freebsd-dev/sys/arm/ti/ti_pruss.c
Pedro F. Giffuni af3dc4a7ca sys/arm: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 15:04:10 +00:00

767 lines
19 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2013 Rui Paulo <rpaulo@FreeBSD.org>
* Copyright (c) 2017 Manuel Stuehn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/poll.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/fcntl.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/event.h>
#include <sys/selinfo.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <machine/intr.h>
#include <machine/atomic.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <arm/ti/ti_prcm.h>
#include <arm/ti/ti_pruss.h>
#ifdef DEBUG
#define DPRINTF(fmt, ...) do { \
printf("%s: ", __func__); \
printf(fmt, __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(fmt, ...)
#endif
static d_open_t ti_pruss_irq_open;
static d_read_t ti_pruss_irq_read;
static d_poll_t ti_pruss_irq_poll;
static device_probe_t ti_pruss_probe;
static device_attach_t ti_pruss_attach;
static device_detach_t ti_pruss_detach;
static void ti_pruss_intr(void *);
static d_open_t ti_pruss_open;
static d_mmap_t ti_pruss_mmap;
static void ti_pruss_irq_kqread_detach(struct knote *);
static int ti_pruss_irq_kqevent(struct knote *, long);
static d_kqfilter_t ti_pruss_irq_kqfilter;
static void ti_pruss_privdtor(void *data);
#define TI_PRUSS_PRU_IRQS 2
#define TI_PRUSS_HOST_IRQS 8
#define TI_PRUSS_IRQS (TI_PRUSS_HOST_IRQS+TI_PRUSS_PRU_IRQS)
#define TI_PRUSS_EVENTS 64
#define NOT_SET_STR "NONE"
#define TI_TS_ARRAY 16
struct ctl
{
size_t cnt;
size_t idx;
};
struct ts_ring_buf
{
struct ctl ctl;
uint64_t ts[TI_TS_ARRAY];
};
struct ti_pruss_irqsc
{
struct mtx sc_mtx;
struct cdev *sc_pdev;
struct selinfo sc_selinfo;
int8_t channel;
int8_t last;
int8_t event;
bool enable;
struct ts_ring_buf tstamps;
};
static struct cdevsw ti_pruss_cdevirq = {
.d_version = D_VERSION,
.d_name = "ti_pruss_irq",
.d_open = ti_pruss_irq_open,
.d_read = ti_pruss_irq_read,
.d_poll = ti_pruss_irq_poll,
.d_kqfilter = ti_pruss_irq_kqfilter,
};
struct ti_pruss_softc {
struct mtx sc_mtx;
struct resource *sc_mem_res;
struct resource *sc_irq_res[TI_PRUSS_HOST_IRQS];
void *sc_intr[TI_PRUSS_HOST_IRQS];
struct ti_pruss_irqsc sc_irq_devs[TI_PRUSS_IRQS];
bus_space_tag_t sc_bt;
bus_space_handle_t sc_bh;
struct cdev *sc_pdev;
struct selinfo sc_selinfo;
bool sc_glob_irqen;
};
static struct cdevsw ti_pruss_cdevsw = {
.d_version = D_VERSION,
.d_name = "ti_pruss",
.d_open = ti_pruss_open,
.d_mmap = ti_pruss_mmap,
};
static device_method_t ti_pruss_methods[] = {
DEVMETHOD(device_probe, ti_pruss_probe),
DEVMETHOD(device_attach, ti_pruss_attach),
DEVMETHOD(device_detach, ti_pruss_detach),
DEVMETHOD_END
};
static driver_t ti_pruss_driver = {
"ti_pruss",
ti_pruss_methods,
sizeof(struct ti_pruss_softc)
};
static devclass_t ti_pruss_devclass;
DRIVER_MODULE(ti_pruss, simplebus, ti_pruss_driver, ti_pruss_devclass, 0, 0);
MODULE_DEPEND(ti_pruss, ti_prcm, 1, 1, 1);
static struct resource_spec ti_pruss_irq_spec[] = {
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 1, RF_ACTIVE },
{ SYS_RES_IRQ, 2, RF_ACTIVE },
{ SYS_RES_IRQ, 3, RF_ACTIVE },
{ SYS_RES_IRQ, 4, RF_ACTIVE },
{ SYS_RES_IRQ, 5, RF_ACTIVE },
{ SYS_RES_IRQ, 6, RF_ACTIVE },
{ SYS_RES_IRQ, 7, RF_ACTIVE },
{ -1, 0, 0 }
};
CTASSERT(TI_PRUSS_HOST_IRQS == nitems(ti_pruss_irq_spec) - 1);
static int
ti_pruss_irq_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
struct ctl* irqs;
struct ti_pruss_irqsc *sc;
sc = dev->si_drv1;
irqs = malloc(sizeof(struct ctl), M_DEVBUF, M_WAITOK);
if (!irqs)
return (ENOMEM);
irqs->cnt = sc->tstamps.ctl.cnt;
irqs->idx = sc->tstamps.ctl.idx;
return devfs_set_cdevpriv(irqs, ti_pruss_privdtor);
}
static void
ti_pruss_privdtor(void *data)
{
free(data, M_DEVBUF);
}
static int
ti_pruss_irq_poll(struct cdev *dev, int events, struct thread *td)
{
struct ctl* irqs;
struct ti_pruss_irqsc *sc;
sc = dev->si_drv1;
devfs_get_cdevpriv((void**)&irqs);
if (events & (POLLIN | POLLRDNORM)) {
if (sc->tstamps.ctl.cnt != irqs->cnt)
return events & (POLLIN | POLLRDNORM);
else
selrecord(td, &sc->sc_selinfo);
}
return 0;
}
static int
ti_pruss_irq_read(struct cdev *cdev, struct uio *uio, int ioflag)
{
const size_t ts_len = sizeof(uint64_t);
struct ti_pruss_irqsc* irq;
struct ctl* priv;
int error = 0;
size_t idx;
ssize_t level;
irq = cdev->si_drv1;
if (uio->uio_resid < ts_len)
return (EINVAL);
error = devfs_get_cdevpriv((void**)&priv);
if (error)
return (error);
mtx_lock(&irq->sc_mtx);
if (irq->tstamps.ctl.cnt - priv->cnt > TI_TS_ARRAY)
{
priv->cnt = irq->tstamps.ctl.cnt;
priv->idx = irq->tstamps.ctl.idx;
mtx_unlock(&irq->sc_mtx);
return (ENXIO);
}
do {
idx = priv->idx;
level = irq->tstamps.ctl.idx - idx;
if (level < 0)
level += TI_TS_ARRAY;
if (level == 0) {
if (ioflag & O_NONBLOCK) {
mtx_unlock(&irq->sc_mtx);
return (EWOULDBLOCK);
}
error = msleep(irq, &irq->sc_mtx, PCATCH | PDROP,
"pruirq", 0);
if (error)
return error;
mtx_lock(&irq->sc_mtx);
}
}while(level == 0);
mtx_unlock(&irq->sc_mtx);
error = uiomove(&irq->tstamps.ts[idx], ts_len, uio);
if (++idx == TI_TS_ARRAY)
idx = 0;
priv->idx = idx;
atomic_add_32(&priv->cnt, 1);
return (error);
}
static struct ti_pruss_irq_arg {
int irq;
struct ti_pruss_softc *sc;
} ti_pruss_irq_args[TI_PRUSS_IRQS];
static __inline uint32_t
ti_pruss_reg_read(struct ti_pruss_softc *sc, uint32_t reg)
{
return (bus_space_read_4(sc->sc_bt, sc->sc_bh, reg));
}
static __inline void
ti_pruss_reg_write(struct ti_pruss_softc *sc, uint32_t reg, uint32_t val)
{
bus_space_write_4(sc->sc_bt, sc->sc_bh, reg, val);
}
static __inline void
ti_pruss_interrupts_clear(struct ti_pruss_softc *sc)
{
/* disable global interrupt */
ti_pruss_reg_write(sc, PRUSS_INTC_GER, 0 );
/* clear all events */
ti_pruss_reg_write(sc, PRUSS_INTC_SECR0, 0xFFFFFFFF);
ti_pruss_reg_write(sc, PRUSS_INTC_SECR1, 0xFFFFFFFF);
/* disable all host interrupts */
ti_pruss_reg_write(sc, PRUSS_INTC_HIER, 0);
}
static __inline int
ti_pruss_interrupts_enable(struct ti_pruss_softc *sc, int8_t irq, bool enable)
{
if (enable && ((sc->sc_irq_devs[irq].channel == -1) ||
(sc->sc_irq_devs[irq].event== -1)))
{
device_printf( sc->sc_pdev->si_drv1,
"Interrupt chain not fully configured, not possible to enable\n" );
return (EINVAL);
}
sc->sc_irq_devs[irq].enable = enable;
if (sc->sc_irq_devs[irq].sc_pdev) {
destroy_dev(sc->sc_irq_devs[irq].sc_pdev);
sc->sc_irq_devs[irq].sc_pdev = NULL;
}
if (enable) {
sc->sc_irq_devs[irq].sc_pdev = make_dev(&ti_pruss_cdevirq, 0, UID_ROOT, GID_WHEEL,
0600, "pruss%d.irq%d", device_get_unit(sc->sc_pdev->si_drv1), irq);
sc->sc_irq_devs[irq].sc_pdev->si_drv1 = &sc->sc_irq_devs[irq];
sc->sc_irq_devs[irq].tstamps.ctl.idx = 0;
}
uint32_t reg = enable ? PRUSS_INTC_HIEISR : PRUSS_INTC_HIDISR;
ti_pruss_reg_write(sc, reg, sc->sc_irq_devs[irq].channel);
reg = enable ? PRUSS_INTC_EISR : PRUSS_INTC_EICR;
ti_pruss_reg_write(sc, reg, sc->sc_irq_devs[irq].event );
return (0);
}
static __inline void
ti_pruss_map_write(struct ti_pruss_softc *sc, uint32_t basereg, uint8_t index, uint8_t content)
{
const size_t regadr = basereg + index & ~0x03;
const size_t bitpos = (index & 0x03) * 8;
uint32_t rmw = ti_pruss_reg_read(sc, regadr);
rmw = (rmw & ~( 0xF << bitpos)) | ( (content & 0xF) << bitpos);
ti_pruss_reg_write(sc, regadr, rmw);
}
static int
ti_pruss_event_map( SYSCTL_HANDLER_ARGS )
{
struct ti_pruss_softc *sc;
const int8_t irq = arg2;
int err;
char event[sizeof(NOT_SET_STR)];
sc = arg1;
if(sc->sc_irq_devs[irq].event == -1)
bcopy(NOT_SET_STR, event, sizeof(event));
else
snprintf(event, sizeof(event), "%d", sc->sc_irq_devs[irq].event);
err = sysctl_handle_string(oidp, event, sizeof(event), req);
if(err != 0)
return (err);
if (req->newptr) { // write event
if (strcmp(NOT_SET_STR, event) == 0) {
ti_pruss_interrupts_enable(sc, irq, false);
sc->sc_irq_devs[irq].event = -1;
} else {
if (sc->sc_irq_devs[irq].channel == -1) {
device_printf( sc->sc_pdev->si_drv1,
"corresponding channel not configured\n");
return (ENXIO);
}
const int8_t channelnr = sc->sc_irq_devs[irq].channel;
const int8_t eventnr = strtol( event, NULL, 10 ); // TODO: check if strol is valid
if (eventnr > TI_PRUSS_EVENTS || eventnr < 0) {
device_printf( sc->sc_pdev->si_drv1,
"Event number %d not valid (0 - %d)",
channelnr, TI_PRUSS_EVENTS -1);
return (EINVAL);
}
sc->sc_irq_devs[irq].channel = channelnr;
sc->sc_irq_devs[irq].event = eventnr;
// event[nr] <= channel
ti_pruss_map_write(sc, PRUSS_INTC_CMR_BASE,
eventnr, channelnr);
}
}
return (err);
}
static int
ti_pruss_channel_map(SYSCTL_HANDLER_ARGS)
{
struct ti_pruss_softc *sc;
int err;
char channel[sizeof(NOT_SET_STR)];
const int8_t irq = arg2;
sc = arg1;
if (sc->sc_irq_devs[irq].channel == -1)
bcopy(NOT_SET_STR, channel, sizeof(channel));
else
snprintf(channel, sizeof(channel), "%d", sc->sc_irq_devs[irq].channel);
err = sysctl_handle_string(oidp, channel, sizeof(channel), req);
if (err != 0)
return (err);
if (req->newptr) { // write event
if (strcmp(NOT_SET_STR, channel) == 0) {
ti_pruss_interrupts_enable(sc, irq, false);
ti_pruss_reg_write(sc, PRUSS_INTC_HIDISR,
sc->sc_irq_devs[irq].channel);
sc->sc_irq_devs[irq].channel = -1;
} else {
const int8_t channelnr = strtol(channel, NULL, 10); // TODO: check if strol is valid
if (channelnr > TI_PRUSS_IRQS || channelnr < 0)
{
device_printf(sc->sc_pdev->si_drv1,
"Channel number %d not valid (0 - %d)",
channelnr, TI_PRUSS_IRQS-1);
return (EINVAL);
}
sc->sc_irq_devs[irq].channel = channelnr;
sc->sc_irq_devs[irq].last = -1;
// channel[nr] <= irqnr
ti_pruss_map_write(sc, PRUSS_INTC_HMR_BASE,
irq, channelnr);
}
}
return (err);
}
static int
ti_pruss_interrupt_enable(SYSCTL_HANDLER_ARGS)
{
struct ti_pruss_softc *sc;
int err;
bool irqenable;
const int8_t irq = arg2;
sc = arg1;
irqenable = sc->sc_irq_devs[arg2].enable;
err = sysctl_handle_bool(oidp, &irqenable, arg2, req);
if (err != 0)
return (err);
if (req->newptr) // write enable
return ti_pruss_interrupts_enable(sc, irq, irqenable);
return (err);
}
static int
ti_pruss_global_interrupt_enable(SYSCTL_HANDLER_ARGS)
{
struct ti_pruss_softc *sc;
int err;
bool glob_irqen;
sc = arg1;
glob_irqen = sc->sc_glob_irqen;
err = sysctl_handle_bool(oidp, &glob_irqen, arg2, req);
if (err != 0)
return (err);
if (req->newptr) {
sc->sc_glob_irqen = glob_irqen;
ti_pruss_reg_write(sc, PRUSS_INTC_GER, glob_irqen);
}
return (err);
}
static int
ti_pruss_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "ti,pruss-v1") ||
ofw_bus_is_compatible(dev, "ti,pruss-v2")) {
device_set_desc(dev, "TI Programmable Realtime Unit Subsystem");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
ti_pruss_attach(device_t dev)
{
struct ti_pruss_softc *sc;
int rid, i;
if (ti_prcm_clk_enable(PRUSS_CLK) != 0) {
device_printf(dev, "could not enable PRUSS clock\n");
return (ENXIO);
}
sc = device_get_softc(dev);
rid = 0;
mtx_init(&sc->sc_mtx, "TI PRUSS", NULL, MTX_DEF);
sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->sc_mem_res == NULL) {
device_printf(dev, "could not allocate memory resource\n");
return (ENXIO);
}
struct sysctl_ctx_list *clist = device_get_sysctl_ctx(dev);
if (!clist)
return (EINVAL);
struct sysctl_oid *poid;
poid = device_get_sysctl_tree( dev );
if (!poid)
return (EINVAL);
sc->sc_glob_irqen = false;
struct sysctl_oid *irq_root = SYSCTL_ADD_NODE(clist, SYSCTL_CHILDREN(poid),
OID_AUTO, "irq", CTLFLAG_RD, 0,
"PRUSS Host Interrupts");
SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(poid), OID_AUTO,
"global_interrupt_enable", CTLFLAG_RW | CTLTYPE_U8,
sc, 0, ti_pruss_global_interrupt_enable,
"CU", "Global interrupt enable");
sc->sc_bt = rman_get_bustag(sc->sc_mem_res);
sc->sc_bh = rman_get_bushandle(sc->sc_mem_res);
if (bus_alloc_resources(dev, ti_pruss_irq_spec, sc->sc_irq_res) != 0) {
device_printf(dev, "could not allocate interrupt resource\n");
ti_pruss_detach(dev);
return (ENXIO);
}
ti_pruss_interrupts_clear(sc);
for (i = 0; i < TI_PRUSS_IRQS; i++) {
char name[8];
snprintf(name, sizeof(name), "%d", i);
struct sysctl_oid *irq_nodes = SYSCTL_ADD_NODE(clist, SYSCTL_CHILDREN(irq_root),
OID_AUTO, name, CTLFLAG_RD, 0,
"PRUSS Interrupts");
SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(irq_nodes), OID_AUTO,
"channel", CTLFLAG_RW | CTLTYPE_STRING, sc, i, ti_pruss_channel_map,
"A", "Channel attached to this irq");
SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(irq_nodes), OID_AUTO,
"event", CTLFLAG_RW | CTLTYPE_STRING, sc, i, ti_pruss_event_map,
"A", "Event attached to this irq");
SYSCTL_ADD_PROC(clist, SYSCTL_CHILDREN(irq_nodes), OID_AUTO,
"enable", CTLFLAG_RW | CTLTYPE_U8, sc, i, ti_pruss_interrupt_enable,
"CU", "Enable/Disable interrupt");
sc->sc_irq_devs[i].event = -1;
sc->sc_irq_devs[i].channel = -1;
sc->sc_irq_devs[i].tstamps.ctl.idx = 0;
if (i < TI_PRUSS_HOST_IRQS) {
ti_pruss_irq_args[i].irq = i;
ti_pruss_irq_args[i].sc = sc;
if (bus_setup_intr(dev, sc->sc_irq_res[i],
INTR_MPSAFE | INTR_TYPE_MISC,
NULL, ti_pruss_intr, &ti_pruss_irq_args[i],
&sc->sc_intr[i]) != 0) {
device_printf(dev,
"unable to setup the interrupt handler\n");
ti_pruss_detach(dev);
return (ENXIO);
}
mtx_init(&sc->sc_irq_devs[i].sc_mtx, "TI PRUSS IRQ", NULL, MTX_DEF);
knlist_init_mtx(&sc->sc_irq_devs[i].sc_selinfo.si_note, &sc->sc_irq_devs[i].sc_mtx);
}
}
if (ti_pruss_reg_read(sc, PRUSS_AM33XX_INTC) == PRUSS_AM33XX_REV)
device_printf(dev, "AM33xx PRU-ICSS\n");
sc->sc_pdev = make_dev(&ti_pruss_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, "pruss%d", device_get_unit(dev));
sc->sc_pdev->si_drv1 = dev;
/* Acc. to datasheet always write 1 to polarity registers */
ti_pruss_reg_write(sc, PRUSS_INTC_SIPR0, 0xFFFFFFFF);
ti_pruss_reg_write(sc, PRUSS_INTC_SIPR1, 0xFFFFFFFF);
/* Acc. to datasheet always write 0 to event type registers */
ti_pruss_reg_write(sc, PRUSS_INTC_SITR0, 0);
ti_pruss_reg_write(sc, PRUSS_INTC_SITR1, 0);
return (0);
}
static int
ti_pruss_detach(device_t dev)
{
struct ti_pruss_softc *sc = device_get_softc(dev);
ti_pruss_interrupts_clear(sc);
for (int i = 0; i < TI_PRUSS_HOST_IRQS; i++) {
ti_pruss_interrupts_enable( sc, i, false );
if (sc->sc_intr[i])
bus_teardown_intr(dev, sc->sc_irq_res[i], sc->sc_intr[i]);
if (sc->sc_irq_res[i])
bus_release_resource(dev, SYS_RES_IRQ,
rman_get_rid(sc->sc_irq_res[i]),
sc->sc_irq_res[i]);
knlist_clear(&sc->sc_irq_devs[i].sc_selinfo.si_note, 0);
mtx_lock(&sc->sc_irq_devs[i].sc_mtx);
if (!knlist_empty(&sc->sc_irq_devs[i].sc_selinfo.si_note))
printf("IRQ %d KQueue not empty!\n", i );
mtx_unlock(&sc->sc_irq_devs[i].sc_mtx);
knlist_destroy(&sc->sc_irq_devs[i].sc_selinfo.si_note);
mtx_destroy(&sc->sc_irq_devs[i].sc_mtx);
}
mtx_destroy(&sc->sc_mtx);
if (sc->sc_mem_res)
bus_release_resource(dev, SYS_RES_MEMORY, rman_get_rid(sc->sc_mem_res),
sc->sc_mem_res);
if (sc->sc_pdev)
destroy_dev(sc->sc_pdev);
return (0);
}
static void
ti_pruss_intr(void *arg)
{
int val;
struct ti_pruss_irq_arg *iap = arg;
struct ti_pruss_softc *sc = iap->sc;
/*
* Interrupts pr1_host_intr[0:7] are mapped to
* Host-2 to Host-9 of PRU-ICSS IRQ-controller.
*/
const int pru_int = iap->irq + TI_PRUSS_PRU_IRQS;
const int pru_int_mask = (1 << pru_int);
const int pru_channel = sc->sc_irq_devs[pru_int].channel;
const int pru_event = sc->sc_irq_devs[pru_channel].event;
val = ti_pruss_reg_read(sc, PRUSS_INTC_HIER);
if (!(val & pru_int_mask))
return;
ti_pruss_reg_write(sc, PRUSS_INTC_HIDISR, pru_int);
ti_pruss_reg_write(sc, PRUSS_INTC_SICR, pru_event);
ti_pruss_reg_write(sc, PRUSS_INTC_HIEISR, pru_int);
struct ti_pruss_irqsc* irq = &sc->sc_irq_devs[pru_channel];
size_t wr = irq->tstamps.ctl.idx;
struct timespec ts;
nanouptime(&ts);
irq->tstamps.ts[wr] = ts.tv_sec * 1000000000 + ts.tv_nsec;
if (++wr == TI_TS_ARRAY)
wr = 0;
atomic_add_32(&irq->tstamps.ctl.cnt, 1);
irq->tstamps.ctl.idx = wr;
KNOTE_UNLOCKED(&irq->sc_selinfo.si_note, pru_int);
wakeup(irq);
selwakeup(&irq->sc_selinfo);
}
static int
ti_pruss_open(struct cdev *cdev __unused, int oflags __unused,
int devtype __unused, struct thread *td __unused)
{
return (0);
}
static int
ti_pruss_mmap(struct cdev *cdev, vm_ooffset_t offset, vm_paddr_t *paddr,
int nprot, vm_memattr_t *memattr)
{
device_t dev = cdev->si_drv1;
struct ti_pruss_softc *sc = device_get_softc(dev);
if (offset > rman_get_size(sc->sc_mem_res))
return (ENOSPC);
*paddr = rman_get_start(sc->sc_mem_res) + offset;
*memattr = VM_MEMATTR_UNCACHEABLE;
return (0);
}
static struct filterops ti_pruss_kq_read = {
.f_isfd = 1,
.f_detach = ti_pruss_irq_kqread_detach,
.f_event = ti_pruss_irq_kqevent,
};
static void
ti_pruss_irq_kqread_detach(struct knote *kn)
{
struct ti_pruss_irqsc *sc = kn->kn_hook;
knlist_remove(&sc->sc_selinfo.si_note, kn, 0);
}
static int
ti_pruss_irq_kqevent(struct knote *kn, long hint)
{
struct ti_pruss_irqsc* irq_sc;
int notify;
irq_sc = kn->kn_hook;
if (hint > 0)
kn->kn_data = hint - 2;
if (hint > 0 || irq_sc->last > 0)
notify = 1;
else
notify = 0;
irq_sc->last = hint;
return (notify);
}
static int
ti_pruss_irq_kqfilter(struct cdev *cdev, struct knote *kn)
{
struct ti_pruss_irqsc *sc = cdev->si_drv1;
switch (kn->kn_filter) {
case EVFILT_READ:
kn->kn_hook = sc;
kn->kn_fop = &ti_pruss_kq_read;
knlist_add(&sc->sc_selinfo.si_note, kn, 0);
break;
default:
return (EINVAL);
}
return (0);
}