freebsd-dev/sys/dev/ciss/ciss.c
Sean Bruno 739a93997c Fix insta-panic on assert of unlocked periph mtx in ciss(4) when
logical volume state changes.

Currently, I view this as a critical fix for users and will MFC this rapidly as
my testing has shown data loss when the disk is failed by removing it when
under some amount of write activity and this code panics the box.

Reviewed by:	mav@ scottl@
MFC after:	3 days
Sponsored by:	Yahoo! Inc.
2014-04-11 20:19:01 +00:00

4732 lines
137 KiB
C

/*-
* Copyright (c) 2001 Michael Smith
* Copyright (c) 2004 Paul Saab
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Common Interface for SCSI-3 Support driver.
*
* CISS claims to provide a common interface between a generic SCSI
* transport and an intelligent host adapter.
*
* This driver supports CISS as defined in the document "CISS Command
* Interface for SCSI-3 Support Open Specification", Version 1.04,
* Valence Number 1, dated 20001127, produced by Compaq Computer
* Corporation. This document appears to be a hastily and somewhat
* arbitrarlily cut-down version of a larger (and probably even more
* chaotic and inconsistent) Compaq internal document. Various
* details were also gleaned from Compaq's "cciss" driver for Linux.
*
* We provide a shim layer between the CISS interface and CAM,
* offloading most of the queueing and being-a-disk chores onto CAM.
* Entry to the driver is via the PCI bus attachment (ciss_probe,
* ciss_attach, etc) and via the CAM interface (ciss_cam_action,
* ciss_cam_poll). The Compaq CISS adapters are, however, poor SCSI
* citizens and we have to fake up some responses to get reasonable
* behaviour out of them. In addition, the CISS command set is by no
* means adequate to support the functionality of a RAID controller,
* and thus the supported Compaq adapters utilise portions of the
* control protocol from earlier Compaq adapter families.
*
* Note that we only support the "simple" transport layer over PCI.
* This interface (ab)uses the I2O register set (specifically the post
* queues) to exchange commands with the adapter. Other interfaces
* are available, but we aren't supposed to know about them, and it is
* dubious whether they would provide major performance improvements
* except under extreme load.
*
* Currently the only supported CISS adapters are the Compaq Smart
* Array 5* series (5300, 5i, 532). Even with only three adapters,
* Compaq still manage to have interface variations.
*
*
* Thanks must go to Fred Harris and Darryl DeVinney at Compaq, as
* well as Paul Saab at Yahoo! for their assistance in making this
* driver happen.
*
* More thanks must go to John Cagle at HP for the countless hours
* spent making this driver "work" with the MSA* series storage
* enclosures. Without his help (and nagging), this driver could not
* be used with these enclosures.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <sys/kthread.h>
#include <sys/queue.h>
#include <sys/sysctl.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/ciss/cissreg.h>
#include <dev/ciss/cissio.h>
#include <dev/ciss/cissvar.h>
static MALLOC_DEFINE(CISS_MALLOC_CLASS, "ciss_data",
"ciss internal data buffers");
/* pci interface */
static int ciss_lookup(device_t dev);
static int ciss_probe(device_t dev);
static int ciss_attach(device_t dev);
static int ciss_detach(device_t dev);
static int ciss_shutdown(device_t dev);
/* (de)initialisation functions, control wrappers */
static int ciss_init_pci(struct ciss_softc *sc);
static int ciss_setup_msix(struct ciss_softc *sc);
static int ciss_init_perf(struct ciss_softc *sc);
static int ciss_wait_adapter(struct ciss_softc *sc);
static int ciss_flush_adapter(struct ciss_softc *sc);
static int ciss_init_requests(struct ciss_softc *sc);
static void ciss_command_map_helper(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static int ciss_identify_adapter(struct ciss_softc *sc);
static int ciss_init_logical(struct ciss_softc *sc);
static int ciss_init_physical(struct ciss_softc *sc);
static int ciss_filter_physical(struct ciss_softc *sc, struct ciss_lun_report *cll);
static int ciss_identify_logical(struct ciss_softc *sc, struct ciss_ldrive *ld);
static int ciss_get_ldrive_status(struct ciss_softc *sc, struct ciss_ldrive *ld);
static int ciss_update_config(struct ciss_softc *sc);
static int ciss_accept_media(struct ciss_softc *sc, struct ciss_ldrive *ld);
static void ciss_init_sysctl(struct ciss_softc *sc);
static void ciss_soft_reset(struct ciss_softc *sc);
static void ciss_free(struct ciss_softc *sc);
static void ciss_spawn_notify_thread(struct ciss_softc *sc);
static void ciss_kill_notify_thread(struct ciss_softc *sc);
/* request submission/completion */
static int ciss_start(struct ciss_request *cr);
static void ciss_done(struct ciss_softc *sc, cr_qhead_t *qh);
static void ciss_perf_done(struct ciss_softc *sc, cr_qhead_t *qh);
static void ciss_intr(void *arg);
static void ciss_perf_intr(void *arg);
static void ciss_perf_msi_intr(void *arg);
static void ciss_complete(struct ciss_softc *sc, cr_qhead_t *qh);
static int _ciss_report_request(struct ciss_request *cr, int *command_status, int *scsi_status, const char *func);
static int ciss_synch_request(struct ciss_request *cr, int timeout);
static int ciss_poll_request(struct ciss_request *cr, int timeout);
static int ciss_wait_request(struct ciss_request *cr, int timeout);
#if 0
static int ciss_abort_request(struct ciss_request *cr);
#endif
/* request queueing */
static int ciss_get_request(struct ciss_softc *sc, struct ciss_request **crp);
static void ciss_preen_command(struct ciss_request *cr);
static void ciss_release_request(struct ciss_request *cr);
/* request helpers */
static int ciss_get_bmic_request(struct ciss_softc *sc, struct ciss_request **crp,
int opcode, void **bufp, size_t bufsize);
static int ciss_user_command(struct ciss_softc *sc, IOCTL_Command_struct *ioc);
/* DMA map/unmap */
static int ciss_map_request(struct ciss_request *cr);
static void ciss_request_map_helper(void *arg, bus_dma_segment_t *segs,
int nseg, int error);
static void ciss_unmap_request(struct ciss_request *cr);
/* CAM interface */
static int ciss_cam_init(struct ciss_softc *sc);
static void ciss_cam_rescan_target(struct ciss_softc *sc,
int bus, int target);
static void ciss_cam_action(struct cam_sim *sim, union ccb *ccb);
static int ciss_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
static int ciss_cam_emulate(struct ciss_softc *sc, struct ccb_scsiio *csio);
static void ciss_cam_poll(struct cam_sim *sim);
static void ciss_cam_complete(struct ciss_request *cr);
static void ciss_cam_complete_fixup(struct ciss_softc *sc, struct ccb_scsiio *csio);
static int ciss_name_device(struct ciss_softc *sc, int bus, int target);
/* periodic status monitoring */
static void ciss_periodic(void *arg);
static void ciss_nop_complete(struct ciss_request *cr);
static void ciss_disable_adapter(struct ciss_softc *sc);
static void ciss_notify_event(struct ciss_softc *sc);
static void ciss_notify_complete(struct ciss_request *cr);
static int ciss_notify_abort(struct ciss_softc *sc);
static int ciss_notify_abort_bmic(struct ciss_softc *sc);
static void ciss_notify_hotplug(struct ciss_softc *sc, struct ciss_notify *cn);
static void ciss_notify_logical(struct ciss_softc *sc, struct ciss_notify *cn);
static void ciss_notify_physical(struct ciss_softc *sc, struct ciss_notify *cn);
/* debugging output */
static void ciss_print_request(struct ciss_request *cr);
static void ciss_print_ldrive(struct ciss_softc *sc, struct ciss_ldrive *ld);
static const char *ciss_name_ldrive_status(int status);
static int ciss_decode_ldrive_status(int status);
static const char *ciss_name_ldrive_org(int org);
static const char *ciss_name_command_status(int status);
/*
* PCI bus interface.
*/
static device_method_t ciss_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ciss_probe),
DEVMETHOD(device_attach, ciss_attach),
DEVMETHOD(device_detach, ciss_detach),
DEVMETHOD(device_shutdown, ciss_shutdown),
{ 0, 0 }
};
static driver_t ciss_pci_driver = {
"ciss",
ciss_methods,
sizeof(struct ciss_softc)
};
static devclass_t ciss_devclass;
DRIVER_MODULE(ciss, pci, ciss_pci_driver, ciss_devclass, 0, 0);
MODULE_DEPEND(ciss, cam, 1, 1, 1);
MODULE_DEPEND(ciss, pci, 1, 1, 1);
/*
* Control device interface.
*/
static d_open_t ciss_open;
static d_close_t ciss_close;
static d_ioctl_t ciss_ioctl;
static struct cdevsw ciss_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = ciss_open,
.d_close = ciss_close,
.d_ioctl = ciss_ioctl,
.d_name = "ciss",
};
/*
* This tunable can be set at boot time and controls whether physical devices
* that are marked hidden by the firmware should be exposed anyways.
*/
static unsigned int ciss_expose_hidden_physical = 0;
TUNABLE_INT("hw.ciss.expose_hidden_physical", &ciss_expose_hidden_physical);
static unsigned int ciss_nop_message_heartbeat = 0;
TUNABLE_INT("hw.ciss.nop_message_heartbeat", &ciss_nop_message_heartbeat);
/*
* This tunable can force a particular transport to be used:
* <= 0 : use default
* 1 : force simple
* 2 : force performant
*/
static int ciss_force_transport = 0;
TUNABLE_INT("hw.ciss.force_transport", &ciss_force_transport);
/*
* This tunable can force a particular interrupt delivery method to be used:
* <= 0 : use default
* 1 : force INTx
* 2 : force MSIX
*/
static int ciss_force_interrupt = 0;
TUNABLE_INT("hw.ciss.force_interrupt", &ciss_force_interrupt);
/************************************************************************
* CISS adapters amazingly don't have a defined programming interface
* value. (One could say some very despairing things about PCI and
* people just not getting the general idea.) So we are forced to
* stick with matching against subvendor/subdevice, and thus have to
* be updated for every new CISS adapter that appears.
*/
#define CISS_BOARD_UNKNWON 0
#define CISS_BOARD_SA5 1
#define CISS_BOARD_SA5B 2
#define CISS_BOARD_NOMSI (1<<4)
#define CISS_BOARD_SIMPLE (1<<5)
static struct
{
u_int16_t subvendor;
u_int16_t subdevice;
int flags;
char *desc;
} ciss_vendor_data[] = {
{ 0x0e11, 0x4070, CISS_BOARD_SA5|CISS_BOARD_NOMSI|CISS_BOARD_SIMPLE,
"Compaq Smart Array 5300" },
{ 0x0e11, 0x4080, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "Compaq Smart Array 5i" },
{ 0x0e11, 0x4082, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "Compaq Smart Array 532" },
{ 0x0e11, 0x4083, CISS_BOARD_SA5B|CISS_BOARD_NOMSI, "HP Smart Array 5312" },
{ 0x0e11, 0x4091, CISS_BOARD_SA5, "HP Smart Array 6i" },
{ 0x0e11, 0x409A, CISS_BOARD_SA5, "HP Smart Array 641" },
{ 0x0e11, 0x409B, CISS_BOARD_SA5, "HP Smart Array 642" },
{ 0x0e11, 0x409C, CISS_BOARD_SA5, "HP Smart Array 6400" },
{ 0x0e11, 0x409D, CISS_BOARD_SA5, "HP Smart Array 6400 EM" },
{ 0x103C, 0x3211, CISS_BOARD_SA5, "HP Smart Array E200i" },
{ 0x103C, 0x3212, CISS_BOARD_SA5, "HP Smart Array E200" },
{ 0x103C, 0x3213, CISS_BOARD_SA5, "HP Smart Array E200i" },
{ 0x103C, 0x3214, CISS_BOARD_SA5, "HP Smart Array E200i" },
{ 0x103C, 0x3215, CISS_BOARD_SA5, "HP Smart Array E200i" },
{ 0x103C, 0x3220, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3222, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3223, CISS_BOARD_SA5, "HP Smart Array P800" },
{ 0x103C, 0x3225, CISS_BOARD_SA5, "HP Smart Array P600" },
{ 0x103C, 0x3230, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3231, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3232, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3233, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3234, CISS_BOARD_SA5, "HP Smart Array P400" },
{ 0x103C, 0x3235, CISS_BOARD_SA5, "HP Smart Array P400i" },
{ 0x103C, 0x3236, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3237, CISS_BOARD_SA5, "HP Smart Array E500" },
{ 0x103C, 0x3238, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3239, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x323A, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x323B, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x323C, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x323D, CISS_BOARD_SA5, "HP Smart Array P700m" },
{ 0x103C, 0x3241, CISS_BOARD_SA5, "HP Smart Array P212" },
{ 0x103C, 0x3243, CISS_BOARD_SA5, "HP Smart Array P410" },
{ 0x103C, 0x3245, CISS_BOARD_SA5, "HP Smart Array P410i" },
{ 0x103C, 0x3247, CISS_BOARD_SA5, "HP Smart Array P411" },
{ 0x103C, 0x3249, CISS_BOARD_SA5, "HP Smart Array P812" },
{ 0x103C, 0x324A, CISS_BOARD_SA5, "HP Smart Array P712m" },
{ 0x103C, 0x324B, CISS_BOARD_SA5, "HP Smart Array" },
{ 0x103C, 0x3350, CISS_BOARD_SA5, "HP Smart Array P222" },
{ 0x103C, 0x3351, CISS_BOARD_SA5, "HP Smart Array P420" },
{ 0x103C, 0x3352, CISS_BOARD_SA5, "HP Smart Array P421" },
{ 0x103C, 0x3353, CISS_BOARD_SA5, "HP Smart Array P822" },
{ 0x103C, 0x3354, CISS_BOARD_SA5, "HP Smart Array P420i" },
{ 0x103C, 0x3355, CISS_BOARD_SA5, "HP Smart Array P220i" },
{ 0x103C, 0x3356, CISS_BOARD_SA5, "HP Smart Array P721m" },
{ 0x103C, 0x1920, CISS_BOARD_SA5, "HP Smart Array P430i" },
{ 0x103C, 0x1921, CISS_BOARD_SA5, "HP Smart Array P830i" },
{ 0x103C, 0x1922, CISS_BOARD_SA5, "HP Smart Array P430" },
{ 0x103C, 0x1923, CISS_BOARD_SA5, "HP Smart Array P431" },
{ 0x103C, 0x1924, CISS_BOARD_SA5, "HP Smart Array P830" },
{ 0x103C, 0x1926, CISS_BOARD_SA5, "HP Smart Array P731m" },
{ 0x103C, 0x1928, CISS_BOARD_SA5, "HP Smart Array P230i" },
{ 0x103C, 0x1929, CISS_BOARD_SA5, "HP Smart Array P530" },
{ 0x103C, 0x192A, CISS_BOARD_SA5, "HP Smart Array P531" },
{ 0x103C, 0x21BD, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21BE, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21BF, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C0, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C2, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C3, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C5, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C6, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C7, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21C8, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21CA, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21CB, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21CC, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21CD, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0x103C, 0x21CE, CISS_BOARD_SA5, "HP Smart Array TBD" },
{ 0, 0, 0, NULL }
};
/************************************************************************
* Find a match for the device in our list of known adapters.
*/
static int
ciss_lookup(device_t dev)
{
int i;
for (i = 0; ciss_vendor_data[i].desc != NULL; i++)
if ((pci_get_subvendor(dev) == ciss_vendor_data[i].subvendor) &&
(pci_get_subdevice(dev) == ciss_vendor_data[i].subdevice)) {
return(i);
}
return(-1);
}
/************************************************************************
* Match a known CISS adapter.
*/
static int
ciss_probe(device_t dev)
{
int i;
i = ciss_lookup(dev);
if (i != -1) {
device_set_desc(dev, ciss_vendor_data[i].desc);
return(BUS_PROBE_DEFAULT);
}
return(ENOENT);
}
/************************************************************************
* Attach the driver to this adapter.
*/
static int
ciss_attach(device_t dev)
{
struct ciss_softc *sc;
int error;
debug_called(1);
#ifdef CISS_DEBUG
/* print structure/union sizes */
debug_struct(ciss_command);
debug_struct(ciss_header);
debug_union(ciss_device_address);
debug_struct(ciss_cdb);
debug_struct(ciss_report_cdb);
debug_struct(ciss_notify_cdb);
debug_struct(ciss_notify);
debug_struct(ciss_message_cdb);
debug_struct(ciss_error_info_pointer);
debug_struct(ciss_error_info);
debug_struct(ciss_sg_entry);
debug_struct(ciss_config_table);
debug_struct(ciss_bmic_cdb);
debug_struct(ciss_bmic_id_ldrive);
debug_struct(ciss_bmic_id_lstatus);
debug_struct(ciss_bmic_id_table);
debug_struct(ciss_bmic_id_pdrive);
debug_struct(ciss_bmic_blink_pdrive);
debug_struct(ciss_bmic_flush_cache);
debug_const(CISS_MAX_REQUESTS);
debug_const(CISS_MAX_LOGICAL);
debug_const(CISS_INTERRUPT_COALESCE_DELAY);
debug_const(CISS_INTERRUPT_COALESCE_COUNT);
debug_const(CISS_COMMAND_ALLOC_SIZE);
debug_const(CISS_COMMAND_SG_LENGTH);
debug_type(cciss_pci_info_struct);
debug_type(cciss_coalint_struct);
debug_type(cciss_coalint_struct);
debug_type(NodeName_type);
debug_type(NodeName_type);
debug_type(Heartbeat_type);
debug_type(BusTypes_type);
debug_type(FirmwareVer_type);
debug_type(DriverVer_type);
debug_type(IOCTL_Command_struct);
#endif
sc = device_get_softc(dev);
sc->ciss_dev = dev;
mtx_init(&sc->ciss_mtx, "cissmtx", NULL, MTX_DEF);
callout_init_mtx(&sc->ciss_periodic, &sc->ciss_mtx, 0);
/*
* Do PCI-specific init.
*/
if ((error = ciss_init_pci(sc)) != 0)
goto out;
/*
* Initialise driver queues.
*/
ciss_initq_free(sc);
ciss_initq_notify(sc);
/*
* Initalize device sysctls.
*/
ciss_init_sysctl(sc);
/*
* Initialise command/request pool.
*/
if ((error = ciss_init_requests(sc)) != 0)
goto out;
/*
* Get adapter information.
*/
if ((error = ciss_identify_adapter(sc)) != 0)
goto out;
/*
* Find all the physical devices.
*/
if ((error = ciss_init_physical(sc)) != 0)
goto out;
/*
* Build our private table of logical devices.
*/
if ((error = ciss_init_logical(sc)) != 0)
goto out;
/*
* Enable interrupts so that the CAM scan can complete.
*/
CISS_TL_SIMPLE_ENABLE_INTERRUPTS(sc);
/*
* Initialise the CAM interface.
*/
if ((error = ciss_cam_init(sc)) != 0)
goto out;
/*
* Start the heartbeat routine and event chain.
*/
ciss_periodic(sc);
/*
* Create the control device.
*/
sc->ciss_dev_t = make_dev(&ciss_cdevsw, device_get_unit(sc->ciss_dev),
UID_ROOT, GID_OPERATOR, S_IRUSR | S_IWUSR,
"ciss%d", device_get_unit(sc->ciss_dev));
sc->ciss_dev_t->si_drv1 = sc;
/*
* The adapter is running; synchronous commands can now sleep
* waiting for an interrupt to signal completion.
*/
sc->ciss_flags |= CISS_FLAG_RUNNING;
ciss_spawn_notify_thread(sc);
error = 0;
out:
if (error != 0) {
/* ciss_free() expects the mutex to be held */
mtx_lock(&sc->ciss_mtx);
ciss_free(sc);
}
return(error);
}
/************************************************************************
* Detach the driver from this adapter.
*/
static int
ciss_detach(device_t dev)
{
struct ciss_softc *sc = device_get_softc(dev);
debug_called(1);
mtx_lock(&sc->ciss_mtx);
if (sc->ciss_flags & CISS_FLAG_CONTROL_OPEN) {
mtx_unlock(&sc->ciss_mtx);
return (EBUSY);
}
/* flush adapter cache */
ciss_flush_adapter(sc);
/* release all resources. The mutex is released and freed here too. */
ciss_free(sc);
return(0);
}
/************************************************************************
* Prepare adapter for system shutdown.
*/
static int
ciss_shutdown(device_t dev)
{
struct ciss_softc *sc = device_get_softc(dev);
debug_called(1);
mtx_lock(&sc->ciss_mtx);
/* flush adapter cache */
ciss_flush_adapter(sc);
if (sc->ciss_soft_reset)
ciss_soft_reset(sc);
mtx_unlock(&sc->ciss_mtx);
return(0);
}
static void
ciss_init_sysctl(struct ciss_softc *sc)
{
SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->ciss_dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ciss_dev)),
OID_AUTO, "soft_reset", CTLFLAG_RW, &sc->ciss_soft_reset, 0, "");
}
/************************************************************************
* Perform PCI-specific attachment actions.
*/
static int
ciss_init_pci(struct ciss_softc *sc)
{
uintptr_t cbase, csize, cofs;
uint32_t method, supported_methods;
int error, sqmask, i;
void *intr;
debug_called(1);
/*
* Work out adapter type.
*/
i = ciss_lookup(sc->ciss_dev);
if (i < 0) {
ciss_printf(sc, "unknown adapter type\n");
return (ENXIO);
}
if (ciss_vendor_data[i].flags & CISS_BOARD_SA5) {
sqmask = CISS_TL_SIMPLE_INTR_OPQ_SA5;
} else if (ciss_vendor_data[i].flags & CISS_BOARD_SA5B) {
sqmask = CISS_TL_SIMPLE_INTR_OPQ_SA5B;
} else {
/*
* XXX Big hammer, masks/unmasks all possible interrupts. This should
* work on all hardware variants. Need to add code to handle the
* "controller crashed" interupt bit that this unmasks.
*/
sqmask = ~0;
}
/*
* Allocate register window first (we need this to find the config
* struct).
*/
error = ENXIO;
sc->ciss_regs_rid = CISS_TL_SIMPLE_BAR_REGS;
if ((sc->ciss_regs_resource =
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_MEMORY,
&sc->ciss_regs_rid, RF_ACTIVE)) == NULL) {
ciss_printf(sc, "can't allocate register window\n");
return(ENXIO);
}
sc->ciss_regs_bhandle = rman_get_bushandle(sc->ciss_regs_resource);
sc->ciss_regs_btag = rman_get_bustag(sc->ciss_regs_resource);
/*
* Find the BAR holding the config structure. If it's not the one
* we already mapped for registers, map it too.
*/
sc->ciss_cfg_rid = CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_CFG_BAR) & 0xffff;
if (sc->ciss_cfg_rid != sc->ciss_regs_rid) {
if ((sc->ciss_cfg_resource =
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_MEMORY,
&sc->ciss_cfg_rid, RF_ACTIVE)) == NULL) {
ciss_printf(sc, "can't allocate config window\n");
return(ENXIO);
}
cbase = (uintptr_t)rman_get_virtual(sc->ciss_cfg_resource);
csize = rman_get_end(sc->ciss_cfg_resource) -
rman_get_start(sc->ciss_cfg_resource) + 1;
} else {
cbase = (uintptr_t)rman_get_virtual(sc->ciss_regs_resource);
csize = rman_get_end(sc->ciss_regs_resource) -
rman_get_start(sc->ciss_regs_resource) + 1;
}
cofs = CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_CFG_OFF);
/*
* Use the base/size/offset values we just calculated to
* sanity-check the config structure. If it's OK, point to it.
*/
if ((cofs + sizeof(struct ciss_config_table)) > csize) {
ciss_printf(sc, "config table outside window\n");
return(ENXIO);
}
sc->ciss_cfg = (struct ciss_config_table *)(cbase + cofs);
debug(1, "config struct at %p", sc->ciss_cfg);
/*
* Calculate the number of request structures/commands we are
* going to provide for this adapter.
*/
sc->ciss_max_requests = min(CISS_MAX_REQUESTS, sc->ciss_cfg->max_outstanding_commands);
/*
* Validate the config structure. If we supported other transport
* methods, we could select amongst them at this point in time.
*/
if (strncmp(sc->ciss_cfg->signature, "CISS", 4)) {
ciss_printf(sc, "config signature mismatch (got '%c%c%c%c')\n",
sc->ciss_cfg->signature[0], sc->ciss_cfg->signature[1],
sc->ciss_cfg->signature[2], sc->ciss_cfg->signature[3]);
return(ENXIO);
}
/*
* Select the mode of operation, prefer Performant.
*/
if (!(sc->ciss_cfg->supported_methods &
(CISS_TRANSPORT_METHOD_SIMPLE | CISS_TRANSPORT_METHOD_PERF))) {
ciss_printf(sc, "No supported transport layers: 0x%x\n",
sc->ciss_cfg->supported_methods);
}
switch (ciss_force_transport) {
case 1:
supported_methods = CISS_TRANSPORT_METHOD_SIMPLE;
break;
case 2:
supported_methods = CISS_TRANSPORT_METHOD_PERF;
break;
default:
/*
* Override the capabilities of the BOARD and specify SIMPLE
* MODE
*/
if (ciss_vendor_data[i].flags & CISS_BOARD_SIMPLE)
supported_methods = CISS_TRANSPORT_METHOD_SIMPLE;
else
supported_methods = sc->ciss_cfg->supported_methods;
break;
}
setup:
if ((supported_methods & CISS_TRANSPORT_METHOD_PERF) != 0) {
method = CISS_TRANSPORT_METHOD_PERF;
sc->ciss_perf = (struct ciss_perf_config *)(cbase + cofs +
sc->ciss_cfg->transport_offset);
if (ciss_init_perf(sc)) {
supported_methods &= ~method;
goto setup;
}
} else if (supported_methods & CISS_TRANSPORT_METHOD_SIMPLE) {
method = CISS_TRANSPORT_METHOD_SIMPLE;
} else {
ciss_printf(sc, "No supported transport methods: 0x%x\n",
sc->ciss_cfg->supported_methods);
return(ENXIO);
}
/*
* Tell it we're using the low 4GB of RAM. Set the default interrupt
* coalescing options.
*/
sc->ciss_cfg->requested_method = method;
sc->ciss_cfg->command_physlimit = 0;
sc->ciss_cfg->interrupt_coalesce_delay = CISS_INTERRUPT_COALESCE_DELAY;
sc->ciss_cfg->interrupt_coalesce_count = CISS_INTERRUPT_COALESCE_COUNT;
#ifdef __i386__
sc->ciss_cfg->host_driver |= CISS_DRIVER_SCSI_PREFETCH;
#endif
if (ciss_update_config(sc)) {
ciss_printf(sc, "adapter refuses to accept config update (IDBR 0x%x)\n",
CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_IDBR));
return(ENXIO);
}
if ((sc->ciss_cfg->active_method & method) == 0) {
supported_methods &= ~method;
if (supported_methods == 0) {
ciss_printf(sc, "adapter refuses to go into available transports "
"mode (0x%x, 0x%x)\n", supported_methods,
sc->ciss_cfg->active_method);
return(ENXIO);
} else
goto setup;
}
/*
* Wait for the adapter to come ready.
*/
if ((error = ciss_wait_adapter(sc)) != 0)
return(error);
/* Prepare to possibly use MSIX and/or PERFORMANT interrupts. Normal
* interrupts have a rid of 0, this will be overridden if MSIX is used.
*/
sc->ciss_irq_rid[0] = 0;
if (method == CISS_TRANSPORT_METHOD_PERF) {
ciss_printf(sc, "PERFORMANT Transport\n");
if ((ciss_force_interrupt != 1) && (ciss_setup_msix(sc) == 0)) {
intr = ciss_perf_msi_intr;
} else {
intr = ciss_perf_intr;
}
/* XXX The docs say that the 0x01 bit is only for SAS controllers.
* Unfortunately, there is no good way to know if this is a SAS
* controller. Hopefully enabling this bit universally will work OK.
* It seems to work fine for SA6i controllers.
*/
sc->ciss_interrupt_mask = CISS_TL_PERF_INTR_OPQ | CISS_TL_PERF_INTR_MSI;
} else {
ciss_printf(sc, "SIMPLE Transport\n");
/* MSIX doesn't seem to work in SIMPLE mode, only enable if it forced */
if (ciss_force_interrupt == 2)
/* If this fails, we automatically revert to INTx */
ciss_setup_msix(sc);
sc->ciss_perf = NULL;
intr = ciss_intr;
sc->ciss_interrupt_mask = sqmask;
}
/*
* Turn off interrupts before we go routing anything.
*/
CISS_TL_SIMPLE_DISABLE_INTERRUPTS(sc);
/*
* Allocate and set up our interrupt.
*/
if ((sc->ciss_irq_resource =
bus_alloc_resource_any(sc->ciss_dev, SYS_RES_IRQ, &sc->ciss_irq_rid[0],
RF_ACTIVE | RF_SHAREABLE)) == NULL) {
ciss_printf(sc, "can't allocate interrupt\n");
return(ENXIO);
}
if (bus_setup_intr(sc->ciss_dev, sc->ciss_irq_resource,
INTR_TYPE_CAM|INTR_MPSAFE, NULL, intr, sc,
&sc->ciss_intr)) {
ciss_printf(sc, "can't set up interrupt\n");
return(ENXIO);
}
/*
* Allocate the parent bus DMA tag appropriate for our PCI
* interface.
*
* Note that "simple" adapters can only address within a 32-bit
* span.
*/
if (bus_dma_tag_create(bus_get_dma_tag(sc->ciss_dev),/* PCI parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
CISS_MAX_SG_ELEMENTS, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ciss_parent_dmat)) {
ciss_printf(sc, "can't allocate parent DMA tag\n");
return(ENOMEM);
}
/*
* Create DMA tag for mapping buffers into adapter-addressable
* space.
*/
if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MAXBSIZE, CISS_MAX_SG_ELEMENTS, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, &sc->ciss_mtx, /* lockfunc, lockarg */
&sc->ciss_buffer_dmat)) {
ciss_printf(sc, "can't allocate buffer DMA tag\n");
return(ENOMEM);
}
return(0);
}
/************************************************************************
* Setup MSI/MSIX operation (Performant only)
* Four interrupts are available, but we only use 1 right now. If MSI-X
* isn't avaialble, try using MSI instead.
*/
static int
ciss_setup_msix(struct ciss_softc *sc)
{
int val, i;
/* Weed out devices that don't actually support MSI */
i = ciss_lookup(sc->ciss_dev);
if (ciss_vendor_data[i].flags & CISS_BOARD_NOMSI)
return (EINVAL);
/*
* Only need to use the minimum number of MSI vectors, as the driver
* doesn't support directed MSIX interrupts.
*/
val = pci_msix_count(sc->ciss_dev);
if (val < CISS_MSI_COUNT) {
val = pci_msi_count(sc->ciss_dev);
device_printf(sc->ciss_dev, "got %d MSI messages]\n", val);
if (val < CISS_MSI_COUNT)
return (EINVAL);
}
val = MIN(val, CISS_MSI_COUNT);
if (pci_alloc_msix(sc->ciss_dev, &val) != 0) {
if (pci_alloc_msi(sc->ciss_dev, &val) != 0)
return (EINVAL);
}
sc->ciss_msi = val;
if (bootverbose)
ciss_printf(sc, "Using %d MSIX interrupt%s\n", val,
(val != 1) ? "s" : "");
for (i = 0; i < val; i++)
sc->ciss_irq_rid[i] = i + 1;
return (0);
}
/************************************************************************
* Setup the Performant structures.
*/
static int
ciss_init_perf(struct ciss_softc *sc)
{
struct ciss_perf_config *pc = sc->ciss_perf;
int reply_size;
/*
* Create the DMA tag for the reply queue.
*/
reply_size = sizeof(uint64_t) * sc->ciss_max_requests;
if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
reply_size, 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ciss_reply_dmat)) {
ciss_printf(sc, "can't allocate reply DMA tag\n");
return(ENOMEM);
}
/*
* Allocate memory and make it available for DMA.
*/
if (bus_dmamem_alloc(sc->ciss_reply_dmat, (void **)&sc->ciss_reply,
BUS_DMA_NOWAIT, &sc->ciss_reply_map)) {
ciss_printf(sc, "can't allocate reply memory\n");
return(ENOMEM);
}
bus_dmamap_load(sc->ciss_reply_dmat, sc->ciss_reply_map, sc->ciss_reply,
reply_size, ciss_command_map_helper, &sc->ciss_reply_phys, 0);
bzero(sc->ciss_reply, reply_size);
sc->ciss_cycle = 0x1;
sc->ciss_rqidx = 0;
/*
* Preload the fetch table with common command sizes. This allows the
* hardware to not waste bus cycles for typical i/o commands, but also not
* tax the driver to be too exact in choosing sizes. The table is optimized
* for page-aligned i/o's, but since most i/o comes from the various pagers,
* it's a reasonable assumption to make.
*/
pc->fetch_count[CISS_SG_FETCH_NONE] = (sizeof(struct ciss_command) + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_1] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 1 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_2] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 2 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_4] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 4 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_8] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 8 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_16] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 16 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_32] =
(sizeof(struct ciss_command) + sizeof(struct ciss_sg_entry) * 32 + 15) / 16;
pc->fetch_count[CISS_SG_FETCH_MAX] = (CISS_COMMAND_ALLOC_SIZE + 15) / 16;
pc->rq_size = sc->ciss_max_requests; /* XXX less than the card supports? */
pc->rq_count = 1; /* XXX Hardcode for a single queue */
pc->rq_bank_hi = 0;
pc->rq_bank_lo = 0;
pc->rq[0].rq_addr_hi = 0x0;
pc->rq[0].rq_addr_lo = sc->ciss_reply_phys;
return(0);
}
/************************************************************************
* Wait for the adapter to come ready.
*/
static int
ciss_wait_adapter(struct ciss_softc *sc)
{
int i;
debug_called(1);
/*
* Wait for the adapter to come ready.
*/
if (!(sc->ciss_cfg->active_method & CISS_TRANSPORT_METHOD_READY)) {
ciss_printf(sc, "waiting for adapter to come ready...\n");
for (i = 0; !(sc->ciss_cfg->active_method & CISS_TRANSPORT_METHOD_READY); i++) {
DELAY(1000000); /* one second */
if (i > 30) {
ciss_printf(sc, "timed out waiting for adapter to come ready\n");
return(EIO);
}
}
}
return(0);
}
/************************************************************************
* Flush the adapter cache.
*/
static int
ciss_flush_adapter(struct ciss_softc *sc)
{
struct ciss_request *cr;
struct ciss_bmic_flush_cache *cbfc;
int error, command_status;
debug_called(1);
cr = NULL;
cbfc = NULL;
/*
* Build a BMIC request to flush the cache. We don't disable
* it, as we may be going to do more I/O (eg. we are emulating
* the Synchronise Cache command).
*/
if ((cbfc = malloc(sizeof(*cbfc), CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
error = ENOMEM;
goto out;
}
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_FLUSH_CACHE,
(void **)&cbfc, sizeof(*cbfc))) != 0)
goto out;
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC FLUSH_CACHE command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
break;
default:
ciss_printf(sc, "error flushing cache (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
out:
if (cbfc != NULL)
free(cbfc, CISS_MALLOC_CLASS);
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
static void
ciss_soft_reset(struct ciss_softc *sc)
{
struct ciss_request *cr = NULL;
struct ciss_command *cc;
int i, error = 0;
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
/* only reset proxy controllers */
if (sc->ciss_controllers[i].physical.bus == 0)
continue;
if ((error = ciss_get_request(sc, &cr)) != 0)
break;
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_SOFT_RESET,
NULL, 0)) != 0)
break;
cc = cr->cr_cc;
cc->header.address = sc->ciss_controllers[i];
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0)
break;
ciss_release_request(cr);
}
if (error)
ciss_printf(sc, "error resetting controller (%d)\n", error);
if (cr != NULL)
ciss_release_request(cr);
}
/************************************************************************
* Allocate memory for the adapter command structures, initialise
* the request structures.
*
* Note that the entire set of commands are allocated in a single
* contiguous slab.
*/
static int
ciss_init_requests(struct ciss_softc *sc)
{
struct ciss_request *cr;
int i;
debug_called(1);
if (bootverbose)
ciss_printf(sc, "using %d of %d available commands\n",
sc->ciss_max_requests, sc->ciss_cfg->max_outstanding_commands);
/*
* Create the DMA tag for commands.
*/
if (bus_dma_tag_create(sc->ciss_parent_dmat, /* parent */
32, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
CISS_COMMAND_ALLOC_SIZE *
sc->ciss_max_requests, 1, /* maxsize, nsegments */
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->ciss_command_dmat)) {
ciss_printf(sc, "can't allocate command DMA tag\n");
return(ENOMEM);
}
/*
* Allocate memory and make it available for DMA.
*/
if (bus_dmamem_alloc(sc->ciss_command_dmat, (void **)&sc->ciss_command,
BUS_DMA_NOWAIT, &sc->ciss_command_map)) {
ciss_printf(sc, "can't allocate command memory\n");
return(ENOMEM);
}
bus_dmamap_load(sc->ciss_command_dmat, sc->ciss_command_map,sc->ciss_command,
CISS_COMMAND_ALLOC_SIZE * sc->ciss_max_requests,
ciss_command_map_helper, &sc->ciss_command_phys, 0);
bzero(sc->ciss_command, CISS_COMMAND_ALLOC_SIZE * sc->ciss_max_requests);
/*
* Set up the request and command structures, push requests onto
* the free queue.
*/
for (i = 1; i < sc->ciss_max_requests; i++) {
cr = &sc->ciss_request[i];
cr->cr_sc = sc;
cr->cr_tag = i;
cr->cr_cc = (struct ciss_command *)((uintptr_t)sc->ciss_command +
CISS_COMMAND_ALLOC_SIZE * i);
cr->cr_ccphys = sc->ciss_command_phys + CISS_COMMAND_ALLOC_SIZE * i;
bus_dmamap_create(sc->ciss_buffer_dmat, 0, &cr->cr_datamap);
ciss_enqueue_free(cr);
}
return(0);
}
static void
ciss_command_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
uint32_t *addr;
addr = arg;
*addr = segs[0].ds_addr;
}
/************************************************************************
* Identify the adapter, print some information about it.
*/
static int
ciss_identify_adapter(struct ciss_softc *sc)
{
struct ciss_request *cr;
int error, command_status;
debug_called(1);
cr = NULL;
/*
* Get a request, allocate storage for the adapter data.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_CTLR,
(void **)&sc->ciss_id,
sizeof(*sc->ciss_id))) != 0)
goto out;
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC ID_CTLR command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
break;
case CISS_CMD_STATUS_DATA_UNDERRUN:
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "data over/underrun reading adapter information\n");
default:
ciss_printf(sc, "error reading adapter information (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
/* sanity-check reply */
if (!sc->ciss_id->big_map_supported) {
ciss_printf(sc, "adapter does not support BIG_MAP\n");
error = ENXIO;
goto out;
}
#if 0
/* XXX later revisions may not need this */
sc->ciss_flags |= CISS_FLAG_FAKE_SYNCH;
#endif
/* XXX only really required for old 5300 adapters? */
sc->ciss_flags |= CISS_FLAG_BMIC_ABORT;
/*
* Earlier controller specs do not contain these config
* entries, so assume that a 0 means its old and assign
* these values to the defaults that were established
* when this driver was developed for them
*/
if (sc->ciss_cfg->max_logical_supported == 0)
sc->ciss_cfg->max_logical_supported = CISS_MAX_LOGICAL;
if (sc->ciss_cfg->max_physical_supported == 0)
sc->ciss_cfg->max_physical_supported = CISS_MAX_PHYSICAL;
/* print information */
if (bootverbose) {
ciss_printf(sc, " %d logical drive%s configured\n",
sc->ciss_id->configured_logical_drives,
(sc->ciss_id->configured_logical_drives == 1) ? "" : "s");
ciss_printf(sc, " firmware %4.4s\n", sc->ciss_id->running_firmware_revision);
ciss_printf(sc, " %d SCSI channels\n", sc->ciss_id->scsi_bus_count);
ciss_printf(sc, " signature '%.4s'\n", sc->ciss_cfg->signature);
ciss_printf(sc, " valence %d\n", sc->ciss_cfg->valence);
ciss_printf(sc, " supported I/O methods 0x%b\n",
sc->ciss_cfg->supported_methods,
"\20\1READY\2simple\3performant\4MEMQ\n");
ciss_printf(sc, " active I/O method 0x%b\n",
sc->ciss_cfg->active_method, "\20\2simple\3performant\4MEMQ\n");
ciss_printf(sc, " 4G page base 0x%08x\n",
sc->ciss_cfg->command_physlimit);
ciss_printf(sc, " interrupt coalesce delay %dus\n",
sc->ciss_cfg->interrupt_coalesce_delay);
ciss_printf(sc, " interrupt coalesce count %d\n",
sc->ciss_cfg->interrupt_coalesce_count);
ciss_printf(sc, " max outstanding commands %d\n",
sc->ciss_cfg->max_outstanding_commands);
ciss_printf(sc, " bus types 0x%b\n", sc->ciss_cfg->bus_types,
"\20\1ultra2\2ultra3\10fibre1\11fibre2\n");
ciss_printf(sc, " server name '%.16s'\n", sc->ciss_cfg->server_name);
ciss_printf(sc, " heartbeat 0x%x\n", sc->ciss_cfg->heartbeat);
ciss_printf(sc, " max logical logical volumes: %d\n", sc->ciss_cfg->max_logical_supported);
ciss_printf(sc, " max physical disks supported: %d\n", sc->ciss_cfg->max_physical_supported);
ciss_printf(sc, " max physical disks per logical volume: %d\n", sc->ciss_cfg->max_physical_per_logical);
}
out:
if (error) {
if (sc->ciss_id != NULL) {
free(sc->ciss_id, CISS_MALLOC_CLASS);
sc->ciss_id = NULL;
}
}
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Helper routine for generating a list of logical and physical luns.
*/
static struct ciss_lun_report *
ciss_report_luns(struct ciss_softc *sc, int opcode, int nunits)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_report_cdb *crc;
struct ciss_lun_report *cll;
int command_status;
int report_size;
int error = 0;
debug_called(1);
cr = NULL;
cll = NULL;
/*
* Get a request, allocate storage for the address list.
*/
if ((error = ciss_get_request(sc, &cr)) != 0)
goto out;
report_size = sizeof(*cll) + nunits * sizeof(union ciss_device_address);
if ((cll = malloc(report_size, CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
ciss_printf(sc, "can't allocate memory for lun report\n");
error = ENOMEM;
goto out;
}
/*
* Build the Report Logical/Physical LUNs command.
*/
cc = cr->cr_cc;
cr->cr_data = cll;
cr->cr_length = report_size;
cr->cr_flags = CISS_REQ_DATAIN;
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*crc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 30; /* XXX better suggestions? */
crc = (struct ciss_report_cdb *)&(cc->cdb.cdb[0]);
bzero(crc, sizeof(*crc));
crc->opcode = opcode;
crc->length = htonl(report_size); /* big-endian field */
cll->list_size = htonl(report_size - sizeof(*cll)); /* big-endian field */
/*
* Submit the request and wait for it to complete. (timeout
* here should be much greater than above)
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending %d LUN command (%d)\n", opcode, error);
goto out;
}
/*
* Check response. Note that data over/underrun is OK.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
case CISS_CMD_STATUS_DATA_UNDERRUN: /* buffer too large, not bad */
break;
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "WARNING: more units than driver limit (%d)\n",
sc->ciss_cfg->max_logical_supported);
break;
default:
ciss_printf(sc, "error detecting logical drive configuration (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
ciss_release_request(cr);
cr = NULL;
out:
if (cr != NULL)
ciss_release_request(cr);
if (error && cll != NULL) {
free(cll, CISS_MALLOC_CLASS);
cll = NULL;
}
return(cll);
}
/************************************************************************
* Find logical drives on the adapter.
*/
static int
ciss_init_logical(struct ciss_softc *sc)
{
struct ciss_lun_report *cll;
int error = 0, i, j;
int ndrives;
debug_called(1);
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_LOGICAL_LUNS,
sc->ciss_cfg->max_logical_supported);
if (cll == NULL) {
error = ENXIO;
goto out;
}
/* sanity-check reply */
ndrives = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
if ((ndrives < 0) || (ndrives > sc->ciss_cfg->max_logical_supported)) {
ciss_printf(sc, "adapter claims to report absurd number of logical drives (%d > %d)\n",
ndrives, sc->ciss_cfg->max_logical_supported);
error = ENXIO;
goto out;
}
/*
* Save logical drive information.
*/
if (bootverbose) {
ciss_printf(sc, "%d logical drive%s\n",
ndrives, (ndrives > 1 || ndrives == 0) ? "s" : "");
}
sc->ciss_logical =
malloc(sc->ciss_max_logical_bus * sizeof(struct ciss_ldrive *),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_logical == NULL) {
error = ENXIO;
goto out;
}
for (i = 0; i <= sc->ciss_max_logical_bus; i++) {
sc->ciss_logical[i] =
malloc(sc->ciss_cfg->max_logical_supported *
sizeof(struct ciss_ldrive),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_logical[i] == NULL) {
error = ENXIO;
goto out;
}
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++)
sc->ciss_logical[i][j].cl_status = CISS_LD_NONEXISTENT;
}
for (i = 0; i < sc->ciss_cfg->max_logical_supported; i++) {
if (i < ndrives) {
struct ciss_ldrive *ld;
int bus, target;
bus = CISS_LUN_TO_BUS(cll->lun[i].logical.lun);
target = CISS_LUN_TO_TARGET(cll->lun[i].logical.lun);
ld = &sc->ciss_logical[bus][target];
ld->cl_address = cll->lun[i];
ld->cl_controller = &sc->ciss_controllers[bus];
if (ciss_identify_logical(sc, ld) != 0)
continue;
/*
* If the drive has had media exchanged, we should bring it online.
*/
if (ld->cl_lstatus->media_exchanged)
ciss_accept_media(sc, ld);
}
}
out:
if (cll != NULL)
free(cll, CISS_MALLOC_CLASS);
return(error);
}
static int
ciss_init_physical(struct ciss_softc *sc)
{
struct ciss_lun_report *cll;
int error = 0, i;
int nphys;
int bus, target;
debug_called(1);
bus = 0;
target = 0;
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_PHYSICAL_LUNS,
sc->ciss_cfg->max_physical_supported);
if (cll == NULL) {
error = ENXIO;
goto out;
}
nphys = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
if (bootverbose) {
ciss_printf(sc, "%d physical device%s\n",
nphys, (nphys > 1 || nphys == 0) ? "s" : "");
}
/*
* Figure out the bus mapping.
* Logical buses include both the local logical bus for local arrays and
* proxy buses for remote arrays. Physical buses are numbered by the
* controller and represent physical buses that hold physical devices.
* We shift these bus numbers so that everything fits into a single flat
* numbering space for CAM. Logical buses occupy the first 32 CAM bus
* numbers, and the physical bus numbers are shifted to be above that.
* This results in the various driver arrays being indexed as follows:
*
* ciss_controllers[] - indexed by logical bus
* ciss_cam_sim[] - indexed by both logical and physical, with physical
* being shifted by 32.
* ciss_logical[][] - indexed by logical bus
* ciss_physical[][] - indexed by physical bus
*
* XXX This is getting more and more hackish. CISS really doesn't play
* well with a standard SCSI model; devices are addressed via magic
* cookies, not via b/t/l addresses. Since there is no way to store
* the cookie in the CAM device object, we have to keep these lookup
* tables handy so that the devices can be found quickly at the cost
* of wasting memory and having a convoluted lookup scheme. This
* driver should probably be converted to block interface.
*/
/*
* If the L2 and L3 SCSI addresses are 0, this signifies a proxy
* controller. A proxy controller is another physical controller
* behind the primary PCI controller. We need to know about this
* so that BMIC commands can be properly targeted. There can be
* proxy controllers attached to a single PCI controller, so
* find the highest numbered one so the array can be properly
* sized.
*/
sc->ciss_max_logical_bus = 1;
for (i = 0; i < nphys; i++) {
if (cll->lun[i].physical.extra_address == 0) {
bus = cll->lun[i].physical.bus;
sc->ciss_max_logical_bus = max(sc->ciss_max_logical_bus, bus) + 1;
} else {
bus = CISS_EXTRA_BUS2(cll->lun[i].physical.extra_address);
sc->ciss_max_physical_bus = max(sc->ciss_max_physical_bus, bus);
}
}
sc->ciss_controllers =
malloc(sc->ciss_max_logical_bus * sizeof (union ciss_device_address),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_controllers == NULL) {
ciss_printf(sc, "Could not allocate memory for controller map\n");
error = ENOMEM;
goto out;
}
/* setup a map of controller addresses */
for (i = 0; i < nphys; i++) {
if (cll->lun[i].physical.extra_address == 0) {
sc->ciss_controllers[cll->lun[i].physical.bus] = cll->lun[i];
}
}
sc->ciss_physical =
malloc(sc->ciss_max_physical_bus * sizeof(struct ciss_pdrive *),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_physical == NULL) {
ciss_printf(sc, "Could not allocate memory for physical device map\n");
error = ENOMEM;
goto out;
}
for (i = 0; i < sc->ciss_max_physical_bus; i++) {
sc->ciss_physical[i] =
malloc(sizeof(struct ciss_pdrive) * CISS_MAX_PHYSTGT,
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_physical[i] == NULL) {
ciss_printf(sc, "Could not allocate memory for target map\n");
error = ENOMEM;
goto out;
}
}
ciss_filter_physical(sc, cll);
out:
if (cll != NULL)
free(cll, CISS_MALLOC_CLASS);
return(error);
}
static int
ciss_filter_physical(struct ciss_softc *sc, struct ciss_lun_report *cll)
{
u_int32_t ea;
int i, nphys;
int bus, target;
nphys = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
for (i = 0; i < nphys; i++) {
if (cll->lun[i].physical.extra_address == 0)
continue;
/*
* Filter out devices that we don't want. Level 3 LUNs could
* probably be supported, but the docs don't give enough of a
* hint to know how.
*
* The mode field of the physical address is likely set to have
* hard disks masked out. Honor it unless the user has overridden
* us with the tunable. We also munge the inquiry data for these
* disks so that they only show up as passthrough devices. Keeping
* them visible in this fashion is useful for doing things like
* flashing firmware.
*/
ea = cll->lun[i].physical.extra_address;
if ((CISS_EXTRA_BUS3(ea) != 0) || (CISS_EXTRA_TARGET3(ea) != 0) ||
(CISS_EXTRA_MODE2(ea) == 0x3))
continue;
if ((ciss_expose_hidden_physical == 0) &&
(cll->lun[i].physical.mode == CISS_HDR_ADDRESS_MODE_MASK_PERIPHERAL))
continue;
/*
* Note: CISS firmware numbers physical busses starting at '1', not
* '0'. This numbering is internal to the firmware and is only
* used as a hint here.
*/
bus = CISS_EXTRA_BUS2(ea) - 1;
target = CISS_EXTRA_TARGET2(ea);
sc->ciss_physical[bus][target].cp_address = cll->lun[i];
sc->ciss_physical[bus][target].cp_online = 1;
}
return (0);
}
static int
ciss_inquiry_logical(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct scsi_inquiry *inq;
int error;
int command_status;
cr = NULL;
bzero(&ld->cl_geometry, sizeof(ld->cl_geometry));
if ((error = ciss_get_request(sc, &cr)) != 0)
goto out;
cc = cr->cr_cc;
cr->cr_data = &ld->cl_geometry;
cr->cr_length = sizeof(ld->cl_geometry);
cr->cr_flags = CISS_REQ_DATAIN;
cc->header.address = ld->cl_address;
cc->cdb.cdb_length = 6;
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 30;
inq = (struct scsi_inquiry *)&(cc->cdb.cdb[0]);
inq->opcode = INQUIRY;
inq->byte2 = SI_EVPD;
inq->page_code = CISS_VPD_LOGICAL_DRIVE_GEOMETRY;
scsi_ulto2b(sizeof(ld->cl_geometry), inq->length);
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error getting geometry (%d)\n", error);
goto out;
}
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
case CISS_CMD_STATUS_DATA_UNDERRUN:
break;
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "WARNING: Data overrun\n");
break;
default:
ciss_printf(sc, "Error detecting logical drive geometry (%s)\n",
ciss_name_command_status(command_status));
break;
}
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Identify a logical drive, initialise state related to it.
*/
static int
ciss_identify_logical(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
int error, command_status;
debug_called(1);
cr = NULL;
/*
* Build a BMIC request to fetch the drive ID.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_LDRIVE,
(void **)&ld->cl_ldrive,
sizeof(*ld->cl_ldrive))) != 0)
goto out;
cc = cr->cr_cc;
cc->header.address = *ld->cl_controller; /* target controller */
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
cbc->log_drive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC LDRIVE command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
break;
case CISS_CMD_STATUS_DATA_UNDERRUN:
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "data over/underrun reading logical drive ID\n");
default:
ciss_printf(sc, "error reading logical drive ID (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
ciss_release_request(cr);
cr = NULL;
/*
* Build a CISS BMIC command to get the logical drive status.
*/
if ((error = ciss_get_ldrive_status(sc, ld)) != 0)
goto out;
/*
* Get the logical drive geometry.
*/
if ((error = ciss_inquiry_logical(sc, ld)) != 0)
goto out;
/*
* Print the drive's basic characteristics.
*/
if (bootverbose) {
ciss_printf(sc, "logical drive (b%dt%d): %s, %dMB ",
CISS_LUN_TO_BUS(ld->cl_address.logical.lun),
CISS_LUN_TO_TARGET(ld->cl_address.logical.lun),
ciss_name_ldrive_org(ld->cl_ldrive->fault_tolerance),
((ld->cl_ldrive->blocks_available / (1024 * 1024)) *
ld->cl_ldrive->block_size));
ciss_print_ldrive(sc, ld);
}
out:
if (error != 0) {
/* make the drive not-exist */
ld->cl_status = CISS_LD_NONEXISTENT;
if (ld->cl_ldrive != NULL) {
free(ld->cl_ldrive, CISS_MALLOC_CLASS);
ld->cl_ldrive = NULL;
}
if (ld->cl_lstatus != NULL) {
free(ld->cl_lstatus, CISS_MALLOC_CLASS);
ld->cl_lstatus = NULL;
}
}
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Get status for a logical drive.
*
* XXX should we also do this in response to Test Unit Ready?
*/
static int
ciss_get_ldrive_status(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
int error, command_status;
/*
* Build a CISS BMIC command to get the logical drive status.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ID_LSTATUS,
(void **)&ld->cl_lstatus,
sizeof(*ld->cl_lstatus))) != 0)
goto out;
cc = cr->cr_cc;
cc->header.address = *ld->cl_controller; /* target controller */
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
cbc->log_drive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC LSTATUS command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* buffer right size */
break;
case CISS_CMD_STATUS_DATA_UNDERRUN:
case CISS_CMD_STATUS_DATA_OVERRUN:
ciss_printf(sc, "data over/underrun reading logical drive status\n");
default:
ciss_printf(sc, "error reading logical drive status (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
/*
* Set the drive's summary status based on the returned status.
*
* XXX testing shows that a failed JBOD drive comes back at next
* boot in "queued for expansion" mode. WTF?
*/
ld->cl_status = ciss_decode_ldrive_status(ld->cl_lstatus->status);
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Notify the adapter of a config update.
*/
static int
ciss_update_config(struct ciss_softc *sc)
{
int i;
debug_called(1);
CISS_TL_SIMPLE_WRITE(sc, CISS_TL_SIMPLE_IDBR, CISS_TL_SIMPLE_IDBR_CFG_TABLE);
for (i = 0; i < 1000; i++) {
if (!(CISS_TL_SIMPLE_READ(sc, CISS_TL_SIMPLE_IDBR) &
CISS_TL_SIMPLE_IDBR_CFG_TABLE)) {
return(0);
}
DELAY(1000);
}
return(1);
}
/************************************************************************
* Accept new media into a logical drive.
*
* XXX The drive has previously been offline; it would be good if we
* could make sure it's not open right now.
*/
static int
ciss_accept_media(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
int command_status;
int error = 0, ldrive;
ldrive = CISS_LUN_TO_TARGET(ld->cl_address.logical.lun);
debug(0, "bringing logical drive %d back online", ldrive);
/*
* Build a CISS BMIC command to bring the drive back online.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_BMIC_ACCEPT_MEDIA,
NULL, 0)) != 0)
goto out;
cc = cr->cr_cc;
cc->header.address = *ld->cl_controller; /* target controller */
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
cbc->log_drive = ldrive;
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC ACCEPT MEDIA command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS: /* all OK */
/* we should get a logical drive status changed event here */
break;
default:
ciss_printf(cr->cr_sc, "error accepting media into failed logical drive (%s)\n",
ciss_name_command_status(command_status));
break;
}
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Release adapter resources.
*/
static void
ciss_free(struct ciss_softc *sc)
{
struct ciss_request *cr;
int i, j;
debug_called(1);
/* we're going away */
sc->ciss_flags |= CISS_FLAG_ABORTING;
/* terminate the periodic heartbeat routine */
callout_stop(&sc->ciss_periodic);
/* cancel the Event Notify chain */
ciss_notify_abort(sc);
ciss_kill_notify_thread(sc);
/* disconnect from CAM */
if (sc->ciss_cam_sim) {
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
if (sc->ciss_cam_sim[i]) {
xpt_bus_deregister(cam_sim_path(sc->ciss_cam_sim[i]));
cam_sim_free(sc->ciss_cam_sim[i], 0);
}
}
for (i = CISS_PHYSICAL_BASE; i < sc->ciss_max_physical_bus +
CISS_PHYSICAL_BASE; i++) {
if (sc->ciss_cam_sim[i]) {
xpt_bus_deregister(cam_sim_path(sc->ciss_cam_sim[i]));
cam_sim_free(sc->ciss_cam_sim[i], 0);
}
}
free(sc->ciss_cam_sim, CISS_MALLOC_CLASS);
}
if (sc->ciss_cam_devq)
cam_simq_free(sc->ciss_cam_devq);
/* remove the control device */
mtx_unlock(&sc->ciss_mtx);
if (sc->ciss_dev_t != NULL)
destroy_dev(sc->ciss_dev_t);
/* Final cleanup of the callout. */
callout_drain(&sc->ciss_periodic);
mtx_destroy(&sc->ciss_mtx);
/* free the controller data */
if (sc->ciss_id != NULL)
free(sc->ciss_id, CISS_MALLOC_CLASS);
/* release I/O resources */
if (sc->ciss_regs_resource != NULL)
bus_release_resource(sc->ciss_dev, SYS_RES_MEMORY,
sc->ciss_regs_rid, sc->ciss_regs_resource);
if (sc->ciss_cfg_resource != NULL)
bus_release_resource(sc->ciss_dev, SYS_RES_MEMORY,
sc->ciss_cfg_rid, sc->ciss_cfg_resource);
if (sc->ciss_intr != NULL)
bus_teardown_intr(sc->ciss_dev, sc->ciss_irq_resource, sc->ciss_intr);
if (sc->ciss_irq_resource != NULL)
bus_release_resource(sc->ciss_dev, SYS_RES_IRQ,
sc->ciss_irq_rid[0], sc->ciss_irq_resource);
if (sc->ciss_msi)
pci_release_msi(sc->ciss_dev);
while ((cr = ciss_dequeue_free(sc)) != NULL)
bus_dmamap_destroy(sc->ciss_buffer_dmat, cr->cr_datamap);
if (sc->ciss_buffer_dmat)
bus_dma_tag_destroy(sc->ciss_buffer_dmat);
/* destroy command memory and DMA tag */
if (sc->ciss_command != NULL) {
bus_dmamap_unload(sc->ciss_command_dmat, sc->ciss_command_map);
bus_dmamem_free(sc->ciss_command_dmat, sc->ciss_command, sc->ciss_command_map);
}
if (sc->ciss_command_dmat)
bus_dma_tag_destroy(sc->ciss_command_dmat);
if (sc->ciss_reply) {
bus_dmamap_unload(sc->ciss_reply_dmat, sc->ciss_reply_map);
bus_dmamem_free(sc->ciss_reply_dmat, sc->ciss_reply, sc->ciss_reply_map);
}
if (sc->ciss_reply_dmat)
bus_dma_tag_destroy(sc->ciss_reply_dmat);
/* destroy DMA tags */
if (sc->ciss_parent_dmat)
bus_dma_tag_destroy(sc->ciss_parent_dmat);
if (sc->ciss_logical) {
for (i = 0; i <= sc->ciss_max_logical_bus; i++) {
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) {
if (sc->ciss_logical[i][j].cl_ldrive)
free(sc->ciss_logical[i][j].cl_ldrive, CISS_MALLOC_CLASS);
if (sc->ciss_logical[i][j].cl_lstatus)
free(sc->ciss_logical[i][j].cl_lstatus, CISS_MALLOC_CLASS);
}
free(sc->ciss_logical[i], CISS_MALLOC_CLASS);
}
free(sc->ciss_logical, CISS_MALLOC_CLASS);
}
if (sc->ciss_physical) {
for (i = 0; i < sc->ciss_max_physical_bus; i++)
free(sc->ciss_physical[i], CISS_MALLOC_CLASS);
free(sc->ciss_physical, CISS_MALLOC_CLASS);
}
if (sc->ciss_controllers)
free(sc->ciss_controllers, CISS_MALLOC_CLASS);
}
/************************************************************************
* Give a command to the adapter.
*
* Note that this uses the simple transport layer directly. If we
* want to add support for other layers, we'll need a switch of some
* sort.
*
* Note that the simple transport layer has no way of refusing a
* command; we only have as many request structures as the adapter
* supports commands, so we don't have to check (this presumes that
* the adapter can handle commands as fast as we throw them at it).
*/
static int
ciss_start(struct ciss_request *cr)
{
struct ciss_command *cc; /* XXX debugging only */
int error;
cc = cr->cr_cc;
debug(2, "post command %d tag %d ", cr->cr_tag, cc->header.host_tag);
/*
* Map the request's data.
*/
if ((error = ciss_map_request(cr)))
return(error);
#if 0
ciss_print_request(cr);
#endif
return(0);
}
/************************************************************************
* Fetch completed request(s) from the adapter, queue them for
* completion handling.
*
* Note that this uses the simple transport layer directly. If we
* want to add support for other layers, we'll need a switch of some
* sort.
*
* Note that the simple transport mechanism does not require any
* reentrancy protection; the OPQ read is atomic. If there is a
* chance of a race with something else that might move the request
* off the busy list, then we will have to lock against that
* (eg. timeouts, etc.)
*/
static void
ciss_done(struct ciss_softc *sc, cr_qhead_t *qh)
{
struct ciss_request *cr;
struct ciss_command *cc;
u_int32_t tag, index;
debug_called(3);
/*
* Loop quickly taking requests from the adapter and moving them
* to the completed queue.
*/
for (;;) {
tag = CISS_TL_SIMPLE_FETCH_CMD(sc);
if (tag == CISS_TL_SIMPLE_OPQ_EMPTY)
break;
index = tag >> 2;
debug(2, "completed command %d%s", index,
(tag & CISS_HDR_HOST_TAG_ERROR) ? " with error" : "");
if (index >= sc->ciss_max_requests) {
ciss_printf(sc, "completed invalid request %d (0x%x)\n", index, tag);
continue;
}
cr = &(sc->ciss_request[index]);
cc = cr->cr_cc;
cc->header.host_tag = tag; /* not updated by adapter */
ciss_enqueue_complete(cr, qh);
}
}
static void
ciss_perf_done(struct ciss_softc *sc, cr_qhead_t *qh)
{
struct ciss_request *cr;
struct ciss_command *cc;
u_int32_t tag, index;
debug_called(3);
/*
* Loop quickly taking requests from the adapter and moving them
* to the completed queue.
*/
for (;;) {
tag = sc->ciss_reply[sc->ciss_rqidx];
if ((tag & CISS_CYCLE_MASK) != sc->ciss_cycle)
break;
index = tag >> 2;
debug(2, "completed command %d%s\n", index,
(tag & CISS_HDR_HOST_TAG_ERROR) ? " with error" : "");
if (index < sc->ciss_max_requests) {
cr = &(sc->ciss_request[index]);
cc = cr->cr_cc;
cc->header.host_tag = tag; /* not updated by adapter */
ciss_enqueue_complete(cr, qh);
} else {
ciss_printf(sc, "completed invalid request %d (0x%x)\n", index, tag);
}
if (++sc->ciss_rqidx == sc->ciss_max_requests) {
sc->ciss_rqidx = 0;
sc->ciss_cycle ^= 1;
}
}
}
/************************************************************************
* Take an interrupt from the adapter.
*/
static void
ciss_intr(void *arg)
{
cr_qhead_t qh;
struct ciss_softc *sc = (struct ciss_softc *)arg;
/*
* The only interrupt we recognise indicates that there are
* entries in the outbound post queue.
*/
STAILQ_INIT(&qh);
ciss_done(sc, &qh);
mtx_lock(&sc->ciss_mtx);
ciss_complete(sc, &qh);
mtx_unlock(&sc->ciss_mtx);
}
static void
ciss_perf_intr(void *arg)
{
struct ciss_softc *sc = (struct ciss_softc *)arg;
/* Clear the interrupt and flush the bridges. Docs say that the flush
* needs to be done twice, which doesn't seem right.
*/
CISS_TL_PERF_CLEAR_INT(sc);
CISS_TL_PERF_FLUSH_INT(sc);
ciss_perf_msi_intr(sc);
}
static void
ciss_perf_msi_intr(void *arg)
{
cr_qhead_t qh;
struct ciss_softc *sc = (struct ciss_softc *)arg;
STAILQ_INIT(&qh);
ciss_perf_done(sc, &qh);
mtx_lock(&sc->ciss_mtx);
ciss_complete(sc, &qh);
mtx_unlock(&sc->ciss_mtx);
}
/************************************************************************
* Process completed requests.
*
* Requests can be completed in three fashions:
*
* - by invoking a callback function (cr_complete is non-null)
* - by waking up a sleeper (cr_flags has CISS_REQ_SLEEP set)
* - by clearing the CISS_REQ_POLL flag in interrupt/timeout context
*/
static void
ciss_complete(struct ciss_softc *sc, cr_qhead_t *qh)
{
struct ciss_request *cr;
debug_called(2);
/*
* Loop taking requests off the completed queue and performing
* completion processing on them.
*/
for (;;) {
if ((cr = ciss_dequeue_complete(sc, qh)) == NULL)
break;
ciss_unmap_request(cr);
if ((cr->cr_flags & CISS_REQ_BUSY) == 0)
ciss_printf(sc, "WARNING: completing non-busy request\n");
cr->cr_flags &= ~CISS_REQ_BUSY;
/*
* If the request has a callback, invoke it.
*/
if (cr->cr_complete != NULL) {
cr->cr_complete(cr);
continue;
}
/*
* If someone is sleeping on this request, wake them up.
*/
if (cr->cr_flags & CISS_REQ_SLEEP) {
cr->cr_flags &= ~CISS_REQ_SLEEP;
wakeup(cr);
continue;
}
/*
* If someone is polling this request for completion, signal.
*/
if (cr->cr_flags & CISS_REQ_POLL) {
cr->cr_flags &= ~CISS_REQ_POLL;
continue;
}
/*
* Give up and throw the request back on the free queue. This
* should never happen; resources will probably be lost.
*/
ciss_printf(sc, "WARNING: completed command with no submitter\n");
ciss_enqueue_free(cr);
}
}
/************************************************************************
* Report on the completion status of a request, and pass back SCSI
* and command status values.
*/
static int
_ciss_report_request(struct ciss_request *cr, int *command_status, int *scsi_status, const char *func)
{
struct ciss_command *cc;
struct ciss_error_info *ce;
debug_called(2);
cc = cr->cr_cc;
ce = (struct ciss_error_info *)&(cc->sg[0]);
/*
* We don't consider data under/overrun an error for the Report
* Logical/Physical LUNs commands.
*/
if ((cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) &&
((ce->command_status == CISS_CMD_STATUS_DATA_OVERRUN) ||
(ce->command_status == CISS_CMD_STATUS_DATA_UNDERRUN)) &&
((cc->cdb.cdb[0] == CISS_OPCODE_REPORT_LOGICAL_LUNS) ||
(cc->cdb.cdb[0] == CISS_OPCODE_REPORT_PHYSICAL_LUNS) ||
(cc->cdb.cdb[0] == INQUIRY))) {
cc->header.host_tag &= ~CISS_HDR_HOST_TAG_ERROR;
debug(2, "ignoring irrelevant under/overrun error");
}
/*
* Check the command's error bit, if clear, there's no status and
* everything is OK.
*/
if (!(cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR)) {
if (scsi_status != NULL)
*scsi_status = SCSI_STATUS_OK;
if (command_status != NULL)
*command_status = CISS_CMD_STATUS_SUCCESS;
return(0);
} else {
if (command_status != NULL)
*command_status = ce->command_status;
if (scsi_status != NULL) {
if (ce->command_status == CISS_CMD_STATUS_TARGET_STATUS) {
*scsi_status = ce->scsi_status;
} else {
*scsi_status = -1;
}
}
if (bootverbose)
ciss_printf(cr->cr_sc, "command status 0x%x (%s) scsi status 0x%x\n",
ce->command_status, ciss_name_command_status(ce->command_status),
ce->scsi_status);
if (ce->command_status == CISS_CMD_STATUS_INVALID_COMMAND) {
ciss_printf(cr->cr_sc, "invalid command, offense size %d at %d, value 0x%x, function %s\n",
ce->additional_error_info.invalid_command.offense_size,
ce->additional_error_info.invalid_command.offense_offset,
ce->additional_error_info.invalid_command.offense_value,
func);
}
}
#if 0
ciss_print_request(cr);
#endif
return(1);
}
/************************************************************************
* Issue a request and don't return until it's completed.
*
* Depending on adapter status, we may poll or sleep waiting for
* completion.
*/
static int
ciss_synch_request(struct ciss_request *cr, int timeout)
{
if (cr->cr_sc->ciss_flags & CISS_FLAG_RUNNING) {
return(ciss_wait_request(cr, timeout));
} else {
return(ciss_poll_request(cr, timeout));
}
}
/************************************************************************
* Issue a request and poll for completion.
*
* Timeout in milliseconds.
*/
static int
ciss_poll_request(struct ciss_request *cr, int timeout)
{
cr_qhead_t qh;
struct ciss_softc *sc;
int error;
debug_called(2);
STAILQ_INIT(&qh);
sc = cr->cr_sc;
cr->cr_flags |= CISS_REQ_POLL;
if ((error = ciss_start(cr)) != 0)
return(error);
do {
if (sc->ciss_perf)
ciss_perf_done(sc, &qh);
else
ciss_done(sc, &qh);
ciss_complete(sc, &qh);
if (!(cr->cr_flags & CISS_REQ_POLL))
return(0);
DELAY(1000);
} while (timeout-- >= 0);
return(EWOULDBLOCK);
}
/************************************************************************
* Issue a request and sleep waiting for completion.
*
* Timeout in milliseconds. Note that a spurious wakeup will reset
* the timeout.
*/
static int
ciss_wait_request(struct ciss_request *cr, int timeout)
{
int error;
debug_called(2);
cr->cr_flags |= CISS_REQ_SLEEP;
if ((error = ciss_start(cr)) != 0)
return(error);
while ((cr->cr_flags & CISS_REQ_SLEEP) && (error != EWOULDBLOCK)) {
error = msleep(cr, &cr->cr_sc->ciss_mtx, PRIBIO, "cissREQ", (timeout * hz) / 1000);
}
return(error);
}
#if 0
/************************************************************************
* Abort a request. Note that a potential exists here to race the
* request being completed; the caller must deal with this.
*/
static int
ciss_abort_request(struct ciss_request *ar)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_message_cdb *cmc;
int error;
debug_called(1);
/* get a request */
if ((error = ciss_get_request(ar->cr_sc, &cr)) != 0)
return(error);
/* build the abort command */
cc = cr->cr_cc;
cc->header.address.mode.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL; /* addressing? */
cc->header.address.physical.target = 0;
cc->header.address.physical.bus = 0;
cc->cdb.cdb_length = sizeof(*cmc);
cc->cdb.type = CISS_CDB_TYPE_MESSAGE;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_NONE;
cc->cdb.timeout = 30;
cmc = (struct ciss_message_cdb *)&(cc->cdb.cdb[0]);
cmc->opcode = CISS_OPCODE_MESSAGE_ABORT;
cmc->type = CISS_MESSAGE_ABORT_TASK;
cmc->abort_tag = ar->cr_tag; /* endianness?? */
/*
* Send the request and wait for a response. If we believe we
* aborted the request OK, clear the flag that indicates it's
* running.
*/
error = ciss_synch_request(cr, 35 * 1000);
if (!error)
error = ciss_report_request(cr, NULL, NULL);
ciss_release_request(cr);
return(error);
}
#endif
/************************************************************************
* Fetch and initialise a request
*/
static int
ciss_get_request(struct ciss_softc *sc, struct ciss_request **crp)
{
struct ciss_request *cr;
debug_called(2);
/*
* Get a request and clean it up.
*/
if ((cr = ciss_dequeue_free(sc)) == NULL)
return(ENOMEM);
cr->cr_data = NULL;
cr->cr_flags = 0;
cr->cr_complete = NULL;
cr->cr_private = NULL;
cr->cr_sg_tag = CISS_SG_MAX; /* Backstop to prevent accidents */
ciss_preen_command(cr);
*crp = cr;
return(0);
}
static void
ciss_preen_command(struct ciss_request *cr)
{
struct ciss_command *cc;
u_int32_t cmdphys;
/*
* Clean up the command structure.
*
* Note that we set up the error_info structure here, since the
* length can be overwritten by any command.
*/
cc = cr->cr_cc;
cc->header.sg_in_list = 0; /* kinda inefficient this way */
cc->header.sg_total = 0;
cc->header.host_tag = cr->cr_tag << 2;
cc->header.host_tag_zeroes = 0;
bzero(&(cc->sg[0]), CISS_COMMAND_ALLOC_SIZE - sizeof(struct ciss_command));
cmdphys = cr->cr_ccphys;
cc->error_info.error_info_address = cmdphys + sizeof(struct ciss_command);
cc->error_info.error_info_length = CISS_COMMAND_ALLOC_SIZE - sizeof(struct ciss_command);
}
/************************************************************************
* Release a request to the free list.
*/
static void
ciss_release_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
debug_called(2);
sc = cr->cr_sc;
/* release the request to the free queue */
ciss_requeue_free(cr);
}
/************************************************************************
* Allocate a request that will be used to send a BMIC command. Do some
* of the common setup here to avoid duplicating it everywhere else.
*/
static int
ciss_get_bmic_request(struct ciss_softc *sc, struct ciss_request **crp,
int opcode, void **bufp, size_t bufsize)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_bmic_cdb *cbc;
void *buf;
int error;
int dataout;
debug_called(2);
cr = NULL;
buf = NULL;
/*
* Get a request.
*/
if ((error = ciss_get_request(sc, &cr)) != 0)
goto out;
/*
* Allocate data storage if requested, determine the data direction.
*/
dataout = 0;
if ((bufsize > 0) && (bufp != NULL)) {
if (*bufp == NULL) {
if ((buf = malloc(bufsize, CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO)) == NULL) {
error = ENOMEM;
goto out;
}
} else {
buf = *bufp;
dataout = 1; /* we are given a buffer, so we are writing */
}
}
/*
* Build a CISS BMIC command to get the logical drive ID.
*/
cr->cr_data = buf;
cr->cr_length = bufsize;
if (!dataout)
cr->cr_flags = CISS_REQ_DATAIN;
cc = cr->cr_cc;
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*cbc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = dataout ? CISS_CDB_DIRECTION_WRITE : CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 0;
cbc = (struct ciss_bmic_cdb *)&(cc->cdb.cdb[0]);
bzero(cbc, sizeof(*cbc));
cbc->opcode = dataout ? CISS_ARRAY_CONTROLLER_WRITE : CISS_ARRAY_CONTROLLER_READ;
cbc->bmic_opcode = opcode;
cbc->size = htons((u_int16_t)bufsize);
out:
if (error) {
if (cr != NULL)
ciss_release_request(cr);
} else {
*crp = cr;
if ((bufp != NULL) && (*bufp == NULL) && (buf != NULL))
*bufp = buf;
}
return(error);
}
/************************************************************************
* Handle a command passed in from userspace.
*/
static int
ciss_user_command(struct ciss_softc *sc, IOCTL_Command_struct *ioc)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_error_info *ce;
int error = 0;
debug_called(1);
cr = NULL;
/*
* Get a request.
*/
while (ciss_get_request(sc, &cr) != 0)
msleep(sc, &sc->ciss_mtx, PPAUSE, "cissREQ", hz);
cc = cr->cr_cc;
/*
* Allocate an in-kernel databuffer if required, copy in user data.
*/
mtx_unlock(&sc->ciss_mtx);
cr->cr_length = ioc->buf_size;
if (ioc->buf_size > 0) {
if ((cr->cr_data = malloc(ioc->buf_size, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) {
error = ENOMEM;
goto out_unlocked;
}
if ((error = copyin(ioc->buf, cr->cr_data, ioc->buf_size))) {
debug(0, "copyin: bad data buffer %p/%d", ioc->buf, ioc->buf_size);
goto out_unlocked;
}
}
/*
* Build the request based on the user command.
*/
bcopy(&ioc->LUN_info, &cc->header.address, sizeof(cc->header.address));
bcopy(&ioc->Request, &cc->cdb, sizeof(cc->cdb));
/* XXX anything else to populate here? */
mtx_lock(&sc->ciss_mtx);
/*
* Run the command.
*/
if ((error = ciss_synch_request(cr, 60 * 1000))) {
debug(0, "request failed - %d", error);
goto out;
}
/*
* Check to see if the command succeeded.
*/
ce = (struct ciss_error_info *)&(cc->sg[0]);
if ((cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) == 0)
bzero(ce, sizeof(*ce));
/*
* Copy the results back to the user.
*/
bcopy(ce, &ioc->error_info, sizeof(*ce));
mtx_unlock(&sc->ciss_mtx);
if ((ioc->buf_size > 0) &&
(error = copyout(cr->cr_data, ioc->buf, ioc->buf_size))) {
debug(0, "copyout: bad data buffer %p/%d", ioc->buf, ioc->buf_size);
goto out_unlocked;
}
/* done OK */
error = 0;
out_unlocked:
mtx_lock(&sc->ciss_mtx);
out:
if ((cr != NULL) && (cr->cr_data != NULL))
free(cr->cr_data, CISS_MALLOC_CLASS);
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Map a request into bus-visible space, initialise the scatter/gather
* list.
*/
static int
ciss_map_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
int error = 0;
debug_called(2);
sc = cr->cr_sc;
/* check that mapping is necessary */
if (cr->cr_flags & CISS_REQ_MAPPED)
return(0);
cr->cr_flags |= CISS_REQ_MAPPED;
bus_dmamap_sync(sc->ciss_command_dmat, sc->ciss_command_map,
BUS_DMASYNC_PREWRITE);
if (cr->cr_data != NULL) {
if (cr->cr_flags & CISS_REQ_CCB)
error = bus_dmamap_load_ccb(sc->ciss_buffer_dmat,
cr->cr_datamap, cr->cr_data,
ciss_request_map_helper, cr, 0);
else
error = bus_dmamap_load(sc->ciss_buffer_dmat, cr->cr_datamap,
cr->cr_data, cr->cr_length,
ciss_request_map_helper, cr, 0);
if (error != 0)
return (error);
} else {
/*
* Post the command to the adapter.
*/
cr->cr_sg_tag = CISS_SG_NONE;
cr->cr_flags |= CISS_REQ_BUSY;
if (sc->ciss_perf)
CISS_TL_PERF_POST_CMD(sc, cr);
else
CISS_TL_SIMPLE_POST_CMD(sc, cr->cr_ccphys);
}
return(0);
}
static void
ciss_request_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct ciss_command *cc;
struct ciss_request *cr;
struct ciss_softc *sc;
int i;
debug_called(2);
cr = (struct ciss_request *)arg;
sc = cr->cr_sc;
cc = cr->cr_cc;
for (i = 0; i < nseg; i++) {
cc->sg[i].address = segs[i].ds_addr;
cc->sg[i].length = segs[i].ds_len;
cc->sg[i].extension = 0;
}
/* we leave the s/g table entirely within the command */
cc->header.sg_in_list = nseg;
cc->header.sg_total = nseg;
if (cr->cr_flags & CISS_REQ_DATAIN)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_PREREAD);
if (cr->cr_flags & CISS_REQ_DATAOUT)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_PREWRITE);
if (nseg == 0)
cr->cr_sg_tag = CISS_SG_NONE;
else if (nseg == 1)
cr->cr_sg_tag = CISS_SG_1;
else if (nseg == 2)
cr->cr_sg_tag = CISS_SG_2;
else if (nseg <= 4)
cr->cr_sg_tag = CISS_SG_4;
else if (nseg <= 8)
cr->cr_sg_tag = CISS_SG_8;
else if (nseg <= 16)
cr->cr_sg_tag = CISS_SG_16;
else if (nseg <= 32)
cr->cr_sg_tag = CISS_SG_32;
else
cr->cr_sg_tag = CISS_SG_MAX;
/*
* Post the command to the adapter.
*/
cr->cr_flags |= CISS_REQ_BUSY;
if (sc->ciss_perf)
CISS_TL_PERF_POST_CMD(sc, cr);
else
CISS_TL_SIMPLE_POST_CMD(sc, cr->cr_ccphys);
}
/************************************************************************
* Unmap a request from bus-visible space.
*/
static void
ciss_unmap_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
debug_called(2);
sc = cr->cr_sc;
/* check that unmapping is necessary */
if ((cr->cr_flags & CISS_REQ_MAPPED) == 0)
return;
bus_dmamap_sync(sc->ciss_command_dmat, sc->ciss_command_map,
BUS_DMASYNC_POSTWRITE);
if (cr->cr_data == NULL)
goto out;
if (cr->cr_flags & CISS_REQ_DATAIN)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_POSTREAD);
if (cr->cr_flags & CISS_REQ_DATAOUT)
bus_dmamap_sync(sc->ciss_buffer_dmat, cr->cr_datamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->ciss_buffer_dmat, cr->cr_datamap);
out:
cr->cr_flags &= ~CISS_REQ_MAPPED;
}
/************************************************************************
* Attach the driver to CAM.
*
* We put all the logical drives on a single SCSI bus.
*/
static int
ciss_cam_init(struct ciss_softc *sc)
{
int i, maxbus;
debug_called(1);
/*
* Allocate a devq. We can reuse this for the masked physical
* devices if we decide to export these as well.
*/
if ((sc->ciss_cam_devq = cam_simq_alloc(sc->ciss_max_requests - 2)) == NULL) {
ciss_printf(sc, "can't allocate CAM SIM queue\n");
return(ENOMEM);
}
/*
* Create a SIM.
*
* This naturally wastes a bit of memory. The alternative is to allocate
* and register each bus as it is found, and then track them on a linked
* list. Unfortunately, the driver has a few places where it needs to
* look up the SIM based solely on bus number, and it's unclear whether
* a list traversal would work for these situations.
*/
maxbus = max(sc->ciss_max_logical_bus, sc->ciss_max_physical_bus +
CISS_PHYSICAL_BASE);
sc->ciss_cam_sim = malloc(maxbus * sizeof(struct cam_sim*),
CISS_MALLOC_CLASS, M_NOWAIT | M_ZERO);
if (sc->ciss_cam_sim == NULL) {
ciss_printf(sc, "can't allocate memory for controller SIM\n");
return(ENOMEM);
}
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
if ((sc->ciss_cam_sim[i] = cam_sim_alloc(ciss_cam_action, ciss_cam_poll,
"ciss", sc,
device_get_unit(sc->ciss_dev),
&sc->ciss_mtx,
2,
sc->ciss_max_requests - 2,
sc->ciss_cam_devq)) == NULL) {
ciss_printf(sc, "can't allocate CAM SIM for controller %d\n", i);
return(ENOMEM);
}
/*
* Register bus with this SIM.
*/
mtx_lock(&sc->ciss_mtx);
if (i == 0 || sc->ciss_controllers[i].physical.bus != 0) {
if (xpt_bus_register(sc->ciss_cam_sim[i], sc->ciss_dev, i) != 0) {
ciss_printf(sc, "can't register SCSI bus %d\n", i);
mtx_unlock(&sc->ciss_mtx);
return (ENXIO);
}
}
mtx_unlock(&sc->ciss_mtx);
}
for (i = CISS_PHYSICAL_BASE; i < sc->ciss_max_physical_bus +
CISS_PHYSICAL_BASE; i++) {
if ((sc->ciss_cam_sim[i] = cam_sim_alloc(ciss_cam_action, ciss_cam_poll,
"ciss", sc,
device_get_unit(sc->ciss_dev),
&sc->ciss_mtx, 1,
sc->ciss_max_requests - 2,
sc->ciss_cam_devq)) == NULL) {
ciss_printf(sc, "can't allocate CAM SIM for controller %d\n", i);
return (ENOMEM);
}
mtx_lock(&sc->ciss_mtx);
if (xpt_bus_register(sc->ciss_cam_sim[i], sc->ciss_dev, i) != 0) {
ciss_printf(sc, "can't register SCSI bus %d\n", i);
mtx_unlock(&sc->ciss_mtx);
return (ENXIO);
}
mtx_unlock(&sc->ciss_mtx);
}
return(0);
}
/************************************************************************
* Initiate a rescan of the 'logical devices' SIM
*/
static void
ciss_cam_rescan_target(struct ciss_softc *sc, int bus, int target)
{
union ccb *ccb;
debug_called(1);
if ((ccb = xpt_alloc_ccb_nowait()) == NULL) {
ciss_printf(sc, "rescan failed (can't allocate CCB)\n");
return;
}
if (xpt_create_path(&ccb->ccb_h.path, NULL,
cam_sim_path(sc->ciss_cam_sim[bus]),
target, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
ciss_printf(sc, "rescan failed (can't create path)\n");
xpt_free_ccb(ccb);
return;
}
xpt_rescan(ccb);
/* scan is now in progress */
}
/************************************************************************
* Handle requests coming from CAM
*/
static void
ciss_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct ciss_softc *sc;
struct ccb_scsiio *csio;
int bus, target;
int physical;
sc = cam_sim_softc(sim);
bus = cam_sim_bus(sim);
csio = (struct ccb_scsiio *)&ccb->csio;
target = csio->ccb_h.target_id;
physical = CISS_IS_PHYSICAL(bus);
switch (ccb->ccb_h.func_code) {
/* perform SCSI I/O */
case XPT_SCSI_IO:
if (!ciss_cam_action_io(sim, csio))
return;
break;
/* perform geometry calculations */
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg = &ccb->ccg;
struct ciss_ldrive *ld;
debug(1, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
ld = NULL;
if (!physical)
ld = &sc->ciss_logical[bus][target];
/*
* Use the cached geometry settings unless the fault tolerance
* is invalid.
*/
if (physical || ld->cl_geometry.fault_tolerance == 0xFF) {
u_int32_t secs_per_cylinder;
ccg->heads = 255;
ccg->secs_per_track = 32;
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
} else {
ccg->heads = ld->cl_geometry.heads;
ccg->secs_per_track = ld->cl_geometry.sectors;
ccg->cylinders = ntohs(ld->cl_geometry.cylinders);
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
/* handle path attribute inquiry */
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
int sg_length;
debug(1, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
cpi->version_num = 1;
cpi->hba_inquiry = PI_TAG_ABLE; /* XXX is this correct? */
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->max_target = sc->ciss_cfg->max_logical_supported;
cpi->max_lun = 0; /* 'logical drive' channel only */
cpi->initiator_id = sc->ciss_cfg->max_logical_supported;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "msmith@freebsd.org", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 132 * 1024; /* XXX what to set this to? */
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
if (sc->ciss_cfg->max_sg_length == 0) {
sg_length = 17;
} else {
/* XXX Fix for ZMR cards that advertise max_sg_length == 32
* Confusing bit here. max_sg_length is usually a power of 2. We always
* need to subtract 1 to account for partial pages. Then we need to
* align on a valid PAGE_SIZE so we round down to the nearest power of 2.
* Add 1 so we can then subtract it out in the assignment to maxio.
* The reason for all these shenanigans is to create a maxio value that
* creates IO operations to volumes that yield consistent operations
* with good performance.
*/
sg_length = sc->ciss_cfg->max_sg_length - 1;
sg_length = (1 << (fls(sg_length) - 1)) + 1;
}
cpi->maxio = (min(CISS_MAX_SG_ELEMENTS, sg_length) - 1) * PAGE_SIZE;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
int bus, target;
struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
bus = cam_sim_bus(sim);
target = cts->ccb_h.target_id;
debug(1, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
/* disconnect always OK */
cts->protocol = PROTO_SCSI;
cts->protocol_version = SCSI_REV_2;
cts->transport = XPORT_SPI;
cts->transport_version = 2;
spi->valid = CTS_SPI_VALID_DISC;
spi->flags = CTS_SPI_FLAGS_DISC_ENB;
scsi->valid = CTS_SCSI_VALID_TQ;
scsi->flags = CTS_SCSI_FLAGS_TAG_ENB;
cts->ccb_h.status = CAM_REQ_CMP;
break;
}
default: /* we can't do this */
debug(1, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
/************************************************************************
* Handle a CAM SCSI I/O request.
*/
static int
ciss_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
{
struct ciss_softc *sc;
int bus, target;
struct ciss_request *cr;
struct ciss_command *cc;
int error;
sc = cam_sim_softc(sim);
bus = cam_sim_bus(sim);
target = csio->ccb_h.target_id;
debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
/* check that the CDB pointer is not to a physical address */
if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
debug(3, " CDB pointer is to physical address");
csio->ccb_h.status = CAM_REQ_CMP_ERR;
}
/* abandon aborted ccbs or those that have failed validation */
if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
debug(3, "abandoning CCB due to abort/validation failure");
return(EINVAL);
}
/* handle emulation of some SCSI commands ourself */
if (ciss_cam_emulate(sc, csio))
return(0);
/*
* Get a request to manage this command. If we can't, return the
* ccb, freeze the queue and flag so that we unfreeze it when a
* request completes.
*/
if ((error = ciss_get_request(sc, &cr)) != 0) {
xpt_freeze_simq(sim, 1);
sc->ciss_flags |= CISS_FLAG_BUSY;
csio->ccb_h.status |= CAM_REQUEUE_REQ;
return(error);
}
/*
* Build the command.
*/
cc = cr->cr_cc;
cr->cr_data = csio;
cr->cr_length = csio->dxfer_len;
cr->cr_complete = ciss_cam_complete;
cr->cr_private = csio;
/*
* Target the right logical volume.
*/
if (CISS_IS_PHYSICAL(bus))
cc->header.address =
sc->ciss_physical[CISS_CAM_TO_PBUS(bus)][target].cp_address;
else
cc->header.address =
sc->ciss_logical[bus][target].cl_address;
cc->cdb.cdb_length = csio->cdb_len;
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE; /* XXX ordered tags? */
if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
cr->cr_flags = CISS_REQ_DATAOUT | CISS_REQ_CCB;
cc->cdb.direction = CISS_CDB_DIRECTION_WRITE;
} else if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) {
cr->cr_flags = CISS_REQ_DATAIN | CISS_REQ_CCB;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
} else {
cr->cr_data = NULL;
cr->cr_flags = 0;
cc->cdb.direction = CISS_CDB_DIRECTION_NONE;
}
cc->cdb.timeout = (csio->ccb_h.timeout / 1000) + 1;
if (csio->ccb_h.flags & CAM_CDB_POINTER) {
bcopy(csio->cdb_io.cdb_ptr, &cc->cdb.cdb[0], csio->cdb_len);
} else {
bcopy(csio->cdb_io.cdb_bytes, &cc->cdb.cdb[0], csio->cdb_len);
}
/*
* Submit the request to the adapter.
*
* Note that this may fail if we're unable to map the request (and
* if we ever learn a transport layer other than simple, may fail
* if the adapter rejects the command).
*/
if ((error = ciss_start(cr)) != 0) {
xpt_freeze_simq(sim, 1);
csio->ccb_h.status |= CAM_RELEASE_SIMQ;
if (error == EINPROGRESS) {
error = 0;
} else {
csio->ccb_h.status |= CAM_REQUEUE_REQ;
ciss_release_request(cr);
}
return(error);
}
return(0);
}
/************************************************************************
* Emulate SCSI commands the adapter doesn't handle as we might like.
*/
static int
ciss_cam_emulate(struct ciss_softc *sc, struct ccb_scsiio *csio)
{
int bus, target;
u_int8_t opcode;
target = csio->ccb_h.target_id;
bus = cam_sim_bus(xpt_path_sim(csio->ccb_h.path));
opcode = (csio->ccb_h.flags & CAM_CDB_POINTER) ?
*(u_int8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes[0];
if (CISS_IS_PHYSICAL(bus)) {
if (sc->ciss_physical[CISS_CAM_TO_PBUS(bus)][target].cp_online != 1) {
csio->ccb_h.status |= CAM_SEL_TIMEOUT;
xpt_done((union ccb *)csio);
return(1);
} else
return(0);
}
/*
* Handle requests for volumes that don't exist or are not online.
* A selection timeout is slightly better than an illegal request.
* Other errors might be better.
*/
if (sc->ciss_logical[bus][target].cl_status != CISS_LD_ONLINE) {
csio->ccb_h.status |= CAM_SEL_TIMEOUT;
xpt_done((union ccb *)csio);
return(1);
}
/* if we have to fake Synchronise Cache */
if (sc->ciss_flags & CISS_FLAG_FAKE_SYNCH) {
/*
* If this is a Synchronise Cache command, typically issued when
* a device is closed, flush the adapter and complete now.
*/
if (((csio->ccb_h.flags & CAM_CDB_POINTER) ?
*(u_int8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes[0]) == SYNCHRONIZE_CACHE) {
ciss_flush_adapter(sc);
csio->ccb_h.status |= CAM_REQ_CMP;
xpt_done((union ccb *)csio);
return(1);
}
}
/*
* A CISS target can only ever have one lun per target. REPORT_LUNS requires
* at least one LUN field to be pre created for us, so snag it and fill in
* the least significant byte indicating 1 LUN here. Emulate the command
* return to shut up warning on console of a CDB error. swb
*/
if (opcode == REPORT_LUNS && csio->dxfer_len > 0) {
csio->data_ptr[3] = 8;
csio->ccb_h.status |= CAM_REQ_CMP;
xpt_done((union ccb *)csio);
return(1);
}
return(0);
}
/************************************************************************
* Check for possibly-completed commands.
*/
static void
ciss_cam_poll(struct cam_sim *sim)
{
cr_qhead_t qh;
struct ciss_softc *sc = cam_sim_softc(sim);
debug_called(2);
STAILQ_INIT(&qh);
if (sc->ciss_perf)
ciss_perf_done(sc, &qh);
else
ciss_done(sc, &qh);
ciss_complete(sc, &qh);
}
/************************************************************************
* Handle completion of a command - pass results back through the CCB
*/
static void
ciss_cam_complete(struct ciss_request *cr)
{
struct ciss_softc *sc;
struct ciss_command *cc;
struct ciss_error_info *ce;
struct ccb_scsiio *csio;
int scsi_status;
int command_status;
debug_called(2);
sc = cr->cr_sc;
cc = cr->cr_cc;
ce = (struct ciss_error_info *)&(cc->sg[0]);
csio = (struct ccb_scsiio *)cr->cr_private;
/*
* Extract status values from request.
*/
ciss_report_request(cr, &command_status, &scsi_status);
csio->scsi_status = scsi_status;
/*
* Handle specific SCSI status values.
*/
switch(scsi_status) {
/* no status due to adapter error */
case -1:
debug(0, "adapter error");
csio->ccb_h.status |= CAM_REQ_CMP_ERR;
break;
/* no status due to command completed OK */
case SCSI_STATUS_OK: /* CISS_SCSI_STATUS_GOOD */
debug(2, "SCSI_STATUS_OK");
csio->ccb_h.status |= CAM_REQ_CMP;
break;
/* check condition, sense data included */
case SCSI_STATUS_CHECK_COND: /* CISS_SCSI_STATUS_CHECK_CONDITION */
debug(0, "SCSI_STATUS_CHECK_COND sense size %d resid %d\n",
ce->sense_length, ce->residual_count);
bzero(&csio->sense_data, SSD_FULL_SIZE);
bcopy(&ce->sense_info[0], &csio->sense_data, ce->sense_length);
if (csio->sense_len > ce->sense_length)
csio->sense_resid = csio->sense_len - ce->sense_length;
else
csio->sense_resid = 0;
csio->resid = ce->residual_count;
csio->ccb_h.status |= CAM_SCSI_STATUS_ERROR | CAM_AUTOSNS_VALID;
#ifdef CISS_DEBUG
{
struct scsi_sense_data *sns = (struct scsi_sense_data *)&ce->sense_info[0];
debug(0, "sense key %x", scsi_get_sense_key(sns, csio->sense_len -
csio->sense_resid, /*show_errors*/ 1));
}
#endif
break;
case SCSI_STATUS_BUSY: /* CISS_SCSI_STATUS_BUSY */
debug(0, "SCSI_STATUS_BUSY");
csio->ccb_h.status |= CAM_SCSI_BUSY;
break;
default:
debug(0, "unknown status 0x%x", csio->scsi_status);
csio->ccb_h.status |= CAM_REQ_CMP_ERR;
break;
}
/* handle post-command fixup */
ciss_cam_complete_fixup(sc, csio);
ciss_release_request(cr);
if (sc->ciss_flags & CISS_FLAG_BUSY) {
sc->ciss_flags &= ~CISS_FLAG_BUSY;
if (csio->ccb_h.status & CAM_RELEASE_SIMQ)
xpt_release_simq(xpt_path_sim(csio->ccb_h.path), 0);
else
csio->ccb_h.status |= CAM_RELEASE_SIMQ;
}
xpt_done((union ccb *)csio);
}
/********************************************************************************
* Fix up the result of some commands here.
*/
static void
ciss_cam_complete_fixup(struct ciss_softc *sc, struct ccb_scsiio *csio)
{
struct scsi_inquiry_data *inq;
struct ciss_ldrive *cl;
uint8_t *cdb;
int bus, target;
cdb = (csio->ccb_h.flags & CAM_CDB_POINTER) ?
(uint8_t *)csio->cdb_io.cdb_ptr : csio->cdb_io.cdb_bytes;
if (cdb[0] == INQUIRY &&
(cdb[1] & SI_EVPD) == 0 &&
(csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN &&
csio->dxfer_len >= SHORT_INQUIRY_LENGTH) {
inq = (struct scsi_inquiry_data *)csio->data_ptr;
target = csio->ccb_h.target_id;
bus = cam_sim_bus(xpt_path_sim(csio->ccb_h.path));
/*
* Don't let hard drives be seen by the DA driver. They will still be
* attached by the PASS driver.
*/
if (CISS_IS_PHYSICAL(bus)) {
if (SID_TYPE(inq) == T_DIRECT)
inq->device = (inq->device & 0xe0) | T_NODEVICE;
return;
}
cl = &sc->ciss_logical[bus][target];
padstr(inq->vendor, "HP",
SID_VENDOR_SIZE);
padstr(inq->product,
ciss_name_ldrive_org(cl->cl_ldrive->fault_tolerance),
SID_PRODUCT_SIZE);
padstr(inq->revision,
ciss_name_ldrive_status(cl->cl_lstatus->status),
SID_REVISION_SIZE);
}
}
/********************************************************************************
* Name the device at (target)
*
* XXX is this strictly correct?
*/
static int
ciss_name_device(struct ciss_softc *sc, int bus, int target)
{
struct cam_periph *periph;
struct cam_path *path;
int status;
if (CISS_IS_PHYSICAL(bus))
return (0);
status = xpt_create_path(&path, NULL, cam_sim_path(sc->ciss_cam_sim[bus]),
target, 0);
if (status == CAM_REQ_CMP) {
xpt_path_lock(path);
periph = cam_periph_find(path, NULL);
sprintf(sc->ciss_logical[bus][target].cl_name, "%s%d",
periph->periph_name, periph->unit_number);
xpt_path_unlock(path);
xpt_free_path(path);
return(0);
}
sc->ciss_logical[bus][target].cl_name[0] = 0;
return(ENOENT);
}
/************************************************************************
* Periodic status monitoring.
*/
static void
ciss_periodic(void *arg)
{
struct ciss_softc *sc;
struct ciss_request *cr = NULL;
struct ciss_command *cc = NULL;
int error = 0;
debug_called(1);
sc = (struct ciss_softc *)arg;
/*
* Check the adapter heartbeat.
*/
if (sc->ciss_cfg->heartbeat == sc->ciss_heartbeat) {
sc->ciss_heart_attack++;
debug(0, "adapter heart attack in progress 0x%x/%d",
sc->ciss_heartbeat, sc->ciss_heart_attack);
if (sc->ciss_heart_attack == 3) {
ciss_printf(sc, "ADAPTER HEARTBEAT FAILED\n");
ciss_disable_adapter(sc);
return;
}
} else {
sc->ciss_heartbeat = sc->ciss_cfg->heartbeat;
sc->ciss_heart_attack = 0;
debug(3, "new heartbeat 0x%x", sc->ciss_heartbeat);
}
/*
* Send the NOP message and wait for a response.
*/
if (ciss_nop_message_heartbeat != 0 && (error = ciss_get_request(sc, &cr)) == 0) {
cc = cr->cr_cc;
cr->cr_complete = ciss_nop_complete;
cc->cdb.cdb_length = 1;
cc->cdb.type = CISS_CDB_TYPE_MESSAGE;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_WRITE;
cc->cdb.timeout = 0;
cc->cdb.cdb[0] = CISS_OPCODE_MESSAGE_NOP;
if ((error = ciss_start(cr)) != 0) {
ciss_printf(sc, "SENDING NOP MESSAGE FAILED\n");
}
}
/*
* If the notify event request has died for some reason, or has
* not started yet, restart it.
*/
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK)) {
debug(0, "(re)starting Event Notify chain");
ciss_notify_event(sc);
}
/*
* Reschedule.
*/
callout_reset(&sc->ciss_periodic, CISS_HEARTBEAT_RATE * hz, ciss_periodic, sc);
}
static void
ciss_nop_complete(struct ciss_request *cr)
{
struct ciss_softc *sc;
static int first_time = 1;
sc = cr->cr_sc;
if (ciss_report_request(cr, NULL, NULL) != 0) {
if (first_time == 1) {
first_time = 0;
ciss_printf(sc, "SENDING NOP MESSAGE FAILED (not logging anymore)\n");
}
}
ciss_release_request(cr);
}
/************************************************************************
* Disable the adapter.
*
* The all requests in completed queue is failed with hardware error.
* This will cause failover in a multipath configuration.
*/
static void
ciss_disable_adapter(struct ciss_softc *sc)
{
cr_qhead_t qh;
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_error_info *ce;
int i;
CISS_TL_SIMPLE_DISABLE_INTERRUPTS(sc);
pci_disable_busmaster(sc->ciss_dev);
sc->ciss_flags &= ~CISS_FLAG_RUNNING;
for (i = 1; i < sc->ciss_max_requests; i++) {
cr = &sc->ciss_request[i];
if ((cr->cr_flags & CISS_REQ_BUSY) == 0)
continue;
cc = cr->cr_cc;
ce = (struct ciss_error_info *)&(cc->sg[0]);
ce->command_status = CISS_CMD_STATUS_HARDWARE_ERROR;
ciss_enqueue_complete(cr, &qh);
}
for (;;) {
if ((cr = ciss_dequeue_complete(sc, &qh)) == NULL)
break;
/*
* If the request has a callback, invoke it.
*/
if (cr->cr_complete != NULL) {
cr->cr_complete(cr);
continue;
}
/*
* If someone is sleeping on this request, wake them up.
*/
if (cr->cr_flags & CISS_REQ_SLEEP) {
cr->cr_flags &= ~CISS_REQ_SLEEP;
wakeup(cr);
continue;
}
}
}
/************************************************************************
* Request a notification response from the adapter.
*
* If (cr) is NULL, this is the first request of the adapter, so
* reset the adapter's message pointer and start with the oldest
* message available.
*/
static void
ciss_notify_event(struct ciss_softc *sc)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_notify_cdb *cnc;
int error;
debug_called(1);
cr = sc->ciss_periodic_notify;
/* get a request if we don't already have one */
if (cr == NULL) {
if ((error = ciss_get_request(sc, &cr)) != 0) {
debug(0, "can't get notify event request");
goto out;
}
sc->ciss_periodic_notify = cr;
cr->cr_complete = ciss_notify_complete;
debug(1, "acquired request %d", cr->cr_tag);
}
/*
* Get a databuffer if we don't already have one, note that the
* adapter command wants a larger buffer than the actual
* structure.
*/
if (cr->cr_data == NULL) {
if ((cr->cr_data = malloc(CISS_NOTIFY_DATA_SIZE, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) {
debug(0, "can't get notify event request buffer");
error = ENOMEM;
goto out;
}
cr->cr_length = CISS_NOTIFY_DATA_SIZE;
}
/* re-setup the request's command (since we never release it) XXX overkill*/
ciss_preen_command(cr);
/* (re)build the notify event command */
cc = cr->cr_cc;
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*cnc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 0; /* no timeout, we hope */
cnc = (struct ciss_notify_cdb *)&(cc->cdb.cdb[0]);
bzero(cr->cr_data, CISS_NOTIFY_DATA_SIZE);
cnc->opcode = CISS_OPCODE_READ;
cnc->command = CISS_COMMAND_NOTIFY_ON_EVENT;
cnc->timeout = 0; /* no timeout, we hope */
cnc->synchronous = 0;
cnc->ordered = 0;
cnc->seek_to_oldest = 0;
if ((sc->ciss_flags & CISS_FLAG_RUNNING) == 0)
cnc->new_only = 1;
else
cnc->new_only = 0;
cnc->length = htonl(CISS_NOTIFY_DATA_SIZE);
/* submit the request */
error = ciss_start(cr);
out:
if (error) {
if (cr != NULL) {
if (cr->cr_data != NULL)
free(cr->cr_data, CISS_MALLOC_CLASS);
ciss_release_request(cr);
}
sc->ciss_periodic_notify = NULL;
debug(0, "can't submit notify event request");
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
} else {
debug(1, "notify event submitted");
sc->ciss_flags |= CISS_FLAG_NOTIFY_OK;
}
}
static void
ciss_notify_complete(struct ciss_request *cr)
{
struct ciss_command *cc;
struct ciss_notify *cn;
struct ciss_softc *sc;
int scsi_status;
int command_status;
debug_called(1);
cc = cr->cr_cc;
cn = (struct ciss_notify *)cr->cr_data;
sc = cr->cr_sc;
/*
* Report request results, decode status.
*/
ciss_report_request(cr, &command_status, &scsi_status);
/*
* Abort the chain on a fatal error.
*
* XXX which of these are actually errors?
*/
if ((command_status != CISS_CMD_STATUS_SUCCESS) &&
(command_status != CISS_CMD_STATUS_TARGET_STATUS) &&
(command_status != CISS_CMD_STATUS_TIMEOUT)) { /* XXX timeout? */
ciss_printf(sc, "fatal error in Notify Event request (%s)\n",
ciss_name_command_status(command_status));
ciss_release_request(cr);
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
return;
}
/*
* If the adapter gave us a text message, print it.
*/
if (cn->message[0] != 0)
ciss_printf(sc, "*** %.80s\n", cn->message);
debug(0, "notify event class %d subclass %d detail %d",
cn->class, cn->subclass, cn->detail);
/*
* If the response indicates that the notifier has been aborted,
* release the notifier command.
*/
if ((cn->class == CISS_NOTIFY_NOTIFIER) &&
(cn->subclass == CISS_NOTIFY_NOTIFIER_STATUS) &&
(cn->detail == 1)) {
debug(0, "notifier exiting");
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
ciss_release_request(cr);
sc->ciss_periodic_notify = NULL;
wakeup(&sc->ciss_periodic_notify);
} else {
/* Handle notify events in a kernel thread */
ciss_enqueue_notify(cr);
sc->ciss_periodic_notify = NULL;
wakeup(&sc->ciss_periodic_notify);
wakeup(&sc->ciss_notify);
}
/*
* Send a new notify event command, if we're not aborting.
*/
if (!(sc->ciss_flags & CISS_FLAG_ABORTING)) {
ciss_notify_event(sc);
}
}
/************************************************************************
* Abort the Notify Event chain.
*
* Note that we can't just abort the command in progress; we have to
* explicitly issue an Abort Notify Event command in order for the
* adapter to clean up correctly.
*
* If we are called with CISS_FLAG_ABORTING set in the adapter softc,
* the chain will not restart itself.
*/
static int
ciss_notify_abort(struct ciss_softc *sc)
{
struct ciss_request *cr;
struct ciss_command *cc;
struct ciss_notify_cdb *cnc;
int error, command_status, scsi_status;
debug_called(1);
cr = NULL;
error = 0;
/* verify that there's an outstanding command */
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK))
goto out;
/* get a command to issue the abort with */
if ((error = ciss_get_request(sc, &cr)))
goto out;
/* get a buffer for the result */
if ((cr->cr_data = malloc(CISS_NOTIFY_DATA_SIZE, CISS_MALLOC_CLASS, M_NOWAIT)) == NULL) {
debug(0, "can't get notify event request buffer");
error = ENOMEM;
goto out;
}
cr->cr_length = CISS_NOTIFY_DATA_SIZE;
/* build the CDB */
cc = cr->cr_cc;
cc->header.address.physical.mode = CISS_HDR_ADDRESS_MODE_PERIPHERAL;
cc->header.address.physical.bus = 0;
cc->header.address.physical.target = 0;
cc->cdb.cdb_length = sizeof(*cnc);
cc->cdb.type = CISS_CDB_TYPE_COMMAND;
cc->cdb.attribute = CISS_CDB_ATTRIBUTE_SIMPLE;
cc->cdb.direction = CISS_CDB_DIRECTION_READ;
cc->cdb.timeout = 0; /* no timeout, we hope */
cnc = (struct ciss_notify_cdb *)&(cc->cdb.cdb[0]);
bzero(cnc, sizeof(*cnc));
cnc->opcode = CISS_OPCODE_WRITE;
cnc->command = CISS_COMMAND_ABORT_NOTIFY;
cnc->length = htonl(CISS_NOTIFY_DATA_SIZE);
ciss_print_request(cr);
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "Abort Notify Event command failed (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, &scsi_status);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
break;
case CISS_CMD_STATUS_INVALID_COMMAND:
/*
* Some older adapters don't support the CISS version of this
* command. Fall back to using the BMIC version.
*/
error = ciss_notify_abort_bmic(sc);
if (error != 0)
goto out;
break;
case CISS_CMD_STATUS_TARGET_STATUS:
/*
* This can happen if the adapter thinks there wasn't an outstanding
* Notify Event command but we did. We clean up here.
*/
if (scsi_status == CISS_SCSI_STATUS_CHECK_CONDITION) {
if (sc->ciss_periodic_notify != NULL)
ciss_release_request(sc->ciss_periodic_notify);
error = 0;
goto out;
}
/* FALLTHROUGH */
default:
ciss_printf(sc, "Abort Notify Event command failed (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
/*
* Sleep waiting for the notifier command to complete. Note
* that if it doesn't, we may end up in a bad situation, since
* the adapter may deliver it later. Also note that the adapter
* requires the Notify Event command to be cancelled in order to
* maintain internal bookkeeping.
*/
while (sc->ciss_periodic_notify != NULL) {
error = msleep(&sc->ciss_periodic_notify, &sc->ciss_mtx, PRIBIO, "cissNEA", hz * 5);
if (error == EWOULDBLOCK) {
ciss_printf(sc, "Notify Event command failed to abort, adapter may wedge.\n");
break;
}
}
out:
/* release the cancel request */
if (cr != NULL) {
if (cr->cr_data != NULL)
free(cr->cr_data, CISS_MALLOC_CLASS);
ciss_release_request(cr);
}
if (error == 0)
sc->ciss_flags &= ~CISS_FLAG_NOTIFY_OK;
return(error);
}
/************************************************************************
* Abort the Notify Event chain using a BMIC command.
*/
static int
ciss_notify_abort_bmic(struct ciss_softc *sc)
{
struct ciss_request *cr;
int error, command_status;
debug_called(1);
cr = NULL;
error = 0;
/* verify that there's an outstanding command */
if (!(sc->ciss_flags & CISS_FLAG_NOTIFY_OK))
goto out;
/*
* Build a BMIC command to cancel the Notify on Event command.
*
* Note that we are sending a CISS opcode here. Odd.
*/
if ((error = ciss_get_bmic_request(sc, &cr, CISS_COMMAND_ABORT_NOTIFY,
NULL, 0)) != 0)
goto out;
/*
* Submit the request and wait for it to complete.
*/
if ((error = ciss_synch_request(cr, 60 * 1000)) != 0) {
ciss_printf(sc, "error sending BMIC Cancel Notify on Event command (%d)\n", error);
goto out;
}
/*
* Check response.
*/
ciss_report_request(cr, &command_status, NULL);
switch(command_status) {
case CISS_CMD_STATUS_SUCCESS:
break;
default:
ciss_printf(sc, "error cancelling Notify on Event (%s)\n",
ciss_name_command_status(command_status));
error = EIO;
goto out;
}
out:
if (cr != NULL)
ciss_release_request(cr);
return(error);
}
/************************************************************************
* Handle rescanning all the logical volumes when a notify event
* causes the drives to come online or offline.
*/
static void
ciss_notify_rescan_logical(struct ciss_softc *sc)
{
struct ciss_lun_report *cll;
struct ciss_ldrive *ld;
int i, j, ndrives;
/*
* We must rescan all logical volumes to get the right logical
* drive address.
*/
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_LOGICAL_LUNS,
sc->ciss_cfg->max_logical_supported);
if (cll == NULL)
return;
ndrives = (ntohl(cll->list_size) / sizeof(union ciss_device_address));
/*
* Delete any of the drives which were destroyed by the
* firmware.
*/
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) {
ld = &sc->ciss_logical[i][j];
if (ld->cl_update == 0)
continue;
if (ld->cl_status != CISS_LD_ONLINE) {
ciss_cam_rescan_target(sc, i, j);
ld->cl_update = 0;
if (ld->cl_ldrive)
free(ld->cl_ldrive, CISS_MALLOC_CLASS);
if (ld->cl_lstatus)
free(ld->cl_lstatus, CISS_MALLOC_CLASS);
ld->cl_ldrive = NULL;
ld->cl_lstatus = NULL;
}
}
}
/*
* Scan for new drives.
*/
for (i = 0; i < ndrives; i++) {
int bus, target;
bus = CISS_LUN_TO_BUS(cll->lun[i].logical.lun);
target = CISS_LUN_TO_TARGET(cll->lun[i].logical.lun);
ld = &sc->ciss_logical[bus][target];
if (ld->cl_update == 0)
continue;
ld->cl_update = 0;
ld->cl_address = cll->lun[i];
ld->cl_controller = &sc->ciss_controllers[bus];
if (ciss_identify_logical(sc, ld) == 0) {
ciss_cam_rescan_target(sc, bus, target);
}
}
free(cll, CISS_MALLOC_CLASS);
}
/************************************************************************
* Handle a notify event relating to the status of a logical drive.
*
* XXX need to be able to defer some of these to properly handle
* calling the "ID Physical drive" command, unless the 'extended'
* drive IDs are always in BIG_MAP format.
*/
static void
ciss_notify_logical(struct ciss_softc *sc, struct ciss_notify *cn)
{
struct ciss_ldrive *ld;
int bus, target;
int rescan_ld;
debug_called(2);
bus = cn->device.physical.bus;
target = cn->data.logical_status.logical_drive;
ld = &sc->ciss_logical[bus][target];
switch (cn->subclass) {
case CISS_NOTIFY_LOGICAL_STATUS:
switch (cn->detail) {
case 0:
ciss_name_device(sc, bus, target);
ciss_printf(sc, "logical drive %d (%s) changed status %s->%s, spare status 0x%b\n",
cn->data.logical_status.logical_drive, ld->cl_name,
ciss_name_ldrive_status(cn->data.logical_status.previous_state),
ciss_name_ldrive_status(cn->data.logical_status.new_state),
cn->data.logical_status.spare_state,
"\20\1configured\2rebuilding\3failed\4in use\5available\n");
/*
* Update our idea of the drive's status.
*/
ld->cl_status = ciss_decode_ldrive_status(cn->data.logical_status.new_state);
if (ld->cl_lstatus != NULL)
ld->cl_lstatus->status = cn->data.logical_status.new_state;
/*
* Have CAM rescan the drive if its status has changed.
*/
rescan_ld = (cn->data.logical_status.previous_state !=
cn->data.logical_status.new_state) ? 1 : 0;
if (rescan_ld) {
ld->cl_update = 1;
ciss_notify_rescan_logical(sc);
}
break;
case 1: /* logical drive has recognised new media, needs Accept Media Exchange */
ciss_name_device(sc, bus, target);
ciss_printf(sc, "logical drive %d (%s) media exchanged, ready to go online\n",
cn->data.logical_status.logical_drive, ld->cl_name);
ciss_accept_media(sc, ld);
ld->cl_update = 1;
ld->cl_status = ciss_decode_ldrive_status(cn->data.logical_status.new_state);
ciss_notify_rescan_logical(sc);
break;
case 2:
case 3:
ciss_printf(sc, "rebuild of logical drive %d (%s) failed due to %s error\n",
cn->data.rebuild_aborted.logical_drive,
ld->cl_name,
(cn->detail == 2) ? "read" : "write");
break;
}
break;
case CISS_NOTIFY_LOGICAL_ERROR:
if (cn->detail == 0) {
ciss_printf(sc, "FATAL I/O ERROR on logical drive %d (%s), SCSI port %d ID %d\n",
cn->data.io_error.logical_drive,
ld->cl_name,
cn->data.io_error.failure_bus,
cn->data.io_error.failure_drive);
/* XXX should we take the drive down at this point, or will we be told? */
}
break;
case CISS_NOTIFY_LOGICAL_SURFACE:
if (cn->detail == 0)
ciss_printf(sc, "logical drive %d (%s) completed consistency initialisation\n",
cn->data.consistency_completed.logical_drive,
ld->cl_name);
break;
}
}
/************************************************************************
* Handle a notify event relating to the status of a physical drive.
*/
static void
ciss_notify_physical(struct ciss_softc *sc, struct ciss_notify *cn)
{
}
/************************************************************************
* Handle a notify event relating to the status of a physical drive.
*/
static void
ciss_notify_hotplug(struct ciss_softc *sc, struct ciss_notify *cn)
{
struct ciss_lun_report *cll = NULL;
int bus, target;
switch (cn->subclass) {
case CISS_NOTIFY_HOTPLUG_PHYSICAL:
case CISS_NOTIFY_HOTPLUG_NONDISK:
bus = CISS_BIG_MAP_BUS(sc, cn->data.drive.big_physical_drive_number);
target =
CISS_BIG_MAP_TARGET(sc, cn->data.drive.big_physical_drive_number);
if (cn->detail == 0) {
/*
* Mark the device offline so that it'll start producing selection
* timeouts to the upper layer.
*/
if ((bus >= 0) && (target >= 0))
sc->ciss_physical[bus][target].cp_online = 0;
} else {
/*
* Rescan the physical lun list for new items
*/
cll = ciss_report_luns(sc, CISS_OPCODE_REPORT_PHYSICAL_LUNS,
sc->ciss_cfg->max_physical_supported);
if (cll == NULL) {
ciss_printf(sc, "Warning, cannot get physical lun list\n");
break;
}
ciss_filter_physical(sc, cll);
}
break;
default:
ciss_printf(sc, "Unknown hotplug event %d\n", cn->subclass);
return;
}
if (cll != NULL)
free(cll, CISS_MALLOC_CLASS);
}
/************************************************************************
* Handle deferred processing of notify events. Notify events may need
* sleep which is unsafe during an interrupt.
*/
static void
ciss_notify_thread(void *arg)
{
struct ciss_softc *sc;
struct ciss_request *cr;
struct ciss_notify *cn;
sc = (struct ciss_softc *)arg;
#if __FreeBSD_version >= 500000
mtx_lock(&sc->ciss_mtx);
#endif
for (;;) {
if (STAILQ_EMPTY(&sc->ciss_notify) != 0 &&
(sc->ciss_flags & CISS_FLAG_THREAD_SHUT) == 0) {
msleep(&sc->ciss_notify, &sc->ciss_mtx, PUSER, "idle", 0);
}
if (sc->ciss_flags & CISS_FLAG_THREAD_SHUT)
break;
cr = ciss_dequeue_notify(sc);
if (cr == NULL)
panic("cr null");
cn = (struct ciss_notify *)cr->cr_data;
switch (cn->class) {
case CISS_NOTIFY_HOTPLUG:
ciss_notify_hotplug(sc, cn);
break;
case CISS_NOTIFY_LOGICAL:
ciss_notify_logical(sc, cn);
break;
case CISS_NOTIFY_PHYSICAL:
ciss_notify_physical(sc, cn);
break;
}
ciss_release_request(cr);
}
sc->ciss_notify_thread = NULL;
wakeup(&sc->ciss_notify_thread);
#if __FreeBSD_version >= 500000
mtx_unlock(&sc->ciss_mtx);
#endif
kproc_exit(0);
}
/************************************************************************
* Start the notification kernel thread.
*/
static void
ciss_spawn_notify_thread(struct ciss_softc *sc)
{
#if __FreeBSD_version > 500005
if (kproc_create((void(*)(void *))ciss_notify_thread, sc,
&sc->ciss_notify_thread, 0, 0, "ciss_notify%d",
device_get_unit(sc->ciss_dev)))
#else
if (kproc_create((void(*)(void *))ciss_notify_thread, sc,
&sc->ciss_notify_thread, "ciss_notify%d",
device_get_unit(sc->ciss_dev)))
#endif
panic("Could not create notify thread\n");
}
/************************************************************************
* Kill the notification kernel thread.
*/
static void
ciss_kill_notify_thread(struct ciss_softc *sc)
{
if (sc->ciss_notify_thread == NULL)
return;
sc->ciss_flags |= CISS_FLAG_THREAD_SHUT;
wakeup(&sc->ciss_notify);
msleep(&sc->ciss_notify_thread, &sc->ciss_mtx, PUSER, "thtrm", 0);
}
/************************************************************************
* Print a request.
*/
static void
ciss_print_request(struct ciss_request *cr)
{
struct ciss_softc *sc;
struct ciss_command *cc;
int i;
sc = cr->cr_sc;
cc = cr->cr_cc;
ciss_printf(sc, "REQUEST @ %p\n", cr);
ciss_printf(sc, " data %p/%d tag %d flags %b\n",
cr->cr_data, cr->cr_length, cr->cr_tag, cr->cr_flags,
"\20\1mapped\2sleep\3poll\4dataout\5datain\n");
ciss_printf(sc, " sg list/total %d/%d host tag 0x%x\n",
cc->header.sg_in_list, cc->header.sg_total, cc->header.host_tag);
switch(cc->header.address.mode.mode) {
case CISS_HDR_ADDRESS_MODE_PERIPHERAL:
case CISS_HDR_ADDRESS_MODE_MASK_PERIPHERAL:
ciss_printf(sc, " physical bus %d target %d\n",
cc->header.address.physical.bus, cc->header.address.physical.target);
break;
case CISS_HDR_ADDRESS_MODE_LOGICAL:
ciss_printf(sc, " logical unit %d\n", cc->header.address.logical.lun);
break;
}
ciss_printf(sc, " %s cdb length %d type %s attribute %s\n",
(cc->cdb.direction == CISS_CDB_DIRECTION_NONE) ? "no-I/O" :
(cc->cdb.direction == CISS_CDB_DIRECTION_READ) ? "READ" :
(cc->cdb.direction == CISS_CDB_DIRECTION_WRITE) ? "WRITE" : "??",
cc->cdb.cdb_length,
(cc->cdb.type == CISS_CDB_TYPE_COMMAND) ? "command" :
(cc->cdb.type == CISS_CDB_TYPE_MESSAGE) ? "message" : "??",
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_UNTAGGED) ? "untagged" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_SIMPLE) ? "simple" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_HEAD_OF_QUEUE) ? "head-of-queue" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_ORDERED) ? "ordered" :
(cc->cdb.attribute == CISS_CDB_ATTRIBUTE_AUTO_CONTINGENT) ? "auto-contingent" : "??");
ciss_printf(sc, " %*D\n", cc->cdb.cdb_length, &cc->cdb.cdb[0], " ");
if (cc->header.host_tag & CISS_HDR_HOST_TAG_ERROR) {
/* XXX print error info */
} else {
/* since we don't use chained s/g, don't support it here */
for (i = 0; i < cc->header.sg_in_list; i++) {
if ((i % 4) == 0)
ciss_printf(sc, " ");
printf("0x%08x/%d ", (u_int32_t)cc->sg[i].address, cc->sg[i].length);
if ((((i + 1) % 4) == 0) || (i == (cc->header.sg_in_list - 1)))
printf("\n");
}
}
}
/************************************************************************
* Print information about the status of a logical drive.
*/
static void
ciss_print_ldrive(struct ciss_softc *sc, struct ciss_ldrive *ld)
{
int bus, target, i;
if (ld->cl_lstatus == NULL) {
printf("does not exist\n");
return;
}
/* print drive status */
switch(ld->cl_lstatus->status) {
case CISS_LSTATUS_OK:
printf("online\n");
break;
case CISS_LSTATUS_INTERIM_RECOVERY:
printf("in interim recovery mode\n");
break;
case CISS_LSTATUS_READY_RECOVERY:
printf("ready to begin recovery\n");
break;
case CISS_LSTATUS_RECOVERING:
bus = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_rebuilding);
target = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_rebuilding);
printf("being recovered, working on physical drive %d.%d, %u blocks remaining\n",
bus, target, ld->cl_lstatus->blocks_to_recover);
break;
case CISS_LSTATUS_EXPANDING:
printf("being expanded, %u blocks remaining\n",
ld->cl_lstatus->blocks_to_recover);
break;
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
printf("queued for expansion\n");
break;
case CISS_LSTATUS_FAILED:
printf("queued for expansion\n");
break;
case CISS_LSTATUS_WRONG_PDRIVE:
printf("wrong physical drive inserted\n");
break;
case CISS_LSTATUS_MISSING_PDRIVE:
printf("missing a needed physical drive\n");
break;
case CISS_LSTATUS_BECOMING_READY:
printf("becoming ready\n");
break;
}
/* print failed physical drives */
for (i = 0; i < CISS_BIG_MAP_ENTRIES / 8; i++) {
bus = CISS_BIG_MAP_BUS(sc, ld->cl_lstatus->drive_failure_map[i]);
target = CISS_BIG_MAP_TARGET(sc, ld->cl_lstatus->drive_failure_map[i]);
if (bus == -1)
continue;
ciss_printf(sc, "physical drive %d:%d (%x) failed\n", bus, target,
ld->cl_lstatus->drive_failure_map[i]);
}
}
#ifdef CISS_DEBUG
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
/************************************************************************
* Print information about the controller/driver.
*/
static void
ciss_print_adapter(struct ciss_softc *sc)
{
int i, j;
ciss_printf(sc, "ADAPTER:\n");
for (i = 0; i < CISSQ_COUNT; i++) {
ciss_printf(sc, "%s %d/%d\n",
i == 0 ? "free" :
i == 1 ? "busy" : "complete",
sc->ciss_qstat[i].q_length,
sc->ciss_qstat[i].q_max);
}
ciss_printf(sc, "max_requests %d\n", sc->ciss_max_requests);
ciss_printf(sc, "flags %b\n", sc->ciss_flags,
"\20\1notify_ok\2control_open\3aborting\4running\21fake_synch\22bmic_abort\n");
for (i = 0; i < sc->ciss_max_logical_bus; i++) {
for (j = 0; j < sc->ciss_cfg->max_logical_supported; j++) {
ciss_printf(sc, "LOGICAL DRIVE %d: ", i);
ciss_print_ldrive(sc, &sc->ciss_logical[i][j]);
}
}
/* XXX Should physical drives be printed out here? */
for (i = 1; i < sc->ciss_max_requests; i++)
ciss_print_request(sc->ciss_request + i);
}
/* DDB hook */
DB_COMMAND(ciss_prt, db_ciss_prt)
{
struct ciss_softc *sc;
devclass_t dc;
int maxciss, i;
dc = devclass_find("ciss");
if ( dc == NULL ) {
printf("%s: can't find devclass!\n", __func__);
return;
}
maxciss = devclass_get_maxunit(dc);
for (i = 0; i < maxciss; i++) {
sc = devclass_get_softc(dc, i);
ciss_print_adapter(sc);
}
}
#endif
#endif
/************************************************************************
* Return a name for a logical drive status value.
*/
static const char *
ciss_name_ldrive_status(int status)
{
switch (status) {
case CISS_LSTATUS_OK:
return("OK");
case CISS_LSTATUS_FAILED:
return("failed");
case CISS_LSTATUS_NOT_CONFIGURED:
return("not configured");
case CISS_LSTATUS_INTERIM_RECOVERY:
return("interim recovery");
case CISS_LSTATUS_READY_RECOVERY:
return("ready for recovery");
case CISS_LSTATUS_RECOVERING:
return("recovering");
case CISS_LSTATUS_WRONG_PDRIVE:
return("wrong physical drive inserted");
case CISS_LSTATUS_MISSING_PDRIVE:
return("missing physical drive");
case CISS_LSTATUS_EXPANDING:
return("expanding");
case CISS_LSTATUS_BECOMING_READY:
return("becoming ready");
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
return("queued for expansion");
}
return("unknown status");
}
/************************************************************************
* Return an online/offline/nonexistent value for a logical drive
* status value.
*/
static int
ciss_decode_ldrive_status(int status)
{
switch(status) {
case CISS_LSTATUS_NOT_CONFIGURED:
return(CISS_LD_NONEXISTENT);
case CISS_LSTATUS_OK:
case CISS_LSTATUS_INTERIM_RECOVERY:
case CISS_LSTATUS_READY_RECOVERY:
case CISS_LSTATUS_RECOVERING:
case CISS_LSTATUS_EXPANDING:
case CISS_LSTATUS_QUEUED_FOR_EXPANSION:
return(CISS_LD_ONLINE);
case CISS_LSTATUS_FAILED:
case CISS_LSTATUS_WRONG_PDRIVE:
case CISS_LSTATUS_MISSING_PDRIVE:
case CISS_LSTATUS_BECOMING_READY:
default:
return(CISS_LD_OFFLINE);
}
}
/************************************************************************
* Return a name for a logical drive's organisation.
*/
static const char *
ciss_name_ldrive_org(int org)
{
switch(org) {
case CISS_LDRIVE_RAID0:
return("RAID 0");
case CISS_LDRIVE_RAID1:
return("RAID 1(1+0)");
case CISS_LDRIVE_RAID4:
return("RAID 4");
case CISS_LDRIVE_RAID5:
return("RAID 5");
case CISS_LDRIVE_RAID51:
return("RAID 5+1");
case CISS_LDRIVE_RAIDADG:
return("RAID ADG");
}
return("unkown");
}
/************************************************************************
* Return a name for a command status value.
*/
static const char *
ciss_name_command_status(int status)
{
switch(status) {
case CISS_CMD_STATUS_SUCCESS:
return("success");
case CISS_CMD_STATUS_TARGET_STATUS:
return("target status");
case CISS_CMD_STATUS_DATA_UNDERRUN:
return("data underrun");
case CISS_CMD_STATUS_DATA_OVERRUN:
return("data overrun");
case CISS_CMD_STATUS_INVALID_COMMAND:
return("invalid command");
case CISS_CMD_STATUS_PROTOCOL_ERROR:
return("protocol error");
case CISS_CMD_STATUS_HARDWARE_ERROR:
return("hardware error");
case CISS_CMD_STATUS_CONNECTION_LOST:
return("connection lost");
case CISS_CMD_STATUS_ABORTED:
return("aborted");
case CISS_CMD_STATUS_ABORT_FAILED:
return("abort failed");
case CISS_CMD_STATUS_UNSOLICITED_ABORT:
return("unsolicited abort");
case CISS_CMD_STATUS_TIMEOUT:
return("timeout");
case CISS_CMD_STATUS_UNABORTABLE:
return("unabortable");
}
return("unknown status");
}
/************************************************************************
* Handle an open on the control device.
*/
static int
ciss_open(struct cdev *dev, int flags, int fmt, struct thread *p)
{
struct ciss_softc *sc;
debug_called(1);
sc = (struct ciss_softc *)dev->si_drv1;
/* we might want to veto if someone already has us open */
mtx_lock(&sc->ciss_mtx);
sc->ciss_flags |= CISS_FLAG_CONTROL_OPEN;
mtx_unlock(&sc->ciss_mtx);
return(0);
}
/************************************************************************
* Handle the last close on the control device.
*/
static int
ciss_close(struct cdev *dev, int flags, int fmt, struct thread *p)
{
struct ciss_softc *sc;
debug_called(1);
sc = (struct ciss_softc *)dev->si_drv1;
mtx_lock(&sc->ciss_mtx);
sc->ciss_flags &= ~CISS_FLAG_CONTROL_OPEN;
mtx_unlock(&sc->ciss_mtx);
return (0);
}
/********************************************************************************
* Handle adapter-specific control operations.
*
* Note that the API here is compatible with the Linux driver, in order to
* simplify the porting of Compaq's userland tools.
*/
static int
ciss_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int32_t flag, struct thread *p)
{
struct ciss_softc *sc;
IOCTL_Command_struct *ioc = (IOCTL_Command_struct *)addr;
#ifdef __amd64__
IOCTL_Command_struct32 *ioc32 = (IOCTL_Command_struct32 *)addr;
IOCTL_Command_struct ioc_swab;
#endif
int error;
debug_called(1);
sc = (struct ciss_softc *)dev->si_drv1;
error = 0;
mtx_lock(&sc->ciss_mtx);
switch(cmd) {
case CCISS_GETQSTATS:
{
union ciss_statrequest *cr = (union ciss_statrequest *)addr;
switch (cr->cs_item) {
case CISSQ_FREE:
case CISSQ_NOTIFY:
bcopy(&sc->ciss_qstat[cr->cs_item], &cr->cs_qstat,
sizeof(struct ciss_qstat));
break;
default:
error = ENOIOCTL;
break;
}
break;
}
case CCISS_GETPCIINFO:
{
cciss_pci_info_struct *pis = (cciss_pci_info_struct *)addr;
pis->bus = pci_get_bus(sc->ciss_dev);
pis->dev_fn = pci_get_slot(sc->ciss_dev);
pis->board_id = (pci_get_subvendor(sc->ciss_dev) << 16) |
pci_get_subdevice(sc->ciss_dev);
break;
}
case CCISS_GETINTINFO:
{
cciss_coalint_struct *cis = (cciss_coalint_struct *)addr;
cis->delay = sc->ciss_cfg->interrupt_coalesce_delay;
cis->count = sc->ciss_cfg->interrupt_coalesce_count;
break;
}
case CCISS_SETINTINFO:
{
cciss_coalint_struct *cis = (cciss_coalint_struct *)addr;
if ((cis->delay == 0) && (cis->count == 0)) {
error = EINVAL;
break;
}
/*
* XXX apparently this is only safe if the controller is idle,
* we should suspend it before doing this.
*/
sc->ciss_cfg->interrupt_coalesce_delay = cis->delay;
sc->ciss_cfg->interrupt_coalesce_count = cis->count;
if (ciss_update_config(sc))
error = EIO;
/* XXX resume the controller here */
break;
}
case CCISS_GETNODENAME:
bcopy(sc->ciss_cfg->server_name, (NodeName_type *)addr,
sizeof(NodeName_type));
break;
case CCISS_SETNODENAME:
bcopy((NodeName_type *)addr, sc->ciss_cfg->server_name,
sizeof(NodeName_type));
if (ciss_update_config(sc))
error = EIO;
break;
case CCISS_GETHEARTBEAT:
*(Heartbeat_type *)addr = sc->ciss_cfg->heartbeat;
break;
case CCISS_GETBUSTYPES:
*(BusTypes_type *)addr = sc->ciss_cfg->bus_types;
break;
case CCISS_GETFIRMVER:
bcopy(sc->ciss_id->running_firmware_revision, (FirmwareVer_type *)addr,
sizeof(FirmwareVer_type));
break;
case CCISS_GETDRIVERVER:
*(DriverVer_type *)addr = CISS_DRIVER_VERSION;
break;
case CCISS_REVALIDVOLS:
/*
* This is a bit ugly; to do it "right" we really need
* to find any disks that have changed, kick CAM off them,
* then rescan only these disks. It'd be nice if they
* a) told us which disk(s) they were going to play with,
* and b) which ones had arrived. 8(
*/
break;
#ifdef __amd64__
case CCISS_PASSTHRU32:
ioc_swab.LUN_info = ioc32->LUN_info;
ioc_swab.Request = ioc32->Request;
ioc_swab.error_info = ioc32->error_info;
ioc_swab.buf_size = ioc32->buf_size;
ioc_swab.buf = (u_int8_t *)(uintptr_t)ioc32->buf;
ioc = &ioc_swab;
/* FALLTHROUGH */
#endif
case CCISS_PASSTHRU:
error = ciss_user_command(sc, ioc);
break;
default:
debug(0, "unknown ioctl 0x%lx", cmd);
debug(1, "CCISS_GETPCIINFO: 0x%lx", CCISS_GETPCIINFO);
debug(1, "CCISS_GETINTINFO: 0x%lx", CCISS_GETINTINFO);
debug(1, "CCISS_SETINTINFO: 0x%lx", CCISS_SETINTINFO);
debug(1, "CCISS_GETNODENAME: 0x%lx", CCISS_GETNODENAME);
debug(1, "CCISS_SETNODENAME: 0x%lx", CCISS_SETNODENAME);
debug(1, "CCISS_GETHEARTBEAT: 0x%lx", CCISS_GETHEARTBEAT);
debug(1, "CCISS_GETBUSTYPES: 0x%lx", CCISS_GETBUSTYPES);
debug(1, "CCISS_GETFIRMVER: 0x%lx", CCISS_GETFIRMVER);
debug(1, "CCISS_GETDRIVERVER: 0x%lx", CCISS_GETDRIVERVER);
debug(1, "CCISS_REVALIDVOLS: 0x%lx", CCISS_REVALIDVOLS);
debug(1, "CCISS_PASSTHRU: 0x%lx", CCISS_PASSTHRU);
error = ENOIOCTL;
break;
}
mtx_unlock(&sc->ciss_mtx);
return(error);
}