DATA from the "
"following device:\n");
error = scsidoinquiry(device, argc, argv, combinedopt,
retry_count, timeout);
if (error != 0) {
warnx("scsiformat: error sending inquiry");
goto scsiformat_bailout;
}
}
if (ycount == 0) {
do {
char str[1024];
fprintf(stdout, "Are you SURE you want to do "
"this? (yes/no) ");
if (fgets(str, sizeof(str), stdin) != NULL) {
if (strncasecmp(str, "yes", 3) == 0)
response = 1;
else if (strncasecmp(str, "no", 2) == 0)
response = -1;
else {
fprintf(stdout, "Please answer"
" \"yes\" or \"no\"\n");
}
}
} while (response == 0);
if (response == -1) {
error = 1;
goto scsiformat_bailout;
}
}
if (timeout != 0)
use_timeout = timeout;
if (quiet == 0) {
fprintf(stdout, "Current format timeout is %d seconds\n",
use_timeout / 1000);
}
/*
* If the user hasn't disabled questions and didn't specify a
* timeout on the command line, ask them if they want the current
* timeout.
*/
if ((ycount == 0)
&& (timeout == 0)) {
char str[1024];
int new_timeout = 0;
fprintf(stdout, "Enter new timeout in seconds or press\n"
"return to keep the current timeout [%d] ",
use_timeout / 1000);
if (fgets(str, sizeof(str), stdin) != NULL) {
if (str[0] != '\0')
new_timeout = atoi(str);
}
if (new_timeout != 0) {
use_timeout = new_timeout * 1000;
fprintf(stdout, "Using new timeout value %d\n",
use_timeout / 1000);
}
}
/*
* Keep this outside the if block below to silence any unused
* variable warnings.
*/
bzero(&fh, sizeof(fh));
/*
* If we're in immediate mode, we've got to include the format
* header
*/
if (immediate != 0) {
fh.byte2 = FU_DLH_IMMED;
data_ptr = (u_int8_t *)&fh;
dxfer_len = sizeof(fh);
byte2 = FU_FMT_DATA;
} else if (quiet == 0) {
fprintf(stdout, "Formatting...");
fflush(stdout);
}
scsi_format_unit(&ccb->csio,
/* retries */ retry_count,
/* cbfcnp */ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* byte2 */ byte2,
/* ileave */ 0,
/* data_ptr */ data_ptr,
/* dxfer_len */ dxfer_len,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ use_timeout);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (((retval = cam_send_ccb(device, ccb)) < 0)
|| ((immediate == 0)
&& ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP))) {
const char errstr[] = "error sending format command";
if (retval < 0)
warn(errstr);
else
warnx(errstr);
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
error = 1;
goto scsiformat_bailout;
}
/*
* If we ran in non-immediate mode, we already checked for errors
* above and printed out any necessary information. If we're in
* immediate mode, we need to loop through and get status
* information periodically.
*/
if (immediate == 0) {
if (quiet == 0) {
fprintf(stdout, "Format Complete\n");
}
goto scsiformat_bailout;
}
doreport:
do {
cam_status status;
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
/*
* There's really no need to do error recovery or
* retries here, since we're just going to sit in a
* loop and wait for the device to finish formatting.
*/
scsi_test_unit_ready(&ccb->csio,
/* retries */ 0,
/* cbfcnp */ NULL,
/* tag_action */ MSG_SIMPLE_Q_TAG,
/* sense_len */ SSD_FULL_SIZE,
/* timeout */ 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
retval = cam_send_ccb(device, ccb);
/*
* If we get an error from the ioctl, bail out. SCSI
* errors are expected.
*/
if (retval < 0) {
warn("error sending CAMIOCOMMAND ioctl");
if (arglist & CAM_ARG_VERBOSE) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
error = 1;
goto scsiformat_bailout;
}
status = ccb->ccb_h.status & CAM_STATUS_MASK;
if ((status != CAM_REQ_CMP)
&& (status == CAM_SCSI_STATUS_ERROR)
&& ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)) {
struct scsi_sense_data *sense;
int error_code, sense_key, asc, ascq;
sense = &ccb->csio.sense_data;
scsi_extract_sense(sense, &error_code, &sense_key,
&asc, &ascq);
/*
* According to the SCSI-2 and SCSI-3 specs, a
* drive that is in the middle of a format should
* return NOT READY with an ASC of "logical unit
* not ready, format in progress". The sense key
* specific bytes will then be a progress indicator.
*/
if ((sense_key == SSD_KEY_NOT_READY)
&& (asc == 0x04) && (ascq == 0x04)) {
if ((sense->extra_len >= 10)
&& ((sense->sense_key_spec[0] &
SSD_SCS_VALID) != 0)
&& (quiet == 0)) {
int val;
u_int64_t percentage;
val = scsi_2btoul(
&sense->sense_key_spec[1]);
percentage = 10000 * val;
fprintf(stdout,
"\rFormatting: %ju.%02u %% "
"(%d/%d) done",
(uintmax_t)(percentage /
(0x10000 * 100)),
(unsigned)((percentage /
0x10000) % 100),
val, 0x10000);
fflush(stdout);
} else if ((quiet == 0)
&& (++num_warnings <= 1)) {
warnx("Unexpected SCSI Sense Key "
"Specific value returned "
"during format:");
scsi_sense_print(device, &ccb->csio,
stderr);
warnx("Unable to print status "
"information, but format will "
"proceed.");
warnx("will exit when format is "
"complete");
}
sleep(1);
} else {
warnx("Unexpected SCSI error during format");
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
error = 1;
goto scsiformat_bailout;
}
} else if (status != CAM_REQ_CMP) {
warnx("Unexpected CAM status %#x", status);
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
error = 1;
goto scsiformat_bailout;
}
} while((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP);
if (quiet == 0)
fprintf(stdout, "\nFormat Complete\n");
scsiformat_bailout:
cam_freeccb(ccb);
return(error);
}
static int
scsireportluns(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout)
{
union ccb *ccb;
int c, countonly, lunsonly;
struct scsi_report_luns_data *lundata;
int alloc_len;
uint8_t report_type;
uint32_t list_len, i, j;
int retval;
retval = 0;
lundata = NULL;
report_type = RPL_REPORT_DEFAULT;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("%s: error allocating ccb", __func__);
return (1);
}
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
countonly = 0;
lunsonly = 0;
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'c':
countonly++;
break;
case 'l':
lunsonly++;
break;
case 'r':
if (strcasecmp(optarg, "default") == 0)
report_type = RPL_REPORT_DEFAULT;
else if (strcasecmp(optarg, "wellknown") == 0)
report_type = RPL_REPORT_WELLKNOWN;
else if (strcasecmp(optarg, "all") == 0)
report_type = RPL_REPORT_ALL;
else {
warnx("%s: invalid report type \"%s\"",
__func__, optarg);
retval = 1;
goto bailout;
}
break;
default:
break;
}
}
if ((countonly != 0)
&& (lunsonly != 0)) {
warnx("%s: you can only specify one of -c or -l", __func__);
retval = 1;
goto bailout;
}
/*
* According to SPC-4, the allocation length must be at least 16
* bytes -- enough for the header and one LUN.
*/
alloc_len = sizeof(*lundata) + 8;
retry:
lundata = malloc(alloc_len);
if (lundata == NULL) {
warn("%s: error mallocing %d bytes", __func__, alloc_len);
retval = 1;
goto bailout;
}
scsi_report_luns(&ccb->csio,
/*retries*/ retry_count,
/*cbfcnp*/ NULL,
/*tag_action*/ MSG_SIMPLE_Q_TAG,
/*select_report*/ report_type,
/*rpl_buf*/ lundata,
/*alloc_len*/ alloc_len,
/*sense_len*/ SSD_FULL_SIZE,
/*timeout*/ timeout ? timeout : 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
warn("error sending REPORT LUNS command");
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
retval = 1;
goto bailout;
}
list_len = scsi_4btoul(lundata->length);
/*
* If we need to list the LUNs, and our allocation
* length was too short, reallocate and retry.
*/
if ((countonly == 0)
&& (list_len > (alloc_len - sizeof(*lundata)))) {
alloc_len = list_len + sizeof(*lundata);
free(lundata);
goto retry;
}
if (lunsonly == 0)
fprintf(stdout, "%u LUN%s found\n", list_len / 8,
((list_len / 8) > 1) ? "s" : "");
if (countonly != 0)
goto bailout;
for (i = 0; i < (list_len / 8); i++) {
int no_more;
no_more = 0;
for (j = 0; j < sizeof(lundata->luns[i].lundata); j += 2) {
if (j != 0)
fprintf(stdout, ",");
switch (lundata->luns[i].lundata[j] &
RPL_LUNDATA_ATYP_MASK) {
case RPL_LUNDATA_ATYP_PERIPH:
if ((lundata->luns[i].lundata[j] &
RPL_LUNDATA_PERIPH_BUS_MASK) != 0)
fprintf(stdout, "%d:",
lundata->luns[i].lundata[j] &
RPL_LUNDATA_PERIPH_BUS_MASK);
else if ((j == 0)
&& ((lundata->luns[i].lundata[j+2] &
RPL_LUNDATA_PERIPH_BUS_MASK) == 0))
no_more = 1;
fprintf(stdout, "%d",
lundata->luns[i].lundata[j+1]);
break;
case RPL_LUNDATA_ATYP_FLAT: {
uint8_t tmplun[2];
tmplun[0] = lundata->luns[i].lundata[j] &
RPL_LUNDATA_FLAT_LUN_MASK;
tmplun[1] = lundata->luns[i].lundata[j+1];
fprintf(stdout, "%d", scsi_2btoul(tmplun));
no_more = 1;
break;
}
case RPL_LUNDATA_ATYP_LUN:
fprintf(stdout, "%d:%d:%d",
(lundata->luns[i].lundata[j+1] &
RPL_LUNDATA_LUN_BUS_MASK) >> 5,
lundata->luns[i].lundata[j] &
RPL_LUNDATA_LUN_TARG_MASK,
lundata->luns[i].lundata[j+1] &
RPL_LUNDATA_LUN_LUN_MASK);
break;
case RPL_LUNDATA_ATYP_EXTLUN: {
int field_len, field_len_code, eam_code;
eam_code = lundata->luns[i].lundata[j] &
RPL_LUNDATA_EXT_EAM_MASK;
field_len_code = (lundata->luns[i].lundata[j] &
RPL_LUNDATA_EXT_LEN_MASK) >> 4;
field_len = field_len_code * 2;
if ((eam_code == RPL_LUNDATA_EXT_EAM_WK)
&& (field_len_code == 0x00)) {
fprintf(stdout, "%d",
lundata->luns[i].lundata[j+1]);
} else if ((eam_code ==
RPL_LUNDATA_EXT_EAM_NOT_SPEC)
&& (field_len_code == 0x03)) {
uint8_t tmp_lun[8];
/*
* This format takes up all 8 bytes.
* If we aren't starting at offset 0,
* that's a bug.
*/
if (j != 0) {
fprintf(stdout, "Invalid "
"offset %d for "
"Extended LUN not "
"specified format", j);
no_more = 1;
break;
}
bzero(tmp_lun, sizeof(tmp_lun));
bcopy(&lundata->luns[i].lundata[j+1],
&tmp_lun[1], sizeof(tmp_lun) - 1);
fprintf(stdout, "%#jx",
(intmax_t)scsi_8btou64(tmp_lun));
no_more = 1;
} else {
fprintf(stderr, "Unknown Extended LUN"
"Address method %#x, length "
"code %#x", eam_code,
field_len_code);
no_more = 1;
}
break;
}
default:
fprintf(stderr, "Unknown LUN address method "
"%#x\n", lundata->luns[i].lundata[0] &
RPL_LUNDATA_ATYP_MASK);
break;
}
/*
* For the flat addressing method, there are no
* other levels after it.
*/
if (no_more != 0)
break;
}
fprintf(stdout, "\n");
}
bailout:
cam_freeccb(ccb);
free(lundata);
return (retval);
}
static int
scsireadcapacity(struct cam_device *device, int argc, char **argv,
char *combinedopt, int retry_count, int timeout)
{
union ccb *ccb;
int blocksizeonly, humanize, numblocks, quiet, sizeonly, baseten;
struct scsi_read_capacity_data rcap;
struct scsi_read_capacity_data_long rcaplong;
uint64_t maxsector;
uint32_t block_len;
int retval;
int c;
blocksizeonly = 0;
humanize = 0;
numblocks = 0;
quiet = 0;
sizeonly = 0;
baseten = 0;
retval = 0;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("%s: error allocating ccb", __func__);
return (1);
}
bzero(&(&ccb->ccb_h)[1],
sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));
while ((c = getopt(argc, argv, combinedopt)) != -1) {
switch (c) {
case 'b':
blocksizeonly++;
break;
case 'h':
humanize++;
baseten = 0;
break;
case 'H':
humanize++;
baseten++;
break;
case 'N':
numblocks++;
break;
case 'q':
quiet++;
break;
case 's':
sizeonly++;
break;
default:
break;
}
}
if ((blocksizeonly != 0)
&& (numblocks != 0)) {
warnx("%s: you can only specify one of -b or -N", __func__);
retval = 1;
goto bailout;
}
if ((blocksizeonly != 0)
&& (sizeonly != 0)) {
warnx("%s: you can only specify one of -b or -s", __func__);
retval = 1;
goto bailout;
}
if ((humanize != 0)
&& (quiet != 0)) {
warnx("%s: you can only specify one of -h/-H or -q", __func__);
retval = 1;
goto bailout;
}
if ((humanize != 0)
&& (blocksizeonly != 0)) {
warnx("%s: you can only specify one of -h/-H or -b", __func__);
retval = 1;
goto bailout;
}
scsi_read_capacity(&ccb->csio,
/*retries*/ retry_count,
/*cbfcnp*/ NULL,
/*tag_action*/ MSG_SIMPLE_Q_TAG,
&rcap,
SSD_FULL_SIZE,
/*timeout*/ timeout ? timeout : 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
warn("error sending READ CAPACITY command");
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
retval = 1;
goto bailout;
}
maxsector = scsi_4btoul(rcap.addr);
block_len = scsi_4btoul(rcap.length);
/*
* A last block of 2^32-1 means that the true capacity is over 2TB,
* and we need to issue the long READ CAPACITY to get the real
* capacity. Otherwise, we're all set.
*/
if (maxsector != 0xffffffff)
goto do_print;
scsi_read_capacity_16(&ccb->csio,
/*retries*/ retry_count,
/*cbfcnp*/ NULL,
/*tag_action*/ MSG_SIMPLE_Q_TAG,
/*lba*/ 0,
/*reladdr*/ 0,
/*pmi*/ 0,
&rcaplong,
/*sense_len*/ SSD_FULL_SIZE,
/*timeout*/ timeout ? timeout : 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAM_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(device, ccb) < 0) {
warn("error sending READ CAPACITY (16) command");
if (arglist & CAM_ARG_VERBOSE)
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = 1;
goto bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
cam_error_print(device, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
retval = 1;
goto bailout;
}
maxsector = scsi_8btou64(rcaplong.addr);
block_len = scsi_4btoul(rcaplong.length);
do_print:
if (blocksizeonly == 0) {
/*
* Humanize implies !quiet, and also implies numblocks.
*/
if (humanize != 0) {
char tmpstr[6];
int64_t tmpbytes;
int ret;
tmpbytes = (maxsector + 1) * block_len;
ret = humanize_number(tmpstr, sizeof(tmpstr),
tmpbytes, "", HN_AUTOSCALE,
HN_B | HN_DECIMAL |
((baseten != 0) ?
HN_DIVISOR_1000 : 0));
if (ret == -1) {
warnx("%s: humanize_number failed!", __func__);
retval = 1;
goto bailout;
}
fprintf(stdout, "Device Size: %s%s", tmpstr,
(sizeonly == 0) ? ", " : "\n");
} else if (numblocks != 0) {
fprintf(stdout, "%s%ju%s", (quiet == 0) ?
"Blocks: " : "", (uintmax_t)maxsector + 1,
(sizeonly == 0) ? ", " : "\n");
} else {
fprintf(stdout, "%s%ju%s", (quiet == 0) ?
"Last Block: " : "", (uintmax_t)maxsector,
(sizeonly == 0) ? ", " : "\n");
}
}
if (sizeonly == 0)
fprintf(stdout, "%s%u%s\n", (quiet == 0) ?
"Block Length: " : "", block_len, (quiet == 0) ?
" bytes" : "");
bailout:
cam_freeccb(ccb);
return (retval);
}
#endif /* MINIMALISTIC */
void
usage(int verbose)
{
fprintf(verbose ? stdout : stderr,
"usage: camcontrol <command> [device id][generic args][command args]\n"
" camcontrol devlist [-v]\n"
#ifndef MINIMALISTIC
" camcontrol periphlist [dev_id][-n dev_name] [-u unit]\n"
" camcontrol tur [dev_id][generic args]\n"
" camcontrol inquiry [dev_id][generic args] [-D] [-S] [-R]\n"
" camcontrol identify [dev_id][generic args]\n"
" camcontrol reportluns [dev_id][generic args] [-c] [-l] [-r report]\n"
" camcontrol readcap [dev_id][generic args] [-b] [-h] [-H] [-N]\n"
" [-q] [-s]\n"
" camcontrol start [dev_id][generic args]\n"
" camcontrol stop [dev_id][generic args]\n"
" camcontrol load [dev_id][generic args]\n"
" camcontrol eject [dev_id][generic args]\n"
#endif /* MINIMALISTIC */
" camcontrol rescan <all | bus[:target:lun]>\n"
" camcontrol reset <all | bus[:target:lun]>\n"
#ifndef MINIMALISTIC
" camcontrol defects [dev_id][generic args] <-f format> [-P][-G]\n"
" camcontrol modepage [dev_id][generic args] <-m page | -l>\n"
" [-P pagectl][-e | -b][-d]\n"
" camcontrol cmd [dev_id][generic args]\n"
" <-a cmd [args] | -c cmd [args]>\n"
" [-i len fmt|-o len fmt [args]] [-r fmt]\n"
" camcontrol debug [-I][-P][-T][-S][-X][-c]\n"
" <all|bus[:target[:lun]]|off>\n"
" camcontrol tags [dev_id][generic args] [-N tags] [-q] [-v]\n"
" camcontrol negotiate [dev_id][generic args] [-a][-c]\n"
" [-D <enable|disable>][-O offset][-q]\n"
" [-R syncrate][-v][-T <enable|disable>]\n"
" [-U][-W bus_width]\n"
" camcontrol format [dev_id][generic args][-q][-r][-w][-y]\n"
#endif /* MINIMALISTIC */
" camcontrol help\n");
if (!verbose)
return;
#ifndef MINIMALISTIC
fprintf(stdout,
"Specify one of the following options:\n"
"devlist list all CAM devices\n"
"periphlist list all CAM peripheral drivers attached to a device\n"
"tur send a test unit ready to the named device\n"
"inquiry send a SCSI inquiry command to the named device\n"
"identify send a ATA identify command to the named device\n"
"reportluns send a SCSI report luns command to the device\n"
"readcap send a SCSI read capacity command to the device\n"
"start send a Start Unit command to the device\n"
"stop send a Stop Unit command to the device\n"
"load send a Start Unit command to the device with the load bit set\n"
"eject send a Stop Unit command to the device with the eject bit set\n"
"rescan rescan all busses, the given bus, or bus:target:lun\n"
"reset reset all busses, the given bus, or bus:target:lun\n"
"defects read the defect list of the specified device\n"
"modepage display or edit (-e) the given mode page\n"
"cmd send the given scsi command, may need -i or -o as well\n"
"debug turn debugging on/off for a bus, target, or lun, or all devices\n"
"tags report or set the number of transaction slots for a device\n"
"negotiate report or set device negotiation parameters\n"
"format send the SCSI FORMAT UNIT command to the named device\n"
"help this message\n"
"Device Identifiers:\n"
"bus:target specify the bus and target, lun defaults to 0\n"
"bus:target:lun specify the bus, target and lun\n"
"deviceUNIT specify the device name, like \"da4\" or \"cd2\"\n"
"Generic arguments:\n"
"-v be verbose, print out sense information\n"
"-t timeout command timeout in seconds, overrides default timeout\n"
"-n dev_name specify device name, e.g. \"da\", \"cd\"\n"
"-u unit specify unit number, e.g. \"0\", \"5\"\n"
"-E have the kernel attempt to perform SCSI error recovery\n"
"-C count specify the SCSI command retry count (needs -E to work)\n"
"modepage arguments:\n"
"-l list all available mode pages\n"
"-m page specify the mode page to view or edit\n"
"-e edit the specified mode page\n"
"-b force view to binary mode\n"
"-d disable block descriptors for mode sense\n"
"-P pgctl page control field 0-3\n"
"defects arguments:\n"
"-f format specify defect list format (block, bfi or phys)\n"
"-G get the grown defect list\n"
"-P get the permanant defect list\n"
"inquiry arguments:\n"
"-D get the standard inquiry data\n"
"-S get the serial number\n"
"-R get the transfer rate, etc.\n"
"reportluns arguments:\n"
"-c only report a count of available LUNs\n"
"-l only print out luns, and not a count\n"
"-r <reporttype> specify \"default\", \"wellknown\" or \"all\"\n"
"readcap arguments\n"
"-b only report the blocksize\n"
"-h human readable device size, base 2\n"
"-H human readable device size, base 10\n"
"-N print the number of blocks instead of last block\n"
"-q quiet, print numbers only\n"
"-s only report the last block/device size\n"
"cmd arguments:\n"
"-c cdb [args] specify the SCSI CDB\n"
"-i len fmt specify input data and input data format\n"
"-o len fmt [args] specify output data and output data fmt\n"
"debug arguments:\n"
"-I CAM_DEBUG_INFO -- scsi commands, errors, data\n"
"-T CAM_DEBUG_TRACE -- routine flow tracking\n"
"-S CAM_DEBUG_SUBTRACE -- internal routine command flow\n"
"-c CAM_DEBUG_CDB -- print out SCSI CDBs only\n"
"tags arguments:\n"
"-N tags specify the number of tags to use for this device\n"
"-q be quiet, don't report the number of tags\n"
"-v report a number of tag-related parameters\n"
"negotiate arguments:\n"
"-a send a test unit ready after negotiation\n"
"-c report/set current negotiation settings\n"
"-D <arg> \"enable\" or \"disable\" disconnection\n"
"-O offset set command delay offset\n"
"-q be quiet, don't report anything\n"
"-R syncrate synchronization rate in MHz\n"
"-T <arg> \"enable\" or \"disable\" tagged queueing\n"
"-U report/set user negotiation settings\n"
"-W bus_width set the bus width in bits (8, 16 or 32)\n"
"-v also print a Path Inquiry CCB for the controller\n"
"format arguments:\n"
"-q be quiet, don't print status messages\n"
"-r run in report only mode\n"
"-w don't send immediate format command\n"
"-y don't ask any questions\n");
#endif /* MINIMALISTIC */
}
int
main(int argc, char **argv)
{
int c;
char *device = NULL;
int unit = 0;
struct cam_device *cam_dev = NULL;
int timeout = 0, retry_count = 1;
camcontrol_optret optreturn;
char *tstr;
const char *mainopt = "C:En:t:u:v";
const char *subopt = NULL;
char combinedopt[256];
int error = 0, optstart = 2;
int devopen = 1;
#ifndef MINIMALISTIC
int bus, target, lun;
#endif /* MINIMALISTIC */
cmdlist = CAM_CMD_NONE;
arglist = CAM_ARG_NONE;
if (argc < 2) {
usage(0);
exit(1);
}
/*
* Get the base option.
*/
optreturn = getoption(argv[1], &cmdlist, &arglist, &subopt);
if (optreturn == CC_OR_AMBIGUOUS) {
warnx("ambiguous option %s", argv[1]);
usage(0);
exit(1);
} else if (optreturn == CC_OR_NOT_FOUND) {
warnx("option %s not found", argv[1]);
usage(0);
exit(1);
}
/*
* Ahh, getopt(3) is a pain.
*
* This is a gross hack. There really aren't many other good
* options (excuse the pun) for parsing options in a situation like
* this. getopt is kinda braindead, so you end up having to run
* through the options twice, and give each invocation of getopt
* the option string for the other invocation.
*
* You would think that you could just have two groups of options.
* The first group would get parsed by the first invocation of
* getopt, and the second group would get parsed by the second
* invocation of getopt. It doesn't quite work out that way. When
* the first invocation of getopt finishes, it leaves optind pointing
* to the argument _after_ the first argument in the second group.
* So when the second invocation of getopt comes around, it doesn't
* recognize the first argument it gets and then bails out.
*
* A nice alternative would be to have a flag for getopt that says
* "just keep parsing arguments even when you encounter an unknown
* argument", but there isn't one. So there's no real clean way to
* easily parse two sets of arguments without having one invocation
* of getopt know about the other.
*
* Without this hack, the first invocation of getopt would work as
* long as the generic arguments are first, but the second invocation
* (in the subfunction) would fail in one of two ways. In the case
* where you don't set optreset, it would fail because optind may be
* pointing to the argument after the one it should be pointing at.
* In the case where you do set optreset, and reset optind, it would
* fail because getopt would run into the first set of options, which
* it doesn't understand.
*
* All of this would "sort of" work if you could somehow figure out
* whether optind had been incremented one option too far. The
* mechanics of that, however, are more daunting than just giving
* both invocations all of the expect options for either invocation.
*
* Needless to say, I wouldn't mind if someone invented a better
* (non-GPL!) command line parsing interface than getopt. I
* wouldn't mind if someone added more knobs to getopt to make it
* work better. Who knows, I may talk myself into doing it someday,
* if the standards weenies let me. As it is, it just leads to
* hackery like this and causes people to avoid it in some cases.
*
* KDM, September 8th, 1998
*/
if (subopt != NULL)
sprintf(combinedopt, "%s%s", mainopt, subopt);
else
sprintf(combinedopt, "%s", mainopt);
/*
* For these options we do not parse optional device arguments and
* we do not open a passthrough device.
*/
if ((cmdlist == CAM_CMD_RESCAN)
|| (cmdlist == CAM_CMD_RESET)
|| (cmdlist == CAM_CMD_DEVTREE)
|| (cmdlist == CAM_CMD_USAGE)
|| (cmdlist == CAM_CMD_DEBUG))
devopen = 0;
#ifndef MINIMALISTIC
if ((devopen == 1)
&& (argc > 2 && argv[2][0] != '-')) {
char name[30];
int rv;
/*
* First catch people who try to do things like:
* camcontrol tur /dev/da0
* camcontrol doesn't take device nodes as arguments.
*/
if (argv[2][0] == '/') {
warnx("%s is not a valid device identifier", argv[2]);
errx(1, "please read the camcontrol(8) man page");
} else if (isdigit(argv[2][0])) {
/* device specified as bus:target[:lun] */
rv = parse_btl(argv[2], &bus, &target, &lun, &arglist);
if (rv < 2)
errx(1, "numeric device specification must "
"be either bus:target, or "
"bus:target:lun");
/* default to 0 if lun was not specified */
if ((arglist & CAM_ARG_LUN) == 0) {
lun = 0;
arglist |= CAM_ARG_LUN;
}
optstart++;
} else {
if (cam_get_device(argv[2], name, sizeof name, &unit)
== -1)
errx(1, "%s", cam_errbuf);
device = strdup(name);
arglist |= CAM_ARG_DEVICE | CAM_ARG_UNIT;
optstart++;
}
}
#endif /* MINIMALISTIC */
/*
* Start getopt processing at argv[2/3], since we've already
* accepted argv[1..2] as the command name, and as a possible
* device name.
*/
optind = optstart;
/*
* Now we run through the argument list looking for generic
* options, and ignoring options that possibly belong to
* subfunctions.
*/
while ((c = getopt(argc, argv, combinedopt))!= -1){
switch(c) {
case 'C':
retry_count = strtol(optarg, NULL, 0);
if (retry_count < 0)
errx(1, "retry count %d is < 0",
retry_count);
arglist |= CAM_ARG_RETRIES;
break;
case 'E':
arglist |= CAM_ARG_ERR_RECOVER;
break;
case 'n':
arglist |= CAM_ARG_DEVICE;
tstr = optarg;
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
device = (char *)strdup(tstr);
break;
case 't':
timeout = strtol(optarg, NULL, 0);
if (timeout < 0)
errx(1, "invalid timeout %d", timeout);
/* Convert the timeout from seconds to ms */
timeout *= 1000;
arglist |= CAM_ARG_TIMEOUT;
break;
case 'u':
arglist |= CAM_ARG_UNIT;
unit = strtol(optarg, NULL, 0);
break;
case 'v':
arglist |= CAM_ARG_VERBOSE;
break;
default:
break;
}
}
#ifndef MINIMALISTIC
/*
* For most commands we'll want to open the passthrough device
* associated with the specified device. In the case of the rescan
* commands, we don't use a passthrough device at all, just the
* transport layer device.
*/
if (devopen == 1) {
if (((arglist & (CAM_ARG_BUS|CAM_ARG_TARGET)) == 0)
&& (((arglist & CAM_ARG_DEVICE) == 0)
|| ((arglist & CAM_ARG_UNIT) == 0))) {
errx(1, "subcommand \"%s\" requires a valid device "
"identifier", argv[1]);
}
if ((cam_dev = ((arglist & (CAM_ARG_BUS | CAM_ARG_TARGET))?
cam_open_btl(bus, target, lun, O_RDWR, NULL) :
cam_open_spec_device(device,unit,O_RDWR,NULL)))
== NULL)
errx(1,"%s", cam_errbuf);
}
#endif /* MINIMALISTIC */
/*
* Reset optind to 2, and reset getopt, so these routines can parse
* the arguments again.
*/
optind = optstart;
optreset = 1;
switch(cmdlist) {
#ifndef MINIMALISTIC
case CAM_CMD_DEVLIST:
error = getdevlist(cam_dev);
break;
#endif /* MINIMALISTIC */
case CAM_CMD_DEVTREE:
error = getdevtree();
break;
#ifndef MINIMALISTIC
case CAM_CMD_TUR:
error = testunitready(cam_dev, retry_count, timeout, 0);
break;
case CAM_CMD_INQUIRY:
error = scsidoinquiry(cam_dev, argc, argv, combinedopt,
retry_count, timeout);
break;
case CAM_CMD_IDENTIFY:
error = ataidentify(cam_dev, retry_count, timeout);
break;
case CAM_CMD_STARTSTOP:
error = scsistart(cam_dev, arglist & CAM_ARG_START_UNIT,
arglist & CAM_ARG_EJECT, retry_count,
timeout);
break;
#endif /* MINIMALISTIC */
case CAM_CMD_RESCAN:
error = dorescan_or_reset(argc, argv, 1);
break;
case CAM_CMD_RESET:
error = dorescan_or_reset(argc, argv, 0);
break;
#ifndef MINIMALISTIC
case CAM_CMD_READ_DEFECTS:
error = readdefects(cam_dev, argc, argv, combinedopt,
retry_count, timeout);
break;
case CAM_CMD_MODE_PAGE:
modepage(cam_dev, argc, argv, combinedopt,
retry_count, timeout);
break;
case CAM_CMD_SCSI_CMD:
error = scsicmd(cam_dev, argc, argv, combinedopt,
retry_count, timeout);
break;
case CAM_CMD_DEBUG:
error = camdebug(argc, argv, combinedopt);
break;
case CAM_CMD_TAG:
error = tagcontrol(cam_dev, argc, argv, combinedopt);
break;
case CAM_CMD_RATE:
error = ratecontrol(cam_dev, retry_count, timeout,
argc, argv, combinedopt);
break;
case CAM_CMD_FORMAT:
error = scsiformat(cam_dev, argc, argv,
combinedopt, retry_count, timeout);
break;
case CAM_CMD_REPORTLUNS:
error = scsireportluns(cam_dev, argc, argv,
combinedopt, retry_count,
timeout);
break;
case CAM_CMD_READCAP:
error = scsireadcapacity(cam_dev, argc, argv,
combinedopt, retry_count,
timeout);
break;
#endif /* MINIMALISTIC */
case CAM_CMD_USAGE:
usage(1);
break;
default:
usage(0);
error = 1;
break;
}
if (cam_dev != NULL)
cam_close_device(cam_dev);
exit(error);
}