freebsd-dev/sys/dev/hme/if_hme.c
2014-09-18 21:07:05 +00:00

1749 lines
48 KiB
C

/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* Copyright (c) 2001-2003 Thomas Moestl <tmm@FreeBSD.org>.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* from: NetBSD: hme.c,v 1.45 2005/02/18 00:22:11 heas Exp
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* HME Ethernet module driver.
*
* The HME is e.g. part of the PCIO PCI multi function device.
* It supports TX gathering and TX and RX checksum offloading.
* RX buffers must be aligned at a programmable offset modulo 16. We choose 2
* for this offset: mbuf clusters are usually on about 2^11 boundaries, 2 bytes
* are skipped to make sure the header after the ethernet header is aligned on a
* natural boundary, so this ensures minimal wastage in the most common case.
*
* Also, apparently, the buffers must extend to a DMA burst boundary beyond the
* maximum packet size (this is not verified). Buffers starting on odd
* boundaries must be mapped so that the burst can start on a natural boundary.
*
* STP2002QFP-UG says that Ethernet hardware supports TCP checksum offloading.
* In reality, we can do the same technique for UDP datagram too. However,
* the hardware doesn't compensate the checksum for UDP datagram which can yield
* to 0x0. As a safe guard, UDP checksum offload is disabled by default. It
* can be reactivated by setting special link option link0 with ifconfig(8).
*/
#define HME_CSUM_FEATURES (CSUM_TCP)
#if 0
#define HMEDEBUG
#endif
#define KTR_HME KTR_SPARE2 /* XXX */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/ktr.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <machine/bus.h>
#include <dev/hme/if_hmereg.h>
#include <dev/hme/if_hmevar.h>
CTASSERT(powerof2(HME_NRXDESC) && HME_NRXDESC >= 32 && HME_NRXDESC <= 256);
CTASSERT(HME_NTXDESC % 16 == 0 && HME_NTXDESC >= 16 && HME_NTXDESC <= 256);
static void hme_start(struct ifnet *);
static void hme_start_locked(struct ifnet *);
static void hme_stop(struct hme_softc *);
static int hme_ioctl(struct ifnet *, u_long, caddr_t);
static void hme_tick(void *);
static int hme_watchdog(struct hme_softc *);
static void hme_init(void *);
static void hme_init_locked(struct hme_softc *);
static int hme_add_rxbuf(struct hme_softc *, unsigned int, int);
static int hme_meminit(struct hme_softc *);
static int hme_mac_bitflip(struct hme_softc *, u_int32_t, u_int32_t,
u_int32_t, u_int32_t);
static void hme_mifinit(struct hme_softc *);
static void hme_setladrf(struct hme_softc *, int);
static int hme_mediachange(struct ifnet *);
static int hme_mediachange_locked(struct hme_softc *);
static void hme_mediastatus(struct ifnet *, struct ifmediareq *);
static int hme_load_txmbuf(struct hme_softc *, struct mbuf **);
static void hme_read(struct hme_softc *, int, int, u_int32_t);
static void hme_eint(struct hme_softc *, u_int);
static void hme_rint(struct hme_softc *);
static void hme_tint(struct hme_softc *);
static void hme_rxcksum(struct mbuf *, u_int32_t);
static void hme_cdma_callback(void *, bus_dma_segment_t *, int, int);
devclass_t hme_devclass;
static int hme_nerr;
DRIVER_MODULE(miibus, hme, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(hme, miibus, 1, 1, 1);
#define HME_SPC_READ_4(spc, sc, offs) \
bus_space_read_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
(offs))
#define HME_SPC_WRITE_4(spc, sc, offs, v) \
bus_space_write_4((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
(offs), (v))
#define HME_SPC_BARRIER(spc, sc, offs, l, f) \
bus_space_barrier((sc)->sc_ ## spc ## t, (sc)->sc_ ## spc ## h, \
(offs), (l), (f))
#define HME_SEB_READ_4(sc, offs) HME_SPC_READ_4(seb, (sc), (offs))
#define HME_SEB_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(seb, (sc), (offs), (v))
#define HME_SEB_BARRIER(sc, offs, l, f) \
HME_SPC_BARRIER(seb, (sc), (offs), (l), (f))
#define HME_ERX_READ_4(sc, offs) HME_SPC_READ_4(erx, (sc), (offs))
#define HME_ERX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(erx, (sc), (offs), (v))
#define HME_ERX_BARRIER(sc, offs, l, f) \
HME_SPC_BARRIER(erx, (sc), (offs), (l), (f))
#define HME_ETX_READ_4(sc, offs) HME_SPC_READ_4(etx, (sc), (offs))
#define HME_ETX_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(etx, (sc), (offs), (v))
#define HME_ETX_BARRIER(sc, offs, l, f) \
HME_SPC_BARRIER(etx, (sc), (offs), (l), (f))
#define HME_MAC_READ_4(sc, offs) HME_SPC_READ_4(mac, (sc), (offs))
#define HME_MAC_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mac, (sc), (offs), (v))
#define HME_MAC_BARRIER(sc, offs, l, f) \
HME_SPC_BARRIER(mac, (sc), (offs), (l), (f))
#define HME_MIF_READ_4(sc, offs) HME_SPC_READ_4(mif, (sc), (offs))
#define HME_MIF_WRITE_4(sc, offs, v) HME_SPC_WRITE_4(mif, (sc), (offs), (v))
#define HME_MIF_BARRIER(sc, offs, l, f) \
HME_SPC_BARRIER(mif, (sc), (offs), (l), (f))
#define HME_MAXERR 5
#define HME_WHINE(dev, ...) do { \
if (hme_nerr++ < HME_MAXERR) \
device_printf(dev, __VA_ARGS__); \
if (hme_nerr == HME_MAXERR) { \
device_printf(dev, "too many errors; not reporting " \
"any more\n"); \
} \
} while(0)
/* Support oversized VLAN frames. */
#define HME_MAX_FRAMESIZE (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN)
int
hme_config(struct hme_softc *sc)
{
struct ifnet *ifp;
struct mii_softc *child;
bus_size_t size;
int error, rdesc, tdesc, i;
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL)
return (ENOSPC);
/*
* HME common initialization.
*
* hme_softc fields that must be initialized by the front-end:
*
* the DMA bus tag:
* sc_dmatag
*
* the bus handles, tags and offsets (splitted for SBus compatibility):
* sc_seb{t,h,o} (Shared Ethernet Block registers)
* sc_erx{t,h,o} (Receiver Unit registers)
* sc_etx{t,h,o} (Transmitter Unit registers)
* sc_mac{t,h,o} (MAC registers)
* sc_mif{t,h,o} (Management Interface registers)
*
* the maximum bus burst size:
* sc_burst
*
*/
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_lock, 0);
/* Make sure the chip is stopped. */
HME_LOCK(sc);
hme_stop(sc);
HME_UNLOCK(sc);
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
NULL, NULL, &sc->sc_pdmatag);
if (error)
goto fail_ifnet;
/*
* Create control, RX and TX mbuf DMA tags.
* Buffer descriptors must be aligned on a 2048 byte boundary;
* take this into account when calculating the size. Note that
* the maximum number of descriptors (256) occupies 2048 bytes,
* so we allocate that much regardless of HME_N*DESC.
*/
size = 4096;
error = bus_dma_tag_create(sc->sc_pdmatag, 2048, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
1, size, 0, busdma_lock_mutex, &sc->sc_lock, &sc->sc_cdmatag);
if (error)
goto fail_ptag;
error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_rdmatag);
if (error)
goto fail_ctag;
error = bus_dma_tag_create(sc->sc_pdmatag, max(0x10, sc->sc_burst), 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES * HME_NTXSEGS, HME_NTXSEGS, MCLBYTES, BUS_DMA_ALLOCNOW,
NULL, NULL, &sc->sc_tdmatag);
if (error)
goto fail_rtag;
/* Allocate the control DMA buffer. */
error = bus_dmamem_alloc(sc->sc_cdmatag, (void **)&sc->sc_rb.rb_membase,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->sc_cdmamap);
if (error != 0) {
device_printf(sc->sc_dev, "DMA buffer alloc error %d\n", error);
goto fail_ttag;
}
/* Load the control DMA buffer. */
sc->sc_rb.rb_dmabase = 0;
if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cdmamap,
sc->sc_rb.rb_membase, size, hme_cdma_callback, sc, 0)) != 0 ||
sc->sc_rb.rb_dmabase == 0) {
device_printf(sc->sc_dev, "DMA buffer map load error %d\n",
error);
goto fail_free;
}
CTR2(KTR_HME, "hme_config: dma va %p, pa %#lx", sc->sc_rb.rb_membase,
sc->sc_rb.rb_dmabase);
/*
* Prepare the RX descriptors. rdesc serves as marker for the last
* processed descriptor and may be used later on.
*/
for (rdesc = 0; rdesc < HME_NRXDESC; rdesc++) {
sc->sc_rb.rb_rxdesc[rdesc].hrx_m = NULL;
error = bus_dmamap_create(sc->sc_rdmatag, 0,
&sc->sc_rb.rb_rxdesc[rdesc].hrx_dmamap);
if (error != 0)
goto fail_rxdesc;
}
error = bus_dmamap_create(sc->sc_rdmatag, 0,
&sc->sc_rb.rb_spare_dmamap);
if (error != 0)
goto fail_rxdesc;
/* Same for the TX descs. */
for (tdesc = 0; tdesc < HME_NTXQ; tdesc++) {
sc->sc_rb.rb_txdesc[tdesc].htx_m = NULL;
error = bus_dmamap_create(sc->sc_tdmatag, 0,
&sc->sc_rb.rb_txdesc[tdesc].htx_dmamap);
if (error != 0)
goto fail_txdesc;
}
sc->sc_csum_features = HME_CSUM_FEATURES;
/* Initialize ifnet structure. */
ifp->if_softc = sc;
if_initname(ifp, device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = hme_start;
ifp->if_ioctl = hme_ioctl;
ifp->if_init = hme_init;
IFQ_SET_MAXLEN(&ifp->if_snd, HME_NTXQ);
ifp->if_snd.ifq_drv_maxlen = HME_NTXQ;
IFQ_SET_READY(&ifp->if_snd);
hme_mifinit(sc);
/*
* DP83840A used with HME chips don't advertise their media
* capabilities themselves properly so force writing the ANAR
* according to the BMSR in mii_phy_setmedia().
*/
error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, hme_mediachange,
hme_mediastatus, BMSR_DEFCAPMASK, HME_PHYAD_EXTERNAL,
MII_OFFSET_ANY, MIIF_FORCEANEG);
i = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp, hme_mediachange,
hme_mediastatus, BMSR_DEFCAPMASK, HME_PHYAD_INTERNAL,
MII_OFFSET_ANY, MIIF_FORCEANEG);
if (error != 0 && i != 0) {
error = ENXIO;
device_printf(sc->sc_dev, "attaching PHYs failed\n");
goto fail_rxdesc;
}
sc->sc_mii = device_get_softc(sc->sc_miibus);
/*
* Walk along the list of attached MII devices and
* establish an `MII instance' to `PHY number'
* mapping. We'll use this mapping to enable the MII
* drivers of the external transceiver according to
* the currently selected media.
*/
sc->sc_phys[0] = sc->sc_phys[1] = -1;
LIST_FOREACH(child, &sc->sc_mii->mii_phys, mii_list) {
/*
* Note: we support just two PHYs: the built-in
* internal device and an external on the MII
* connector.
*/
if ((child->mii_phy != HME_PHYAD_EXTERNAL &&
child->mii_phy != HME_PHYAD_INTERNAL) ||
child->mii_inst > 1) {
device_printf(sc->sc_dev, "cannot accommodate "
"MII device %s at phy %d, instance %d\n",
device_get_name(child->mii_dev),
child->mii_phy, child->mii_inst);
continue;
}
sc->sc_phys[child->mii_inst] = child->mii_phy;
}
/* Attach the interface. */
ether_ifattach(ifp, sc->sc_enaddr);
/*
* Tell the upper layer(s) we support long frames/checksum offloads.
*/
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
ifp->if_hwassist |= sc->sc_csum_features;
ifp->if_capenable |= IFCAP_VLAN_MTU | IFCAP_HWCSUM;
return (0);
fail_txdesc:
for (i = 0; i < tdesc; i++) {
bus_dmamap_destroy(sc->sc_tdmatag,
sc->sc_rb.rb_txdesc[i].htx_dmamap);
}
bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap);
fail_rxdesc:
for (i = 0; i < rdesc; i++) {
bus_dmamap_destroy(sc->sc_rdmatag,
sc->sc_rb.rb_rxdesc[i].hrx_dmamap);
}
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap);
fail_free:
bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap);
fail_ttag:
bus_dma_tag_destroy(sc->sc_tdmatag);
fail_rtag:
bus_dma_tag_destroy(sc->sc_rdmatag);
fail_ctag:
bus_dma_tag_destroy(sc->sc_cdmatag);
fail_ptag:
bus_dma_tag_destroy(sc->sc_pdmatag);
fail_ifnet:
if_free(ifp);
return (error);
}
void
hme_detach(struct hme_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
int i;
HME_LOCK(sc);
hme_stop(sc);
HME_UNLOCK(sc);
callout_drain(&sc->sc_tick_ch);
ether_ifdetach(ifp);
if_free(ifp);
device_delete_child(sc->sc_dev, sc->sc_miibus);
for (i = 0; i < HME_NTXQ; i++) {
bus_dmamap_destroy(sc->sc_tdmatag,
sc->sc_rb.rb_txdesc[i].htx_dmamap);
}
bus_dmamap_destroy(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap);
for (i = 0; i < HME_NRXDESC; i++) {
bus_dmamap_destroy(sc->sc_rdmatag,
sc->sc_rb.rb_rxdesc[i].hrx_dmamap);
}
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cdmamap);
bus_dmamem_free(sc->sc_cdmatag, sc->sc_rb.rb_membase, sc->sc_cdmamap);
bus_dma_tag_destroy(sc->sc_tdmatag);
bus_dma_tag_destroy(sc->sc_rdmatag);
bus_dma_tag_destroy(sc->sc_cdmatag);
bus_dma_tag_destroy(sc->sc_pdmatag);
}
void
hme_suspend(struct hme_softc *sc)
{
HME_LOCK(sc);
hme_stop(sc);
HME_UNLOCK(sc);
}
void
hme_resume(struct hme_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
HME_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0)
hme_init_locked(sc);
HME_UNLOCK(sc);
}
static void
hme_cdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
{
struct hme_softc *sc = (struct hme_softc *)xsc;
if (error != 0)
return;
KASSERT(nsegs == 1,
("%s: too many DMA segments (%d)", __func__, nsegs));
sc->sc_rb.rb_dmabase = segs[0].ds_addr;
}
static void
hme_tick(void *arg)
{
struct hme_softc *sc = arg;
struct ifnet *ifp;
HME_LOCK_ASSERT(sc, MA_OWNED);
ifp = sc->sc_ifp;
/*
* Unload collision counters
*/
if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
HME_MAC_READ_4(sc, HME_MACI_NCCNT) +
HME_MAC_READ_4(sc, HME_MACI_FCCNT) +
HME_MAC_READ_4(sc, HME_MACI_EXCNT) +
HME_MAC_READ_4(sc, HME_MACI_LTCNT));
/*
* then clear the hardware counters.
*/
HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
mii_tick(sc->sc_mii);
if (hme_watchdog(sc) == EJUSTRETURN)
return;
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
}
static void
hme_stop(struct hme_softc *sc)
{
u_int32_t v;
int n;
callout_stop(&sc->sc_tick_ch);
sc->sc_wdog_timer = 0;
sc->sc_ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_flags &= ~HME_LINK;
/* Mask all interrupts */
HME_SEB_WRITE_4(sc, HME_SEBI_IMASK, 0xffffffff);
/* Reset transmitter and receiver */
HME_SEB_WRITE_4(sc, HME_SEBI_RESET, HME_SEB_RESET_ETX |
HME_SEB_RESET_ERX);
HME_SEB_BARRIER(sc, HME_SEBI_RESET, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
for (n = 0; n < 20; n++) {
v = HME_SEB_READ_4(sc, HME_SEBI_RESET);
if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
return;
DELAY(20);
}
device_printf(sc->sc_dev, "hme_stop: reset failed\n");
}
/*
* Discard the contents of an mbuf in the RX ring, freeing the buffer in the
* ring for subsequent use.
*/
static __inline void
hme_discard_rxbuf(struct hme_softc *sc, int ix)
{
/*
* Dropped a packet, reinitialize the descriptor and turn the
* ownership back to the hardware.
*/
HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd,
ix, HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc,
&sc->sc_rb.rb_rxdesc[ix])));
}
static int
hme_add_rxbuf(struct hme_softc *sc, unsigned int ri, int keepold)
{
struct hme_rxdesc *rd;
struct mbuf *m;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
uintptr_t b;
int a, unmap, nsegs;
rd = &sc->sc_rb.rb_rxdesc[ri];
unmap = rd->hrx_m != NULL;
if (unmap && keepold) {
/*
* Reinitialize the descriptor flags, as they may have been
* altered by the hardware.
*/
hme_discard_rxbuf(sc, ri);
return (0);
}
if ((m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR)) == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
b = mtod(m, uintptr_t);
/*
* Required alignment boundary. At least 16 is needed, but since
* the mapping must be done in a way that a burst can start on a
* natural boundary we might need to extend this.
*/
a = imax(HME_MINRXALIGN, sc->sc_burst);
/*
* Make sure the buffer suitably aligned. The 2 byte offset is removed
* when the mbuf is handed up. XXX: this ensures at least 16 byte
* alignment of the header adjacent to the ethernet header, which
* should be sufficient in all cases. Nevertheless, this second-guesses
* ALIGN().
*/
m_adj(m, roundup2(b, a) - b);
if (bus_dmamap_load_mbuf_sg(sc->sc_rdmatag, sc->sc_rb.rb_spare_dmamap,
m, segs, &nsegs, 0) != 0) {
m_freem(m);
return (ENOBUFS);
}
/* If nsegs is wrong then the stack is corrupt. */
KASSERT(nsegs == 1,
("%s: too many DMA segments (%d)", __func__, nsegs));
if (unmap) {
bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rdmatag, rd->hrx_dmamap);
}
map = rd->hrx_dmamap;
rd->hrx_dmamap = sc->sc_rb.rb_spare_dmamap;
sc->sc_rb.rb_spare_dmamap = map;
bus_dmamap_sync(sc->sc_rdmatag, rd->hrx_dmamap, BUS_DMASYNC_PREREAD);
HME_XD_SETADDR(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd, ri,
segs[0].ds_addr);
rd->hrx_m = m;
HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, sc->sc_rb.rb_rxd, ri,
HME_XD_OWN | HME_XD_ENCODE_RSIZE(HME_DESC_RXLEN(sc, rd)));
return (0);
}
static int
hme_meminit(struct hme_softc *sc)
{
struct hme_ring *hr = &sc->sc_rb;
struct hme_txdesc *td;
bus_addr_t dma;
caddr_t p;
unsigned int i;
int error;
p = hr->rb_membase;
dma = hr->rb_dmabase;
/*
* Allocate transmit descriptors
*/
hr->rb_txd = p;
hr->rb_txddma = dma;
p += HME_NTXDESC * HME_XD_SIZE;
dma += HME_NTXDESC * HME_XD_SIZE;
/*
* We have reserved descriptor space until the next 2048 byte
* boundary.
*/
dma = (bus_addr_t)roundup((u_long)dma, 2048);
p = (caddr_t)roundup((u_long)p, 2048);
/*
* Allocate receive descriptors
*/
hr->rb_rxd = p;
hr->rb_rxddma = dma;
p += HME_NRXDESC * HME_XD_SIZE;
dma += HME_NRXDESC * HME_XD_SIZE;
/* Again move forward to the next 2048 byte boundary.*/
dma = (bus_addr_t)roundup((u_long)dma, 2048);
p = (caddr_t)roundup((u_long)p, 2048);
/*
* Initialize transmit buffer descriptors
*/
for (i = 0; i < HME_NTXDESC; i++) {
HME_XD_SETADDR(sc->sc_flags & HME_PCI, hr->rb_txd, i, 0);
HME_XD_SETFLAGS(sc->sc_flags & HME_PCI, hr->rb_txd, i, 0);
}
STAILQ_INIT(&sc->sc_rb.rb_txfreeq);
STAILQ_INIT(&sc->sc_rb.rb_txbusyq);
for (i = 0; i < HME_NTXQ; i++) {
td = &sc->sc_rb.rb_txdesc[i];
if (td->htx_m != NULL) {
bus_dmamap_sync(sc->sc_tdmatag, td->htx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tdmatag, td->htx_dmamap);
m_freem(td->htx_m);
td->htx_m = NULL;
}
STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, td, htx_q);
}
/*
* Initialize receive buffer descriptors
*/
for (i = 0; i < HME_NRXDESC; i++) {
error = hme_add_rxbuf(sc, i, 1);
if (error != 0)
return (error);
}
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
hr->rb_tdhead = hr->rb_tdtail = 0;
hr->rb_td_nbusy = 0;
hr->rb_rdtail = 0;
CTR2(KTR_HME, "hme_meminit: tx ring va %p, pa %#lx", hr->rb_txd,
hr->rb_txddma);
CTR2(KTR_HME, "hme_meminit: rx ring va %p, pa %#lx", hr->rb_rxd,
hr->rb_rxddma);
CTR2(KTR_HME, "rx entry 1: flags %x, address %x",
*(u_int32_t *)hr->rb_rxd, *(u_int32_t *)(hr->rb_rxd + 4));
CTR2(KTR_HME, "tx entry 1: flags %x, address %x",
*(u_int32_t *)hr->rb_txd, *(u_int32_t *)(hr->rb_txd + 4));
return (0);
}
static int
hme_mac_bitflip(struct hme_softc *sc, u_int32_t reg, u_int32_t val,
u_int32_t clr, u_int32_t set)
{
int i = 0;
val &= ~clr;
val |= set;
HME_MAC_WRITE_4(sc, reg, val);
HME_MAC_BARRIER(sc, reg, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (clr == 0 && set == 0)
return (1); /* just write, no bits to wait for */
do {
DELAY(100);
i++;
val = HME_MAC_READ_4(sc, reg);
if (i > 40) {
/* After 3.5ms, we should have been done. */
device_printf(sc->sc_dev, "timeout while writing to "
"MAC configuration register\n");
return (0);
}
} while ((val & clr) != 0 && (val & set) != set);
return (1);
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
static void
hme_init(void *xsc)
{
struct hme_softc *sc = (struct hme_softc *)xsc;
HME_LOCK(sc);
hme_init_locked(sc);
HME_UNLOCK(sc);
}
static void
hme_init_locked(struct hme_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
u_int8_t *ea;
u_int32_t n, v;
HME_LOCK_ASSERT(sc, MA_OWNED);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Initialization sequence. The numbered steps below correspond
* to the sequence outlined in section 6.3.5.1 in the Ethernet
* Channel Engine manual (part of the PCIO manual).
* See also the STP2002-STQ document from Sun Microsystems.
*/
/* step 1 & 2. Reset the Ethernet Channel */
hme_stop(sc);
/* Re-initialize the MIF */
hme_mifinit(sc);
#if 0
/* Mask all MIF interrupts, just in case */
HME_MIF_WRITE_4(sc, HME_MIFI_IMASK, 0xffff);
#endif
/* step 3. Setup data structures in host memory */
if (hme_meminit(sc) != 0) {
device_printf(sc->sc_dev, "out of buffers; init aborted.");
return;
}
/* step 4. TX MAC registers & counters */
HME_MAC_WRITE_4(sc, HME_MACI_NCCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_FCCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_EXCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_LTCNT, 0);
HME_MAC_WRITE_4(sc, HME_MACI_TXSIZE, HME_MAX_FRAMESIZE);
/* Load station MAC address */
ea = IF_LLADDR(ifp);
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
HME_MAC_WRITE_4(sc, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);
/*
* Init seed for backoff
* (source suggested by manual: low 10 bits of MAC address)
*/
v = ((ea[4] << 8) | ea[5]) & 0x3fff;
HME_MAC_WRITE_4(sc, HME_MACI_RANDSEED, v);
/* Note: Accepting power-on default for other MAC registers here.. */
/* step 5. RX MAC registers & counters */
hme_setladrf(sc, 0);
/* step 6 & 7. Program Descriptor Ring Base Addresses */
HME_ETX_WRITE_4(sc, HME_ETXI_RING, sc->sc_rb.rb_txddma);
/* Transmit Descriptor ring size: in increments of 16 */
HME_ETX_WRITE_4(sc, HME_ETXI_RSIZE, HME_NTXDESC / 16 - 1);
HME_ERX_WRITE_4(sc, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
HME_MAC_WRITE_4(sc, HME_MACI_RXSIZE, HME_MAX_FRAMESIZE);
/* step 8. Global Configuration & Interrupt Mask */
HME_SEB_WRITE_4(sc, HME_SEBI_IMASK,
~(/*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
HME_SEB_STAT_HOSTTOTX |
HME_SEB_STAT_RXTOHOST |
HME_SEB_STAT_TXALL |
HME_SEB_STAT_TXPERR |
HME_SEB_STAT_RCNTEXP |
HME_SEB_STAT_ALL_ERRORS ));
switch (sc->sc_burst) {
default:
v = 0;
break;
case 16:
v = HME_SEB_CFG_BURST16;
break;
case 32:
v = HME_SEB_CFG_BURST32;
break;
case 64:
v = HME_SEB_CFG_BURST64;
break;
}
/*
* Blindly setting 64bit transfers may hang PCI cards(Cheerio?).
* Allowing 64bit transfers breaks TX checksum offload as well.
* Don't know this comes from hardware bug or driver's DMAing
* scheme.
*
* if (sc->sc_flags & HME_PCI == 0)
* v |= HME_SEB_CFG_64BIT;
*/
HME_SEB_WRITE_4(sc, HME_SEBI_CFG, v);
/* step 9. ETX Configuration: use mostly default values */
/* Enable DMA */
v = HME_ETX_READ_4(sc, HME_ETXI_CFG);
v |= HME_ETX_CFG_DMAENABLE;
HME_ETX_WRITE_4(sc, HME_ETXI_CFG, v);
/* step 10. ERX Configuration */
v = HME_ERX_READ_4(sc, HME_ERXI_CFG);
/* Encode Receive Descriptor ring size: four possible values */
v &= ~HME_ERX_CFG_RINGSIZEMSK;
switch (HME_NRXDESC) {
case 32:
v |= HME_ERX_CFG_RINGSIZE32;
break;
case 64:
v |= HME_ERX_CFG_RINGSIZE64;
break;
case 128:
v |= HME_ERX_CFG_RINGSIZE128;
break;
case 256:
v |= HME_ERX_CFG_RINGSIZE256;
break;
default:
printf("hme: invalid Receive Descriptor ring size\n");
break;
}
/* Enable DMA, fix RX first byte offset. */
v &= ~HME_ERX_CFG_FBO_MASK;
v |= HME_ERX_CFG_DMAENABLE | (HME_RXOFFS << HME_ERX_CFG_FBO_SHIFT);
/* RX TCP/UDP checksum offset */
n = (ETHER_HDR_LEN + sizeof(struct ip)) / 2;
n = (n << HME_ERX_CFG_CSUMSTART_SHIFT) & HME_ERX_CFG_CSUMSTART_MASK;
v |= n;
CTR1(KTR_HME, "hme_init: programming ERX_CFG to %x", (u_int)v);
HME_ERX_WRITE_4(sc, HME_ERXI_CFG, v);
/* step 11. XIF Configuration */
v = HME_MAC_READ_4(sc, HME_MACI_XIF);
v |= HME_MAC_XIF_OE;
CTR1(KTR_HME, "hme_init: programming XIF to %x", (u_int)v);
HME_MAC_WRITE_4(sc, HME_MACI_XIF, v);
/* step 12. RX_MAC Configuration Register */
v = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
v |= HME_MAC_RXCFG_ENABLE;
v &= ~(HME_MAC_RXCFG_DCRCS);
CTR1(KTR_HME, "hme_init: programming RX_MAC to %x", (u_int)v);
HME_MAC_WRITE_4(sc, HME_MACI_RXCFG, v);
/* step 13. TX_MAC Configuration Register */
v = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
CTR1(KTR_HME, "hme_init: programming TX_MAC to %x", (u_int)v);
HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, v);
/* step 14. Issue Transmit Pending command */
#ifdef HMEDEBUG
/* Debug: double-check. */
CTR4(KTR_HME, "hme_init: tx ring %#x, rsz %#x, rx ring %#x, "
"rxsize %#x", HME_ETX_READ_4(sc, HME_ETXI_RING),
HME_ETX_READ_4(sc, HME_ETXI_RSIZE),
HME_ERX_READ_4(sc, HME_ERXI_RING),
HME_MAC_READ_4(sc, HME_MACI_RXSIZE));
CTR3(KTR_HME, "hme_init: intr mask %#x, erx cfg %#x, etx cfg %#x",
HME_SEB_READ_4(sc, HME_SEBI_IMASK),
HME_ERX_READ_4(sc, HME_ERXI_CFG),
HME_ETX_READ_4(sc, HME_ETXI_CFG));
CTR2(KTR_HME, "hme_init: mac rxcfg %#x, maci txcfg %#x",
HME_MAC_READ_4(sc, HME_MACI_RXCFG),
HME_MAC_READ_4(sc, HME_MACI_TXCFG));
#endif
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* Set the current media. */
hme_mediachange_locked(sc);
/* Start the one second timer. */
sc->sc_wdog_timer = 0;
callout_reset(&sc->sc_tick_ch, hz, hme_tick, sc);
}
/*
* Routine to DMA map an mbuf chain, set up the descriptor rings
* accordingly and start the transmission.
* Returns 0 on success, -1 if there were not enough free descriptors
* to map the packet, or an errno otherwise.
*
* XXX: this relies on the fact that segments returned by
* bus_dmamap_load_mbuf_sg() are readable from the nearest burst
* boundary on (i.e. potentially before ds_addr) to the first
* boundary beyond the end. This is usually a safe assumption to
* make, but is not documented.
*/
static int
hme_load_txmbuf(struct hme_softc *sc, struct mbuf **m0)
{
bus_dma_segment_t segs[HME_NTXSEGS];
struct hme_txdesc *htx;
struct ip *ip;
struct mbuf *m;
caddr_t txd;
int error, i, nsegs, pci, ri, si;
uint32_t cflags, flags;
if ((htx = STAILQ_FIRST(&sc->sc_rb.rb_txfreeq)) == NULL)
return (ENOBUFS);
cflags = 0;
if (((*m0)->m_pkthdr.csum_flags & sc->sc_csum_features) != 0) {
if (M_WRITABLE(*m0) == 0) {
m = m_dup(*m0, M_NOWAIT);
m_freem(*m0);
*m0 = m;
if (m == NULL)
return (ENOBUFS);
}
i = sizeof(struct ether_header);
m = m_pullup(*m0, i + sizeof(struct ip));
if (m == NULL) {
*m0 = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, caddr_t) + i);
i += (ip->ip_hl << 2);
cflags = i << HME_XD_TXCKSUM_SSHIFT |
((i + m->m_pkthdr.csum_data) << HME_XD_TXCKSUM_OSHIFT) |
HME_XD_TXCKSUM;
*m0 = m;
}
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, htx->htx_dmamap,
*m0, segs, &nsegs, 0);
if (error == EFBIG) {
m = m_collapse(*m0, M_NOWAIT, HME_NTXSEGS);
if (m == NULL) {
m_freem(*m0);
*m0 = NULL;
return (ENOMEM);
}
*m0 = m;
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, htx->htx_dmamap,
*m0, segs, &nsegs, 0);
if (error != 0) {
m_freem(*m0);
*m0 = NULL;
return (error);
}
} else if (error != 0)
return (error);
/* If nsegs is wrong then the stack is corrupt. */
KASSERT(nsegs <= HME_NTXSEGS,
("%s: too many DMA segments (%d)", __func__, nsegs));
if (nsegs == 0) {
m_freem(*m0);
*m0 = NULL;
return (EIO);
}
if (sc->sc_rb.rb_td_nbusy + nsegs >= HME_NTXDESC) {
bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap);
/* Retry with m_collapse(9)? */
return (ENOBUFS);
}
bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap, BUS_DMASYNC_PREWRITE);
si = ri = sc->sc_rb.rb_tdhead;
txd = sc->sc_rb.rb_txd;
pci = sc->sc_flags & HME_PCI;
CTR2(KTR_HME, "hme_load_mbuf: next desc is %d (%#x)", ri,
HME_XD_GETFLAGS(pci, txd, ri));
for (i = 0; i < nsegs; i++) {
/* Fill the ring entry. */
flags = HME_XD_ENCODE_TSIZE(segs[i].ds_len);
if (i == 0)
flags |= HME_XD_SOP | cflags;
else
flags |= HME_XD_OWN | cflags;
CTR3(KTR_HME, "hme_load_mbuf: activating ri %d, si %d (%#x)",
ri, si, flags);
HME_XD_SETADDR(pci, txd, ri, segs[i].ds_addr);
HME_XD_SETFLAGS(pci, txd, ri, flags);
sc->sc_rb.rb_td_nbusy++;
htx->htx_lastdesc = ri;
ri = (ri + 1) % HME_NTXDESC;
}
sc->sc_rb.rb_tdhead = ri;
/* set EOP on the last descriptor */
ri = (ri + HME_NTXDESC - 1) % HME_NTXDESC;
flags = HME_XD_GETFLAGS(pci, txd, ri);
flags |= HME_XD_EOP;
CTR3(KTR_HME, "hme_load_mbuf: setting EOP ri %d, si %d (%#x)", ri, si,
flags);
HME_XD_SETFLAGS(pci, txd, ri, flags);
/* Turn the first descriptor ownership to the hme */
flags = HME_XD_GETFLAGS(pci, txd, si);
flags |= HME_XD_OWN;
CTR2(KTR_HME, "hme_load_mbuf: setting OWN for 1st desc ri %d, (%#x)",
ri, flags);
HME_XD_SETFLAGS(pci, txd, si, flags);
STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txfreeq, htx_q);
STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txbusyq, htx, htx_q);
htx->htx_m = *m0;
/* start the transmission. */
HME_ETX_WRITE_4(sc, HME_ETXI_PENDING, HME_ETX_TP_DMAWAKEUP);
return (0);
}
/*
* Pass a packet to the higher levels.
*/
static void
hme_read(struct hme_softc *sc, int ix, int len, u_int32_t flags)
{
struct ifnet *ifp = sc->sc_ifp;
struct mbuf *m;
if (len <= sizeof(struct ether_header) ||
len > HME_MAX_FRAMESIZE) {
#ifdef HMEDEBUG
HME_WHINE(sc->sc_dev, "invalid packet size %d; dropping\n",
len);
#endif
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
hme_discard_rxbuf(sc, ix);
return;
}
m = sc->sc_rb.rb_rxdesc[ix].hrx_m;
CTR1(KTR_HME, "hme_read: len %d", len);
if (hme_add_rxbuf(sc, ix, 0) != 0) {
/*
* hme_add_rxbuf will leave the old buffer in the ring until
* it is sure that a new buffer can be mapped. If it can not,
* drop the packet, but leave the interface up.
*/
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
hme_discard_rxbuf(sc, ix);
return;
}
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len + HME_RXOFFS;
m_adj(m, HME_RXOFFS);
/* RX TCP/UDP checksum */
if (ifp->if_capenable & IFCAP_RXCSUM)
hme_rxcksum(m, flags);
/* Pass the packet up. */
HME_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
HME_LOCK(sc);
}
static void
hme_start(struct ifnet *ifp)
{
struct hme_softc *sc = ifp->if_softc;
HME_LOCK(sc);
hme_start_locked(ifp);
HME_UNLOCK(sc);
}
static void
hme_start_locked(struct ifnet *ifp)
{
struct hme_softc *sc = (struct hme_softc *)ifp->if_softc;
struct mbuf *m;
int error, enq = 0;
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->sc_flags & HME_LINK) == 0)
return;
for (; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->sc_rb.rb_td_nbusy < HME_NTXDESC - 1;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
error = hme_load_txmbuf(sc, &m);
if (error != 0) {
if (m == NULL)
break;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
IFQ_DRV_PREPEND(&ifp->if_snd, m);
break;
}
enq++;
BPF_MTAP(ifp, m);
}
if (enq > 0) {
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->sc_wdog_timer = 5;
}
}
/*
* Transmit interrupt.
*/
static void
hme_tint(struct hme_softc *sc)
{
caddr_t txd;
struct ifnet *ifp = sc->sc_ifp;
struct hme_txdesc *htx;
unsigned int ri, txflags;
txd = sc->sc_rb.rb_txd;
htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq);
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
/* Fetch current position in the transmit ring */
for (ri = sc->sc_rb.rb_tdtail;; ri = (ri + 1) % HME_NTXDESC) {
if (sc->sc_rb.rb_td_nbusy <= 0) {
CTR0(KTR_HME, "hme_tint: not busy!");
break;
}
txflags = HME_XD_GETFLAGS(sc->sc_flags & HME_PCI, txd, ri);
CTR2(KTR_HME, "hme_tint: index %d, flags %#x", ri, txflags);
if ((txflags & HME_XD_OWN) != 0)
break;
CTR0(KTR_HME, "hme_tint: not owned");
--sc->sc_rb.rb_td_nbusy;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* Complete packet transmitted? */
if ((txflags & HME_XD_EOP) == 0)
continue;
KASSERT(htx->htx_lastdesc == ri,
("%s: ring indices skewed: %d != %d!",
__func__, htx->htx_lastdesc, ri));
bus_dmamap_sync(sc->sc_tdmatag, htx->htx_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tdmatag, htx->htx_dmamap);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
m_freem(htx->htx_m);
htx->htx_m = NULL;
STAILQ_REMOVE_HEAD(&sc->sc_rb.rb_txbusyq, htx_q);
STAILQ_INSERT_TAIL(&sc->sc_rb.rb_txfreeq, htx, htx_q);
htx = STAILQ_FIRST(&sc->sc_rb.rb_txbusyq);
}
sc->sc_wdog_timer = sc->sc_rb.rb_td_nbusy > 0 ? 5 : 0;
/* Update ring */
sc->sc_rb.rb_tdtail = ri;
hme_start_locked(ifp);
}
/*
* RX TCP/UDP checksum
*/
static void
hme_rxcksum(struct mbuf *m, u_int32_t flags)
{
struct ether_header *eh;
struct ip *ip;
struct udphdr *uh;
int32_t hlen, len, pktlen;
u_int16_t cksum, *opts;
u_int32_t temp32;
pktlen = m->m_pkthdr.len;
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
return;
eh = mtod(m, struct ether_header *);
if (eh->ether_type != htons(ETHERTYPE_IP))
return;
ip = (struct ip *)(eh + 1);
if (ip->ip_v != IPVERSION)
return;
hlen = ip->ip_hl << 2;
pktlen -= sizeof(struct ether_header);
if (hlen < sizeof(struct ip))
return;
if (ntohs(ip->ip_len) < hlen)
return;
if (ntohs(ip->ip_len) != pktlen)
return;
if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
return; /* can't handle fragmented packet */
switch (ip->ip_p) {
case IPPROTO_TCP:
if (pktlen < (hlen + sizeof(struct tcphdr)))
return;
break;
case IPPROTO_UDP:
if (pktlen < (hlen + sizeof(struct udphdr)))
return;
uh = (struct udphdr *)((caddr_t)ip + hlen);
if (uh->uh_sum == 0)
return; /* no checksum */
break;
default:
return;
}
cksum = ~(flags & HME_XD_RXCKSUM);
/* checksum fixup for IP options */
len = hlen - sizeof(struct ip);
if (len > 0) {
opts = (u_int16_t *)(ip + 1);
for (; len > 0; len -= sizeof(u_int16_t), opts++) {
temp32 = cksum - *opts;
temp32 = (temp32 >> 16) + (temp32 & 65535);
cksum = temp32 & 65535;
}
}
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
m->m_pkthdr.csum_data = cksum;
}
/*
* Receive interrupt.
*/
static void
hme_rint(struct hme_softc *sc)
{
caddr_t xdr = sc->sc_rb.rb_rxd;
struct ifnet *ifp = sc->sc_ifp;
unsigned int ri, len;
int progress = 0;
u_int32_t flags;
/*
* Process all buffers with valid data.
*/
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap, BUS_DMASYNC_POSTREAD);
for (ri = sc->sc_rb.rb_rdtail;; ri = (ri + 1) % HME_NRXDESC) {
flags = HME_XD_GETFLAGS(sc->sc_flags & HME_PCI, xdr, ri);
CTR2(KTR_HME, "hme_rint: index %d, flags %#x", ri, flags);
if ((flags & HME_XD_OWN) != 0)
break;
progress++;
if ((flags & HME_XD_OFL) != 0) {
device_printf(sc->sc_dev, "buffer overflow, ri=%d; "
"flags=0x%x\n", ri, flags);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
hme_discard_rxbuf(sc, ri);
} else {
len = HME_XD_DECODE_RSIZE(flags);
hme_read(sc, ri, len, flags);
}
}
if (progress) {
bus_dmamap_sync(sc->sc_cdmatag, sc->sc_cdmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
sc->sc_rb.rb_rdtail = ri;
}
static void
hme_eint(struct hme_softc *sc, u_int status)
{
if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
device_printf(sc->sc_dev, "XXXlink status changed: "
"cfg=%#x, stat=%#x, sm=%#x\n",
HME_MIF_READ_4(sc, HME_MIFI_CFG),
HME_MIF_READ_4(sc, HME_MIFI_STAT),
HME_MIF_READ_4(sc, HME_MIFI_SM));
return;
}
/* check for fatal errors that needs reset to unfreeze DMA engine */
if ((status & HME_SEB_STAT_FATAL_ERRORS) != 0) {
HME_WHINE(sc->sc_dev, "error signaled, status=%#x\n", status);
sc->sc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
hme_init_locked(sc);
}
}
void
hme_intr(void *v)
{
struct hme_softc *sc = (struct hme_softc *)v;
u_int32_t status;
HME_LOCK(sc);
status = HME_SEB_READ_4(sc, HME_SEBI_STAT);
CTR1(KTR_HME, "hme_intr: status %#x", (u_int)status);
if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
hme_eint(sc, status);
if ((status & HME_SEB_STAT_RXTOHOST) != 0)
hme_rint(sc);
if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
hme_tint(sc);
HME_UNLOCK(sc);
}
static int
hme_watchdog(struct hme_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
HME_LOCK_ASSERT(sc, MA_OWNED);
#ifdef HMEDEBUG
CTR1(KTR_HME, "hme_watchdog: status %x",
(u_int)HME_SEB_READ_4(sc, HME_SEBI_STAT));
#endif
if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
return (0);
if ((sc->sc_flags & HME_LINK) != 0)
device_printf(sc->sc_dev, "device timeout\n");
else if (bootverbose)
device_printf(sc->sc_dev, "device timeout (no link)\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
hme_init_locked(sc);
hme_start_locked(ifp);
return (EJUSTRETURN);
}
/*
* Initialize the MII Management Interface
*/
static void
hme_mifinit(struct hme_softc *sc)
{
u_int32_t v;
/*
* Configure the MIF in frame mode, polling disabled, internal PHY
* selected.
*/
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, 0);
/*
* If the currently selected media uses the external transceiver,
* enable its MII drivers (which basically isolates the internal
* one and vice versa). In case the current media hasn't been set,
* yet, we default to the internal transceiver.
*/
v = HME_MAC_READ_4(sc, HME_MACI_XIF);
if (sc->sc_mii != NULL && sc->sc_mii->mii_media.ifm_cur != NULL &&
sc->sc_phys[IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media)] ==
HME_PHYAD_EXTERNAL)
v |= HME_MAC_XIF_MIIENABLE;
else
v &= ~HME_MAC_XIF_MIIENABLE;
HME_MAC_WRITE_4(sc, HME_MACI_XIF, v);
}
/*
* MII interface
*/
int
hme_mii_readreg(device_t dev, int phy, int reg)
{
struct hme_softc *sc;
int n;
u_int32_t v;
sc = device_get_softc(dev);
/* Select the desired PHY in the MIF configuration register */
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MIF_CFG_PHY;
else
v &= ~HME_MIF_CFG_PHY;
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
/* Construct the frame command */
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
HME_MIF_FO_TAMSB |
(MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
(phy << HME_MIF_FO_PHYAD_SHIFT) |
(reg << HME_MIF_FO_REGAD_SHIFT);
HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
HME_MIF_BARRIER(sc, HME_MIFI_FO, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
for (n = 0; n < 100; n++) {
DELAY(1);
v = HME_MIF_READ_4(sc, HME_MIFI_FO);
if (v & HME_MIF_FO_TALSB)
return (v & HME_MIF_FO_DATA);
}
device_printf(sc->sc_dev, "mii_read timeout\n");
return (0);
}
int
hme_mii_writereg(device_t dev, int phy, int reg, int val)
{
struct hme_softc *sc;
int n;
u_int32_t v;
sc = device_get_softc(dev);
/* Select the desired PHY in the MIF configuration register */
v = HME_MIF_READ_4(sc, HME_MIFI_CFG);
if (phy == HME_PHYAD_EXTERNAL)
v |= HME_MIF_CFG_PHY;
else
v &= ~HME_MIF_CFG_PHY;
HME_MIF_WRITE_4(sc, HME_MIFI_CFG, v);
/* Construct the frame command */
v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
HME_MIF_FO_TAMSB |
(MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
(phy << HME_MIF_FO_PHYAD_SHIFT) |
(reg << HME_MIF_FO_REGAD_SHIFT) |
(val & HME_MIF_FO_DATA);
HME_MIF_WRITE_4(sc, HME_MIFI_FO, v);
HME_MIF_BARRIER(sc, HME_MIFI_FO, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
for (n = 0; n < 100; n++) {
DELAY(1);
v = HME_MIF_READ_4(sc, HME_MIFI_FO);
if (v & HME_MIF_FO_TALSB)
return (1);
}
device_printf(sc->sc_dev, "mii_write timeout\n");
return (0);
}
void
hme_mii_statchg(device_t dev)
{
struct hme_softc *sc;
uint32_t rxcfg, txcfg;
sc = device_get_softc(dev);
#ifdef HMEDEBUG
if ((sc->sc_ifp->if_flags & IFF_DEBUG) != 0)
device_printf(sc->sc_dev, "hme_mii_statchg: status change\n");
#endif
if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
sc->sc_flags |= HME_LINK;
else
sc->sc_flags &= ~HME_LINK;
txcfg = HME_MAC_READ_4(sc, HME_MACI_TXCFG);
if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, txcfg,
HME_MAC_TXCFG_ENABLE, 0))
device_printf(sc->sc_dev, "cannot disable TX MAC\n");
rxcfg = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, rxcfg,
HME_MAC_RXCFG_ENABLE, 0))
device_printf(sc->sc_dev, "cannot disable RX MAC\n");
/* Set the MAC Full Duplex bit appropriately. */
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
txcfg |= HME_MAC_TXCFG_FULLDPLX;
else
txcfg &= ~HME_MAC_TXCFG_FULLDPLX;
HME_MAC_WRITE_4(sc, HME_MACI_TXCFG, txcfg);
if ((sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
(sc->sc_flags & HME_LINK) != 0) {
if (!hme_mac_bitflip(sc, HME_MACI_TXCFG, txcfg, 0,
HME_MAC_TXCFG_ENABLE))
device_printf(sc->sc_dev, "cannot enable TX MAC\n");
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, rxcfg, 0,
HME_MAC_RXCFG_ENABLE))
device_printf(sc->sc_dev, "cannot enable RX MAC\n");
}
}
static int
hme_mediachange(struct ifnet *ifp)
{
struct hme_softc *sc = ifp->if_softc;
int error;
HME_LOCK(sc);
error = hme_mediachange_locked(sc);
HME_UNLOCK(sc);
return (error);
}
static int
hme_mediachange_locked(struct hme_softc *sc)
{
struct mii_softc *child;
HME_LOCK_ASSERT(sc, MA_OWNED);
#ifdef HMEDEBUG
if ((sc->sc_ifp->if_flags & IFF_DEBUG) != 0)
device_printf(sc->sc_dev, "hme_mediachange_locked");
#endif
hme_mifinit(sc);
/*
* If both PHYs are present reset them. This is required for
* unisolating the previously isolated PHY when switching PHYs.
* As the above hme_mifinit() call will set the MII drivers in
* the XIF configuration register according to the currently
* selected media, there should be no window during which the
* data paths of both transceivers are open at the same time,
* even if the PHY device drivers use MIIF_NOISOLATE.
*/
if (sc->sc_phys[0] != -1 && sc->sc_phys[1] != -1)
LIST_FOREACH(child, &sc->sc_mii->mii_phys, mii_list)
PHY_RESET(child);
return (mii_mediachg(sc->sc_mii));
}
static void
hme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct hme_softc *sc = ifp->if_softc;
HME_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0) {
HME_UNLOCK(sc);
return;
}
mii_pollstat(sc->sc_mii);
ifmr->ifm_active = sc->sc_mii->mii_media_active;
ifmr->ifm_status = sc->sc_mii->mii_media_status;
HME_UNLOCK(sc);
}
/*
* Process an ioctl request.
*/
static int
hme_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct hme_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
HME_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
((ifp->if_flags ^ sc->sc_ifflags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
hme_setladrf(sc, 1);
else
hme_init_locked(sc);
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
hme_stop(sc);
if ((ifp->if_flags & IFF_LINK0) != 0)
sc->sc_csum_features |= CSUM_UDP;
else
sc->sc_csum_features &= ~CSUM_UDP;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist = sc->sc_csum_features;
sc->sc_ifflags = ifp->if_flags;
HME_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
HME_LOCK(sc);
hme_setladrf(sc, 1);
HME_UNLOCK(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
break;
case SIOCSIFCAP:
HME_LOCK(sc);
ifp->if_capenable = ifr->ifr_reqcap;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist = sc->sc_csum_features;
else
ifp->if_hwassist = 0;
HME_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
/*
* Set up the logical address filter.
*/
static void
hme_setladrf(struct hme_softc *sc, int reenable)
{
struct ifnet *ifp = sc->sc_ifp;
struct ifmultiaddr *inm;
u_int32_t crc;
u_int32_t hash[4];
u_int32_t macc;
HME_LOCK_ASSERT(sc, MA_OWNED);
/* Clear the hash table. */
hash[3] = hash[2] = hash[1] = hash[0] = 0;
/* Get the current RX configuration. */
macc = HME_MAC_READ_4(sc, HME_MACI_RXCFG);
/*
* Turn off promiscuous mode, promiscuous group mode (all multicast),
* and hash filter. Depending on the case, the right bit will be
* enabled.
*/
macc &= ~(HME_MAC_RXCFG_PGRP | HME_MAC_RXCFG_PMISC);
/*
* Disable the receiver while changing it's state as the documentation
* mandates.
* We then must wait until the bit clears in the register. This should
* take at most 3.5ms.
*/
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc,
HME_MAC_RXCFG_ENABLE, 0))
device_printf(sc->sc_dev, "cannot disable RX MAC\n");
/* Disable the hash filter before writing to the filter registers. */
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc,
HME_MAC_RXCFG_HENABLE, 0))
device_printf(sc->sc_dev, "cannot disable hash filter\n");
/* Make the RX MAC really SIMPLEX. */
macc |= HME_MAC_RXCFG_ME;
if (reenable)
macc |= HME_MAC_RXCFG_ENABLE;
else
macc &= ~HME_MAC_RXCFG_ENABLE;
if ((ifp->if_flags & IFF_PROMISC) != 0) {
macc |= HME_MAC_RXCFG_PMISC;
goto chipit;
}
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
macc |= HME_MAC_RXCFG_PGRP;
goto chipit;
}
macc |= HME_MAC_RXCFG_HENABLE;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
if_maddr_rlock(ifp);
TAILQ_FOREACH(inm, &ifp->if_multiaddrs, ifma_link) {
if (inm->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
inm->ifma_addr), ETHER_ADDR_LEN);
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (crc & 0xf);
}
if_maddr_runlock(ifp);
chipit:
/* Now load the hash table into the chip */
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB0, hash[0]);
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB1, hash[1]);
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB2, hash[2]);
HME_MAC_WRITE_4(sc, HME_MACI_HASHTAB3, hash[3]);
if (!hme_mac_bitflip(sc, HME_MACI_RXCFG, macc, 0,
macc & (HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_HENABLE |
HME_MAC_RXCFG_ME)))
device_printf(sc->sc_dev, "cannot configure RX MAC\n");
}