freebsd-dev/sys/dev/ath/ath_hal/ar5211/ar5211_misc.c
Adrian Chadd a41607fc2d Add some empty DFS methods for AR5210/AR5211 for now, if DFS is enabled
but these don't exist, the code panics.

I should really just add or use a DFS HAL capability before doing this,
so the methods wouldn't be needed..
2012-05-09 18:17:01 +00:00

722 lines
17 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2006 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar5211/ar5211.h"
#include "ar5211/ar5211reg.h"
#include "ar5211/ar5211phy.h"
#include "ah_eeprom_v3.h"
#define AR_NUM_GPIO 6 /* 6 GPIO bits */
#define AR_GPIOD_MASK 0x2f /* 6-bit mask */
void
ar5211GetMacAddress(struct ath_hal *ah, uint8_t *mac)
{
struct ath_hal_5211 *ahp = AH5211(ah);
OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
}
HAL_BOOL
ar5211SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
{
struct ath_hal_5211 *ahp = AH5211(ah);
OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
return AH_TRUE;
}
void
ar5211GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
{
static const uint8_t ones[IEEE80211_ADDR_LEN] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
}
HAL_BOOL
ar5211SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
{
return AH_FALSE;
}
/*
* Read 16 bits of data from the specified EEPROM offset.
*/
HAL_BOOL
ar5211EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
{
OS_REG_WRITE(ah, AR_EEPROM_ADDR, off);
OS_REG_WRITE(ah, AR_EEPROM_CMD, AR_EEPROM_CMD_READ);
if (!ath_hal_wait(ah, AR_EEPROM_STS,
AR_EEPROM_STS_READ_COMPLETE | AR_EEPROM_STS_READ_ERROR,
AR_EEPROM_STS_READ_COMPLETE)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: read failed for entry 0x%x\n", __func__, off);
return AH_FALSE;
}
*data = OS_REG_READ(ah, AR_EEPROM_DATA) & 0xffff;
return AH_TRUE;
}
#ifdef AH_SUPPORT_WRITE_EEPROM
/*
* Write 16 bits of data to the specified EEPROM offset.
*/
HAL_BOOL
ar5211EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
{
return AH_FALSE;
}
#endif /* AH_SUPPORT_WRITE_EEPROM */
/*
* Attempt to change the cards operating regulatory domain to the given value
*/
HAL_BOOL
ar5211SetRegulatoryDomain(struct ath_hal *ah,
uint16_t regDomain, HAL_STATUS *status)
{
HAL_STATUS ecode;
if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
ecode = HAL_EINVAL;
goto bad;
}
/*
* Check if EEPROM is configured to allow this; must
* be a proper version and the protection bits must
* permit re-writing that segment of the EEPROM.
*/
if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
ecode = HAL_EEWRITE;
goto bad;
}
#ifdef AH_SUPPORT_WRITE_REGDOMAIN
if (ar5211EepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: set regulatory domain to %u (0x%x)\n",
__func__, regDomain, regDomain);
AH_PRIVATE(ah)->ah_currentRD = regDomain;
return AH_TRUE;
}
#endif
ecode = HAL_EIO;
bad:
if (status)
*status = ecode;
return AH_FALSE;
}
/*
* Return the wireless modes (a,b,g,t) supported by hardware.
*
* This value is what is actually supported by the hardware
* and is unaffected by regulatory/country code settings.
*
*/
u_int
ar5211GetWirelessModes(struct ath_hal *ah)
{
u_int mode = 0;
if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
mode = HAL_MODE_11A;
if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
mode |= HAL_MODE_TURBO | HAL_MODE_108A;
}
if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
mode |= HAL_MODE_11B;
return mode;
}
#if 0
HAL_BOOL
ar5211GetTurboDisable(struct ath_hal *ah)
{
return (AH5211(ah)->ah_turboDisable != 0);
}
#endif
/*
* Called if RfKill is supported (according to EEPROM). Set the interrupt and
* GPIO values so the ISR and can disable RF on a switch signal
*/
void
ar5211EnableRfKill(struct ath_hal *ah)
{
uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
/*
* Configure the desired GPIO port for input
* and enable baseband rf silence.
*/
ar5211GpioCfgInput(ah, select);
OS_REG_SET_BIT(ah, AR_PHY_BASE, 0x00002000);
/*
* If radio disable switch connection to GPIO bit x is enabled
* program GPIO interrupt.
* If rfkill bit on eeprom is 1, setupeeprommap routine has already
* verified that it is a later version of eeprom, it has a place for
* rfkill bit and it is set to 1, indicating that GPIO bit x hardware
* connection is present.
*/
ar5211GpioSetIntr(ah, select, (ar5211GpioGet(ah, select) != polarity));
}
/*
* Configure GPIO Output lines
*/
HAL_BOOL
ar5211GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
{
uint32_t reg;
HALASSERT(gpio < AR_NUM_GPIO);
reg = OS_REG_READ(ah, AR_GPIOCR);
reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
reg |= AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT);
OS_REG_WRITE(ah, AR_GPIOCR, reg);
return AH_TRUE;
}
/*
* Configure GPIO Input lines
*/
HAL_BOOL
ar5211GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
{
uint32_t reg;
HALASSERT(gpio < AR_NUM_GPIO);
reg = OS_REG_READ(ah, AR_GPIOCR);
reg &= ~(AR_GPIOCR_0_CR_A << (gpio * AR_GPIOCR_CR_SHIFT));
reg |= AR_GPIOCR_0_CR_N << (gpio * AR_GPIOCR_CR_SHIFT);
OS_REG_WRITE(ah, AR_GPIOCR, reg);
return AH_TRUE;
}
/*
* Once configured for I/O - set output lines
*/
HAL_BOOL
ar5211GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
{
uint32_t reg;
HALASSERT(gpio < AR_NUM_GPIO);
reg = OS_REG_READ(ah, AR_GPIODO);
reg &= ~(1 << gpio);
reg |= (val&1) << gpio;
OS_REG_WRITE(ah, AR_GPIODO, reg);
return AH_TRUE;
}
/*
* Once configured for I/O - get input lines
*/
uint32_t
ar5211GpioGet(struct ath_hal *ah, uint32_t gpio)
{
if (gpio < AR_NUM_GPIO) {
uint32_t val = OS_REG_READ(ah, AR_GPIODI);
val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
return val;
} else {
return 0xffffffff;
}
}
/*
* Set the GPIO 0 Interrupt (gpio is ignored)
*/
void
ar5211GpioSetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
{
uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
/* Clear the bits that we will modify. */
val &= ~(AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
AR_GPIOCR_0_CR_A);
val |= AR_GPIOCR_INT_SEL0 | AR_GPIOCR_INT_ENA;
if (ilevel)
val |= AR_GPIOCR_INT_SELH;
/* Don't need to change anything for low level interrupt. */
OS_REG_WRITE(ah, AR_GPIOCR, val);
/* Change the interrupt mask. */
ar5211SetInterrupts(ah, AH5211(ah)->ah_maskReg | HAL_INT_GPIO);
}
/*
* Change the LED blinking pattern to correspond to the connectivity
*/
void
ar5211SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
{
static const uint32_t ledbits[8] = {
AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_INIT */
AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_SCAN */
AR_PCICFG_LEDCTL_PEND|AR_PCICFG_LEDMODE_PROP, /* HAL_LED_AUTH */
AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_ASSOC*/
AR_PCICFG_LEDCTL_ASSOC|AR_PCICFG_LEDMODE_PROP,/* HAL_LED_RUN */
AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
AR_PCICFG_LEDCTL_NONE|AR_PCICFG_LEDMODE_RAND,
};
OS_REG_WRITE(ah, AR_PCICFG,
(OS_REG_READ(ah, AR_PCICFG) &~
(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE))
| ledbits[state & 0x7]
);
}
/*
* Change association related fields programmed into the hardware.
* Writing a valid BSSID to the hardware effectively enables the hardware
* to synchronize its TSF to the correct beacons and receive frames coming
* from that BSSID. It is called by the SME JOIN operation.
*/
void
ar5211WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
{
struct ath_hal_5211 *ahp = AH5211(ah);
/* XXX save bssid for possible re-use on reset */
OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
}
/*
* Get the current hardware tsf for stamlme.
*/
uint64_t
ar5211GetTsf64(struct ath_hal *ah)
{
uint32_t low1, low2, u32;
/* sync multi-word read */
low1 = OS_REG_READ(ah, AR_TSF_L32);
u32 = OS_REG_READ(ah, AR_TSF_U32);
low2 = OS_REG_READ(ah, AR_TSF_L32);
if (low2 < low1) { /* roll over */
/*
* If we are not preempted this will work. If we are
* then we re-reading AR_TSF_U32 does no good as the
* low bits will be meaningless. Likewise reading
* L32, U32, U32, then comparing the last two reads
* to check for rollover doesn't help if preempted--so
* we take this approach as it costs one less PCI
* read which can be noticeable when doing things
* like timestamping packets in monitor mode.
*/
u32++;
}
return (((uint64_t) u32) << 32) | ((uint64_t) low2);
}
/*
* Get the current hardware tsf for stamlme.
*/
uint32_t
ar5211GetTsf32(struct ath_hal *ah)
{
return OS_REG_READ(ah, AR_TSF_L32);
}
/*
* Reset the current hardware tsf for stamlme
*/
void
ar5211ResetTsf(struct ath_hal *ah)
{
uint32_t val = OS_REG_READ(ah, AR_BEACON);
OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
}
/*
* Grab a semi-random value from hardware registers - may not
* change often
*/
uint32_t
ar5211GetRandomSeed(struct ath_hal *ah)
{
uint32_t nf;
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
return (OS_REG_READ(ah, AR_TSF_U32) ^
OS_REG_READ(ah, AR_TSF_L32) ^ nf);
}
/*
* Detect if our card is present
*/
HAL_BOOL
ar5211DetectCardPresent(struct ath_hal *ah)
{
uint16_t macVersion, macRev;
uint32_t v;
/*
* Read the Silicon Revision register and compare that
* to what we read at attach time. If the same, we say
* a card/device is present.
*/
v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID_M;
macVersion = v >> AR_SREV_ID_S;
macRev = v & AR_SREV_REVISION_M;
return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
AH_PRIVATE(ah)->ah_macRev == macRev);
}
/*
* Update MIB Counters
*/
void
ar5211UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
{
stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
}
HAL_BOOL
ar5211SetSifsTime(struct ath_hal *ah, u_int us)
{
struct ath_hal_5211 *ahp = AH5211(ah);
if (us > ath_hal_mac_usec(ah, 0xffff)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
__func__, us);
ahp->ah_sifstime = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us));
ahp->ah_slottime = us;
return AH_TRUE;
}
}
u_int
ar5211GetSifsTime(struct ath_hal *ah)
{
u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
HAL_BOOL
ar5211SetSlotTime(struct ath_hal *ah, u_int us)
{
struct ath_hal_5211 *ahp = AH5211(ah);
if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
__func__, us);
ahp->ah_slottime = us; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
ahp->ah_slottime = us;
return AH_TRUE;
}
}
u_int
ar5211GetSlotTime(struct ath_hal *ah)
{
u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
HAL_BOOL
ar5211SetAckTimeout(struct ath_hal *ah, u_int us)
{
struct ath_hal_5211 *ahp = AH5211(ah);
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
__func__, us);
ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
ahp->ah_acktimeout = us;
return AH_TRUE;
}
}
u_int
ar5211GetAckTimeout(struct ath_hal *ah)
{
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
u_int
ar5211GetAckCTSRate(struct ath_hal *ah)
{
return ((AH5211(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
}
HAL_BOOL
ar5211SetAckCTSRate(struct ath_hal *ah, u_int high)
{
struct ath_hal_5211 *ahp = AH5211(ah);
if (high) {
OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
} else {
OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
}
return AH_TRUE;
}
HAL_BOOL
ar5211SetCTSTimeout(struct ath_hal *ah, u_int us)
{
struct ath_hal_5211 *ahp = AH5211(ah);
if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
__func__, us);
ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
return AH_FALSE;
} else {
/* convert to system clocks */
OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
ahp->ah_ctstimeout = us;
return AH_TRUE;
}
}
u_int
ar5211GetCTSTimeout(struct ath_hal *ah)
{
u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
}
HAL_BOOL
ar5211SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
{
/* nothing to do */
return AH_TRUE;
}
void
ar5211SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
{
}
/*
* Control Adaptive Noise Immunity Parameters
*/
HAL_BOOL
ar5211AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
{
return AH_FALSE;
}
void
ar5211AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
}
void
ar5211RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats,
const struct ieee80211_channel *chan)
{
}
void
ar5211MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
{
}
/*
* Get the rssi of frame curently being received.
*/
uint32_t
ar5211GetCurRssi(struct ath_hal *ah)
{
return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
}
u_int
ar5211GetDefAntenna(struct ath_hal *ah)
{
return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
}
void
ar5211SetDefAntenna(struct ath_hal *ah, u_int antenna)
{
OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
}
HAL_ANT_SETTING
ar5211GetAntennaSwitch(struct ath_hal *ah)
{
return AH5211(ah)->ah_diversityControl;
}
HAL_BOOL
ar5211SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
{
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
if (chan == AH_NULL) {
AH5211(ah)->ah_diversityControl = settings;
return AH_TRUE;
}
return ar5211SetAntennaSwitchInternal(ah, settings, chan);
}
HAL_STATUS
ar5211GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
uint32_t capability, uint32_t *result)
{
switch (type) {
case HAL_CAP_CIPHER: /* cipher handled in hardware */
switch (capability) {
case HAL_CIPHER_AES_OCB:
case HAL_CIPHER_WEP:
case HAL_CIPHER_CLR:
return HAL_OK;
default:
return HAL_ENOTSUPP;
}
default:
return ath_hal_getcapability(ah, type, capability, result);
}
}
HAL_BOOL
ar5211SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
uint32_t capability, uint32_t setting, HAL_STATUS *status)
{
switch (type) {
case HAL_CAP_DIAG: /* hardware diagnostic support */
/*
* NB: could split this up into virtual capabilities,
* (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
* seems worth the additional complexity.
*/
#ifdef AH_DEBUG
AH_PRIVATE(ah)->ah_diagreg = setting;
#else
AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
#endif
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
return AH_TRUE;
default:
return ath_hal_setcapability(ah, type, capability,
setting, status);
}
}
HAL_BOOL
ar5211GetDiagState(struct ath_hal *ah, int request,
const void *args, uint32_t argsize,
void **result, uint32_t *resultsize)
{
struct ath_hal_5211 *ahp = AH5211(ah);
(void) ahp;
if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
return AH_TRUE;
switch (request) {
case HAL_DIAG_EEPROM:
return ath_hal_eepromDiag(ah, request,
args, argsize, result, resultsize);
case HAL_DIAG_RFGAIN:
*result = &ahp->ah_gainValues;
*resultsize = sizeof(GAIN_VALUES);
return AH_TRUE;
case HAL_DIAG_RFGAIN_CURSTEP:
*result = __DECONST(void *, ahp->ah_gainValues.currStep);
*resultsize = (*result == AH_NULL) ?
0 : sizeof(GAIN_OPTIMIZATION_STEP);
return AH_TRUE;
}
return AH_FALSE;
}
/*
* Return what percentage of the extension channel is busy.
* This is always disabled for AR5211 series NICs.
*/
uint32_t
ar5211Get11nExtBusy(struct ath_hal *ah)
{
return (0);
}
/*
* There's no channel survey support for the AR5211.
*/
HAL_BOOL
ar5211GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
{
return (AH_FALSE);
}
void
ar5211EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
{
}
void
ar5211GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
{
}