freebsd-dev/sys/dev/tx/if_tx.c
Maxime Henrion 445e4e83c5 - No need to bzero() the softc structure.
- Use BUS_DMA_ZERO where appropriate.
2003-08-12 14:55:12 +00:00

1924 lines
44 KiB
C

/*-
* Copyright (c) 1997 Semen Ustimenko (semenu@FreeBSD.org)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* EtherPower II 10/100 Fast Ethernet (SMC 9432 serie)
*
* These cards are based on SMC83c17x (EPIC) chip and one of the various
* PHYs (QS6612, AC101 and LXT970 were seen). The media support depends on
* card model. All cards support 10baseT/UTP and 100baseTX half- and full-
* duplex (SMB9432TX). SMC9432BTX also supports 10baseT/BNC. SMC9432FTX also
* supports fibre optics.
*
* Thanks are going to Steve Bauer and Jason Wright.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <net/if_vlan_var.h>
#include <machine/bus_memio.h>
#include <machine/bus_pio.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/clock.h> /* for DELAY */
#include <sys/bus.h>
#include <sys/rman.h>
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miidevs.h"
#include <dev/mii/lxtphyreg.h>
#include "miibus_if.h"
#include <dev/tx/if_txreg.h>
#include <dev/tx/if_txvar.h>
MODULE_DEPEND(tx, pci, 1, 1, 1);
MODULE_DEPEND(tx, ether, 1, 1, 1);
MODULE_DEPEND(tx, miibus, 1, 1, 1);
static int epic_ifioctl(struct ifnet *, u_long, caddr_t);
static void epic_intr(void *);
static void epic_tx_underrun(epic_softc_t *);
static void epic_ifstart(struct ifnet *);
static void epic_ifwatchdog(struct ifnet *);
static void epic_stats_update(epic_softc_t *);
static void epic_init(void *);
static void epic_stop(epic_softc_t *);
static void epic_rx_done(epic_softc_t *);
static void epic_tx_done(epic_softc_t *);
static int epic_init_rings(epic_softc_t *);
static void epic_free_rings(epic_softc_t *);
static void epic_stop_activity(epic_softc_t *);
static int epic_queue_last_packet(epic_softc_t *);
static void epic_start_activity(epic_softc_t *);
static void epic_set_rx_mode(epic_softc_t *);
static void epic_set_tx_mode(epic_softc_t *);
static void epic_set_mc_table(epic_softc_t *);
static u_int8_t epic_calchash(caddr_t);
static int epic_read_eeprom(epic_softc_t *,u_int16_t);
static void epic_output_eepromw(epic_softc_t *, u_int16_t);
static u_int16_t epic_input_eepromw(epic_softc_t *);
static u_int8_t epic_eeprom_clock(epic_softc_t *,u_int8_t);
static void epic_write_eepromreg(epic_softc_t *,u_int8_t);
static u_int8_t epic_read_eepromreg(epic_softc_t *);
static int epic_read_phy_reg(epic_softc_t *, int, int);
static void epic_write_phy_reg(epic_softc_t *, int, int, int);
static int epic_miibus_readreg(device_t, int, int);
static int epic_miibus_writereg(device_t, int, int, int);
static void epic_miibus_statchg(device_t);
static void epic_miibus_mediainit(device_t);
static int epic_ifmedia_upd(struct ifnet *);
static void epic_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int epic_probe(device_t);
static int epic_attach(device_t);
static void epic_shutdown(device_t);
static int epic_detach(device_t);
static void epic_release(epic_softc_t *);
static struct epic_type *epic_devtype(device_t);
static device_method_t epic_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, epic_probe),
DEVMETHOD(device_attach, epic_attach),
DEVMETHOD(device_detach, epic_detach),
DEVMETHOD(device_shutdown, epic_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, epic_miibus_readreg),
DEVMETHOD(miibus_writereg, epic_miibus_writereg),
DEVMETHOD(miibus_statchg, epic_miibus_statchg),
DEVMETHOD(miibus_mediainit, epic_miibus_mediainit),
{ 0, 0 }
};
static driver_t epic_driver = {
"tx",
epic_methods,
sizeof(epic_softc_t)
};
static devclass_t epic_devclass;
DRIVER_MODULE(tx, pci, epic_driver, epic_devclass, 0, 0);
DRIVER_MODULE(miibus, tx, miibus_driver, miibus_devclass, 0, 0);
static struct epic_type epic_devs[] = {
{ SMC_VENDORID, SMC_DEVICEID_83C170, "SMC EtherPower II 10/100" },
{ 0, 0, NULL }
};
static int
epic_probe(dev)
device_t dev;
{
struct epic_type *t;
t = epic_devtype(dev);
if (t != NULL) {
device_set_desc(dev, t->name);
return (0);
}
return (ENXIO);
}
static struct epic_type *
epic_devtype(dev)
device_t dev;
{
struct epic_type *t;
t = epic_devs;
while (t->name != NULL) {
if ((pci_get_vendor(dev) == t->ven_id) &&
(pci_get_device(dev) == t->dev_id)) {
return (t);
}
t++;
}
return (NULL);
}
#ifdef EPIC_USEIOSPACE
#define EPIC_RES SYS_RES_IOPORT
#define EPIC_RID PCIR_BASEIO
#else
#define EPIC_RES SYS_RES_MEMORY
#define EPIC_RID PCIR_BASEMEM
#endif
static void
epic_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
u_int32_t *addr;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
addr = arg;
*addr = segs->ds_addr;
}
/*
* Attach routine: map registers, allocate softc, rings and descriptors.
* Reset to known state.
*/
static int
epic_attach(dev)
device_t dev;
{
struct ifnet *ifp;
epic_softc_t *sc;
int unit, error;
int i, s, rid, tmp;
s = splimp();
sc = device_get_softc(dev);
unit = device_get_unit(dev);
/* Preinitialize softc structure. */
sc->unit = unit;
sc->dev = dev;
/* Fill ifnet structure. */
ifp = &sc->sc_if;
ifp->if_unit = unit;
ifp->if_name = "tx";
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST;
ifp->if_ioctl = epic_ifioctl;
ifp->if_start = epic_ifstart;
ifp->if_watchdog = epic_ifwatchdog;
ifp->if_init = epic_init;
ifp->if_timer = 0;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = TX_RING_SIZE - 1;
/* Enable busmastering. */
pci_enable_busmaster(dev);
rid = EPIC_RID;
sc->res = bus_alloc_resource(dev, EPIC_RES, &rid, 0, ~0, 1,
RF_ACTIVE);
if (sc->res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
sc->sc_st = rman_get_bustag(sc->res);
sc->sc_sh = rman_get_bushandle(sc->res);
/* Allocate interrupt. */
rid = 0;
sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
RF_SHAREABLE | RF_ACTIVE);
if (sc->irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Allocate DMA tags. */
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * EPIC_MAX_FRAGS,
EPIC_MAX_FRAGS, MCLBYTES, 0, busdma_lock_mutex, &Giant, &sc->mtag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct epic_rx_desc) * RX_RING_SIZE,
1, sizeof(struct epic_rx_desc) * RX_RING_SIZE, 0, busdma_lock_mutex,
&Giant, &sc->rtag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct epic_tx_desc) * TX_RING_SIZE,
1, sizeof(struct epic_tx_desc) * TX_RING_SIZE, 0,
busdma_lock_mutex, &Giant, &sc->ttag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct epic_frag_list) * TX_RING_SIZE,
1, sizeof(struct epic_frag_list) * TX_RING_SIZE, 0,
busdma_lock_mutex, &Giant, &sc->ftag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
/* Allocate DMA safe memory and get the DMA addresses. */
error = bus_dmamem_alloc(sc->ftag, (void **)&sc->tx_flist,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fmap);
if (error) {
device_printf(dev, "couldn't allocate dma memory\n");
goto fail;
}
error = bus_dmamap_load(sc->ftag, sc->fmap, sc->tx_flist,
sizeof(struct epic_frag_list) * TX_RING_SIZE, epic_dma_map_addr,
&sc->frag_addr, 0);
if (error) {
device_printf(dev, "couldn't map dma memory\n");
goto fail;
}
error = bus_dmamem_alloc(sc->ttag, (void **)&sc->tx_desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tmap);
if (error) {
device_printf(dev, "couldn't allocate dma memory\n");
goto fail;
}
error = bus_dmamap_load(sc->ttag, sc->tmap, sc->tx_desc,
sizeof(struct epic_tx_desc) * TX_RING_SIZE, epic_dma_map_addr,
&sc->tx_addr, 0);
if (error) {
device_printf(dev, "couldn't map dma memory\n");
goto fail;
}
error = bus_dmamem_alloc(sc->rtag, (void **)&sc->rx_desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rmap);
if (error) {
device_printf(dev, "couldn't allocate dma memory\n");
goto fail;
}
error = bus_dmamap_load(sc->rtag, sc->rmap, sc->rx_desc,
sizeof(struct epic_rx_desc) * RX_RING_SIZE, epic_dma_map_addr,
&sc->rx_addr, 0);
if (error) {
device_printf(dev, "couldn't map dma memory\n");
goto fail;
}
/* Bring the chip out of low-power mode. */
CSR_WRITE_4(sc, GENCTL, GENCTL_SOFT_RESET);
DELAY(500);
/* Workaround for Application Note 7-15. */
for (i = 0; i < 16; i++)
CSR_WRITE_4(sc, TEST1, TEST1_CLOCK_TEST);
/* Read MAC address from EEPROM. */
for (i = 0; i < ETHER_ADDR_LEN / sizeof(u_int16_t); i++)
((u_int16_t *)sc->sc_macaddr)[i] = epic_read_eeprom(sc,i);
/* Set Non-Volatile Control Register from EEPROM. */
CSR_WRITE_4(sc, NVCTL, epic_read_eeprom(sc, EEPROM_NVCTL) & 0x1F);
/* Set defaults. */
sc->tx_threshold = TRANSMIT_THRESHOLD;
sc->txcon = TXCON_DEFAULT;
sc->miicfg = MIICFG_SMI_ENABLE;
sc->phyid = EPIC_UNKN_PHY;
sc->serinst = -1;
/* Fetch card id. */
sc->cardvend = pci_read_config(dev, PCIR_SUBVEND_0, 2);
sc->cardid = pci_read_config(dev, PCIR_SUBDEV_0, 2);
if (sc->cardvend != SMC_VENDORID)
device_printf(dev, "unknown card vendor %04xh\n", sc->cardvend);
/* Do ifmedia setup. */
if (mii_phy_probe(dev, &sc->miibus,
epic_ifmedia_upd, epic_ifmedia_sts)) {
device_printf(dev, "ERROR! MII without any PHY!?\n");
error = ENXIO;
goto fail;
}
/* Display ethernet address ,... */
device_printf(dev, "address %6D,", sc->sc_macaddr, ":");
/* board type and ... */
printf(" type ");
for(i = 0x2c; i < 0x32; i++) {
tmp = epic_read_eeprom(sc, i);
if (' ' == (u_int8_t)tmp)
break;
printf("%c", (u_int8_t)tmp);
tmp >>= 8;
if (' ' == (u_int8_t)tmp)
break;
printf("%c", (u_int8_t)tmp);
}
printf("\n");
/* Initialize rings. */
if (epic_init_rings(sc)) {
device_printf(dev, "failed to init rings\n");
error = ENXIO;
goto fail;
}
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
callout_handle_init(&sc->stat_ch);
/* Activate our interrupt handler. */
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET,
epic_intr, sc, &sc->sc_ih);
if (error) {
device_printf(dev, "couldn't set up irq\n");
goto fail;
}
/* Attach to OS's managers. */
ether_ifattach(ifp, sc->sc_macaddr);
splx(s);
return (0);
fail:
epic_release(sc);
splx(s);
return (error);
}
/*
* Free any resources allocated by the driver.
*/
static void
epic_release(epic_softc_t *sc)
{
if (sc->irq)
bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
if (sc->res)
bus_release_resource(sc->dev, EPIC_RES, EPIC_RID, sc->res);
epic_free_rings(sc);
if (sc->tx_flist) {
bus_dmamap_unload(sc->ftag, sc->fmap);
bus_dmamem_free(sc->ftag, sc->tx_flist, sc->fmap);
bus_dmamap_destroy(sc->ftag, sc->fmap);
}
if (sc->tx_desc) {
bus_dmamap_unload(sc->ttag, sc->tmap);
bus_dmamem_free(sc->ttag, sc->tx_desc, sc->tmap);
bus_dmamap_destroy(sc->ttag, sc->tmap);
}
if (sc->rx_desc) {
bus_dmamap_unload(sc->rtag, sc->rmap);
bus_dmamem_free(sc->rtag, sc->rx_desc, sc->rmap);
bus_dmamap_destroy(sc->rtag, sc->rmap);
}
if (sc->mtag)
bus_dma_tag_destroy(sc->mtag);
if (sc->ftag)
bus_dma_tag_destroy(sc->ftag);
if (sc->ttag)
bus_dma_tag_destroy(sc->ttag);
if (sc->rtag)
bus_dma_tag_destroy(sc->rtag);
}
/*
* Detach driver and free resources.
*/
static int
epic_detach(dev)
device_t dev;
{
struct ifnet *ifp;
epic_softc_t *sc;
int s;
s = splimp();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
ether_ifdetach(ifp);
epic_stop(sc);
bus_generic_detach(dev);
device_delete_child(dev, sc->miibus);
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
epic_release(sc);
splx(s);
return (0);
}
#undef EPIC_RES
#undef EPIC_RID
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
epic_shutdown(dev)
device_t dev;
{
epic_softc_t *sc;
sc = device_get_softc(dev);
epic_stop(sc);
}
/*
* This is if_ioctl handler.
*/
static int
epic_ifioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
epic_softc_t *sc = ifp->if_softc;
struct mii_data *mii;
struct ifreq *ifr = (struct ifreq *) data;
int x, error = 0;
x = splimp();
switch (command) {
case SIOCSIFMTU:
if (ifp->if_mtu == ifr->ifr_mtu)
break;
/* XXX Though the datasheet doesn't imply any
* limitations on RX and TX sizes beside max 64Kb
* DMA transfer, seems we can't send more then 1600
* data bytes per ethernet packet (transmitter hangs
* up if more data is sent).
*/
if (ifr->ifr_mtu + ifp->if_hdrlen <= EPIC_MAX_MTU) {
ifp->if_mtu = ifr->ifr_mtu;
epic_stop(sc);
epic_init(sc);
} else
error = EINVAL;
break;
case SIOCSIFFLAGS:
/*
* If the interface is marked up and stopped, then start it.
* If it is marked down and running, then stop it.
*/
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_flags & IFF_RUNNING) == 0) {
epic_init(sc);
break;
}
} else {
if (ifp->if_flags & IFF_RUNNING) {
epic_stop(sc);
break;
}
}
/* Handle IFF_PROMISC and IFF_ALLMULTI flags. */
epic_stop_activity(sc);
epic_set_mc_table(sc);
epic_set_rx_mode(sc);
epic_start_activity(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
epic_set_mc_table(sc);
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
splx(x);
return (error);
}
static void
epic_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
bus_size_t mapsize, int error)
{
struct epic_frag_list *flist;
int i;
if (error)
return;
KASSERT(nseg <= EPIC_MAX_FRAGS, ("too many DMA segments"));
flist = arg;
/* Fill fragments list. */
for (i = 0; i < nseg; i++) {
KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
flist->frag[i].fraglen = segs[i].ds_len;
flist->frag[i].fragaddr = segs[i].ds_addr;
}
flist->numfrags = nseg;
}
static void
epic_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg,
bus_size_t mapsize, int error)
{
struct epic_rx_desc *desc;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments"));
desc = arg;
desc->bufaddr = segs->ds_addr;
}
/*
* This is if_start handler. It takes mbufs from if_snd queue
* and queue them for transmit, one by one, until TX ring become full
* or queue become empty.
*/
static void
epic_ifstart(ifp)
struct ifnet * ifp;
{
epic_softc_t *sc = ifp->if_softc;
struct epic_tx_buffer *buf;
struct epic_tx_desc *desc;
struct epic_frag_list *flist;
struct mbuf *m0, *m;
int error;
while (sc->pending_txs < TX_RING_SIZE) {
buf = sc->tx_buffer + sc->cur_tx;
desc = sc->tx_desc + sc->cur_tx;
flist = sc->tx_flist + sc->cur_tx;
/* Get next packet to send. */
IF_DEQUEUE(&ifp->if_snd, m0);
/* If nothing to send, return. */
if (m0 == NULL)
return;
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m0,
epic_dma_map_txbuf, flist, 0);
if (error && error != EFBIG) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
/*
* If packet was more than EPIC_MAX_FRAGS parts,
* recopy packet to a newly allocated mbuf cluster.
*/
if (error) {
m = m_defrag(m0, M_DONTWAIT);
if (m == NULL) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
m_freem(m0);
m0 = m;
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m,
epic_dma_map_txbuf, flist, 0);
if (error) {
m_freem(m);
ifp->if_oerrors++;
continue;
}
}
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREWRITE);
buf->mbuf = m0;
sc->pending_txs++;
sc->cur_tx = (sc->cur_tx + 1) & TX_RING_MASK;
desc->control = 0x01;
desc->txlength =
max(m0->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN);
desc->status = 0x8000;
bus_dmamap_sync(sc->ttag, sc->tmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->ftag, sc->fmap, BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, COMMAND, COMMAND_TXQUEUED);
/* Set watchdog timer. */
ifp->if_timer = 8;
BPF_MTAP(ifp, m0);
}
ifp->if_flags |= IFF_OACTIVE;
}
/*
* Synopsis: Finish all received frames.
*/
static void
epic_rx_done(sc)
epic_softc_t *sc;
{
struct ifnet *ifp = &sc->sc_if;
u_int16_t len;
struct epic_rx_buffer *buf;
struct epic_rx_desc *desc;
struct mbuf *m;
bus_dmamap_t map;
int error;
bus_dmamap_sync(sc->rtag, sc->rmap, BUS_DMASYNC_POSTREAD);
while ((sc->rx_desc[sc->cur_rx].status & 0x8000) == 0) {
buf = sc->rx_buffer + sc->cur_rx;
desc = sc->rx_desc + sc->cur_rx;
/* Switch to next descriptor. */
sc->cur_rx = (sc->cur_rx + 1) & RX_RING_MASK;
/*
* Check for RX errors. This should only happen if
* SAVE_ERRORED_PACKETS is set. RX errors generate
* RXE interrupt usually.
*/
if ((desc->status & 1) == 0) {
ifp->if_ierrors++;
desc->status = 0x8000;
continue;
}
/* Save packet length and mbuf contained packet. */
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTREAD);
len = desc->rxlength - ETHER_CRC_LEN;
m = buf->mbuf;
/* Try to get an mbuf cluster. */
buf->mbuf = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (buf->mbuf == NULL) {
buf->mbuf = m;
desc->status = 0x8000;
ifp->if_ierrors++;
continue;
}
buf->mbuf->m_len = buf->mbuf->m_pkthdr.len = MCLBYTES;
m_adj(buf->mbuf, ETHER_ALIGN);
/* Point to new mbuf, and give descriptor to chip. */
error = bus_dmamap_load_mbuf(sc->mtag, sc->sparemap, buf->mbuf,
epic_dma_map_rxbuf, desc, 0);
if (error) {
buf->mbuf = m;
desc->status = 0x8000;
ifp->if_ierrors++;
continue;
}
desc->status = 0x8000;
bus_dmamap_unload(sc->mtag, buf->map);
map = buf->map;
buf->map = sc->sparemap;
sc->sparemap = map;
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREREAD);
/* First mbuf in packet holds the ethernet and packet headers */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
/* Give mbuf to OS. */
(*ifp->if_input)(ifp, m);
/* Successfuly received frame */
ifp->if_ipackets++;
}
bus_dmamap_sync(sc->rtag, sc->rmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
/*
* Synopsis: Do last phase of transmission. I.e. if desc is
* transmitted, decrease pending_txs counter, free mbuf contained
* packet, switch to next descriptor and repeat until no packets
* are pending or descriptor is not transmitted yet.
*/
static void
epic_tx_done(sc)
epic_softc_t *sc;
{
struct epic_tx_buffer *buf;
struct epic_tx_desc *desc;
u_int16_t status;
bus_dmamap_sync(sc->ttag, sc->tmap, BUS_DMASYNC_POSTREAD);
while (sc->pending_txs > 0) {
buf = sc->tx_buffer + sc->dirty_tx;
desc = sc->tx_desc + sc->dirty_tx;
status = desc->status;
/*
* If packet is not transmitted, thou followed
* packets are not transmitted too.
*/
if (status & 0x8000)
break;
/* Packet is transmitted. Switch to next and free mbuf. */
sc->pending_txs--;
sc->dirty_tx = (sc->dirty_tx + 1) & TX_RING_MASK;
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mtag, buf->map);
m_freem(buf->mbuf);
buf->mbuf = NULL;
/* Check for errors and collisions. */
if (status & 0x0001)
sc->sc_if.if_opackets++;
else
sc->sc_if.if_oerrors++;
sc->sc_if.if_collisions += (status >> 8) & 0x1F;
#ifdef EPIC_DIAG
if ((status & 0x1001) == 0x1001)
device_printf(sc->dev,
"Tx ERROR: excessive coll. number\n");
#endif
}
if (sc->pending_txs < TX_RING_SIZE)
sc->sc_if.if_flags &= ~IFF_OACTIVE;
bus_dmamap_sync(sc->ttag, sc->tmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
/*
* Interrupt function
*/
static void
epic_intr(arg)
void *arg;
{
epic_softc_t *sc;
int status, i;
sc = arg;
i = 4;
while (i-- && ((status = CSR_READ_4(sc, INTSTAT)) & INTSTAT_INT_ACTV)) {
CSR_WRITE_4(sc, INTSTAT, status);
if (status & (INTSTAT_RQE|INTSTAT_RCC|INTSTAT_OVW)) {
epic_rx_done(sc);
if (status & (INTSTAT_RQE|INTSTAT_OVW)) {
#ifdef EPIC_DIAG
if (status & INTSTAT_OVW)
device_printf(sc->dev, "RX buffer overflow\n");
if (status & INTSTAT_RQE)
device_printf(sc->dev, "RX FIFO overflow\n");
#endif
if ((CSR_READ_4(sc, COMMAND) & COMMAND_RXQUEUED) == 0)
CSR_WRITE_4(sc, COMMAND, COMMAND_RXQUEUED);
sc->sc_if.if_ierrors++;
}
}
if (status & (INTSTAT_TXC|INTSTAT_TCC|INTSTAT_TQE)) {
epic_tx_done(sc);
if (sc->sc_if.if_snd.ifq_head != NULL)
epic_ifstart(&sc->sc_if);
}
/* Check for rare errors */
if (status & (INTSTAT_FATAL|INTSTAT_PMA|INTSTAT_PTA|
INTSTAT_APE|INTSTAT_DPE|INTSTAT_TXU|INTSTAT_RXE)) {
if (status & (INTSTAT_FATAL|INTSTAT_PMA|INTSTAT_PTA|
INTSTAT_APE|INTSTAT_DPE)) {
device_printf(sc->dev, "PCI fatal errors occured: %s%s%s%s\n",
(status & INTSTAT_PMA) ? "PMA " : "",
(status & INTSTAT_PTA) ? "PTA " : "",
(status & INTSTAT_APE) ? "APE " : "",
(status & INTSTAT_DPE) ? "DPE" : "");
epic_stop(sc);
epic_init(sc);
break;
}
if (status & INTSTAT_RXE) {
#ifdef EPIC_DIAG
device_printf(sc->dev, "CRC/Alignment error\n");
#endif
sc->sc_if.if_ierrors++;
}
if (status & INTSTAT_TXU) {
epic_tx_underrun(sc);
sc->sc_if.if_oerrors++;
}
}
}
/* If no packets are pending, then no timeouts. */
if (sc->pending_txs == 0)
sc->sc_if.if_timer = 0;
}
/*
* Handle the TX underrun error: increase the TX threshold
* and restart the transmitter.
*/
static void
epic_tx_underrun(sc)
epic_softc_t *sc;
{
if (sc->tx_threshold > TRANSMIT_THRESHOLD_MAX) {
sc->txcon &= ~TXCON_EARLY_TRANSMIT_ENABLE;
#ifdef EPIC_DIAG
device_printf(sc->dev, "Tx UNDERRUN: early TX disabled\n");
#endif
} else {
sc->tx_threshold += 0x40;
#ifdef EPIC_DIAG
device_printf(sc->dev,
"Tx UNDERRUN: TX threshold increased to %d\n",
sc->tx_threshold);
#endif
}
/* We must set TXUGO to reset the stuck transmitter. */
CSR_WRITE_4(sc, COMMAND, COMMAND_TXUGO);
/* Update the TX threshold */
epic_stop_activity(sc);
epic_set_tx_mode(sc);
epic_start_activity(sc);
}
/*
* Synopsis: This one is called if packets wasn't transmitted
* during timeout. Try to deallocate transmitted packets, and
* if success continue to work.
*/
static void
epic_ifwatchdog(ifp)
struct ifnet *ifp;
{
epic_softc_t *sc;
int x;
x = splimp();
sc = ifp->if_softc;
device_printf(sc->dev, "device timeout %d packets\n", sc->pending_txs);
/* Try to finish queued packets. */
epic_tx_done(sc);
/* If not successful. */
if (sc->pending_txs > 0) {
ifp->if_oerrors += sc->pending_txs;
/* Reinitialize board. */
device_printf(sc->dev, "reinitialization\n");
epic_stop(sc);
epic_init(sc);
} else
device_printf(sc->dev, "seems we can continue normaly\n");
/* Start output. */
if (ifp->if_snd.ifq_head)
epic_ifstart(ifp);
splx(x);
}
/*
* Despite the name of this function, it doesn't update statistics, it only
* helps in autonegotiation process.
*/
static void
epic_stats_update(epic_softc_t * sc)
{
struct mii_data * mii;
int s;
s = splimp();
mii = device_get_softc(sc->miibus);
mii_tick(mii);
sc->stat_ch = timeout((timeout_t *)epic_stats_update, sc, hz);
splx(s);
}
/*
* Set media options.
*/
static int
epic_ifmedia_upd(ifp)
struct ifnet *ifp;
{
epic_softc_t *sc;
struct mii_data *mii;
struct ifmedia *ifm;
struct mii_softc *miisc;
int cfg, media;
sc = ifp->if_softc;
mii = device_get_softc(sc->miibus);
ifm = &mii->mii_media;
media = ifm->ifm_cur->ifm_media;
/* Do not do anything if interface is not up. */
if ((ifp->if_flags & IFF_UP) == 0)
return (0);
/*
* Lookup current selected PHY.
*/
if (IFM_INST(media) == sc->serinst) {
sc->phyid = EPIC_SERIAL;
sc->physc = NULL;
} else {
/* If we're not selecting serial interface, select MII mode. */
sc->miicfg &= ~MIICFG_SERIAL_ENABLE;
CSR_WRITE_4(sc, MIICFG, sc->miicfg);
/* Default to unknown PHY. */
sc->phyid = EPIC_UNKN_PHY;
/* Lookup selected PHY. */
for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
miisc = LIST_NEXT(miisc, mii_list)) {
if (IFM_INST(media) == miisc->mii_inst) {
sc->physc = miisc;
break;
}
}
/* Identify selected PHY. */
if (sc->physc) {
int id1, id2, model, oui;
id1 = PHY_READ(sc->physc, MII_PHYIDR1);
id2 = PHY_READ(sc->physc, MII_PHYIDR2);
oui = MII_OUI(id1, id2);
model = MII_MODEL(id2);
switch (oui) {
case MII_OUI_QUALSEMI:
if (model == MII_MODEL_QUALSEMI_QS6612)
sc->phyid = EPIC_QS6612_PHY;
break;
case MII_OUI_xxALTIMA:
if (model == MII_MODEL_xxALTIMA_AC101)
sc->phyid = EPIC_AC101_PHY;
break;
case MII_OUI_xxLEVEL1:
if (model == MII_MODEL_xxLEVEL1_LXT970)
sc->phyid = EPIC_LXT970_PHY;
break;
}
}
}
/*
* Do PHY specific card setup.
*/
/*
* Call this, to isolate all not selected PHYs and
* set up selected.
*/
mii_mediachg(mii);
/* Do our own setup. */
switch (sc->phyid) {
case EPIC_QS6612_PHY:
break;
case EPIC_AC101_PHY:
/* We have to powerup fiber tranceivers. */
if (IFM_SUBTYPE(media) == IFM_100_FX)
sc->miicfg |= MIICFG_694_ENABLE;
else
sc->miicfg &= ~MIICFG_694_ENABLE;
CSR_WRITE_4(sc, MIICFG, sc->miicfg);
break;
case EPIC_LXT970_PHY:
/* We have to powerup fiber tranceivers. */
cfg = PHY_READ(sc->physc, MII_LXTPHY_CONFIG);
if (IFM_SUBTYPE(media) == IFM_100_FX)
cfg |= CONFIG_LEDC1 | CONFIG_LEDC0;
else
cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
PHY_WRITE(sc->physc, MII_LXTPHY_CONFIG, cfg);
break;
case EPIC_SERIAL:
/* Select serial PHY (10base2/BNC usually). */
sc->miicfg |= MIICFG_694_ENABLE | MIICFG_SERIAL_ENABLE;
CSR_WRITE_4(sc, MIICFG, sc->miicfg);
/* There is no driver to fill this. */
mii->mii_media_active = media;
mii->mii_media_status = 0;
/*
* We need to call this manually as it wasn't called
* in mii_mediachg().
*/
epic_miibus_statchg(sc->dev);
break;
default:
device_printf(sc->dev, "ERROR! Unknown PHY selected\n");
return (EINVAL);
}
return (0);
}
/*
* Report current media status.
*/
static void
epic_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
epic_softc_t *sc;
struct mii_data *mii;
struct ifmedia *ifm;
sc = ifp->if_softc;
mii = device_get_softc(sc->miibus);
ifm = &mii->mii_media;
/* Nothing should be selected if interface is down. */
if ((ifp->if_flags & IFF_UP) == 0) {
ifmr->ifm_active = IFM_NONE;
ifmr->ifm_status = 0;
return;
}
/* Call underlying pollstat, if not serial PHY. */
if (sc->phyid != EPIC_SERIAL)
mii_pollstat(mii);
/* Simply copy media info. */
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
/*
* Callback routine, called on media change.
*/
static void
epic_miibus_statchg(dev)
device_t dev;
{
epic_softc_t *sc;
struct mii_data *mii;
int media;
sc = device_get_softc(dev);
mii = device_get_softc(sc->miibus);
media = mii->mii_media_active;
sc->txcon &= ~(TXCON_LOOPBACK_MODE | TXCON_FULL_DUPLEX);
/*
* If we are in full-duplex mode or loopback operation,
* we need to decouple receiver and transmitter.
*/
if (IFM_OPTIONS(media) & (IFM_FDX | IFM_LOOP))
sc->txcon |= TXCON_FULL_DUPLEX;
/* On some cards we need manualy set fullduplex led. */
if (sc->cardid == SMC9432FTX ||
sc->cardid == SMC9432FTX_SC) {
if (IFM_OPTIONS(media) & IFM_FDX)
sc->miicfg |= MIICFG_694_ENABLE;
else
sc->miicfg &= ~MIICFG_694_ENABLE;
CSR_WRITE_4(sc, MIICFG, sc->miicfg);
}
/* Update baudrate. */
if (IFM_SUBTYPE(media) == IFM_100_TX ||
IFM_SUBTYPE(media) == IFM_100_FX)
sc->sc_if.if_baudrate = 100000000;
else
sc->sc_if.if_baudrate = 10000000;
epic_stop_activity(sc);
epic_set_tx_mode(sc);
epic_start_activity(sc);
}
static void
epic_miibus_mediainit(dev)
device_t dev;
{
epic_softc_t *sc;
struct mii_data *mii;
struct ifmedia *ifm;
int media;
sc = device_get_softc(dev);
mii = device_get_softc(sc->miibus);
ifm = &mii->mii_media;
/*
* Add Serial Media Interface if present, this applies to
* SMC9432BTX serie.
*/
if (CSR_READ_4(sc, MIICFG) & MIICFG_PHY_PRESENT) {
/* Store its instance. */
sc->serinst = mii->mii_instance++;
/* Add as 10base2/BNC media. */
media = IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0, sc->serinst);
ifmedia_add(ifm, media, 0, NULL);
/* Report to user. */
device_printf(sc->dev, "serial PHY detected (10Base2/BNC)\n");
}
}
/*
* Reset chip and update media.
*/
static void
epic_init(xsc)
void *xsc;
{
epic_softc_t *sc = xsc;
struct ifnet *ifp = &sc->sc_if;
int s, i;
s = splimp();
/* If interface is already running, then we need not do anything. */
if (ifp->if_flags & IFF_RUNNING) {
splx(s);
return;
}
/* Soft reset the chip (we have to power up card before). */
CSR_WRITE_4(sc, GENCTL, 0);
CSR_WRITE_4(sc, GENCTL, GENCTL_SOFT_RESET);
/*
* Reset takes 15 pci ticks which depends on PCI bus speed.
* Assuming it >= 33000000 hz, we have wait at least 495e-6 sec.
*/
DELAY(500);
/* Wake up */
CSR_WRITE_4(sc, GENCTL, 0);
/* Workaround for Application Note 7-15 */
for (i = 0; i < 16; i++)
CSR_WRITE_4(sc, TEST1, TEST1_CLOCK_TEST);
/* Give rings to EPIC */
CSR_WRITE_4(sc, PRCDAR, sc->rx_addr);
CSR_WRITE_4(sc, PTCDAR, sc->tx_addr);
/* Put node address to EPIC. */
CSR_WRITE_4(sc, LAN0, ((u_int16_t *)sc->sc_macaddr)[0]);
CSR_WRITE_4(sc, LAN1, ((u_int16_t *)sc->sc_macaddr)[1]);
CSR_WRITE_4(sc, LAN2, ((u_int16_t *)sc->sc_macaddr)[2]);
/* Set tx mode, includeing transmit threshold. */
epic_set_tx_mode(sc);
/* Compute and set RXCON. */
epic_set_rx_mode(sc);
/* Set multicast table. */
epic_set_mc_table(sc);
/* Enable interrupts by setting the interrupt mask. */
CSR_WRITE_4(sc, INTMASK,
INTSTAT_RCC | /* INTSTAT_RQE | INTSTAT_OVW | INTSTAT_RXE | */
/* INTSTAT_TXC | */ INTSTAT_TCC | INTSTAT_TQE | INTSTAT_TXU |
INTSTAT_FATAL);
/* Acknowledge all pending interrupts. */
CSR_WRITE_4(sc, INTSTAT, CSR_READ_4(sc, INTSTAT));
/* Enable interrupts, set for PCI read multiple and etc */
CSR_WRITE_4(sc, GENCTL,
GENCTL_ENABLE_INTERRUPT | GENCTL_MEMORY_READ_MULTIPLE |
GENCTL_ONECOPY | GENCTL_RECEIVE_FIFO_THRESHOLD64);
/* Mark interface running ... */
if (ifp->if_flags & IFF_UP)
ifp->if_flags |= IFF_RUNNING;
else
ifp->if_flags &= ~IFF_RUNNING;
/* ... and free */
ifp->if_flags &= ~IFF_OACTIVE;
/* Start Rx process */
epic_start_activity(sc);
/* Set appropriate media */
epic_ifmedia_upd(ifp);
sc->stat_ch = timeout((timeout_t *)epic_stats_update, sc, hz);
splx(s);
}
/*
* Synopsis: calculate and set Rx mode. Chip must be in idle state to
* access RXCON.
*/
static void
epic_set_rx_mode(sc)
epic_softc_t *sc;
{
u_int32_t flags;
u_int32_t rxcon;
flags = sc->sc_if.if_flags;
rxcon = RXCON_DEFAULT;
#ifdef EPIC_EARLY_RX
rxcon |= RXCON_EARLY_RX;
#endif
rxcon |= (flags & IFF_PROMISC) ? RXCON_PROMISCUOUS_MODE : 0;
CSR_WRITE_4(sc, RXCON, rxcon);
}
/*
* Synopsis: Set transmit control register. Chip must be in idle state to
* access TXCON.
*/
static void
epic_set_tx_mode(sc)
epic_softc_t *sc;
{
if (sc->txcon & TXCON_EARLY_TRANSMIT_ENABLE)
CSR_WRITE_4(sc, ETXTHR, sc->tx_threshold);
CSR_WRITE_4(sc, TXCON, sc->txcon);
}
/*
* Synopsis: Program multicast filter honoring IFF_ALLMULTI and IFF_PROMISC
* flags (note that setting PROMISC bit in EPIC's RXCON will only touch
* individual frames, multicast filter must be manually programmed).
*
* Note: EPIC must be in idle state.
*/
static void
epic_set_mc_table(sc)
epic_softc_t *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int16_t filter[4];
u_int8_t h;
ifp = &sc->sc_if;
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
CSR_WRITE_4(sc, MC0, 0xFFFF);
CSR_WRITE_4(sc, MC1, 0xFFFF);
CSR_WRITE_4(sc, MC2, 0xFFFF);
CSR_WRITE_4(sc, MC3, 0xFFFF);
return;
}
filter[0] = 0;
filter[1] = 0;
filter[2] = 0;
filter[3] = 0;
#if __FreeBSD_version < 500000
LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
#else
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
#endif
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = epic_calchash(
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
filter[h >> 4] |= 1 << (h & 0xF);
}
CSR_WRITE_4(sc, MC0, filter[0]);
CSR_WRITE_4(sc, MC1, filter[1]);
CSR_WRITE_4(sc, MC2, filter[2]);
CSR_WRITE_4(sc, MC3, filter[3]);
}
/*
* Synopsis: calculate EPIC's hash of multicast address.
*/
static u_int8_t
epic_calchash(addr)
caddr_t addr;
{
u_int32_t crc, carry;
int i, j;
u_int8_t c;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (i = 0; i < 6; i++) {
c = *(addr + i);
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
crc <<= 1;
c >>= 1;
if (carry)
crc = (crc ^ 0x04c11db6) | carry;
}
}
return ((crc >> 26) & 0x3F);
}
/*
* Synopsis: Start receive process and transmit one, if they need.
*/
static void
epic_start_activity(sc)
epic_softc_t *sc;
{
/* Start rx process. */
CSR_WRITE_4(sc, COMMAND, COMMAND_RXQUEUED | COMMAND_START_RX |
(sc->pending_txs ? COMMAND_TXQUEUED : 0));
}
/*
* Synopsis: Completely stop Rx and Tx processes. If TQE is set additional
* packet needs to be queued to stop Tx DMA.
*/
static void
epic_stop_activity(sc)
epic_softc_t *sc;
{
int status, i;
/* Stop Tx and Rx DMA. */
CSR_WRITE_4(sc, COMMAND,
COMMAND_STOP_RX | COMMAND_STOP_RDMA | COMMAND_STOP_TDMA);
/* Wait Rx and Tx DMA to stop (why 1 ms ??? XXX). */
for (i = 0; i < 0x1000; i++) {
status = CSR_READ_4(sc, INTSTAT) &
(INTSTAT_TXIDLE | INTSTAT_RXIDLE);
if (status == (INTSTAT_TXIDLE | INTSTAT_RXIDLE))
break;
DELAY(1);
}
/* Catch all finished packets. */
epic_rx_done(sc);
epic_tx_done(sc);
status = CSR_READ_4(sc, INTSTAT);
if ((status & INTSTAT_RXIDLE) == 0)
device_printf(sc->dev, "ERROR! Can't stop Rx DMA\n");
if ((status & INTSTAT_TXIDLE) == 0)
device_printf(sc->dev, "ERROR! Can't stop Tx DMA\n");
/*
* May need to queue one more packet if TQE, this is rare
* but existing case.
*/
if ((status & INTSTAT_TQE) && !(status & INTSTAT_TXIDLE))
(void)epic_queue_last_packet(sc);
}
/*
* The EPIC transmitter may stuck in TQE state. It will not go IDLE until
* a packet from current descriptor will be copied to internal RAM. We
* compose a dummy packet here and queue it for transmission.
*
* XXX the packet will then be actually sent over network...
*/
static int
epic_queue_last_packet(sc)
epic_softc_t *sc;
{
struct epic_tx_desc *desc;
struct epic_frag_list *flist;
struct epic_tx_buffer *buf;
struct mbuf *m0;
int error, i;
device_printf(sc->dev, "queue last packet\n");
desc = sc->tx_desc + sc->cur_tx;
flist = sc->tx_flist + sc->cur_tx;
buf = sc->tx_buffer + sc->cur_tx;
if ((desc->status & 0x8000) || (buf->mbuf != NULL))
return (EBUSY);
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == NULL)
return (ENOBUFS);
/* Prepare mbuf. */
m0->m_len = min(MHLEN, ETHER_MIN_LEN - ETHER_CRC_LEN);
m0->m_pkthdr.len = m0->m_len;
m0->m_pkthdr.rcvif = &sc->sc_if;
bzero(mtod(m0, caddr_t), m0->m_len);
/* Fill fragments list. */
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m0,
epic_dma_map_txbuf, flist, 0);
if (error) {
m_freem(m0);
return (error);
}
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREWRITE);
/* Fill in descriptor. */
buf->mbuf = m0;
sc->pending_txs++;
sc->cur_tx = (sc->cur_tx + 1) & TX_RING_MASK;
desc->control = 0x01;
desc->txlength = max(m0->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN);
desc->status = 0x8000;
bus_dmamap_sync(sc->ttag, sc->tmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->ftag, sc->fmap, BUS_DMASYNC_PREWRITE);
/* Launch transmission. */
CSR_WRITE_4(sc, COMMAND, COMMAND_STOP_TDMA | COMMAND_TXQUEUED);
/* Wait Tx DMA to stop (for how long??? XXX) */
for (i = 0; i < 1000; i++) {
if (CSR_READ_4(sc, INTSTAT) & INTSTAT_TXIDLE)
break;
DELAY(1);
}
if ((CSR_READ_4(sc, INTSTAT) & INTSTAT_TXIDLE) == 0)
device_printf(sc->dev, "ERROR! can't stop Tx DMA (2)\n");
else
epic_tx_done(sc);
return (0);
}
/*
* Synopsis: Shut down board and deallocates rings.
*/
static void
epic_stop(sc)
epic_softc_t *sc;
{
int s;
s = splimp();
sc->sc_if.if_timer = 0;
untimeout((timeout_t *)epic_stats_update, sc, sc->stat_ch);
/* Disable interrupts */
CSR_WRITE_4(sc, INTMASK, 0);
CSR_WRITE_4(sc, GENCTL, 0);
/* Try to stop Rx and TX processes */
epic_stop_activity(sc);
/* Reset chip */
CSR_WRITE_4(sc, GENCTL, GENCTL_SOFT_RESET);
DELAY(1000);
/* Make chip go to bed */
CSR_WRITE_4(sc, GENCTL, GENCTL_POWER_DOWN);
/* Mark as stoped */
sc->sc_if.if_flags &= ~IFF_RUNNING;
splx(s);
}
/*
* Synopsis: This function should free all memory allocated for rings.
*/
static void
epic_free_rings(sc)
epic_softc_t *sc;
{
int i;
for (i = 0; i < RX_RING_SIZE; i++) {
struct epic_rx_buffer *buf = sc->rx_buffer + i;
struct epic_rx_desc *desc = sc->rx_desc + i;
desc->status = 0;
desc->buflength = 0;
desc->bufaddr = 0;
if (buf->mbuf) {
bus_dmamap_unload(sc->mtag, buf->map);
bus_dmamap_destroy(sc->mtag, buf->map);
m_freem(buf->mbuf);
}
buf->mbuf = NULL;
}
if (sc->sparemap != NULL)
bus_dmamap_destroy(sc->mtag, sc->sparemap);
for (i = 0; i < TX_RING_SIZE; i++) {
struct epic_tx_buffer *buf = sc->tx_buffer + i;
struct epic_tx_desc *desc = sc->tx_desc + i;
desc->status = 0;
desc->buflength = 0;
desc->bufaddr = 0;
if (buf->mbuf) {
bus_dmamap_unload(sc->mtag, buf->map);
bus_dmamap_destroy(sc->mtag, buf->map);
m_freem(buf->mbuf);
}
buf->mbuf = NULL;
}
}
/*
* Synopsis: Allocates mbufs for Rx ring and point Rx descs to them.
* Point Tx descs to fragment lists. Check that all descs and fraglists
* are bounded and aligned properly.
*/
static int
epic_init_rings(sc)
epic_softc_t *sc;
{
int error, i;
sc->cur_rx = sc->cur_tx = sc->dirty_tx = sc->pending_txs = 0;
/* Initialize the RX descriptor ring. */
for (i = 0; i < RX_RING_SIZE; i++) {
struct epic_rx_buffer *buf = sc->rx_buffer + i;
struct epic_rx_desc *desc = sc->rx_desc + i;
desc->status = 0; /* Owned by driver */
desc->next = sc->rx_addr +
((i + 1) & RX_RING_MASK) * sizeof(struct epic_rx_desc);
if ((desc->next & 3) ||
((desc->next & PAGE_MASK) + sizeof *desc) > PAGE_SIZE) {
epic_free_rings(sc);
return (EFAULT);
}
buf->mbuf = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (buf->mbuf == NULL) {
epic_free_rings(sc);
return (ENOBUFS);
}
buf->mbuf->m_len = buf->mbuf->m_pkthdr.len = MCLBYTES;
m_adj(buf->mbuf, ETHER_ALIGN);
error = bus_dmamap_create(sc->mtag, 0, &buf->map);
if (error) {
epic_free_rings(sc);
return (error);
}
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, buf->mbuf,
epic_dma_map_rxbuf, desc, 0);
if (error) {
epic_free_rings(sc);
return (error);
}
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREREAD);
desc->buflength = buf->mbuf->m_len; /* Max RX buffer length */
desc->status = 0x8000; /* Set owner bit to NIC */
}
bus_dmamap_sync(sc->rtag, sc->rmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Create the spare DMA map. */
error = bus_dmamap_create(sc->mtag, 0, &sc->sparemap);
if (error) {
epic_free_rings(sc);
return (error);
}
/* Initialize the TX descriptor ring. */
for (i = 0; i < TX_RING_SIZE; i++) {
struct epic_tx_buffer *buf = sc->tx_buffer + i;
struct epic_tx_desc *desc = sc->tx_desc + i;
desc->status = 0;
desc->next = sc->tx_addr +
((i + 1) & TX_RING_MASK) * sizeof(struct epic_tx_desc);
if ((desc->next & 3) ||
((desc->next & PAGE_MASK) + sizeof *desc) > PAGE_SIZE) {
epic_free_rings(sc);
return (EFAULT);
}
buf->mbuf = NULL;
desc->bufaddr = sc->frag_addr +
i * sizeof(struct epic_frag_list);
if ((desc->bufaddr & 3) ||
((desc->bufaddr & PAGE_MASK) +
sizeof(struct epic_frag_list)) > PAGE_SIZE) {
epic_free_rings(sc);
return (EFAULT);
}
error = bus_dmamap_create(sc->mtag, 0, &buf->map);
if (error) {
epic_free_rings(sc);
return (error);
}
}
bus_dmamap_sync(sc->ttag, sc->tmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->ftag, sc->fmap, BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* EEPROM operation functions
*/
static void
epic_write_eepromreg(sc, val)
epic_softc_t *sc;
u_int8_t val;
{
u_int16_t i;
CSR_WRITE_1(sc, EECTL, val);
for (i = 0; i < 0xFF; i++) {
if ((CSR_READ_1(sc, EECTL) & 0x20) == 0)
break;
}
}
static u_int8_t
epic_read_eepromreg(sc)
epic_softc_t *sc;
{
return (CSR_READ_1(sc, EECTL));
}
static u_int8_t
epic_eeprom_clock(sc, val)
epic_softc_t *sc;
u_int8_t val;
{
epic_write_eepromreg(sc, val);
epic_write_eepromreg(sc, (val | 0x4));
epic_write_eepromreg(sc, val);
return (epic_read_eepromreg(sc));
}
static void
epic_output_eepromw(sc, val)
epic_softc_t *sc;
u_int16_t val;
{
int i;
for (i = 0xF; i >= 0; i--) {
if (val & (1 << i))
epic_eeprom_clock(sc, 0x0B);
else
epic_eeprom_clock(sc, 0x03);
}
}
static u_int16_t
epic_input_eepromw(sc)
epic_softc_t *sc;
{
u_int16_t retval = 0;
int i;
for (i = 0xF; i >= 0; i--) {
if (epic_eeprom_clock(sc, 0x3) & 0x10)
retval |= (1 << i);
}
return (retval);
}
static int
epic_read_eeprom(sc, loc)
epic_softc_t *sc;
u_int16_t loc;
{
u_int16_t dataval;
u_int16_t read_cmd;
epic_write_eepromreg(sc, 3);
if (epic_read_eepromreg(sc) & 0x40)
read_cmd = (loc & 0x3F) | 0x180;
else
read_cmd = (loc & 0xFF) | 0x600;
epic_output_eepromw(sc, read_cmd);
dataval = epic_input_eepromw(sc);
epic_write_eepromreg(sc, 1);
return (dataval);
}
/*
* Here goes MII read/write routines.
*/
static int
epic_read_phy_reg(sc, phy, reg)
epic_softc_t *sc;
int phy, reg;
{
int i;
CSR_WRITE_4(sc, MIICTL, ((reg << 4) | (phy << 9) | 0x01));
for (i = 0; i < 0x100; i++) {
if ((CSR_READ_4(sc, MIICTL) & 0x01) == 0)
break;
DELAY(1);
}
return (CSR_READ_4(sc, MIIDATA));
}
static void
epic_write_phy_reg(sc, phy, reg, val)
epic_softc_t *sc;
int phy, reg, val;
{
int i;
CSR_WRITE_4(sc, MIIDATA, val);
CSR_WRITE_4(sc, MIICTL, ((reg << 4) | (phy << 9) | 0x02));
for(i = 0; i < 0x100; i++) {
if ((CSR_READ_4(sc, MIICTL) & 0x02) == 0)
break;
DELAY(1);
}
}
static int
epic_miibus_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
epic_softc_t *sc;
sc = device_get_softc(dev);
return (PHY_READ_2(sc, phy, reg));
}
static int
epic_miibus_writereg(dev, phy, reg, data)
device_t dev;
int phy, reg, data;
{
epic_softc_t *sc;
sc = device_get_softc(dev);
PHY_WRITE_2(sc, phy, reg, data);
return (0);
}