freebsd-dev/sys/arm/at91/at91_machdep.c
Warner Losh 73a4b7a9d8 Enhance the Atmel SoC chip identification routines to account for more
SoC variants.  Fold the AT91SAM9XE chips into the AT91SAM9260
handling, where appropriate.  The following SoCs/SoC families are recognized:
	at91cap9, at91rm9200, at91sam9260, at91sam9261, at91sam9263,
	at91sam9g10, at91sam9g20, at91sam9g45, at91sam9n12, at91sam9rl,
	at91sam9x5
and the following variations are also recognized:
	at91rm9200_bga, at91rm9200_pqfp, at91sam9xe, at91sam9g45, at91sam9m10,
	at91sam9g46, at91sam9m11, at91sam9g15, at91sam9g25, at91sam9g35,
	at91sam9x25, at91sam9x35
This is only the identification routine: no additional Atmel devices
are supported at this time.

# With these changes, I'm able to boot to the point of identification
# on a few different Atmel SoCs that we don't yet support using the
# KB920X config file -- someday tht will be an ATMEL config file...
2012-06-06 06:19:52 +00:00

595 lines
18 KiB
C

/*-
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* machdep.c
*
* Machine dependant functions for kernel setup
*
* This file needs a lot of work.
*
* Created : 17/09/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define _ARM32_BUS_DMA_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/cons.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/buf.h>
#include <sys/exec.h>
#include <sys/kdb.h>
#include <sys/msgbuf.h>
#include <machine/reg.h>
#include <machine/cpu.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_map.h>
#include <machine/pmap.h>
#include <machine/vmparam.h>
#include <machine/pcb.h>
#include <machine/undefined.h>
#include <machine/machdep.h>
#include <machine/metadata.h>
#include <machine/armreg.h>
#include <machine/bus.h>
#include <sys/reboot.h>
#include <arm/at91/at91board.h>
#include <arm/at91/at91var.h>
#include <arm/at91/at91rm92reg.h>
#include <arm/at91/at91sam9g20reg.h>
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERN 1
#define KERNEL_PT_KERN_NUM 22
#define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM /* L2 table for mapping after kernel */
#define KERNEL_PT_AFKERNEL_NUM 5
/* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
#define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 1
#define ABT_STACK_SIZE 1
#define UND_STACK_SIZE 1
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
extern void *_end;
extern int *end;
struct pcpu __pcpu;
struct pcpu *pcpup = &__pcpu;
/* Physical and virtual addresses for some global pages */
vm_paddr_t phys_avail[10];
vm_paddr_t dump_avail[4];
vm_offset_t physical_pages;
struct pv_addr systempage;
struct pv_addr msgbufpv;
struct pv_addr irqstack;
struct pv_addr undstack;
struct pv_addr abtstack;
struct pv_addr kernelstack;
static struct trapframe proc0_tf;
/* Static device mappings. */
const struct pmap_devmap at91_devmap[] = {
/*
* Map the on-board devices VA == PA so that we can access them
* with the MMU on or off.
*/
{
/*
* This at least maps the interrupt controller, the UART
* and the timer. Other devices should use newbus to
* map their memory anyway.
*/
0xdff00000,
0xfff00000,
0x00100000,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/* We can't just map the OHCI registers VA == PA, because
* AT91xx_xxx_BASE belongs to the userland address space.
* We could just choose a different virtual address, but a better
* solution would probably be to just use pmap_mapdev() to allocate
* KVA, as we don't need the OHCI controller before the vm
* initialization is done. However, the AT91 resource allocation
* system doesn't know how to use pmap_mapdev() yet.
* Care must be taken to ensure PA and VM address do not overlap
* between entries.
*/
{
/*
* Add the ohci controller, and anything else that might be
* on this chip select for a VA/PA mapping.
*/
/* Internal Memory 1MB */
AT91RM92_OHCI_BASE,
AT91RM92_OHCI_PA_BASE,
0x00100000,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
/* CompactFlash controller. Portion of EBI CS4 1MB */
AT91RM92_CF_BASE,
AT91RM92_CF_PA_BASE,
0x00100000,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/* The next two should be good for the 9260, 9261 and 9G20 since
* addresses mapping is the same. */
{
/* Internal Memory 1MB */
AT91SAM9G20_OHCI_BASE,
AT91SAM9G20_OHCI_PA_BASE,
0x00100000,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
/* EBI CS3 256MB */
AT91SAM9G20_NAND_BASE,
AT91SAM9G20_NAND_PA_BASE,
AT91SAM9G20_NAND_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{ 0, 0, 0, 0, 0, }
};
long
at91_ramsize(void)
{
uint32_t cr, mr;
int banks, rows, cols, bw;
if (at91_is_rm92()) {
uint32_t *SDRAMC = (uint32_t *)(AT91_BASE + AT91RM92_SDRAMC_BASE);
cr = SDRAMC[AT91RM92_SDRAMC_CR / 4];
mr = SDRAMC[AT91RM92_SDRAMC_MR / 4];
banks = (cr & AT91RM92_SDRAMC_CR_NB_4) ? 2 : 1;
rows = ((cr & AT91RM92_SDRAMC_CR_NR_MASK) >> 2) + 11;
cols = (cr & AT91RM92_SDRAMC_CR_NC_MASK) + 8;
bw = (mr & AT91RM92_SDRAMC_MR_DBW_16) ? 1 : 2;
} else {
/* This should be good for the 9260, 9261, 9G20, 9G35 and 9X25 as addresses
* and registers are the same */
uint32_t *SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G20_SDRAMC_BASE);
cr = SDRAMC[AT91SAM9G20_SDRAMC_CR / 4];
mr = SDRAMC[AT91SAM9G20_SDRAMC_MR / 4];
banks = (cr & AT91SAM9G20_SDRAMC_CR_NB_4) ? 2 : 1;
rows = ((cr & AT91SAM9G20_SDRAMC_CR_NR_MASK) >> 2) + 11;
cols = (cr & AT91SAM9G20_SDRAMC_CR_NC_MASK) + 8;
bw = (cr & AT91SAM9G20_SDRAMC_CR_DBW_16) ? 1 : 2;
}
return (1 << (cols + rows + banks + bw));
}
const char *soc_type_name[] = {
[AT91_T_CAP9] = "at91cap9",
[AT91_T_RM9200] = "at91rm9200",
[AT91_T_SAM9260] = "at91sam9260",
[AT91_T_SAM9261] = "at91sam9261",
[AT91_T_SAM9263] = "at91sam9263",
[AT91_T_SAM9G10] = "at91sam9g10",
[AT91_T_SAM9G20] = "at91sam9g20",
[AT91_T_SAM9G45] = "at91sam9g45",
[AT91_T_SAM9N12] = "at91sam9n12",
[AT91_T_SAM9RL] = "at91sam9rl",
[AT91_T_SAM9X5] = "at91sam9x5",
[AT91_T_NONE] = "UNKNOWN"
};
const char *soc_subtype_name[] = {
[AT91_ST_NONE] = "UNKNOWN",
[AT91_ST_RM9200_BGA] = "at91rm9200_bga",
[AT91_ST_RM9200_PQFP] = "at91rm9200_pqfp",
[AT91_ST_SAM9XE] = "at91sam9xe",
[AT91_ST_SAM9G45] = "at91sam9g45",
[AT91_ST_SAM9M10] = "at91sam9m10",
[AT91_ST_SAM9G46] = "at91sam9g46",
[AT91_ST_SAM9M11] = "at91sam9m11",
[AT91_ST_SAM9G15] = "at91sam9g15",
[AT91_ST_SAM9G25] = "at91sam9g25",
[AT91_ST_SAM9G35] = "at91sam9g35",
[AT91_ST_SAM9X25] = "at91sam9x25",
[AT91_ST_SAM9X35] = "at91sam9x35",
};
#define AT91_DBGU0 0x0ffff200 /* Most */
#define AT91_DBGU1 0x0fffee00 /* SAM9263, CAP9, and SAM9G45 */
struct at91_soc_info soc_data;
/*
* Read the SoC ID from the CIDR register and try to match it against the
* values we know. If we find a good one, we return true. If not, we
* return false. When we find a good one, we also find the subtype
* and CPU family.
*/
static int
at91_try_id(uint32_t dbgu_base)
{
uint32_t socid;
soc_data.cidr = *(volatile uint32_t *)(AT91_BASE + dbgu_base + DBGU_C1R);
socid = soc_data.cidr & ~AT91_CPU_VERSION_MASK;
soc_data.type = AT91_T_NONE;
soc_data.subtype = AT91_ST_NONE;
soc_data.family = (soc_data.cidr & AT91_CPU_FAMILY_MASK) >> 20;
soc_data.exid = *(volatile uint32_t *)(AT91_BASE + dbgu_base + DBGU_C2R);
switch (socid) {
case AT91_CPU_CAP9:
soc_data.type = AT91_T_CAP9;
break;
case AT91_CPU_RM9200:
soc_data.type = AT91_T_RM9200;
break;
case AT91_CPU_SAM9XE128:
case AT91_CPU_SAM9XE256:
case AT91_CPU_SAM9XE512:
case AT91_CPU_SAM9260:
soc_data.type = AT91_T_SAM9260;
if (soc_data.family == AT91_FAMILY_SAM9XE)
soc_data.subtype = AT91_ST_SAM9XE;
break;
case AT91_CPU_SAM9261:
soc_data.type = AT91_T_SAM9261;
break;
case AT91_CPU_SAM9263:
soc_data.type = AT91_T_SAM9263;
break;
case AT91_CPU_SAM9G10:
soc_data.type = AT91_T_SAM9G10;
break;
case AT91_CPU_SAM9G20:
soc_data.type = AT91_T_SAM9G20;
break;
case AT91_CPU_SAM9G45:
soc_data.type = AT91_T_SAM9G45;
break;
case AT91_CPU_SAM9N12:
soc_data.type = AT91_T_SAM9N12;
break;
case AT91_CPU_SAM9RL64:
soc_data.type = AT91_T_SAM9RL;
break;
case AT91_CPU_SAM9X5:
soc_data.type = AT91_T_SAM9X5;
break;
default:
return 0;
}
switch (soc_data.type) {
case AT91_T_SAM9G45:
switch (soc_data.exid) {
case AT91_EXID_SAM9G45:
soc_data.subtype = AT91_ST_SAM9G45;
break;
case AT91_EXID_SAM9G46:
soc_data.subtype = AT91_ST_SAM9G46;
break;
case AT91_EXID_SAM9M10:
soc_data.subtype = AT91_ST_SAM9M10;
break;
case AT91_EXID_SAM9M11:
soc_data.subtype = AT91_ST_SAM9M11;
break;
}
break;
case AT91_T_SAM9X5:
switch (soc_data.exid) {
case AT91_EXID_SAM9G15:
soc_data.subtype = AT91_ST_SAM9G15;
break;
case AT91_EXID_SAM9G25:
soc_data.subtype = AT91_ST_SAM9G25;
break;
case AT91_EXID_SAM9G35:
soc_data.subtype = AT91_ST_SAM9G35;
break;
case AT91_EXID_SAM9X25:
soc_data.subtype = AT91_ST_SAM9X25;
break;
case AT91_EXID_SAM9X35:
soc_data.subtype = AT91_ST_SAM9X35;
break;
}
break;
default:
break;
}
snprintf(soc_data.name, sizeof(soc_data.name), "%s%s%s", soc_type_name[soc_data.type],
soc_data.subtype == AT91_ST_NONE ? "" : " subtype ",
soc_data.subtype == AT91_ST_NONE ? "" : soc_subtype_name[soc_data.subtype]);
return 1;
}
static void
at91_soc_id(void)
{
if (!at91_try_id(AT91_DBGU0))
at91_try_id(AT91_DBGU1);
}
void *
initarm(struct arm_boot_params *abp)
{
struct pv_addr kernel_l1pt;
struct pv_addr dpcpu;
int loop, i;
u_int l1pagetable;
vm_offset_t freemempos;
vm_offset_t afterkern;
uint32_t memsize;
vm_offset_t lastaddr;
set_cpufuncs();
lastaddr = fake_preload_metadata();
pcpu_init(pcpup, 0, sizeof(struct pcpu));
PCPU_SET(curthread, &thread0);
/* Do basic tuning, hz etc */
init_param1();
freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_va, (np)); \
(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
#define alloc_pages(var, np) \
(var) = freemempos; \
freemempos += (np * PAGE_SIZE); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
freemempos += PAGE_SIZE;
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
valloc_pages(kernel_pt_table[loop],
L2_TABLE_SIZE / PAGE_SIZE);
} else {
kernel_pt_table[loop].pv_va = freemempos -
(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
L2_TABLE_SIZE_REAL;
kernel_pt_table[loop].pv_pa =
kernel_pt_table[loop].pv_va - KERNVIRTADDR +
KERNPHYSADDR;
}
i++;
}
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
valloc_pages(systempage, 1);
/* Allocate dynamic per-cpu area. */
valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
dpcpu_init((void *)dpcpu.pv_va, 0);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, KSTACK_PAGES);
valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_va;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
&kernel_pt_table[KERNEL_PT_SYS]);
for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
&kernel_pt_table[KERNEL_PT_KERN + i]);
pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
(((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1));
for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
&kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
}
/* Map the vector page. */
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the DPCPU pages */
pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, DPCPU_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
pmap_devmap_bootstrap(l1pagetable, at91_devmap);
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
at91_soc_id();
/* Initialize all the clocks, so that the console can work */
at91_pmc_init_clock();
cninit();
memsize = board_init();
physmem = memsize / PAGE_SIZE;
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
/*
* We must now clean the cache again....
* Cleaning may be done by reading new data to displace any
* dirty data in the cache. This will have happened in setttb()
* but since we are boot strapping the addresses used for the read
* may have just been remapped and thus the cache could be out
* of sync. A re-clean after the switch will cure this.
* After booting there are no gross relocations of the kernel thus
* this problem will not occur after initarm().
*/
cpu_idcache_wbinv_all();
/* Set stack for exception handlers */
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
undefined_init();
proc_linkup0(&proc0, &thread0);
thread0.td_kstack = kernelstack.pv_va;
thread0.td_pcb = (struct pcb *)
(thread0.td_kstack + KSTACK_PAGES * PAGE_SIZE) - 1;
thread0.td_pcb->pcb_flags = 0;
thread0.td_frame = &proc0_tf;
pcpup->pc_curpcb = thread0.td_pcb;
arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1);
/*
* ARM_USE_SMALL_ALLOC uses dump_avail, so it must be filled before
* calling pmap_bootstrap.
*/
dump_avail[0] = PHYSADDR;
dump_avail[1] = PHYSADDR + memsize;
dump_avail[2] = 0;
dump_avail[3] = 0;
pmap_bootstrap(freemempos,
KERNVIRTADDR + 3 * memsize,
&kernel_l1pt);
msgbufp = (void*)msgbufpv.pv_va;
msgbufinit(msgbufp, msgbufsize);
mutex_init();
i = 0;
#if PHYSADDR != KERNPHYSADDR
phys_avail[i++] = PHYSADDR;
phys_avail[i++] = KERNPHYSADDR;
#endif
phys_avail[i++] = virtual_avail - KERNVIRTADDR + KERNPHYSADDR;
phys_avail[i++] = PHYSADDR + memsize;
phys_avail[i++] = 0;
phys_avail[i++] = 0;
init_param2(physmem);
kdb_init();
return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
sizeof(struct pcb)));
}