freebsd-dev/sys/powerpc/pseries/phyp_vscsi.c
Pedro F. Giffuni ac2fffa4b7 Revert r327828, r327949, r327953, r328016-r328026, r328041:
Uses of mallocarray(9).

The use of mallocarray(9) has rocketed the required swap to build FreeBSD.
This is likely caused by the allocation size attributes which put extra pressure
on the compiler.

Given that most of these checks are superfluous we have to choose better
where to use mallocarray(9). We still have more uses of mallocarray(9) but
hopefully this is enough to bring swap usage to a reasonable level.

Reported by:	wosch
PR:		225197
2018-01-21 15:42:36 +00:00

996 lines
26 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright 2013 Nathan Whitehorn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/selinfo.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/eventhandler.h>
#include <sys/rman.h>
#include <sys/bus_dma.h>
#include <sys/bio.h>
#include <sys/ioccom.h>
#include <sys/uio.h>
#include <sys/proc.h>
#include <sys/signalvar.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <sys/vmem.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_periph.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_sim.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <powerpc/pseries/phyp-hvcall.h>
struct vscsi_softc;
/* VSCSI CRQ format from table 260 of PAPR spec 2.4 (page 760) */
struct vscsi_crq {
uint8_t valid;
uint8_t format;
uint8_t reserved;
uint8_t status;
uint16_t timeout;
uint16_t iu_length;
uint64_t iu_data;
};
struct vscsi_xfer {
TAILQ_ENTRY(vscsi_xfer) queue;
struct vscsi_softc *sc;
union ccb *ccb;
bus_dmamap_t dmamap;
uint64_t tag;
vmem_addr_t srp_iu_offset;
vmem_size_t srp_iu_size;
};
TAILQ_HEAD(vscsi_xferq, vscsi_xfer);
struct vscsi_softc {
device_t dev;
struct cam_devq *devq;
struct cam_sim *sim;
struct cam_path *path;
struct mtx io_lock;
cell_t unit;
int bus_initialized;
int bus_logged_in;
int max_transactions;
int irqid;
struct resource *irq;
void *irq_cookie;
bus_dma_tag_t crq_tag;
struct vscsi_crq *crq_queue;
int n_crqs, cur_crq;
bus_dmamap_t crq_map;
bus_addr_t crq_phys;
vmem_t *srp_iu_arena;
void *srp_iu_queue;
bus_addr_t srp_iu_phys;
bus_dma_tag_t data_tag;
struct vscsi_xfer loginxp;
struct vscsi_xfer *xfer;
struct vscsi_xferq active_xferq;
struct vscsi_xferq free_xferq;
};
struct srp_login {
uint8_t type;
uint8_t reserved[7];
uint64_t tag;
uint64_t max_cmd_length;
uint32_t reserved2;
uint16_t buffer_formats;
uint8_t flags;
uint8_t reserved3[5];
uint8_t initiator_port_id[16];
uint8_t target_port_id[16];
} __packed;
struct srp_login_rsp {
uint8_t type;
uint8_t reserved[3];
uint32_t request_limit_delta;
uint8_t tag;
uint32_t max_i_to_t_len;
uint32_t max_t_to_i_len;
uint16_t buffer_formats;
uint8_t flags;
/* Some reserved bits follow */
} __packed;
struct srp_cmd {
uint8_t type;
uint8_t flags1;
uint8_t reserved[3];
uint8_t formats;
uint8_t out_buffer_count;
uint8_t in_buffer_count;
uint64_t tag;
uint32_t reserved2;
uint64_t lun;
uint8_t reserved3[3];
uint8_t additional_cdb;
uint8_t cdb[16];
uint8_t data_payload[0];
} __packed;
struct srp_rsp {
uint8_t type;
uint8_t reserved[3];
uint32_t request_limit_delta;
uint64_t tag;
uint16_t reserved2;
uint8_t flags;
uint8_t status;
uint32_t data_out_resid;
uint32_t data_in_resid;
uint32_t sense_data_len;
uint32_t response_data_len;
uint8_t data_payload[0];
} __packed;
struct srp_tsk_mgmt {
uint8_t type;
uint8_t reserved[7];
uint64_t tag;
uint32_t reserved2;
uint64_t lun;
uint8_t reserved3[2];
uint8_t function;
uint8_t reserved4;
uint64_t manage_tag;
uint64_t reserved5;
} __packed;
/* Message code type */
#define SRP_LOGIN_REQ 0x00
#define SRP_TSK_MGMT 0x01
#define SRP_CMD 0x02
#define SRP_I_LOGOUT 0x03
#define SRP_LOGIN_RSP 0xC0
#define SRP_RSP 0xC1
#define SRP_LOGIN_REJ 0xC2
#define SRP_T_LOGOUT 0x80
#define SRP_CRED_REQ 0x81
#define SRP_AER_REQ 0x82
#define SRP_CRED_RSP 0x41
#define SRP_AER_RSP 0x41
/* Flags for srp_rsp flags field */
#define SRP_RSPVALID 0x01
#define SRP_SNSVALID 0x02
#define SRP_DOOVER 0x04
#define SRP_DOUNDER 0x08
#define SRP_DIOVER 0x10
#define SRP_DIUNDER 0x20
#define MAD_SUCESS 0x00
#define MAD_NOT_SUPPORTED 0xf1
#define MAD_FAILED 0xf7
#define MAD_EMPTY_IU 0x01
#define MAD_ERROR_LOGGING_REQUEST 0x02
#define MAD_ADAPTER_INFO_REQUEST 0x03
#define MAD_CAPABILITIES_EXCHANGE 0x05
#define MAD_PHYS_ADAP_INFO_REQUEST 0x06
#define MAD_TAPE_PASSTHROUGH_REQUEST 0x07
#define MAD_ENABLE_FAST_FAIL 0x08
static int vscsi_probe(device_t);
static int vscsi_attach(device_t);
static int vscsi_detach(device_t);
static void vscsi_cam_action(struct cam_sim *, union ccb *);
static void vscsi_cam_poll(struct cam_sim *);
static void vscsi_intr(void *arg);
static void vscsi_check_response_queue(struct vscsi_softc *sc);
static void vscsi_setup_bus(struct vscsi_softc *sc);
static void vscsi_srp_login(struct vscsi_softc *sc);
static void vscsi_crq_load_cb(void *, bus_dma_segment_t *, int, int);
static void vscsi_scsi_command(void *xxp, bus_dma_segment_t *segs,
int nsegs, int err);
static void vscsi_task_management(struct vscsi_softc *sc, union ccb *ccb);
static void vscsi_srp_response(struct vscsi_xfer *, struct vscsi_crq *);
static devclass_t vscsi_devclass;
static device_method_t vscsi_methods[] = {
DEVMETHOD(device_probe, vscsi_probe),
DEVMETHOD(device_attach, vscsi_attach),
DEVMETHOD(device_detach, vscsi_detach),
DEVMETHOD_END
};
static driver_t vscsi_driver = {
"vscsi",
vscsi_methods,
sizeof(struct vscsi_softc)
};
DRIVER_MODULE(vscsi, vdevice, vscsi_driver, vscsi_devclass, 0, 0);
MALLOC_DEFINE(M_VSCSI, "vscsi", "CAM device queue for VSCSI");
static int
vscsi_probe(device_t dev)
{
if (!ofw_bus_is_compatible(dev, "IBM,v-scsi"))
return (ENXIO);
device_set_desc(dev, "POWER Hypervisor Virtual SCSI Bus");
return (0);
}
static int
vscsi_attach(device_t dev)
{
struct vscsi_softc *sc;
struct vscsi_xfer *xp;
int error, i;
sc = device_get_softc(dev);
if (sc == NULL)
return (EINVAL);
sc->dev = dev;
mtx_init(&sc->io_lock, "vscsi", NULL, MTX_DEF);
/* Get properties */
OF_getencprop(ofw_bus_get_node(dev), "reg", &sc->unit,
sizeof(sc->unit));
/* Setup interrupt */
sc->irqid = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irqid,
RF_ACTIVE);
if (!sc->irq) {
device_printf(dev, "Could not allocate IRQ\n");
mtx_destroy(&sc->io_lock);
return (ENXIO);
}
bus_setup_intr(dev, sc->irq, INTR_TYPE_CAM | INTR_MPSAFE |
INTR_ENTROPY, NULL, vscsi_intr, sc, &sc->irq_cookie);
/* Data DMA */
error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
256, BUS_SPACE_MAXSIZE_32BIT, 0, busdma_lock_mutex, &sc->io_lock,
&sc->data_tag);
TAILQ_INIT(&sc->active_xferq);
TAILQ_INIT(&sc->free_xferq);
/* First XFER for login data */
sc->loginxp.sc = sc;
bus_dmamap_create(sc->data_tag, 0, &sc->loginxp.dmamap);
TAILQ_INSERT_TAIL(&sc->free_xferq, &sc->loginxp, queue);
/* CRQ area */
error = bus_dma_tag_create(bus_get_dma_tag(dev), PAGE_SIZE, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 8*PAGE_SIZE,
1, BUS_SPACE_MAXSIZE, 0, NULL, NULL, &sc->crq_tag);
error = bus_dmamem_alloc(sc->crq_tag, (void **)&sc->crq_queue,
BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->crq_map);
sc->crq_phys = 0;
sc->n_crqs = 0;
error = bus_dmamap_load(sc->crq_tag, sc->crq_map, sc->crq_queue,
8*PAGE_SIZE, vscsi_crq_load_cb, sc, 0);
mtx_lock(&sc->io_lock);
vscsi_setup_bus(sc);
sc->xfer = malloc(sizeof(sc->xfer[0])*sc->max_transactions, M_VSCSI,
M_NOWAIT);
for (i = 0; i < sc->max_transactions; i++) {
xp = &sc->xfer[i];
xp->sc = sc;
error = bus_dmamap_create(sc->data_tag, 0, &xp->dmamap);
if (error) {
device_printf(dev, "Could not create DMA map (%d)\n",
error);
break;
}
TAILQ_INSERT_TAIL(&sc->free_xferq, xp, queue);
}
mtx_unlock(&sc->io_lock);
/* Allocate CAM bits */
if ((sc->devq = cam_simq_alloc(sc->max_transactions)) == NULL)
return (ENOMEM);
sc->sim = cam_sim_alloc(vscsi_cam_action, vscsi_cam_poll, "vscsi", sc,
device_get_unit(dev), &sc->io_lock,
sc->max_transactions, sc->max_transactions,
sc->devq);
if (sc->sim == NULL) {
cam_simq_free(sc->devq);
sc->devq = NULL;
device_printf(dev, "CAM SIM attach failed\n");
return (EINVAL);
}
mtx_lock(&sc->io_lock);
if (xpt_bus_register(sc->sim, dev, 0) != 0) {
device_printf(dev, "XPT bus registration failed\n");
cam_sim_free(sc->sim, FALSE);
sc->sim = NULL;
cam_simq_free(sc->devq);
sc->devq = NULL;
mtx_unlock(&sc->io_lock);
return (EINVAL);
}
mtx_unlock(&sc->io_lock);
return (0);
}
static int
vscsi_detach(device_t dev)
{
struct vscsi_softc *sc;
sc = device_get_softc(dev);
if (sc == NULL)
return (EINVAL);
if (sc->sim != NULL) {
mtx_lock(&sc->io_lock);
xpt_bus_deregister(cam_sim_path(sc->sim));
cam_sim_free(sc->sim, FALSE);
sc->sim = NULL;
mtx_unlock(&sc->io_lock);
}
if (sc->devq != NULL) {
cam_simq_free(sc->devq);
sc->devq = NULL;
}
mtx_destroy(&sc->io_lock);
return (0);
}
static void
vscsi_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct vscsi_softc *sc = cam_sim_softc(sim);
mtx_assert(&sc->io_lock, MA_OWNED);
switch (ccb->ccb_h.func_code) {
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_TAG_ABLE;
cpi->hba_misc = PIM_EXTLUNS;
cpi->target_sprt = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = 0;
cpi->max_lun = 0;
cpi->initiator_id = ~0;
strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strlcpy(cpi->hba_vid, "IBM", HBA_IDLEN);
strlcpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 150000;
cpi->transport = XPORT_SRP;
cpi->transport_version = 0;
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_SPC4;
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_RESET_BUS:
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_RESET_DEV:
ccb->ccb_h.status = CAM_REQ_INPROG;
vscsi_task_management(sc, ccb);
return;
case XPT_GET_TRAN_SETTINGS:
ccb->cts.protocol = PROTO_SCSI;
ccb->cts.protocol_version = SCSI_REV_SPC4;
ccb->cts.transport = XPORT_SRP;
ccb->cts.transport_version = 0;
ccb->cts.proto_specific.valid = 0;
ccb->cts.xport_specific.valid = 0;
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_SET_TRAN_SETTINGS:
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
break;
case XPT_SCSI_IO:
{
struct vscsi_xfer *xp;
ccb->ccb_h.status = CAM_REQ_INPROG;
xp = TAILQ_FIRST(&sc->free_xferq);
if (xp == NULL)
panic("SCSI queue flooded");
xp->ccb = ccb;
TAILQ_REMOVE(&sc->free_xferq, xp, queue);
TAILQ_INSERT_TAIL(&sc->active_xferq, xp, queue);
bus_dmamap_load_ccb(sc->data_tag, xp->dmamap,
ccb, vscsi_scsi_command, xp, 0);
return;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
static void
vscsi_srp_login(struct vscsi_softc *sc)
{
struct vscsi_xfer *xp;
struct srp_login *login;
struct vscsi_crq crq;
int err;
mtx_assert(&sc->io_lock, MA_OWNED);
xp = TAILQ_FIRST(&sc->free_xferq);
if (xp == NULL)
panic("SCSI queue flooded");
xp->ccb = NULL;
TAILQ_REMOVE(&sc->free_xferq, xp, queue);
TAILQ_INSERT_TAIL(&sc->active_xferq, xp, queue);
/* Set up command */
xp->srp_iu_size = crq.iu_length = 64;
err = vmem_alloc(xp->sc->srp_iu_arena, xp->srp_iu_size,
M_BESTFIT | M_NOWAIT, &xp->srp_iu_offset);
if (err)
panic("Error during VMEM allocation (%d)", err);
login = (struct srp_login *)((uint8_t *)xp->sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
bzero(login, xp->srp_iu_size);
login->type = SRP_LOGIN_REQ;
login->tag = (uint64_t)(xp);
login->max_cmd_length = htobe64(256);
login->buffer_formats = htobe16(0x1 | 0x2); /* Direct and indirect */
login->flags = 0;
/* Create CRQ entry */
crq.valid = 0x80;
crq.format = 0x01;
crq.iu_data = xp->sc->srp_iu_phys + xp->srp_iu_offset;
bus_dmamap_sync(sc->crq_tag, sc->crq_map, BUS_DMASYNC_PREWRITE);
err = phyp_hcall(H_SEND_CRQ, xp->sc->unit, ((uint64_t *)(&crq))[0],
((uint64_t *)(&crq))[1]);
if (err != 0)
panic("CRQ send failure (%d)", err);
}
static void
vscsi_task_management(struct vscsi_softc *sc, union ccb *ccb)
{
struct srp_tsk_mgmt *cmd;
struct vscsi_xfer *xp;
struct vscsi_crq crq;
int err;
mtx_assert(&sc->io_lock, MA_OWNED);
xp = TAILQ_FIRST(&sc->free_xferq);
if (xp == NULL)
panic("SCSI queue flooded");
xp->ccb = ccb;
TAILQ_REMOVE(&sc->free_xferq, xp, queue);
TAILQ_INSERT_TAIL(&sc->active_xferq, xp, queue);
xp->srp_iu_size = crq.iu_length = sizeof(*cmd);
err = vmem_alloc(xp->sc->srp_iu_arena, xp->srp_iu_size,
M_BESTFIT | M_NOWAIT, &xp->srp_iu_offset);
if (err)
panic("Error during VMEM allocation (%d)", err);
cmd = (struct srp_tsk_mgmt *)((uint8_t *)xp->sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
bzero(cmd, xp->srp_iu_size);
cmd->type = SRP_TSK_MGMT;
cmd->tag = (uint64_t)xp;
cmd->lun = htobe64(CAM_EXTLUN_BYTE_SWIZZLE(ccb->ccb_h.target_lun));
switch (ccb->ccb_h.func_code) {
case XPT_RESET_DEV:
cmd->function = 0x08;
break;
default:
panic("Unimplemented code %d", ccb->ccb_h.func_code);
break;
}
bus_dmamap_sync(xp->sc->crq_tag, xp->sc->crq_map, BUS_DMASYNC_PREWRITE);
/* Create CRQ entry */
crq.valid = 0x80;
crq.format = 0x01;
crq.iu_data = xp->sc->srp_iu_phys + xp->srp_iu_offset;
err = phyp_hcall(H_SEND_CRQ, xp->sc->unit, ((uint64_t *)(&crq))[0],
((uint64_t *)(&crq))[1]);
if (err != 0)
panic("CRQ send failure (%d)", err);
}
static void
vscsi_scsi_command(void *xxp, bus_dma_segment_t *segs, int nsegs, int err)
{
struct vscsi_xfer *xp = xxp;
uint8_t *cdb;
union ccb *ccb = xp->ccb;
struct srp_cmd *cmd;
uint64_t chunk_addr;
uint32_t chunk_size;
int desc_start, i;
struct vscsi_crq crq;
KASSERT(err == 0, ("DMA error %d\n", err));
mtx_assert(&xp->sc->io_lock, MA_OWNED);
cdb = (ccb->ccb_h.flags & CAM_CDB_POINTER) ?
ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes;
/* Command format from Table 20, page 37 of SRP spec */
crq.iu_length = 48 + ((nsegs > 1) ? 20 : 16) +
((ccb->csio.cdb_len > 16) ? (ccb->csio.cdb_len - 16) : 0);
xp->srp_iu_size = crq.iu_length;
if (nsegs > 1)
xp->srp_iu_size += nsegs*16;
xp->srp_iu_size = roundup(xp->srp_iu_size, 16);
err = vmem_alloc(xp->sc->srp_iu_arena, xp->srp_iu_size,
M_BESTFIT | M_NOWAIT, &xp->srp_iu_offset);
if (err)
panic("Error during VMEM allocation (%d)", err);
cmd = (struct srp_cmd *)((uint8_t *)xp->sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
bzero(cmd, xp->srp_iu_size);
cmd->type = SRP_CMD;
if (ccb->csio.cdb_len > 16)
cmd->additional_cdb = (ccb->csio.cdb_len - 16) << 2;
memcpy(cmd->cdb, cdb, ccb->csio.cdb_len);
cmd->tag = (uint64_t)(xp); /* Let the responder find this again */
cmd->lun = htobe64(CAM_EXTLUN_BYTE_SWIZZLE(ccb->ccb_h.target_lun));
if (nsegs > 1) {
/* Use indirect descriptors */
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_OUT:
cmd->formats = (2 << 4);
break;
case CAM_DIR_IN:
cmd->formats = 2;
break;
default:
panic("Does not support bidirectional commands (%d)",
ccb->ccb_h.flags & CAM_DIR_MASK);
break;
}
desc_start = ((ccb->csio.cdb_len > 16) ?
ccb->csio.cdb_len - 16 : 0);
chunk_addr = xp->sc->srp_iu_phys + xp->srp_iu_offset + 20 +
desc_start + sizeof(*cmd);
chunk_size = 16*nsegs;
memcpy(&cmd->data_payload[desc_start], &chunk_addr, 8);
memcpy(&cmd->data_payload[desc_start+12], &chunk_size, 4);
chunk_size = 0;
for (i = 0; i < nsegs; i++)
chunk_size += segs[i].ds_len;
memcpy(&cmd->data_payload[desc_start+16], &chunk_size, 4);
desc_start += 20;
for (i = 0; i < nsegs; i++) {
chunk_addr = segs[i].ds_addr;
chunk_size = segs[i].ds_len;
memcpy(&cmd->data_payload[desc_start + 16*i],
&chunk_addr, 8);
/* Set handle tag to 0 */
memcpy(&cmd->data_payload[desc_start + 16*i + 12],
&chunk_size, 4);
}
} else if (nsegs == 1) {
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_OUT:
cmd->formats = (1 << 4);
break;
case CAM_DIR_IN:
cmd->formats = 1;
break;
default:
panic("Does not support bidirectional commands (%d)",
ccb->ccb_h.flags & CAM_DIR_MASK);
break;
}
/*
* Memory descriptor:
* 8 byte address
* 4 byte handle
* 4 byte length
*/
chunk_addr = segs[0].ds_addr;
chunk_size = segs[0].ds_len;
desc_start = ((ccb->csio.cdb_len > 16) ?
ccb->csio.cdb_len - 16 : 0);
memcpy(&cmd->data_payload[desc_start], &chunk_addr, 8);
/* Set handle tag to 0 */
memcpy(&cmd->data_payload[desc_start+12], &chunk_size, 4);
KASSERT(xp->srp_iu_size >= 48 + ((ccb->csio.cdb_len > 16) ?
ccb->csio.cdb_len : 16), ("SRP IU command length"));
} else {
cmd->formats = 0;
}
bus_dmamap_sync(xp->sc->crq_tag, xp->sc->crq_map, BUS_DMASYNC_PREWRITE);
/* Create CRQ entry */
crq.valid = 0x80;
crq.format = 0x01;
crq.iu_data = xp->sc->srp_iu_phys + xp->srp_iu_offset;
err = phyp_hcall(H_SEND_CRQ, xp->sc->unit, ((uint64_t *)(&crq))[0],
((uint64_t *)(&crq))[1]);
if (err != 0)
panic("CRQ send failure (%d)", err);
}
static void
vscsi_crq_load_cb(void *xsc, bus_dma_segment_t *segs, int nsegs, int err)
{
struct vscsi_softc *sc = xsc;
sc->crq_phys = segs[0].ds_addr;
sc->n_crqs = PAGE_SIZE/sizeof(struct vscsi_crq);
sc->srp_iu_queue = (uint8_t *)(sc->crq_queue);
sc->srp_iu_phys = segs[0].ds_addr;
sc->srp_iu_arena = vmem_create("VSCSI SRP IU", PAGE_SIZE,
segs[0].ds_len - PAGE_SIZE, 16, 0, M_BESTFIT | M_NOWAIT);
}
static void
vscsi_setup_bus(struct vscsi_softc *sc)
{
struct vscsi_crq crq;
struct vscsi_xfer *xp;
int error;
struct {
uint32_t type;
uint16_t status;
uint16_t length;
uint64_t tag;
uint64_t buffer;
struct {
char srp_version[8];
char partition_name[96];
uint32_t partition_number;
uint32_t mad_version;
uint32_t os_type;
uint32_t port_max_txu[8];
} payload;
} mad_adapter_info;
bzero(&crq, sizeof(crq));
/* Init message */
crq.valid = 0xc0;
crq.format = 0x01;
do {
error = phyp_hcall(H_FREE_CRQ, sc->unit);
} while (error == H_BUSY);
/* See initialization sequence page 757 */
bzero(sc->crq_queue, sc->n_crqs*sizeof(sc->crq_queue[0]));
sc->cur_crq = 0;
sc->bus_initialized = 0;
sc->bus_logged_in = 0;
bus_dmamap_sync(sc->crq_tag, sc->crq_map, BUS_DMASYNC_PREWRITE);
error = phyp_hcall(H_REG_CRQ, sc->unit, sc->crq_phys,
sc->n_crqs*sizeof(sc->crq_queue[0]));
KASSERT(error == 0, ("CRQ registration success"));
error = phyp_hcall(H_SEND_CRQ, sc->unit, ((uint64_t *)(&crq))[0],
((uint64_t *)(&crq))[1]);
if (error != 0)
panic("CRQ setup failure (%d)", error);
while (sc->bus_initialized == 0)
vscsi_check_response_queue(sc);
/* Send MAD adapter info */
mad_adapter_info.type = MAD_ADAPTER_INFO_REQUEST;
mad_adapter_info.status = 0;
mad_adapter_info.length = sizeof(mad_adapter_info.payload);
strcpy(mad_adapter_info.payload.srp_version, "16.a");
strcpy(mad_adapter_info.payload.partition_name, "UNKNOWN");
mad_adapter_info.payload.partition_number = -1;
mad_adapter_info.payload.mad_version = 1;
mad_adapter_info.payload.os_type = 2; /* Claim we are Linux */
mad_adapter_info.payload.port_max_txu[0] = 0;
/* If this fails, we get the defaults above */
OF_getprop(OF_finddevice("/"), "ibm,partition-name",
mad_adapter_info.payload.partition_name,
sizeof(mad_adapter_info.payload.partition_name));
OF_getprop(OF_finddevice("/"), "ibm,partition-no",
&mad_adapter_info.payload.partition_number,
sizeof(mad_adapter_info.payload.partition_number));
xp = TAILQ_FIRST(&sc->free_xferq);
xp->ccb = NULL;
TAILQ_REMOVE(&sc->free_xferq, xp, queue);
TAILQ_INSERT_TAIL(&sc->active_xferq, xp, queue);
xp->srp_iu_size = crq.iu_length = sizeof(mad_adapter_info);
vmem_alloc(xp->sc->srp_iu_arena, xp->srp_iu_size,
M_BESTFIT | M_NOWAIT, &xp->srp_iu_offset);
mad_adapter_info.buffer = xp->sc->srp_iu_phys + xp->srp_iu_offset + 24;
mad_adapter_info.tag = (uint64_t)xp;
memcpy((uint8_t *)xp->sc->srp_iu_queue + (uintptr_t)xp->srp_iu_offset,
&mad_adapter_info, sizeof(mad_adapter_info));
crq.valid = 0x80;
crq.format = 0x02;
crq.iu_data = xp->sc->srp_iu_phys + xp->srp_iu_offset;
bus_dmamap_sync(sc->crq_tag, sc->crq_map, BUS_DMASYNC_PREWRITE);
phyp_hcall(H_SEND_CRQ, xp->sc->unit, ((uint64_t *)(&crq))[0],
((uint64_t *)(&crq))[1]);
while (TAILQ_EMPTY(&sc->free_xferq))
vscsi_check_response_queue(sc);
/* Send SRP login */
vscsi_srp_login(sc);
while (sc->bus_logged_in == 0)
vscsi_check_response_queue(sc);
error = phyp_hcall(H_VIO_SIGNAL, sc->unit, 1); /* Enable interrupts */
}
static void
vscsi_intr(void *xsc)
{
struct vscsi_softc *sc = xsc;
mtx_lock(&sc->io_lock);
vscsi_check_response_queue(sc);
mtx_unlock(&sc->io_lock);
}
static void
vscsi_srp_response(struct vscsi_xfer *xp, struct vscsi_crq *crq)
{
union ccb *ccb = xp->ccb;
struct vscsi_softc *sc = xp->sc;
struct srp_rsp *rsp;
uint32_t sense_len;
/* SRP response packet in original request */
rsp = (struct srp_rsp *)((uint8_t *)sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
ccb->csio.scsi_status = rsp->status;
if (ccb->csio.scsi_status == SCSI_STATUS_OK)
ccb->ccb_h.status = CAM_REQ_CMP;
else
ccb->ccb_h.status = CAM_SCSI_STATUS_ERROR;
#ifdef NOTYET
/* Collect fast fail codes */
if (crq->status != 0)
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
#endif
if (ccb->ccb_h.status != CAM_REQ_CMP) {
ccb->ccb_h.status |= CAM_DEV_QFRZN;
xpt_freeze_devq(ccb->ccb_h.path, /*count*/ 1);
}
if (!(rsp->flags & SRP_RSPVALID))
rsp->response_data_len = 0;
if (!(rsp->flags & SRP_SNSVALID))
rsp->sense_data_len = 0;
if (!(rsp->flags & (SRP_DOOVER | SRP_DOUNDER)))
rsp->data_out_resid = 0;
if (!(rsp->flags & (SRP_DIOVER | SRP_DIUNDER)))
rsp->data_in_resid = 0;
if (rsp->flags & SRP_SNSVALID) {
bzero(&ccb->csio.sense_data, sizeof(struct scsi_sense_data));
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
sense_len = min(be32toh(rsp->sense_data_len),
ccb->csio.sense_len);
memcpy(&ccb->csio.sense_data,
&rsp->data_payload[be32toh(rsp->response_data_len)],
sense_len);
ccb->csio.sense_resid = ccb->csio.sense_len -
be32toh(rsp->sense_data_len);
}
switch (ccb->ccb_h.flags & CAM_DIR_MASK) {
case CAM_DIR_OUT:
ccb->csio.resid = rsp->data_out_resid;
break;
case CAM_DIR_IN:
ccb->csio.resid = rsp->data_in_resid;
break;
}
bus_dmamap_sync(sc->data_tag, xp->dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->data_tag, xp->dmamap);
xpt_done(ccb);
xp->ccb = NULL;
}
static void
vscsi_login_response(struct vscsi_xfer *xp, struct vscsi_crq *crq)
{
struct vscsi_softc *sc = xp->sc;
struct srp_login_rsp *rsp;
/* SRP response packet in original request */
rsp = (struct srp_login_rsp *)((uint8_t *)sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
KASSERT(be16toh(rsp->buffer_formats) & 0x3, ("Both direct and indirect "
"buffers supported"));
sc->max_transactions = be32toh(rsp->request_limit_delta);
device_printf(sc->dev, "Queue depth %d commands\n",
sc->max_transactions);
sc->bus_logged_in = 1;
}
static void
vscsi_cam_poll(struct cam_sim *sim)
{
struct vscsi_softc *sc = cam_sim_softc(sim);
vscsi_check_response_queue(sc);
}
static void
vscsi_check_response_queue(struct vscsi_softc *sc)
{
struct vscsi_crq *crq;
struct vscsi_xfer *xp;
int code;
mtx_assert(&sc->io_lock, MA_OWNED);
while (sc->crq_queue[sc->cur_crq].valid != 0) {
/* The hypercalls at both ends of this are not optimal */
phyp_hcall(H_VIO_SIGNAL, sc->unit, 0);
bus_dmamap_sync(sc->crq_tag, sc->crq_map, BUS_DMASYNC_POSTREAD);
crq = &sc->crq_queue[sc->cur_crq];
switch (crq->valid) {
case 0xc0:
if (crq->format == 0x02)
sc->bus_initialized = 1;
break;
case 0x80:
/* IU data is set to tag pointer (the XP) */
xp = (struct vscsi_xfer *)crq->iu_data;
switch (crq->format) {
case 0x01:
code = *((uint8_t *)sc->srp_iu_queue +
(uintptr_t)xp->srp_iu_offset);
switch (code) {
case SRP_RSP:
vscsi_srp_response(xp, crq);
break;
case SRP_LOGIN_RSP:
vscsi_login_response(xp, crq);
break;
default:
device_printf(sc->dev, "Unknown SRP "
"response code %d\n", code);
break;
}
break;
case 0x02:
/* Ignore management datagrams */
break;
default:
panic("Unknown CRQ format %d\n", crq->format);
break;
}
vmem_free(sc->srp_iu_arena, xp->srp_iu_offset,
xp->srp_iu_size);
TAILQ_REMOVE(&sc->active_xferq, xp, queue);
TAILQ_INSERT_TAIL(&sc->free_xferq, xp, queue);
break;
default:
device_printf(sc->dev,
"Unknown CRQ message type %d\n", crq->valid);
break;
}
crq->valid = 0;
sc->cur_crq = (sc->cur_crq + 1) % sc->n_crqs;
bus_dmamap_sync(sc->crq_tag, sc->crq_map, BUS_DMASYNC_PREWRITE);
phyp_hcall(H_VIO_SIGNAL, sc->unit, 1);
}
}