ca04ba6430
jail doesn't support. This involves a new function prison_check_af, like prison_check_ip[46] but that checks only the family. With this change, most of the errors generated by jailed sockets shouldn't ever occur, at least until jails are changeable. Approved by: bz (mentor)
3289 lines
85 KiB
C
3289 lines
85 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993
|
|
* The Regents of the University of California.
|
|
* Copyright (c) 2004 The FreeBSD Foundation
|
|
* Copyright (c) 2004-2008 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)uipc_socket.c 8.3 (Berkeley) 4/15/94
|
|
*/
|
|
|
|
/*
|
|
* Comments on the socket life cycle:
|
|
*
|
|
* soalloc() sets of socket layer state for a socket, called only by
|
|
* socreate() and sonewconn(). Socket layer private.
|
|
*
|
|
* sodealloc() tears down socket layer state for a socket, called only by
|
|
* sofree() and sonewconn(). Socket layer private.
|
|
*
|
|
* pru_attach() associates protocol layer state with an allocated socket;
|
|
* called only once, may fail, aborting socket allocation. This is called
|
|
* from socreate() and sonewconn(). Socket layer private.
|
|
*
|
|
* pru_detach() disassociates protocol layer state from an attached socket,
|
|
* and will be called exactly once for sockets in which pru_attach() has
|
|
* been successfully called. If pru_attach() returned an error,
|
|
* pru_detach() will not be called. Socket layer private.
|
|
*
|
|
* pru_abort() and pru_close() notify the protocol layer that the last
|
|
* consumer of a socket is starting to tear down the socket, and that the
|
|
* protocol should terminate the connection. Historically, pru_abort() also
|
|
* detached protocol state from the socket state, but this is no longer the
|
|
* case.
|
|
*
|
|
* socreate() creates a socket and attaches protocol state. This is a public
|
|
* interface that may be used by socket layer consumers to create new
|
|
* sockets.
|
|
*
|
|
* sonewconn() creates a socket and attaches protocol state. This is a
|
|
* public interface that may be used by protocols to create new sockets when
|
|
* a new connection is received and will be available for accept() on a
|
|
* listen socket.
|
|
*
|
|
* soclose() destroys a socket after possibly waiting for it to disconnect.
|
|
* This is a public interface that socket consumers should use to close and
|
|
* release a socket when done with it.
|
|
*
|
|
* soabort() destroys a socket without waiting for it to disconnect (used
|
|
* only for incoming connections that are already partially or fully
|
|
* connected). This is used internally by the socket layer when clearing
|
|
* listen socket queues (due to overflow or close on the listen socket), but
|
|
* is also a public interface protocols may use to abort connections in
|
|
* their incomplete listen queues should they no longer be required. Sockets
|
|
* placed in completed connection listen queues should not be aborted for
|
|
* reasons described in the comment above the soclose() implementation. This
|
|
* is not a general purpose close routine, and except in the specific
|
|
* circumstances described here, should not be used.
|
|
*
|
|
* sofree() will free a socket and its protocol state if all references on
|
|
* the socket have been released, and is the public interface to attempt to
|
|
* free a socket when a reference is removed. This is a socket layer private
|
|
* interface.
|
|
*
|
|
* NOTE: In addition to socreate() and soclose(), which provide a single
|
|
* socket reference to the consumer to be managed as required, there are two
|
|
* calls to explicitly manage socket references, soref(), and sorele().
|
|
* Currently, these are generally required only when transitioning a socket
|
|
* from a listen queue to a file descriptor, in order to prevent garbage
|
|
* collection of the socket at an untimely moment. For a number of reasons,
|
|
* these interfaces are not preferred, and should be avoided.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_mac.h"
|
|
#include "opt_zero.h"
|
|
#include "opt_compat.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mac.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/file.h> /* for struct knote */
|
|
#include <sys/kernel.h>
|
|
#include <sys/event.h>
|
|
#include <sys/eventhandler.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <net/route.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/jail.h>
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#ifdef COMPAT_IA32
|
|
#include <sys/mount.h>
|
|
#include <sys/sysent.h>
|
|
#include <compat/freebsd32/freebsd32.h>
|
|
#endif
|
|
|
|
static int soreceive_rcvoob(struct socket *so, struct uio *uio,
|
|
int flags);
|
|
|
|
static void filt_sordetach(struct knote *kn);
|
|
static int filt_soread(struct knote *kn, long hint);
|
|
static void filt_sowdetach(struct knote *kn);
|
|
static int filt_sowrite(struct knote *kn, long hint);
|
|
static int filt_solisten(struct knote *kn, long hint);
|
|
|
|
static struct filterops solisten_filtops =
|
|
{ 1, NULL, filt_sordetach, filt_solisten };
|
|
static struct filterops soread_filtops =
|
|
{ 1, NULL, filt_sordetach, filt_soread };
|
|
static struct filterops sowrite_filtops =
|
|
{ 1, NULL, filt_sowdetach, filt_sowrite };
|
|
|
|
uma_zone_t socket_zone;
|
|
so_gen_t so_gencnt; /* generation count for sockets */
|
|
|
|
int maxsockets;
|
|
|
|
MALLOC_DEFINE(M_SONAME, "soname", "socket name");
|
|
MALLOC_DEFINE(M_PCB, "pcb", "protocol control block");
|
|
|
|
static int somaxconn = SOMAXCONN;
|
|
static int sysctl_somaxconn(SYSCTL_HANDLER_ARGS);
|
|
/* XXX: we dont have SYSCTL_USHORT */
|
|
SYSCTL_PROC(_kern_ipc, KIPC_SOMAXCONN, somaxconn, CTLTYPE_UINT | CTLFLAG_RW,
|
|
0, sizeof(int), sysctl_somaxconn, "I", "Maximum pending socket connection "
|
|
"queue size");
|
|
static int numopensockets;
|
|
SYSCTL_INT(_kern_ipc, OID_AUTO, numopensockets, CTLFLAG_RD,
|
|
&numopensockets, 0, "Number of open sockets");
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
/* These aren't static because they're used in other files. */
|
|
int so_zero_copy_send = 1;
|
|
int so_zero_copy_receive = 1;
|
|
SYSCTL_NODE(_kern_ipc, OID_AUTO, zero_copy, CTLFLAG_RD, 0,
|
|
"Zero copy controls");
|
|
SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, receive, CTLFLAG_RW,
|
|
&so_zero_copy_receive, 0, "Enable zero copy receive");
|
|
SYSCTL_INT(_kern_ipc_zero_copy, OID_AUTO, send, CTLFLAG_RW,
|
|
&so_zero_copy_send, 0, "Enable zero copy send");
|
|
#endif /* ZERO_COPY_SOCKETS */
|
|
|
|
/*
|
|
* accept_mtx locks down per-socket fields relating to accept queues. See
|
|
* socketvar.h for an annotation of the protected fields of struct socket.
|
|
*/
|
|
struct mtx accept_mtx;
|
|
MTX_SYSINIT(accept_mtx, &accept_mtx, "accept", MTX_DEF);
|
|
|
|
/*
|
|
* so_global_mtx protects so_gencnt, numopensockets, and the per-socket
|
|
* so_gencnt field.
|
|
*/
|
|
static struct mtx so_global_mtx;
|
|
MTX_SYSINIT(so_global_mtx, &so_global_mtx, "so_glabel", MTX_DEF);
|
|
|
|
/*
|
|
* General IPC sysctl name space, used by sockets and a variety of other IPC
|
|
* types.
|
|
*/
|
|
SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
|
|
|
|
/*
|
|
* Sysctl to get and set the maximum global sockets limit. Notify protocols
|
|
* of the change so that they can update their dependent limits as required.
|
|
*/
|
|
static int
|
|
sysctl_maxsockets(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, newmaxsockets;
|
|
|
|
newmaxsockets = maxsockets;
|
|
error = sysctl_handle_int(oidp, &newmaxsockets, 0, req);
|
|
if (error == 0 && req->newptr) {
|
|
if (newmaxsockets > maxsockets) {
|
|
maxsockets = newmaxsockets;
|
|
if (maxsockets > ((maxfiles / 4) * 3)) {
|
|
maxfiles = (maxsockets * 5) / 4;
|
|
maxfilesperproc = (maxfiles * 9) / 10;
|
|
}
|
|
EVENTHANDLER_INVOKE(maxsockets_change);
|
|
} else
|
|
error = EINVAL;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
SYSCTL_PROC(_kern_ipc, OID_AUTO, maxsockets, CTLTYPE_INT|CTLFLAG_RW,
|
|
&maxsockets, 0, sysctl_maxsockets, "IU",
|
|
"Maximum number of sockets avaliable");
|
|
|
|
/*
|
|
* Initialise maxsockets. This SYSINIT must be run after
|
|
* tunable_mbinit().
|
|
*/
|
|
static void
|
|
init_maxsockets(void *ignored)
|
|
{
|
|
|
|
TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets);
|
|
maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters));
|
|
}
|
|
SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);
|
|
|
|
/*
|
|
* Socket operation routines. These routines are called by the routines in
|
|
* sys_socket.c or from a system process, and implement the semantics of
|
|
* socket operations by switching out to the protocol specific routines.
|
|
*/
|
|
|
|
/*
|
|
* Get a socket structure from our zone, and initialize it. Note that it
|
|
* would probably be better to allocate socket and PCB at the same time, but
|
|
* I'm not convinced that all the protocols can be easily modified to do
|
|
* this.
|
|
*
|
|
* soalloc() returns a socket with a ref count of 0.
|
|
*/
|
|
static struct socket *
|
|
soalloc(void)
|
|
{
|
|
struct socket *so;
|
|
|
|
so = uma_zalloc(socket_zone, M_NOWAIT | M_ZERO);
|
|
if (so == NULL)
|
|
return (NULL);
|
|
#ifdef MAC
|
|
if (mac_socket_init(so, M_NOWAIT) != 0) {
|
|
uma_zfree(socket_zone, so);
|
|
return (NULL);
|
|
}
|
|
#endif
|
|
SOCKBUF_LOCK_INIT(&so->so_snd, "so_snd");
|
|
SOCKBUF_LOCK_INIT(&so->so_rcv, "so_rcv");
|
|
sx_init(&so->so_snd.sb_sx, "so_snd_sx");
|
|
sx_init(&so->so_rcv.sb_sx, "so_rcv_sx");
|
|
TAILQ_INIT(&so->so_aiojobq);
|
|
mtx_lock(&so_global_mtx);
|
|
so->so_gencnt = ++so_gencnt;
|
|
++numopensockets;
|
|
mtx_unlock(&so_global_mtx);
|
|
return (so);
|
|
}
|
|
|
|
/*
|
|
* Free the storage associated with a socket at the socket layer, tear down
|
|
* locks, labels, etc. All protocol state is assumed already to have been
|
|
* torn down (and possibly never set up) by the caller.
|
|
*/
|
|
static void
|
|
sodealloc(struct socket *so)
|
|
{
|
|
|
|
KASSERT(so->so_count == 0, ("sodealloc(): so_count %d", so->so_count));
|
|
KASSERT(so->so_pcb == NULL, ("sodealloc(): so_pcb != NULL"));
|
|
|
|
mtx_lock(&so_global_mtx);
|
|
so->so_gencnt = ++so_gencnt;
|
|
--numopensockets; /* Could be below, but faster here. */
|
|
mtx_unlock(&so_global_mtx);
|
|
if (so->so_rcv.sb_hiwat)
|
|
(void)chgsbsize(so->so_cred->cr_uidinfo,
|
|
&so->so_rcv.sb_hiwat, 0, RLIM_INFINITY);
|
|
if (so->so_snd.sb_hiwat)
|
|
(void)chgsbsize(so->so_cred->cr_uidinfo,
|
|
&so->so_snd.sb_hiwat, 0, RLIM_INFINITY);
|
|
#ifdef INET
|
|
/* remove acccept filter if one is present. */
|
|
if (so->so_accf != NULL)
|
|
do_setopt_accept_filter(so, NULL);
|
|
#endif
|
|
#ifdef MAC
|
|
mac_socket_destroy(so);
|
|
#endif
|
|
crfree(so->so_cred);
|
|
sx_destroy(&so->so_snd.sb_sx);
|
|
sx_destroy(&so->so_rcv.sb_sx);
|
|
SOCKBUF_LOCK_DESTROY(&so->so_snd);
|
|
SOCKBUF_LOCK_DESTROY(&so->so_rcv);
|
|
uma_zfree(socket_zone, so);
|
|
}
|
|
|
|
/*
|
|
* socreate returns a socket with a ref count of 1. The socket should be
|
|
* closed with soclose().
|
|
*/
|
|
int
|
|
socreate(int dom, struct socket **aso, int type, int proto,
|
|
struct ucred *cred, struct thread *td)
|
|
{
|
|
struct protosw *prp;
|
|
struct socket *so;
|
|
int error;
|
|
|
|
if (proto)
|
|
prp = pffindproto(dom, proto, type);
|
|
else
|
|
prp = pffindtype(dom, type);
|
|
|
|
if (prp == NULL || prp->pr_usrreqs->pru_attach == NULL ||
|
|
prp->pr_usrreqs->pru_attach == pru_attach_notsupp)
|
|
return (EPROTONOSUPPORT);
|
|
|
|
if (prison_check_af(cred, prp->pr_domain->dom_family) != 0)
|
|
return (EPROTONOSUPPORT);
|
|
|
|
if (prp->pr_type != type)
|
|
return (EPROTOTYPE);
|
|
so = soalloc();
|
|
if (so == NULL)
|
|
return (ENOBUFS);
|
|
|
|
TAILQ_INIT(&so->so_incomp);
|
|
TAILQ_INIT(&so->so_comp);
|
|
so->so_type = type;
|
|
so->so_cred = crhold(cred);
|
|
if ((prp->pr_domain->dom_family == PF_INET) ||
|
|
(prp->pr_domain->dom_family == PF_ROUTE))
|
|
so->so_fibnum = td->td_proc->p_fibnum;
|
|
else
|
|
so->so_fibnum = 0;
|
|
so->so_proto = prp;
|
|
#ifdef MAC
|
|
mac_socket_create(cred, so);
|
|
#endif
|
|
knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
|
|
NULL, NULL, NULL);
|
|
knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
|
|
NULL, NULL, NULL);
|
|
so->so_count = 1;
|
|
/*
|
|
* Auto-sizing of socket buffers is managed by the protocols and
|
|
* the appropriate flags must be set in the pru_attach function.
|
|
*/
|
|
error = (*prp->pr_usrreqs->pru_attach)(so, proto, td);
|
|
if (error) {
|
|
KASSERT(so->so_count == 1, ("socreate: so_count %d",
|
|
so->so_count));
|
|
so->so_count = 0;
|
|
sodealloc(so);
|
|
return (error);
|
|
}
|
|
*aso = so;
|
|
return (0);
|
|
}
|
|
|
|
#ifdef REGRESSION
|
|
static int regression_sonewconn_earlytest = 1;
|
|
SYSCTL_INT(_regression, OID_AUTO, sonewconn_earlytest, CTLFLAG_RW,
|
|
®ression_sonewconn_earlytest, 0, "Perform early sonewconn limit test");
|
|
#endif
|
|
|
|
/*
|
|
* When an attempt at a new connection is noted on a socket which accepts
|
|
* connections, sonewconn is called. If the connection is possible (subject
|
|
* to space constraints, etc.) then we allocate a new structure, propoerly
|
|
* linked into the data structure of the original socket, and return this.
|
|
* Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
|
|
*
|
|
* Note: the ref count on the socket is 0 on return.
|
|
*/
|
|
struct socket *
|
|
sonewconn(struct socket *head, int connstatus)
|
|
{
|
|
struct socket *so;
|
|
int over;
|
|
|
|
ACCEPT_LOCK();
|
|
over = (head->so_qlen > 3 * head->so_qlimit / 2);
|
|
ACCEPT_UNLOCK();
|
|
#ifdef REGRESSION
|
|
if (regression_sonewconn_earlytest && over)
|
|
#else
|
|
if (over)
|
|
#endif
|
|
return (NULL);
|
|
so = soalloc();
|
|
if (so == NULL)
|
|
return (NULL);
|
|
if ((head->so_options & SO_ACCEPTFILTER) != 0)
|
|
connstatus = 0;
|
|
so->so_head = head;
|
|
so->so_type = head->so_type;
|
|
so->so_options = head->so_options &~ SO_ACCEPTCONN;
|
|
so->so_linger = head->so_linger;
|
|
so->so_state = head->so_state | SS_NOFDREF;
|
|
so->so_proto = head->so_proto;
|
|
so->so_cred = crhold(head->so_cred);
|
|
#ifdef MAC
|
|
SOCK_LOCK(head);
|
|
mac_socket_newconn(head, so);
|
|
SOCK_UNLOCK(head);
|
|
#endif
|
|
knlist_init(&so->so_rcv.sb_sel.si_note, SOCKBUF_MTX(&so->so_rcv),
|
|
NULL, NULL, NULL);
|
|
knlist_init(&so->so_snd.sb_sel.si_note, SOCKBUF_MTX(&so->so_snd),
|
|
NULL, NULL, NULL);
|
|
if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
|
|
(*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
|
|
sodealloc(so);
|
|
return (NULL);
|
|
}
|
|
so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
|
|
so->so_snd.sb_lowat = head->so_snd.sb_lowat;
|
|
so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
|
|
so->so_snd.sb_timeo = head->so_snd.sb_timeo;
|
|
so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
|
|
so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
|
|
so->so_state |= connstatus;
|
|
ACCEPT_LOCK();
|
|
if (connstatus) {
|
|
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
|
|
so->so_qstate |= SQ_COMP;
|
|
head->so_qlen++;
|
|
} else {
|
|
/*
|
|
* Keep removing sockets from the head until there's room for
|
|
* us to insert on the tail. In pre-locking revisions, this
|
|
* was a simple if(), but as we could be racing with other
|
|
* threads and soabort() requires dropping locks, we must
|
|
* loop waiting for the condition to be true.
|
|
*/
|
|
while (head->so_incqlen > head->so_qlimit) {
|
|
struct socket *sp;
|
|
sp = TAILQ_FIRST(&head->so_incomp);
|
|
TAILQ_REMOVE(&head->so_incomp, sp, so_list);
|
|
head->so_incqlen--;
|
|
sp->so_qstate &= ~SQ_INCOMP;
|
|
sp->so_head = NULL;
|
|
ACCEPT_UNLOCK();
|
|
soabort(sp);
|
|
ACCEPT_LOCK();
|
|
}
|
|
TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
|
|
so->so_qstate |= SQ_INCOMP;
|
|
head->so_incqlen++;
|
|
}
|
|
ACCEPT_UNLOCK();
|
|
if (connstatus) {
|
|
sorwakeup(head);
|
|
wakeup_one(&head->so_timeo);
|
|
}
|
|
return (so);
|
|
}
|
|
|
|
int
|
|
sobind(struct socket *so, struct sockaddr *nam, struct thread *td)
|
|
{
|
|
|
|
return ((*so->so_proto->pr_usrreqs->pru_bind)(so, nam, td));
|
|
}
|
|
|
|
/*
|
|
* solisten() transitions a socket from a non-listening state to a listening
|
|
* state, but can also be used to update the listen queue depth on an
|
|
* existing listen socket. The protocol will call back into the sockets
|
|
* layer using solisten_proto_check() and solisten_proto() to check and set
|
|
* socket-layer listen state. Call backs are used so that the protocol can
|
|
* acquire both protocol and socket layer locks in whatever order is required
|
|
* by the protocol.
|
|
*
|
|
* Protocol implementors are advised to hold the socket lock across the
|
|
* socket-layer test and set to avoid races at the socket layer.
|
|
*/
|
|
int
|
|
solisten(struct socket *so, int backlog, struct thread *td)
|
|
{
|
|
|
|
return ((*so->so_proto->pr_usrreqs->pru_listen)(so, backlog, td));
|
|
}
|
|
|
|
int
|
|
solisten_proto_check(struct socket *so)
|
|
{
|
|
|
|
SOCK_LOCK_ASSERT(so);
|
|
|
|
if (so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
|
|
SS_ISDISCONNECTING))
|
|
return (EINVAL);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
solisten_proto(struct socket *so, int backlog)
|
|
{
|
|
|
|
SOCK_LOCK_ASSERT(so);
|
|
|
|
if (backlog < 0 || backlog > somaxconn)
|
|
backlog = somaxconn;
|
|
so->so_qlimit = backlog;
|
|
so->so_options |= SO_ACCEPTCONN;
|
|
}
|
|
|
|
/*
|
|
* Attempt to free a socket. This should really be sotryfree().
|
|
*
|
|
* sofree() will succeed if:
|
|
*
|
|
* - There are no outstanding file descriptor references or related consumers
|
|
* (so_count == 0).
|
|
*
|
|
* - The socket has been closed by user space, if ever open (SS_NOFDREF).
|
|
*
|
|
* - The protocol does not have an outstanding strong reference on the socket
|
|
* (SS_PROTOREF).
|
|
*
|
|
* - The socket is not in a completed connection queue, so a process has been
|
|
* notified that it is present. If it is removed, the user process may
|
|
* block in accept() despite select() saying the socket was ready.
|
|
*
|
|
* Otherwise, it will quietly abort so that a future call to sofree(), when
|
|
* conditions are right, can succeed.
|
|
*/
|
|
void
|
|
sofree(struct socket *so)
|
|
{
|
|
struct protosw *pr = so->so_proto;
|
|
struct socket *head;
|
|
|
|
ACCEPT_LOCK_ASSERT();
|
|
SOCK_LOCK_ASSERT(so);
|
|
|
|
if ((so->so_state & SS_NOFDREF) == 0 || so->so_count != 0 ||
|
|
(so->so_state & SS_PROTOREF) || (so->so_qstate & SQ_COMP)) {
|
|
SOCK_UNLOCK(so);
|
|
ACCEPT_UNLOCK();
|
|
return;
|
|
}
|
|
|
|
head = so->so_head;
|
|
if (head != NULL) {
|
|
KASSERT((so->so_qstate & SQ_COMP) != 0 ||
|
|
(so->so_qstate & SQ_INCOMP) != 0,
|
|
("sofree: so_head != NULL, but neither SQ_COMP nor "
|
|
"SQ_INCOMP"));
|
|
KASSERT((so->so_qstate & SQ_COMP) == 0 ||
|
|
(so->so_qstate & SQ_INCOMP) == 0,
|
|
("sofree: so->so_qstate is SQ_COMP and also SQ_INCOMP"));
|
|
TAILQ_REMOVE(&head->so_incomp, so, so_list);
|
|
head->so_incqlen--;
|
|
so->so_qstate &= ~SQ_INCOMP;
|
|
so->so_head = NULL;
|
|
}
|
|
KASSERT((so->so_qstate & SQ_COMP) == 0 &&
|
|
(so->so_qstate & SQ_INCOMP) == 0,
|
|
("sofree: so_head == NULL, but still SQ_COMP(%d) or SQ_INCOMP(%d)",
|
|
so->so_qstate & SQ_COMP, so->so_qstate & SQ_INCOMP));
|
|
if (so->so_options & SO_ACCEPTCONN) {
|
|
KASSERT((TAILQ_EMPTY(&so->so_comp)), ("sofree: so_comp populated"));
|
|
KASSERT((TAILQ_EMPTY(&so->so_incomp)), ("sofree: so_comp populated"));
|
|
}
|
|
SOCK_UNLOCK(so);
|
|
ACCEPT_UNLOCK();
|
|
|
|
if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
|
|
(*pr->pr_domain->dom_dispose)(so->so_rcv.sb_mb);
|
|
if (pr->pr_usrreqs->pru_detach != NULL)
|
|
(*pr->pr_usrreqs->pru_detach)(so);
|
|
|
|
/*
|
|
* From this point on, we assume that no other references to this
|
|
* socket exist anywhere else in the stack. Therefore, no locks need
|
|
* to be acquired or held.
|
|
*
|
|
* We used to do a lot of socket buffer and socket locking here, as
|
|
* well as invoke sorflush() and perform wakeups. The direct call to
|
|
* dom_dispose() and sbrelease_internal() are an inlining of what was
|
|
* necessary from sorflush().
|
|
*
|
|
* Notice that the socket buffer and kqueue state are torn down
|
|
* before calling pru_detach. This means that protocols shold not
|
|
* assume they can perform socket wakeups, etc, in their detach code.
|
|
*/
|
|
sbdestroy(&so->so_snd, so);
|
|
sbdestroy(&so->so_rcv, so);
|
|
knlist_destroy(&so->so_rcv.sb_sel.si_note);
|
|
knlist_destroy(&so->so_snd.sb_sel.si_note);
|
|
sodealloc(so);
|
|
}
|
|
|
|
/*
|
|
* Close a socket on last file table reference removal. Initiate disconnect
|
|
* if connected. Free socket when disconnect complete.
|
|
*
|
|
* This function will sorele() the socket. Note that soclose() may be called
|
|
* prior to the ref count reaching zero. The actual socket structure will
|
|
* not be freed until the ref count reaches zero.
|
|
*/
|
|
int
|
|
soclose(struct socket *so)
|
|
{
|
|
int error = 0;
|
|
|
|
KASSERT(!(so->so_state & SS_NOFDREF), ("soclose: SS_NOFDREF on enter"));
|
|
|
|
funsetown(&so->so_sigio);
|
|
if (so->so_state & SS_ISCONNECTED) {
|
|
if ((so->so_state & SS_ISDISCONNECTING) == 0) {
|
|
error = sodisconnect(so);
|
|
if (error)
|
|
goto drop;
|
|
}
|
|
if (so->so_options & SO_LINGER) {
|
|
if ((so->so_state & SS_ISDISCONNECTING) &&
|
|
(so->so_state & SS_NBIO))
|
|
goto drop;
|
|
while (so->so_state & SS_ISCONNECTED) {
|
|
error = tsleep(&so->so_timeo,
|
|
PSOCK | PCATCH, "soclos", so->so_linger * hz);
|
|
if (error)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
drop:
|
|
if (so->so_proto->pr_usrreqs->pru_close != NULL)
|
|
(*so->so_proto->pr_usrreqs->pru_close)(so);
|
|
if (so->so_options & SO_ACCEPTCONN) {
|
|
struct socket *sp;
|
|
ACCEPT_LOCK();
|
|
while ((sp = TAILQ_FIRST(&so->so_incomp)) != NULL) {
|
|
TAILQ_REMOVE(&so->so_incomp, sp, so_list);
|
|
so->so_incqlen--;
|
|
sp->so_qstate &= ~SQ_INCOMP;
|
|
sp->so_head = NULL;
|
|
ACCEPT_UNLOCK();
|
|
soabort(sp);
|
|
ACCEPT_LOCK();
|
|
}
|
|
while ((sp = TAILQ_FIRST(&so->so_comp)) != NULL) {
|
|
TAILQ_REMOVE(&so->so_comp, sp, so_list);
|
|
so->so_qlen--;
|
|
sp->so_qstate &= ~SQ_COMP;
|
|
sp->so_head = NULL;
|
|
ACCEPT_UNLOCK();
|
|
soabort(sp);
|
|
ACCEPT_LOCK();
|
|
}
|
|
ACCEPT_UNLOCK();
|
|
}
|
|
ACCEPT_LOCK();
|
|
SOCK_LOCK(so);
|
|
KASSERT((so->so_state & SS_NOFDREF) == 0, ("soclose: NOFDREF"));
|
|
so->so_state |= SS_NOFDREF;
|
|
sorele(so);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* soabort() is used to abruptly tear down a connection, such as when a
|
|
* resource limit is reached (listen queue depth exceeded), or if a listen
|
|
* socket is closed while there are sockets waiting to be accepted.
|
|
*
|
|
* This interface is tricky, because it is called on an unreferenced socket,
|
|
* and must be called only by a thread that has actually removed the socket
|
|
* from the listen queue it was on, or races with other threads are risked.
|
|
*
|
|
* This interface will call into the protocol code, so must not be called
|
|
* with any socket locks held. Protocols do call it while holding their own
|
|
* recursible protocol mutexes, but this is something that should be subject
|
|
* to review in the future.
|
|
*/
|
|
void
|
|
soabort(struct socket *so)
|
|
{
|
|
|
|
/*
|
|
* In as much as is possible, assert that no references to this
|
|
* socket are held. This is not quite the same as asserting that the
|
|
* current thread is responsible for arranging for no references, but
|
|
* is as close as we can get for now.
|
|
*/
|
|
KASSERT(so->so_count == 0, ("soabort: so_count"));
|
|
KASSERT((so->so_state & SS_PROTOREF) == 0, ("soabort: SS_PROTOREF"));
|
|
KASSERT(so->so_state & SS_NOFDREF, ("soabort: !SS_NOFDREF"));
|
|
KASSERT((so->so_state & SQ_COMP) == 0, ("soabort: SQ_COMP"));
|
|
KASSERT((so->so_state & SQ_INCOMP) == 0, ("soabort: SQ_INCOMP"));
|
|
|
|
if (so->so_proto->pr_usrreqs->pru_abort != NULL)
|
|
(*so->so_proto->pr_usrreqs->pru_abort)(so);
|
|
ACCEPT_LOCK();
|
|
SOCK_LOCK(so);
|
|
sofree(so);
|
|
}
|
|
|
|
int
|
|
soaccept(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
int error;
|
|
|
|
SOCK_LOCK(so);
|
|
KASSERT((so->so_state & SS_NOFDREF) != 0, ("soaccept: !NOFDREF"));
|
|
so->so_state &= ~SS_NOFDREF;
|
|
SOCK_UNLOCK(so);
|
|
error = (*so->so_proto->pr_usrreqs->pru_accept)(so, nam);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
soconnect(struct socket *so, struct sockaddr *nam, struct thread *td)
|
|
{
|
|
int error;
|
|
|
|
if (so->so_options & SO_ACCEPTCONN)
|
|
return (EOPNOTSUPP);
|
|
/*
|
|
* If protocol is connection-based, can only connect once.
|
|
* Otherwise, if connected, try to disconnect first. This allows
|
|
* user to disconnect by connecting to, e.g., a null address.
|
|
*/
|
|
if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
|
|
((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
|
|
(error = sodisconnect(so)))) {
|
|
error = EISCONN;
|
|
} else {
|
|
/*
|
|
* Prevent accumulated error from previous connection from
|
|
* biting us.
|
|
*/
|
|
so->so_error = 0;
|
|
error = (*so->so_proto->pr_usrreqs->pru_connect)(so, nam, td);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
soconnect2(struct socket *so1, struct socket *so2)
|
|
{
|
|
|
|
return ((*so1->so_proto->pr_usrreqs->pru_connect2)(so1, so2));
|
|
}
|
|
|
|
int
|
|
sodisconnect(struct socket *so)
|
|
{
|
|
int error;
|
|
|
|
if ((so->so_state & SS_ISCONNECTED) == 0)
|
|
return (ENOTCONN);
|
|
if (so->so_state & SS_ISDISCONNECTING)
|
|
return (EALREADY);
|
|
error = (*so->so_proto->pr_usrreqs->pru_disconnect)(so);
|
|
return (error);
|
|
}
|
|
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
struct so_zerocopy_stats{
|
|
int size_ok;
|
|
int align_ok;
|
|
int found_ifp;
|
|
};
|
|
struct so_zerocopy_stats so_zerocp_stats = {0,0,0};
|
|
#include <netinet/in.h>
|
|
#include <net/route.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_object.h>
|
|
|
|
/*
|
|
* sosend_copyin() is only used if zero copy sockets are enabled. Otherwise
|
|
* sosend_dgram() and sosend_generic() use m_uiotombuf().
|
|
*
|
|
* sosend_copyin() accepts a uio and prepares an mbuf chain holding part or
|
|
* all of the data referenced by the uio. If desired, it uses zero-copy.
|
|
* *space will be updated to reflect data copied in.
|
|
*
|
|
* NB: If atomic I/O is requested, the caller must already have checked that
|
|
* space can hold resid bytes.
|
|
*
|
|
* NB: In the event of an error, the caller may need to free the partial
|
|
* chain pointed to by *mpp. The contents of both *uio and *space may be
|
|
* modified even in the case of an error.
|
|
*/
|
|
static int
|
|
sosend_copyin(struct uio *uio, struct mbuf **retmp, int atomic, long *space,
|
|
int flags)
|
|
{
|
|
struct mbuf *m, **mp, *top;
|
|
long len, resid;
|
|
int error;
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
int cow_send;
|
|
#endif
|
|
|
|
*retmp = top = NULL;
|
|
mp = ⊤
|
|
len = 0;
|
|
resid = uio->uio_resid;
|
|
error = 0;
|
|
do {
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
cow_send = 0;
|
|
#endif /* ZERO_COPY_SOCKETS */
|
|
if (resid >= MINCLSIZE) {
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
if (top == NULL) {
|
|
m = m_gethdr(M_WAITOK, MT_DATA);
|
|
m->m_pkthdr.len = 0;
|
|
m->m_pkthdr.rcvif = NULL;
|
|
} else
|
|
m = m_get(M_WAITOK, MT_DATA);
|
|
if (so_zero_copy_send &&
|
|
resid>=PAGE_SIZE &&
|
|
*space>=PAGE_SIZE &&
|
|
uio->uio_iov->iov_len>=PAGE_SIZE) {
|
|
so_zerocp_stats.size_ok++;
|
|
so_zerocp_stats.align_ok++;
|
|
cow_send = socow_setup(m, uio);
|
|
len = cow_send;
|
|
}
|
|
if (!cow_send) {
|
|
m_clget(m, M_WAITOK);
|
|
len = min(min(MCLBYTES, resid), *space);
|
|
}
|
|
#else /* ZERO_COPY_SOCKETS */
|
|
if (top == NULL) {
|
|
m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
|
|
m->m_pkthdr.len = 0;
|
|
m->m_pkthdr.rcvif = NULL;
|
|
} else
|
|
m = m_getcl(M_WAIT, MT_DATA, 0);
|
|
len = min(min(MCLBYTES, resid), *space);
|
|
#endif /* ZERO_COPY_SOCKETS */
|
|
} else {
|
|
if (top == NULL) {
|
|
m = m_gethdr(M_WAIT, MT_DATA);
|
|
m->m_pkthdr.len = 0;
|
|
m->m_pkthdr.rcvif = NULL;
|
|
|
|
len = min(min(MHLEN, resid), *space);
|
|
/*
|
|
* For datagram protocols, leave room
|
|
* for protocol headers in first mbuf.
|
|
*/
|
|
if (atomic && m && len < MHLEN)
|
|
MH_ALIGN(m, len);
|
|
} else {
|
|
m = m_get(M_WAIT, MT_DATA);
|
|
len = min(min(MLEN, resid), *space);
|
|
}
|
|
}
|
|
if (m == NULL) {
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
*space -= len;
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
if (cow_send)
|
|
error = 0;
|
|
else
|
|
#endif /* ZERO_COPY_SOCKETS */
|
|
error = uiomove(mtod(m, void *), (int)len, uio);
|
|
resid = uio->uio_resid;
|
|
m->m_len = len;
|
|
*mp = m;
|
|
top->m_pkthdr.len += len;
|
|
if (error)
|
|
goto out;
|
|
mp = &m->m_next;
|
|
if (resid <= 0) {
|
|
if (flags & MSG_EOR)
|
|
top->m_flags |= M_EOR;
|
|
break;
|
|
}
|
|
} while (*space > 0 && atomic);
|
|
out:
|
|
*retmp = top;
|
|
return (error);
|
|
}
|
|
#endif /*ZERO_COPY_SOCKETS*/
|
|
|
|
#define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? 0 : SBL_WAIT)
|
|
|
|
int
|
|
sosend_dgram(struct socket *so, struct sockaddr *addr, struct uio *uio,
|
|
struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
|
|
{
|
|
long space, resid;
|
|
int clen = 0, error, dontroute;
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
int atomic = sosendallatonce(so) || top;
|
|
#endif
|
|
|
|
KASSERT(so->so_type == SOCK_DGRAM, ("sodgram_send: !SOCK_DGRAM"));
|
|
KASSERT(so->so_proto->pr_flags & PR_ATOMIC,
|
|
("sodgram_send: !PR_ATOMIC"));
|
|
|
|
if (uio != NULL)
|
|
resid = uio->uio_resid;
|
|
else
|
|
resid = top->m_pkthdr.len;
|
|
/*
|
|
* In theory resid should be unsigned. However, space must be
|
|
* signed, as it might be less than 0 if we over-committed, and we
|
|
* must use a signed comparison of space and resid. On the other
|
|
* hand, a negative resid causes us to loop sending 0-length
|
|
* segments to the protocol.
|
|
*
|
|
* Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
|
|
* type sockets since that's an error.
|
|
*/
|
|
if (resid < 0) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
dontroute =
|
|
(flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0;
|
|
if (td != NULL)
|
|
td->td_ru.ru_msgsnd++;
|
|
if (control != NULL)
|
|
clen = control->m_len;
|
|
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
error = EPIPE;
|
|
goto out;
|
|
}
|
|
if (so->so_error) {
|
|
error = so->so_error;
|
|
so->so_error = 0;
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
goto out;
|
|
}
|
|
if ((so->so_state & SS_ISCONNECTED) == 0) {
|
|
/*
|
|
* `sendto' and `sendmsg' is allowed on a connection-based
|
|
* socket if it supports implied connect. Return ENOTCONN if
|
|
* not connected and no address is supplied.
|
|
*/
|
|
if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
|
|
(so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
|
|
if ((so->so_state & SS_ISCONFIRMING) == 0 &&
|
|
!(resid == 0 && clen != 0)) {
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
error = ENOTCONN;
|
|
goto out;
|
|
}
|
|
} else if (addr == NULL) {
|
|
if (so->so_proto->pr_flags & PR_CONNREQUIRED)
|
|
error = ENOTCONN;
|
|
else
|
|
error = EDESTADDRREQ;
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do we need MSG_OOB support in SOCK_DGRAM? Signs here may be a
|
|
* problem and need fixing.
|
|
*/
|
|
space = sbspace(&so->so_snd);
|
|
if (flags & MSG_OOB)
|
|
space += 1024;
|
|
space -= clen;
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
if (resid > space) {
|
|
error = EMSGSIZE;
|
|
goto out;
|
|
}
|
|
if (uio == NULL) {
|
|
resid = 0;
|
|
if (flags & MSG_EOR)
|
|
top->m_flags |= M_EOR;
|
|
} else {
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
error = sosend_copyin(uio, &top, atomic, &space, flags);
|
|
if (error)
|
|
goto out;
|
|
#else
|
|
/*
|
|
* Copy the data from userland into a mbuf chain.
|
|
* If no data is to be copied in, a single empty mbuf
|
|
* is returned.
|
|
*/
|
|
top = m_uiotombuf(uio, M_WAITOK, space, max_hdr,
|
|
(M_PKTHDR | ((flags & MSG_EOR) ? M_EOR : 0)));
|
|
if (top == NULL) {
|
|
error = EFAULT; /* only possible error */
|
|
goto out;
|
|
}
|
|
space -= resid - uio->uio_resid;
|
|
#endif
|
|
resid = uio->uio_resid;
|
|
}
|
|
KASSERT(resid == 0, ("sosend_dgram: resid != 0"));
|
|
/*
|
|
* XXXRW: Frobbing SO_DONTROUTE here is even worse without sblock
|
|
* than with.
|
|
*/
|
|
if (dontroute) {
|
|
SOCK_LOCK(so);
|
|
so->so_options |= SO_DONTROUTE;
|
|
SOCK_UNLOCK(so);
|
|
}
|
|
/*
|
|
* XXX all the SBS_CANTSENDMORE checks previously done could be out
|
|
* of date. We could have recieved a reset packet in an interrupt or
|
|
* maybe we slept while doing page faults in uiomove() etc. We could
|
|
* probably recheck again inside the locking protection here, but
|
|
* there are probably other places that this also happens. We must
|
|
* rethink this.
|
|
*/
|
|
error = (*so->so_proto->pr_usrreqs->pru_send)(so,
|
|
(flags & MSG_OOB) ? PRUS_OOB :
|
|
/*
|
|
* If the user set MSG_EOF, the protocol understands this flag and
|
|
* nothing left to send then use PRU_SEND_EOF instead of PRU_SEND.
|
|
*/
|
|
((flags & MSG_EOF) &&
|
|
(so->so_proto->pr_flags & PR_IMPLOPCL) &&
|
|
(resid <= 0)) ?
|
|
PRUS_EOF :
|
|
/* If there is more to send set PRUS_MORETOCOME */
|
|
(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
|
|
top, addr, control, td);
|
|
if (dontroute) {
|
|
SOCK_LOCK(so);
|
|
so->so_options &= ~SO_DONTROUTE;
|
|
SOCK_UNLOCK(so);
|
|
}
|
|
clen = 0;
|
|
control = NULL;
|
|
top = NULL;
|
|
out:
|
|
if (top != NULL)
|
|
m_freem(top);
|
|
if (control != NULL)
|
|
m_freem(control);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Send on a socket. If send must go all at once and message is larger than
|
|
* send buffering, then hard error. Lock against other senders. If must go
|
|
* all at once and not enough room now, then inform user that this would
|
|
* block and do nothing. Otherwise, if nonblocking, send as much as
|
|
* possible. The data to be sent is described by "uio" if nonzero, otherwise
|
|
* by the mbuf chain "top" (which must be null if uio is not). Data provided
|
|
* in mbuf chain must be small enough to send all at once.
|
|
*
|
|
* Returns nonzero on error, timeout or signal; callers must check for short
|
|
* counts if EINTR/ERESTART are returned. Data and control buffers are freed
|
|
* on return.
|
|
*/
|
|
int
|
|
sosend_generic(struct socket *so, struct sockaddr *addr, struct uio *uio,
|
|
struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
|
|
{
|
|
long space, resid;
|
|
int clen = 0, error, dontroute;
|
|
int atomic = sosendallatonce(so) || top;
|
|
|
|
if (uio != NULL)
|
|
resid = uio->uio_resid;
|
|
else
|
|
resid = top->m_pkthdr.len;
|
|
/*
|
|
* In theory resid should be unsigned. However, space must be
|
|
* signed, as it might be less than 0 if we over-committed, and we
|
|
* must use a signed comparison of space and resid. On the other
|
|
* hand, a negative resid causes us to loop sending 0-length
|
|
* segments to the protocol.
|
|
*
|
|
* Also check to make sure that MSG_EOR isn't used on SOCK_STREAM
|
|
* type sockets since that's an error.
|
|
*/
|
|
if (resid < 0 || (so->so_type == SOCK_STREAM && (flags & MSG_EOR))) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
dontroute =
|
|
(flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
|
|
(so->so_proto->pr_flags & PR_ATOMIC);
|
|
if (td != NULL)
|
|
td->td_ru.ru_msgsnd++;
|
|
if (control != NULL)
|
|
clen = control->m_len;
|
|
|
|
error = sblock(&so->so_snd, SBLOCKWAIT(flags));
|
|
if (error)
|
|
goto out;
|
|
|
|
restart:
|
|
do {
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
error = EPIPE;
|
|
goto release;
|
|
}
|
|
if (so->so_error) {
|
|
error = so->so_error;
|
|
so->so_error = 0;
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
goto release;
|
|
}
|
|
if ((so->so_state & SS_ISCONNECTED) == 0) {
|
|
/*
|
|
* `sendto' and `sendmsg' is allowed on a connection-
|
|
* based socket if it supports implied connect.
|
|
* Return ENOTCONN if not connected and no address is
|
|
* supplied.
|
|
*/
|
|
if ((so->so_proto->pr_flags & PR_CONNREQUIRED) &&
|
|
(so->so_proto->pr_flags & PR_IMPLOPCL) == 0) {
|
|
if ((so->so_state & SS_ISCONFIRMING) == 0 &&
|
|
!(resid == 0 && clen != 0)) {
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
error = ENOTCONN;
|
|
goto release;
|
|
}
|
|
} else if (addr == NULL) {
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
if (so->so_proto->pr_flags & PR_CONNREQUIRED)
|
|
error = ENOTCONN;
|
|
else
|
|
error = EDESTADDRREQ;
|
|
goto release;
|
|
}
|
|
}
|
|
space = sbspace(&so->so_snd);
|
|
if (flags & MSG_OOB)
|
|
space += 1024;
|
|
if ((atomic && resid > so->so_snd.sb_hiwat) ||
|
|
clen > so->so_snd.sb_hiwat) {
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
error = EMSGSIZE;
|
|
goto release;
|
|
}
|
|
if (space < resid + clen &&
|
|
(atomic || space < so->so_snd.sb_lowat || space < clen)) {
|
|
if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
error = EWOULDBLOCK;
|
|
goto release;
|
|
}
|
|
error = sbwait(&so->so_snd);
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
if (error)
|
|
goto release;
|
|
goto restart;
|
|
}
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
space -= clen;
|
|
do {
|
|
if (uio == NULL) {
|
|
resid = 0;
|
|
if (flags & MSG_EOR)
|
|
top->m_flags |= M_EOR;
|
|
} else {
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
error = sosend_copyin(uio, &top, atomic,
|
|
&space, flags);
|
|
if (error != 0)
|
|
goto release;
|
|
#else
|
|
/*
|
|
* Copy the data from userland into a mbuf
|
|
* chain. If no data is to be copied in,
|
|
* a single empty mbuf is returned.
|
|
*/
|
|
top = m_uiotombuf(uio, M_WAITOK, space,
|
|
(atomic ? max_hdr : 0),
|
|
(atomic ? M_PKTHDR : 0) |
|
|
((flags & MSG_EOR) ? M_EOR : 0));
|
|
if (top == NULL) {
|
|
error = EFAULT; /* only possible error */
|
|
goto release;
|
|
}
|
|
space -= resid - uio->uio_resid;
|
|
#endif
|
|
resid = uio->uio_resid;
|
|
}
|
|
if (dontroute) {
|
|
SOCK_LOCK(so);
|
|
so->so_options |= SO_DONTROUTE;
|
|
SOCK_UNLOCK(so);
|
|
}
|
|
/*
|
|
* XXX all the SBS_CANTSENDMORE checks previously
|
|
* done could be out of date. We could have recieved
|
|
* a reset packet in an interrupt or maybe we slept
|
|
* while doing page faults in uiomove() etc. We
|
|
* could probably recheck again inside the locking
|
|
* protection here, but there are probably other
|
|
* places that this also happens. We must rethink
|
|
* this.
|
|
*/
|
|
error = (*so->so_proto->pr_usrreqs->pru_send)(so,
|
|
(flags & MSG_OOB) ? PRUS_OOB :
|
|
/*
|
|
* If the user set MSG_EOF, the protocol understands
|
|
* this flag and nothing left to send then use
|
|
* PRU_SEND_EOF instead of PRU_SEND.
|
|
*/
|
|
((flags & MSG_EOF) &&
|
|
(so->so_proto->pr_flags & PR_IMPLOPCL) &&
|
|
(resid <= 0)) ?
|
|
PRUS_EOF :
|
|
/* If there is more to send set PRUS_MORETOCOME. */
|
|
(resid > 0 && space > 0) ? PRUS_MORETOCOME : 0,
|
|
top, addr, control, td);
|
|
if (dontroute) {
|
|
SOCK_LOCK(so);
|
|
so->so_options &= ~SO_DONTROUTE;
|
|
SOCK_UNLOCK(so);
|
|
}
|
|
clen = 0;
|
|
control = NULL;
|
|
top = NULL;
|
|
if (error)
|
|
goto release;
|
|
} while (resid && space > 0);
|
|
} while (resid);
|
|
|
|
release:
|
|
sbunlock(&so->so_snd);
|
|
out:
|
|
if (top != NULL)
|
|
m_freem(top);
|
|
if (control != NULL)
|
|
m_freem(control);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
|
|
struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
|
|
{
|
|
|
|
return (so->so_proto->pr_usrreqs->pru_sosend(so, addr, uio, top,
|
|
control, flags, td));
|
|
}
|
|
|
|
/*
|
|
* The part of soreceive() that implements reading non-inline out-of-band
|
|
* data from a socket. For more complete comments, see soreceive(), from
|
|
* which this code originated.
|
|
*
|
|
* Note that soreceive_rcvoob(), unlike the remainder of soreceive(), is
|
|
* unable to return an mbuf chain to the caller.
|
|
*/
|
|
static int
|
|
soreceive_rcvoob(struct socket *so, struct uio *uio, int flags)
|
|
{
|
|
struct protosw *pr = so->so_proto;
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
KASSERT(flags & MSG_OOB, ("soreceive_rcvoob: (flags & MSG_OOB) == 0"));
|
|
|
|
m = m_get(M_WAIT, MT_DATA);
|
|
error = (*pr->pr_usrreqs->pru_rcvoob)(so, m, flags & MSG_PEEK);
|
|
if (error)
|
|
goto bad;
|
|
do {
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
if (so_zero_copy_receive) {
|
|
int disposable;
|
|
|
|
if ((m->m_flags & M_EXT)
|
|
&& (m->m_ext.ext_type == EXT_DISPOSABLE))
|
|
disposable = 1;
|
|
else
|
|
disposable = 0;
|
|
|
|
error = uiomoveco(mtod(m, void *),
|
|
min(uio->uio_resid, m->m_len),
|
|
uio, disposable);
|
|
} else
|
|
#endif /* ZERO_COPY_SOCKETS */
|
|
error = uiomove(mtod(m, void *),
|
|
(int) min(uio->uio_resid, m->m_len), uio);
|
|
m = m_free(m);
|
|
} while (uio->uio_resid && error == 0 && m);
|
|
bad:
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Following replacement or removal of the first mbuf on the first mbuf chain
|
|
* of a socket buffer, push necessary state changes back into the socket
|
|
* buffer so that other consumers see the values consistently. 'nextrecord'
|
|
* is the callers locally stored value of the original value of
|
|
* sb->sb_mb->m_nextpkt which must be restored when the lead mbuf changes.
|
|
* NOTE: 'nextrecord' may be NULL.
|
|
*/
|
|
static __inline void
|
|
sockbuf_pushsync(struct sockbuf *sb, struct mbuf *nextrecord)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
/*
|
|
* First, update for the new value of nextrecord. If necessary, make
|
|
* it the first record.
|
|
*/
|
|
if (sb->sb_mb != NULL)
|
|
sb->sb_mb->m_nextpkt = nextrecord;
|
|
else
|
|
sb->sb_mb = nextrecord;
|
|
|
|
/*
|
|
* Now update any dependent socket buffer fields to reflect the new
|
|
* state. This is an expanded inline of SB_EMPTY_FIXUP(), with the
|
|
* addition of a second clause that takes care of the case where
|
|
* sb_mb has been updated, but remains the last record.
|
|
*/
|
|
if (sb->sb_mb == NULL) {
|
|
sb->sb_mbtail = NULL;
|
|
sb->sb_lastrecord = NULL;
|
|
} else if (sb->sb_mb->m_nextpkt == NULL)
|
|
sb->sb_lastrecord = sb->sb_mb;
|
|
}
|
|
|
|
|
|
/*
|
|
* Implement receive operations on a socket. We depend on the way that
|
|
* records are added to the sockbuf by sbappend. In particular, each record
|
|
* (mbufs linked through m_next) must begin with an address if the protocol
|
|
* so specifies, followed by an optional mbuf or mbufs containing ancillary
|
|
* data, and then zero or more mbufs of data. In order to allow parallelism
|
|
* between network receive and copying to user space, as well as avoid
|
|
* sleeping with a mutex held, we release the socket buffer mutex during the
|
|
* user space copy. Although the sockbuf is locked, new data may still be
|
|
* appended, and thus we must maintain consistency of the sockbuf during that
|
|
* time.
|
|
*
|
|
* The caller may receive the data as a single mbuf chain by supplying an
|
|
* mbuf **mp0 for use in returning the chain. The uio is then used only for
|
|
* the count in uio_resid.
|
|
*/
|
|
int
|
|
soreceive_generic(struct socket *so, struct sockaddr **psa, struct uio *uio,
|
|
struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
|
|
{
|
|
struct mbuf *m, **mp;
|
|
int flags, len, error, offset;
|
|
struct protosw *pr = so->so_proto;
|
|
struct mbuf *nextrecord;
|
|
int moff, type = 0;
|
|
int orig_resid = uio->uio_resid;
|
|
|
|
mp = mp0;
|
|
if (psa != NULL)
|
|
*psa = NULL;
|
|
if (controlp != NULL)
|
|
*controlp = NULL;
|
|
if (flagsp != NULL)
|
|
flags = *flagsp &~ MSG_EOR;
|
|
else
|
|
flags = 0;
|
|
if (flags & MSG_OOB)
|
|
return (soreceive_rcvoob(so, uio, flags));
|
|
if (mp != NULL)
|
|
*mp = NULL;
|
|
if ((pr->pr_flags & PR_WANTRCVD) && (so->so_state & SS_ISCONFIRMING)
|
|
&& uio->uio_resid)
|
|
(*pr->pr_usrreqs->pru_rcvd)(so, 0);
|
|
|
|
error = sblock(&so->so_rcv, SBLOCKWAIT(flags));
|
|
if (error)
|
|
return (error);
|
|
|
|
restart:
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
m = so->so_rcv.sb_mb;
|
|
/*
|
|
* If we have less data than requested, block awaiting more (subject
|
|
* to any timeout) if:
|
|
* 1. the current count is less than the low water mark, or
|
|
* 2. MSG_WAITALL is set, and it is possible to do the entire
|
|
* receive operation at once if we block (resid <= hiwat).
|
|
* 3. MSG_DONTWAIT is not set
|
|
* If MSG_WAITALL is set but resid is larger than the receive buffer,
|
|
* we have to do the receive in sections, and thus risk returning a
|
|
* short count if a timeout or signal occurs after we start.
|
|
*/
|
|
if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
|
|
so->so_rcv.sb_cc < uio->uio_resid) &&
|
|
(so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
|
|
((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
|
|
m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
|
|
KASSERT(m != NULL || !so->so_rcv.sb_cc,
|
|
("receive: m == %p so->so_rcv.sb_cc == %u",
|
|
m, so->so_rcv.sb_cc));
|
|
if (so->so_error) {
|
|
if (m != NULL)
|
|
goto dontblock;
|
|
error = so->so_error;
|
|
if ((flags & MSG_PEEK) == 0)
|
|
so->so_error = 0;
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
goto release;
|
|
}
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
|
if (m == NULL) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
goto release;
|
|
} else
|
|
goto dontblock;
|
|
}
|
|
for (; m != NULL; m = m->m_next)
|
|
if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
|
|
m = so->so_rcv.sb_mb;
|
|
goto dontblock;
|
|
}
|
|
if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
|
|
(so->so_proto->pr_flags & PR_CONNREQUIRED)) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
error = ENOTCONN;
|
|
goto release;
|
|
}
|
|
if (uio->uio_resid == 0) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
goto release;
|
|
}
|
|
if ((so->so_state & SS_NBIO) ||
|
|
(flags & (MSG_DONTWAIT|MSG_NBIO))) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
error = EWOULDBLOCK;
|
|
goto release;
|
|
}
|
|
SBLASTRECORDCHK(&so->so_rcv);
|
|
SBLASTMBUFCHK(&so->so_rcv);
|
|
error = sbwait(&so->so_rcv);
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
if (error)
|
|
goto release;
|
|
goto restart;
|
|
}
|
|
dontblock:
|
|
/*
|
|
* From this point onward, we maintain 'nextrecord' as a cache of the
|
|
* pointer to the next record in the socket buffer. We must keep the
|
|
* various socket buffer pointers and local stack versions of the
|
|
* pointers in sync, pushing out modifications before dropping the
|
|
* socket buffer mutex, and re-reading them when picking it up.
|
|
*
|
|
* Otherwise, we will race with the network stack appending new data
|
|
* or records onto the socket buffer by using inconsistent/stale
|
|
* versions of the field, possibly resulting in socket buffer
|
|
* corruption.
|
|
*
|
|
* By holding the high-level sblock(), we prevent simultaneous
|
|
* readers from pulling off the front of the socket buffer.
|
|
*/
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
if (uio->uio_td)
|
|
uio->uio_td->td_ru.ru_msgrcv++;
|
|
KASSERT(m == so->so_rcv.sb_mb, ("soreceive: m != so->so_rcv.sb_mb"));
|
|
SBLASTRECORDCHK(&so->so_rcv);
|
|
SBLASTMBUFCHK(&so->so_rcv);
|
|
nextrecord = m->m_nextpkt;
|
|
if (pr->pr_flags & PR_ADDR) {
|
|
KASSERT(m->m_type == MT_SONAME,
|
|
("m->m_type == %d", m->m_type));
|
|
orig_resid = 0;
|
|
if (psa != NULL)
|
|
*psa = sodupsockaddr(mtod(m, struct sockaddr *),
|
|
M_NOWAIT);
|
|
if (flags & MSG_PEEK) {
|
|
m = m->m_next;
|
|
} else {
|
|
sbfree(&so->so_rcv, m);
|
|
so->so_rcv.sb_mb = m_free(m);
|
|
m = so->so_rcv.sb_mb;
|
|
sockbuf_pushsync(&so->so_rcv, nextrecord);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process one or more MT_CONTROL mbufs present before any data mbufs
|
|
* in the first mbuf chain on the socket buffer. If MSG_PEEK, we
|
|
* just copy the data; if !MSG_PEEK, we call into the protocol to
|
|
* perform externalization (or freeing if controlp == NULL).
|
|
*/
|
|
if (m != NULL && m->m_type == MT_CONTROL) {
|
|
struct mbuf *cm = NULL, *cmn;
|
|
struct mbuf **cme = &cm;
|
|
|
|
do {
|
|
if (flags & MSG_PEEK) {
|
|
if (controlp != NULL) {
|
|
*controlp = m_copy(m, 0, m->m_len);
|
|
controlp = &(*controlp)->m_next;
|
|
}
|
|
m = m->m_next;
|
|
} else {
|
|
sbfree(&so->so_rcv, m);
|
|
so->so_rcv.sb_mb = m->m_next;
|
|
m->m_next = NULL;
|
|
*cme = m;
|
|
cme = &(*cme)->m_next;
|
|
m = so->so_rcv.sb_mb;
|
|
}
|
|
} while (m != NULL && m->m_type == MT_CONTROL);
|
|
if ((flags & MSG_PEEK) == 0)
|
|
sockbuf_pushsync(&so->so_rcv, nextrecord);
|
|
while (cm != NULL) {
|
|
cmn = cm->m_next;
|
|
cm->m_next = NULL;
|
|
if (pr->pr_domain->dom_externalize != NULL) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
error = (*pr->pr_domain->dom_externalize)
|
|
(cm, controlp);
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
} else if (controlp != NULL)
|
|
*controlp = cm;
|
|
else
|
|
m_freem(cm);
|
|
if (controlp != NULL) {
|
|
orig_resid = 0;
|
|
while (*controlp != NULL)
|
|
controlp = &(*controlp)->m_next;
|
|
}
|
|
cm = cmn;
|
|
}
|
|
if (m != NULL)
|
|
nextrecord = so->so_rcv.sb_mb->m_nextpkt;
|
|
else
|
|
nextrecord = so->so_rcv.sb_mb;
|
|
orig_resid = 0;
|
|
}
|
|
if (m != NULL) {
|
|
if ((flags & MSG_PEEK) == 0) {
|
|
KASSERT(m->m_nextpkt == nextrecord,
|
|
("soreceive: post-control, nextrecord !sync"));
|
|
if (nextrecord == NULL) {
|
|
KASSERT(so->so_rcv.sb_mb == m,
|
|
("soreceive: post-control, sb_mb!=m"));
|
|
KASSERT(so->so_rcv.sb_lastrecord == m,
|
|
("soreceive: post-control, lastrecord!=m"));
|
|
}
|
|
}
|
|
type = m->m_type;
|
|
if (type == MT_OOBDATA)
|
|
flags |= MSG_OOB;
|
|
} else {
|
|
if ((flags & MSG_PEEK) == 0) {
|
|
KASSERT(so->so_rcv.sb_mb == nextrecord,
|
|
("soreceive: sb_mb != nextrecord"));
|
|
if (so->so_rcv.sb_mb == NULL) {
|
|
KASSERT(so->so_rcv.sb_lastrecord == NULL,
|
|
("soreceive: sb_lastercord != NULL"));
|
|
}
|
|
}
|
|
}
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
SBLASTRECORDCHK(&so->so_rcv);
|
|
SBLASTMBUFCHK(&so->so_rcv);
|
|
|
|
/*
|
|
* Now continue to read any data mbufs off of the head of the socket
|
|
* buffer until the read request is satisfied. Note that 'type' is
|
|
* used to store the type of any mbuf reads that have happened so far
|
|
* such that soreceive() can stop reading if the type changes, which
|
|
* causes soreceive() to return only one of regular data and inline
|
|
* out-of-band data in a single socket receive operation.
|
|
*/
|
|
moff = 0;
|
|
offset = 0;
|
|
while (m != NULL && uio->uio_resid > 0 && error == 0) {
|
|
/*
|
|
* If the type of mbuf has changed since the last mbuf
|
|
* examined ('type'), end the receive operation.
|
|
*/
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
if (m->m_type == MT_OOBDATA) {
|
|
if (type != MT_OOBDATA)
|
|
break;
|
|
} else if (type == MT_OOBDATA)
|
|
break;
|
|
else
|
|
KASSERT(m->m_type == MT_DATA,
|
|
("m->m_type == %d", m->m_type));
|
|
so->so_rcv.sb_state &= ~SBS_RCVATMARK;
|
|
len = uio->uio_resid;
|
|
if (so->so_oobmark && len > so->so_oobmark - offset)
|
|
len = so->so_oobmark - offset;
|
|
if (len > m->m_len - moff)
|
|
len = m->m_len - moff;
|
|
/*
|
|
* If mp is set, just pass back the mbufs. Otherwise copy
|
|
* them out via the uio, then free. Sockbuf must be
|
|
* consistent here (points to current mbuf, it points to next
|
|
* record) when we drop priority; we must note any additions
|
|
* to the sockbuf when we block interrupts again.
|
|
*/
|
|
if (mp == NULL) {
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
SBLASTRECORDCHK(&so->so_rcv);
|
|
SBLASTMBUFCHK(&so->so_rcv);
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
#ifdef ZERO_COPY_SOCKETS
|
|
if (so_zero_copy_receive) {
|
|
int disposable;
|
|
|
|
if ((m->m_flags & M_EXT)
|
|
&& (m->m_ext.ext_type == EXT_DISPOSABLE))
|
|
disposable = 1;
|
|
else
|
|
disposable = 0;
|
|
|
|
error = uiomoveco(mtod(m, char *) + moff,
|
|
(int)len, uio,
|
|
disposable);
|
|
} else
|
|
#endif /* ZERO_COPY_SOCKETS */
|
|
error = uiomove(mtod(m, char *) + moff, (int)len, uio);
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
if (error) {
|
|
/*
|
|
* The MT_SONAME mbuf has already been removed
|
|
* from the record, so it is necessary to
|
|
* remove the data mbufs, if any, to preserve
|
|
* the invariant in the case of PR_ADDR that
|
|
* requires MT_SONAME mbufs at the head of
|
|
* each record.
|
|
*/
|
|
if (m && pr->pr_flags & PR_ATOMIC &&
|
|
((flags & MSG_PEEK) == 0))
|
|
(void)sbdroprecord_locked(&so->so_rcv);
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
goto release;
|
|
}
|
|
} else
|
|
uio->uio_resid -= len;
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
if (len == m->m_len - moff) {
|
|
if (m->m_flags & M_EOR)
|
|
flags |= MSG_EOR;
|
|
if (flags & MSG_PEEK) {
|
|
m = m->m_next;
|
|
moff = 0;
|
|
} else {
|
|
nextrecord = m->m_nextpkt;
|
|
sbfree(&so->so_rcv, m);
|
|
if (mp != NULL) {
|
|
*mp = m;
|
|
mp = &m->m_next;
|
|
so->so_rcv.sb_mb = m = m->m_next;
|
|
*mp = NULL;
|
|
} else {
|
|
so->so_rcv.sb_mb = m_free(m);
|
|
m = so->so_rcv.sb_mb;
|
|
}
|
|
sockbuf_pushsync(&so->so_rcv, nextrecord);
|
|
SBLASTRECORDCHK(&so->so_rcv);
|
|
SBLASTMBUFCHK(&so->so_rcv);
|
|
}
|
|
} else {
|
|
if (flags & MSG_PEEK)
|
|
moff += len;
|
|
else {
|
|
if (mp != NULL) {
|
|
int copy_flag;
|
|
|
|
if (flags & MSG_DONTWAIT)
|
|
copy_flag = M_DONTWAIT;
|
|
else
|
|
copy_flag = M_WAIT;
|
|
if (copy_flag == M_WAIT)
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
*mp = m_copym(m, 0, len, copy_flag);
|
|
if (copy_flag == M_WAIT)
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
if (*mp == NULL) {
|
|
/*
|
|
* m_copym() couldn't
|
|
* allocate an mbuf. Adjust
|
|
* uio_resid back (it was
|
|
* adjusted down by len
|
|
* bytes, which we didn't end
|
|
* up "copying" over).
|
|
*/
|
|
uio->uio_resid += len;
|
|
break;
|
|
}
|
|
}
|
|
m->m_data += len;
|
|
m->m_len -= len;
|
|
so->so_rcv.sb_cc -= len;
|
|
}
|
|
}
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
if (so->so_oobmark) {
|
|
if ((flags & MSG_PEEK) == 0) {
|
|
so->so_oobmark -= len;
|
|
if (so->so_oobmark == 0) {
|
|
so->so_rcv.sb_state |= SBS_RCVATMARK;
|
|
break;
|
|
}
|
|
} else {
|
|
offset += len;
|
|
if (offset == so->so_oobmark)
|
|
break;
|
|
}
|
|
}
|
|
if (flags & MSG_EOR)
|
|
break;
|
|
/*
|
|
* If the MSG_WAITALL flag is set (for non-atomic socket), we
|
|
* must not quit until "uio->uio_resid == 0" or an error
|
|
* termination. If a signal/timeout occurs, return with a
|
|
* short count but without error. Keep sockbuf locked
|
|
* against other readers.
|
|
*/
|
|
while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
|
|
!sosendallatonce(so) && nextrecord == NULL) {
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
if (so->so_error || so->so_rcv.sb_state & SBS_CANTRCVMORE)
|
|
break;
|
|
/*
|
|
* Notify the protocol that some data has been
|
|
* drained before blocking.
|
|
*/
|
|
if (pr->pr_flags & PR_WANTRCVD) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
(*pr->pr_usrreqs->pru_rcvd)(so, flags);
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
}
|
|
SBLASTRECORDCHK(&so->so_rcv);
|
|
SBLASTMBUFCHK(&so->so_rcv);
|
|
error = sbwait(&so->so_rcv);
|
|
if (error) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
goto release;
|
|
}
|
|
m = so->so_rcv.sb_mb;
|
|
if (m != NULL)
|
|
nextrecord = m->m_nextpkt;
|
|
}
|
|
}
|
|
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
if (m != NULL && pr->pr_flags & PR_ATOMIC) {
|
|
flags |= MSG_TRUNC;
|
|
if ((flags & MSG_PEEK) == 0)
|
|
(void) sbdroprecord_locked(&so->so_rcv);
|
|
}
|
|
if ((flags & MSG_PEEK) == 0) {
|
|
if (m == NULL) {
|
|
/*
|
|
* First part is an inline SB_EMPTY_FIXUP(). Second
|
|
* part makes sure sb_lastrecord is up-to-date if
|
|
* there is still data in the socket buffer.
|
|
*/
|
|
so->so_rcv.sb_mb = nextrecord;
|
|
if (so->so_rcv.sb_mb == NULL) {
|
|
so->so_rcv.sb_mbtail = NULL;
|
|
so->so_rcv.sb_lastrecord = NULL;
|
|
} else if (nextrecord->m_nextpkt == NULL)
|
|
so->so_rcv.sb_lastrecord = nextrecord;
|
|
}
|
|
SBLASTRECORDCHK(&so->so_rcv);
|
|
SBLASTMBUFCHK(&so->so_rcv);
|
|
/*
|
|
* If soreceive() is being done from the socket callback,
|
|
* then don't need to generate ACK to peer to update window,
|
|
* since ACK will be generated on return to TCP.
|
|
*/
|
|
if (!(flags & MSG_SOCALLBCK) &&
|
|
(pr->pr_flags & PR_WANTRCVD)) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
(*pr->pr_usrreqs->pru_rcvd)(so, flags);
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
}
|
|
}
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
if (orig_resid == uio->uio_resid && orig_resid &&
|
|
(flags & MSG_EOR) == 0 && (so->so_rcv.sb_state & SBS_CANTRCVMORE) == 0) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
goto restart;
|
|
}
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
|
|
if (flagsp != NULL)
|
|
*flagsp |= flags;
|
|
release:
|
|
sbunlock(&so->so_rcv);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Optimized version of soreceive() for simple datagram cases from userspace.
|
|
* Unlike in the stream case, we're able to drop a datagram if copyout()
|
|
* fails, and because we handle datagrams atomically, we don't need to use a
|
|
* sleep lock to prevent I/O interlacing.
|
|
*/
|
|
int
|
|
soreceive_dgram(struct socket *so, struct sockaddr **psa, struct uio *uio,
|
|
struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
|
|
{
|
|
struct mbuf *m, *m2;
|
|
int flags, len, error;
|
|
struct protosw *pr = so->so_proto;
|
|
struct mbuf *nextrecord;
|
|
|
|
if (psa != NULL)
|
|
*psa = NULL;
|
|
if (controlp != NULL)
|
|
*controlp = NULL;
|
|
if (flagsp != NULL)
|
|
flags = *flagsp &~ MSG_EOR;
|
|
else
|
|
flags = 0;
|
|
|
|
/*
|
|
* For any complicated cases, fall back to the full
|
|
* soreceive_generic().
|
|
*/
|
|
if (mp0 != NULL || (flags & MSG_PEEK) || (flags & MSG_OOB))
|
|
return (soreceive_generic(so, psa, uio, mp0, controlp,
|
|
flagsp));
|
|
|
|
/*
|
|
* Enforce restrictions on use.
|
|
*/
|
|
KASSERT((pr->pr_flags & PR_WANTRCVD) == 0,
|
|
("soreceive_dgram: wantrcvd"));
|
|
KASSERT(pr->pr_flags & PR_ATOMIC, ("soreceive_dgram: !atomic"));
|
|
KASSERT((so->so_rcv.sb_state & SBS_RCVATMARK) == 0,
|
|
("soreceive_dgram: SBS_RCVATMARK"));
|
|
KASSERT((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0,
|
|
("soreceive_dgram: P_CONNREQUIRED"));
|
|
|
|
/*
|
|
* Loop blocking while waiting for a datagram.
|
|
*/
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
while ((m = so->so_rcv.sb_mb) == NULL) {
|
|
KASSERT(so->so_rcv.sb_cc == 0,
|
|
("soreceive_dgram: sb_mb NULL but sb_cc %u",
|
|
so->so_rcv.sb_cc));
|
|
if (so->so_error) {
|
|
error = so->so_error;
|
|
so->so_error = 0;
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
return (error);
|
|
}
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE ||
|
|
uio->uio_resid == 0) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
return (0);
|
|
}
|
|
if ((so->so_state & SS_NBIO) ||
|
|
(flags & (MSG_DONTWAIT|MSG_NBIO))) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
return (EWOULDBLOCK);
|
|
}
|
|
SBLASTRECORDCHK(&so->so_rcv);
|
|
SBLASTMBUFCHK(&so->so_rcv);
|
|
error = sbwait(&so->so_rcv);
|
|
if (error) {
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
return (error);
|
|
}
|
|
}
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
|
|
if (uio->uio_td)
|
|
uio->uio_td->td_ru.ru_msgrcv++;
|
|
SBLASTRECORDCHK(&so->so_rcv);
|
|
SBLASTMBUFCHK(&so->so_rcv);
|
|
nextrecord = m->m_nextpkt;
|
|
if (nextrecord == NULL) {
|
|
KASSERT(so->so_rcv.sb_lastrecord == m,
|
|
("soreceive_dgram: lastrecord != m"));
|
|
}
|
|
|
|
KASSERT(so->so_rcv.sb_mb->m_nextpkt == nextrecord,
|
|
("soreceive_dgram: m_nextpkt != nextrecord"));
|
|
|
|
/*
|
|
* Pull 'm' and its chain off the front of the packet queue.
|
|
*/
|
|
so->so_rcv.sb_mb = NULL;
|
|
sockbuf_pushsync(&so->so_rcv, nextrecord);
|
|
|
|
/*
|
|
* Walk 'm's chain and free that many bytes from the socket buffer.
|
|
*/
|
|
for (m2 = m; m2 != NULL; m2 = m2->m_next)
|
|
sbfree(&so->so_rcv, m2);
|
|
|
|
/*
|
|
* Do a few last checks before we let go of the lock.
|
|
*/
|
|
SBLASTRECORDCHK(&so->so_rcv);
|
|
SBLASTMBUFCHK(&so->so_rcv);
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
|
|
if (pr->pr_flags & PR_ADDR) {
|
|
KASSERT(m->m_type == MT_SONAME,
|
|
("m->m_type == %d", m->m_type));
|
|
if (psa != NULL)
|
|
*psa = sodupsockaddr(mtod(m, struct sockaddr *),
|
|
M_NOWAIT);
|
|
m = m_free(m);
|
|
}
|
|
if (m == NULL) {
|
|
/* XXXRW: Can this happen? */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Packet to copyout() is now in 'm' and it is disconnected from the
|
|
* queue.
|
|
*
|
|
* Process one or more MT_CONTROL mbufs present before any data mbufs
|
|
* in the first mbuf chain on the socket buffer. We call into the
|
|
* protocol to perform externalization (or freeing if controlp ==
|
|
* NULL).
|
|
*/
|
|
if (m->m_type == MT_CONTROL) {
|
|
struct mbuf *cm = NULL, *cmn;
|
|
struct mbuf **cme = &cm;
|
|
|
|
do {
|
|
m2 = m->m_next;
|
|
m->m_next = NULL;
|
|
*cme = m;
|
|
cme = &(*cme)->m_next;
|
|
m = m2;
|
|
} while (m != NULL && m->m_type == MT_CONTROL);
|
|
while (cm != NULL) {
|
|
cmn = cm->m_next;
|
|
cm->m_next = NULL;
|
|
if (pr->pr_domain->dom_externalize != NULL) {
|
|
error = (*pr->pr_domain->dom_externalize)
|
|
(cm, controlp);
|
|
} else if (controlp != NULL)
|
|
*controlp = cm;
|
|
else
|
|
m_freem(cm);
|
|
if (controlp != NULL) {
|
|
while (*controlp != NULL)
|
|
controlp = &(*controlp)->m_next;
|
|
}
|
|
cm = cmn;
|
|
}
|
|
}
|
|
KASSERT(m->m_type == MT_DATA, ("soreceive_dgram: !data"));
|
|
|
|
while (m != NULL && uio->uio_resid > 0) {
|
|
len = uio->uio_resid;
|
|
if (len > m->m_len)
|
|
len = m->m_len;
|
|
error = uiomove(mtod(m, char *), (int)len, uio);
|
|
if (error) {
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
m = m_free(m);
|
|
}
|
|
if (m != NULL)
|
|
flags |= MSG_TRUNC;
|
|
m_freem(m);
|
|
if (flagsp != NULL)
|
|
*flagsp |= flags;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
soreceive(struct socket *so, struct sockaddr **psa, struct uio *uio,
|
|
struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
|
|
{
|
|
|
|
return (so->so_proto->pr_usrreqs->pru_soreceive(so, psa, uio, mp0,
|
|
controlp, flagsp));
|
|
}
|
|
|
|
int
|
|
soshutdown(struct socket *so, int how)
|
|
{
|
|
struct protosw *pr = so->so_proto;
|
|
|
|
if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
|
|
return (EINVAL);
|
|
if (pr->pr_usrreqs->pru_flush != NULL) {
|
|
(*pr->pr_usrreqs->pru_flush)(so, how);
|
|
}
|
|
if (how != SHUT_WR)
|
|
sorflush(so);
|
|
if (how != SHUT_RD)
|
|
return ((*pr->pr_usrreqs->pru_shutdown)(so));
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
sorflush(struct socket *so)
|
|
{
|
|
struct sockbuf *sb = &so->so_rcv;
|
|
struct protosw *pr = so->so_proto;
|
|
struct sockbuf asb;
|
|
|
|
/*
|
|
* In order to avoid calling dom_dispose with the socket buffer mutex
|
|
* held, and in order to generally avoid holding the lock for a long
|
|
* time, we make a copy of the socket buffer and clear the original
|
|
* (except locks, state). The new socket buffer copy won't have
|
|
* initialized locks so we can only call routines that won't use or
|
|
* assert those locks.
|
|
*
|
|
* Dislodge threads currently blocked in receive and wait to acquire
|
|
* a lock against other simultaneous readers before clearing the
|
|
* socket buffer. Don't let our acquire be interrupted by a signal
|
|
* despite any existing socket disposition on interruptable waiting.
|
|
*/
|
|
socantrcvmore(so);
|
|
(void) sblock(sb, SBL_WAIT | SBL_NOINTR);
|
|
|
|
/*
|
|
* Invalidate/clear most of the sockbuf structure, but leave selinfo
|
|
* and mutex data unchanged.
|
|
*/
|
|
SOCKBUF_LOCK(sb);
|
|
bzero(&asb, offsetof(struct sockbuf, sb_startzero));
|
|
bcopy(&sb->sb_startzero, &asb.sb_startzero,
|
|
sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
|
|
bzero(&sb->sb_startzero,
|
|
sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
|
|
SOCKBUF_UNLOCK(sb);
|
|
sbunlock(sb);
|
|
|
|
/*
|
|
* Dispose of special rights and flush the socket buffer. Don't call
|
|
* any unsafe routines (that rely on locks being initialized) on asb.
|
|
*/
|
|
if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose != NULL)
|
|
(*pr->pr_domain->dom_dispose)(asb.sb_mb);
|
|
sbrelease_internal(&asb, so);
|
|
}
|
|
|
|
/*
|
|
* Perhaps this routine, and sooptcopyout(), below, ought to come in an
|
|
* additional variant to handle the case where the option value needs to be
|
|
* some kind of integer, but not a specific size. In addition to their use
|
|
* here, these functions are also called by the protocol-level pr_ctloutput()
|
|
* routines.
|
|
*/
|
|
int
|
|
sooptcopyin(struct sockopt *sopt, void *buf, size_t len, size_t minlen)
|
|
{
|
|
size_t valsize;
|
|
|
|
/*
|
|
* If the user gives us more than we wanted, we ignore it, but if we
|
|
* don't get the minimum length the caller wants, we return EINVAL.
|
|
* On success, sopt->sopt_valsize is set to however much we actually
|
|
* retrieved.
|
|
*/
|
|
if ((valsize = sopt->sopt_valsize) < minlen)
|
|
return EINVAL;
|
|
if (valsize > len)
|
|
sopt->sopt_valsize = valsize = len;
|
|
|
|
if (sopt->sopt_td != NULL)
|
|
return (copyin(sopt->sopt_val, buf, valsize));
|
|
|
|
bcopy(sopt->sopt_val, buf, valsize);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Kernel version of setsockopt(2).
|
|
*
|
|
* XXX: optlen is size_t, not socklen_t
|
|
*/
|
|
int
|
|
so_setsockopt(struct socket *so, int level, int optname, void *optval,
|
|
size_t optlen)
|
|
{
|
|
struct sockopt sopt;
|
|
|
|
sopt.sopt_level = level;
|
|
sopt.sopt_name = optname;
|
|
sopt.sopt_dir = SOPT_SET;
|
|
sopt.sopt_val = optval;
|
|
sopt.sopt_valsize = optlen;
|
|
sopt.sopt_td = NULL;
|
|
return (sosetopt(so, &sopt));
|
|
}
|
|
|
|
int
|
|
sosetopt(struct socket *so, struct sockopt *sopt)
|
|
{
|
|
int error, optval;
|
|
struct linger l;
|
|
struct timeval tv;
|
|
u_long val;
|
|
#ifdef MAC
|
|
struct mac extmac;
|
|
#endif
|
|
|
|
error = 0;
|
|
if (sopt->sopt_level != SOL_SOCKET) {
|
|
if (so->so_proto && so->so_proto->pr_ctloutput)
|
|
return ((*so->so_proto->pr_ctloutput)
|
|
(so, sopt));
|
|
error = ENOPROTOOPT;
|
|
} else {
|
|
switch (sopt->sopt_name) {
|
|
#ifdef INET
|
|
case SO_ACCEPTFILTER:
|
|
error = do_setopt_accept_filter(so, sopt);
|
|
if (error)
|
|
goto bad;
|
|
break;
|
|
#endif
|
|
case SO_LINGER:
|
|
error = sooptcopyin(sopt, &l, sizeof l, sizeof l);
|
|
if (error)
|
|
goto bad;
|
|
|
|
SOCK_LOCK(so);
|
|
so->so_linger = l.l_linger;
|
|
if (l.l_onoff)
|
|
so->so_options |= SO_LINGER;
|
|
else
|
|
so->so_options &= ~SO_LINGER;
|
|
SOCK_UNLOCK(so);
|
|
break;
|
|
|
|
case SO_DEBUG:
|
|
case SO_KEEPALIVE:
|
|
case SO_DONTROUTE:
|
|
case SO_USELOOPBACK:
|
|
case SO_BROADCAST:
|
|
case SO_REUSEADDR:
|
|
case SO_REUSEPORT:
|
|
case SO_OOBINLINE:
|
|
case SO_TIMESTAMP:
|
|
case SO_BINTIME:
|
|
case SO_NOSIGPIPE:
|
|
case SO_NO_DDP:
|
|
case SO_NO_OFFLOAD:
|
|
error = sooptcopyin(sopt, &optval, sizeof optval,
|
|
sizeof optval);
|
|
if (error)
|
|
goto bad;
|
|
SOCK_LOCK(so);
|
|
if (optval)
|
|
so->so_options |= sopt->sopt_name;
|
|
else
|
|
so->so_options &= ~sopt->sopt_name;
|
|
SOCK_UNLOCK(so);
|
|
break;
|
|
|
|
case SO_SETFIB:
|
|
error = sooptcopyin(sopt, &optval, sizeof optval,
|
|
sizeof optval);
|
|
if (optval < 1 || optval > rt_numfibs) {
|
|
error = EINVAL;
|
|
goto bad;
|
|
}
|
|
if ((so->so_proto->pr_domain->dom_family == PF_INET) ||
|
|
(so->so_proto->pr_domain->dom_family == PF_ROUTE)) {
|
|
so->so_fibnum = optval;
|
|
/* Note: ignore error */
|
|
if (so->so_proto && so->so_proto->pr_ctloutput)
|
|
(*so->so_proto->pr_ctloutput)(so, sopt);
|
|
} else {
|
|
so->so_fibnum = 0;
|
|
}
|
|
break;
|
|
case SO_SNDBUF:
|
|
case SO_RCVBUF:
|
|
case SO_SNDLOWAT:
|
|
case SO_RCVLOWAT:
|
|
error = sooptcopyin(sopt, &optval, sizeof optval,
|
|
sizeof optval);
|
|
if (error)
|
|
goto bad;
|
|
|
|
/*
|
|
* Values < 1 make no sense for any of these options,
|
|
* so disallow them.
|
|
*/
|
|
if (optval < 1) {
|
|
error = EINVAL;
|
|
goto bad;
|
|
}
|
|
|
|
switch (sopt->sopt_name) {
|
|
case SO_SNDBUF:
|
|
case SO_RCVBUF:
|
|
if (sbreserve(sopt->sopt_name == SO_SNDBUF ?
|
|
&so->so_snd : &so->so_rcv, (u_long)optval,
|
|
so, curthread) == 0) {
|
|
error = ENOBUFS;
|
|
goto bad;
|
|
}
|
|
(sopt->sopt_name == SO_SNDBUF ? &so->so_snd :
|
|
&so->so_rcv)->sb_flags &= ~SB_AUTOSIZE;
|
|
break;
|
|
|
|
/*
|
|
* Make sure the low-water is never greater than the
|
|
* high-water.
|
|
*/
|
|
case SO_SNDLOWAT:
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
so->so_snd.sb_lowat =
|
|
(optval > so->so_snd.sb_hiwat) ?
|
|
so->so_snd.sb_hiwat : optval;
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
break;
|
|
case SO_RCVLOWAT:
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
so->so_rcv.sb_lowat =
|
|
(optval > so->so_rcv.sb_hiwat) ?
|
|
so->so_rcv.sb_hiwat : optval;
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SO_SNDTIMEO:
|
|
case SO_RCVTIMEO:
|
|
#ifdef COMPAT_IA32
|
|
if (SV_CURPROC_FLAG(SV_ILP32)) {
|
|
struct timeval32 tv32;
|
|
|
|
error = sooptcopyin(sopt, &tv32, sizeof tv32,
|
|
sizeof tv32);
|
|
CP(tv32, tv, tv_sec);
|
|
CP(tv32, tv, tv_usec);
|
|
} else
|
|
#endif
|
|
error = sooptcopyin(sopt, &tv, sizeof tv,
|
|
sizeof tv);
|
|
if (error)
|
|
goto bad;
|
|
|
|
/* assert(hz > 0); */
|
|
if (tv.tv_sec < 0 || tv.tv_sec > INT_MAX / hz ||
|
|
tv.tv_usec < 0 || tv.tv_usec >= 1000000) {
|
|
error = EDOM;
|
|
goto bad;
|
|
}
|
|
/* assert(tick > 0); */
|
|
/* assert(ULONG_MAX - INT_MAX >= 1000000); */
|
|
val = (u_long)(tv.tv_sec * hz) + tv.tv_usec / tick;
|
|
if (val > INT_MAX) {
|
|
error = EDOM;
|
|
goto bad;
|
|
}
|
|
if (val == 0 && tv.tv_usec != 0)
|
|
val = 1;
|
|
|
|
switch (sopt->sopt_name) {
|
|
case SO_SNDTIMEO:
|
|
so->so_snd.sb_timeo = val;
|
|
break;
|
|
case SO_RCVTIMEO:
|
|
so->so_rcv.sb_timeo = val;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SO_LABEL:
|
|
#ifdef MAC
|
|
error = sooptcopyin(sopt, &extmac, sizeof extmac,
|
|
sizeof extmac);
|
|
if (error)
|
|
goto bad;
|
|
error = mac_setsockopt_label(sopt->sopt_td->td_ucred,
|
|
so, &extmac);
|
|
#else
|
|
error = EOPNOTSUPP;
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
if (error == 0 && so->so_proto != NULL &&
|
|
so->so_proto->pr_ctloutput != NULL) {
|
|
(void) ((*so->so_proto->pr_ctloutput)
|
|
(so, sopt));
|
|
}
|
|
}
|
|
bad:
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Helper routine for getsockopt.
|
|
*/
|
|
int
|
|
sooptcopyout(struct sockopt *sopt, const void *buf, size_t len)
|
|
{
|
|
int error;
|
|
size_t valsize;
|
|
|
|
error = 0;
|
|
|
|
/*
|
|
* Documented get behavior is that we always return a value, possibly
|
|
* truncated to fit in the user's buffer. Traditional behavior is
|
|
* that we always tell the user precisely how much we copied, rather
|
|
* than something useful like the total amount we had available for
|
|
* her. Note that this interface is not idempotent; the entire
|
|
* answer must generated ahead of time.
|
|
*/
|
|
valsize = min(len, sopt->sopt_valsize);
|
|
sopt->sopt_valsize = valsize;
|
|
if (sopt->sopt_val != NULL) {
|
|
if (sopt->sopt_td != NULL)
|
|
error = copyout(buf, sopt->sopt_val, valsize);
|
|
else
|
|
bcopy(buf, sopt->sopt_val, valsize);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sogetopt(struct socket *so, struct sockopt *sopt)
|
|
{
|
|
int error, optval;
|
|
struct linger l;
|
|
struct timeval tv;
|
|
#ifdef MAC
|
|
struct mac extmac;
|
|
#endif
|
|
|
|
error = 0;
|
|
if (sopt->sopt_level != SOL_SOCKET) {
|
|
if (so->so_proto && so->so_proto->pr_ctloutput) {
|
|
return ((*so->so_proto->pr_ctloutput)
|
|
(so, sopt));
|
|
} else
|
|
return (ENOPROTOOPT);
|
|
} else {
|
|
switch (sopt->sopt_name) {
|
|
#ifdef INET
|
|
case SO_ACCEPTFILTER:
|
|
error = do_getopt_accept_filter(so, sopt);
|
|
break;
|
|
#endif
|
|
case SO_LINGER:
|
|
SOCK_LOCK(so);
|
|
l.l_onoff = so->so_options & SO_LINGER;
|
|
l.l_linger = so->so_linger;
|
|
SOCK_UNLOCK(so);
|
|
error = sooptcopyout(sopt, &l, sizeof l);
|
|
break;
|
|
|
|
case SO_USELOOPBACK:
|
|
case SO_DONTROUTE:
|
|
case SO_DEBUG:
|
|
case SO_KEEPALIVE:
|
|
case SO_REUSEADDR:
|
|
case SO_REUSEPORT:
|
|
case SO_BROADCAST:
|
|
case SO_OOBINLINE:
|
|
case SO_ACCEPTCONN:
|
|
case SO_TIMESTAMP:
|
|
case SO_BINTIME:
|
|
case SO_NOSIGPIPE:
|
|
optval = so->so_options & sopt->sopt_name;
|
|
integer:
|
|
error = sooptcopyout(sopt, &optval, sizeof optval);
|
|
break;
|
|
|
|
case SO_TYPE:
|
|
optval = so->so_type;
|
|
goto integer;
|
|
|
|
case SO_ERROR:
|
|
SOCK_LOCK(so);
|
|
optval = so->so_error;
|
|
so->so_error = 0;
|
|
SOCK_UNLOCK(so);
|
|
goto integer;
|
|
|
|
case SO_SNDBUF:
|
|
optval = so->so_snd.sb_hiwat;
|
|
goto integer;
|
|
|
|
case SO_RCVBUF:
|
|
optval = so->so_rcv.sb_hiwat;
|
|
goto integer;
|
|
|
|
case SO_SNDLOWAT:
|
|
optval = so->so_snd.sb_lowat;
|
|
goto integer;
|
|
|
|
case SO_RCVLOWAT:
|
|
optval = so->so_rcv.sb_lowat;
|
|
goto integer;
|
|
|
|
case SO_SNDTIMEO:
|
|
case SO_RCVTIMEO:
|
|
optval = (sopt->sopt_name == SO_SNDTIMEO ?
|
|
so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
|
|
|
|
tv.tv_sec = optval / hz;
|
|
tv.tv_usec = (optval % hz) * tick;
|
|
#ifdef COMPAT_IA32
|
|
if (SV_CURPROC_FLAG(SV_ILP32)) {
|
|
struct timeval32 tv32;
|
|
|
|
CP(tv, tv32, tv_sec);
|
|
CP(tv, tv32, tv_usec);
|
|
error = sooptcopyout(sopt, &tv32, sizeof tv32);
|
|
} else
|
|
#endif
|
|
error = sooptcopyout(sopt, &tv, sizeof tv);
|
|
break;
|
|
|
|
case SO_LABEL:
|
|
#ifdef MAC
|
|
error = sooptcopyin(sopt, &extmac, sizeof(extmac),
|
|
sizeof(extmac));
|
|
if (error)
|
|
return (error);
|
|
error = mac_getsockopt_label(sopt->sopt_td->td_ucred,
|
|
so, &extmac);
|
|
if (error)
|
|
return (error);
|
|
error = sooptcopyout(sopt, &extmac, sizeof extmac);
|
|
#else
|
|
error = EOPNOTSUPP;
|
|
#endif
|
|
break;
|
|
|
|
case SO_PEERLABEL:
|
|
#ifdef MAC
|
|
error = sooptcopyin(sopt, &extmac, sizeof(extmac),
|
|
sizeof(extmac));
|
|
if (error)
|
|
return (error);
|
|
error = mac_getsockopt_peerlabel(
|
|
sopt->sopt_td->td_ucred, so, &extmac);
|
|
if (error)
|
|
return (error);
|
|
error = sooptcopyout(sopt, &extmac, sizeof extmac);
|
|
#else
|
|
error = EOPNOTSUPP;
|
|
#endif
|
|
break;
|
|
|
|
case SO_LISTENQLIMIT:
|
|
optval = so->so_qlimit;
|
|
goto integer;
|
|
|
|
case SO_LISTENQLEN:
|
|
optval = so->so_qlen;
|
|
goto integer;
|
|
|
|
case SO_LISTENINCQLEN:
|
|
optval = so->so_incqlen;
|
|
goto integer;
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/* XXX; prepare mbuf for (__FreeBSD__ < 3) routines. */
|
|
int
|
|
soopt_getm(struct sockopt *sopt, struct mbuf **mp)
|
|
{
|
|
struct mbuf *m, *m_prev;
|
|
int sopt_size = sopt->sopt_valsize;
|
|
|
|
MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return ENOBUFS;
|
|
if (sopt_size > MLEN) {
|
|
MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_free(m);
|
|
return ENOBUFS;
|
|
}
|
|
m->m_len = min(MCLBYTES, sopt_size);
|
|
} else {
|
|
m->m_len = min(MLEN, sopt_size);
|
|
}
|
|
sopt_size -= m->m_len;
|
|
*mp = m;
|
|
m_prev = m;
|
|
|
|
while (sopt_size) {
|
|
MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
m_freem(*mp);
|
|
return ENOBUFS;
|
|
}
|
|
if (sopt_size > MLEN) {
|
|
MCLGET(m, sopt->sopt_td != NULL ? M_WAIT :
|
|
M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
m_freem(*mp);
|
|
return ENOBUFS;
|
|
}
|
|
m->m_len = min(MCLBYTES, sopt_size);
|
|
} else {
|
|
m->m_len = min(MLEN, sopt_size);
|
|
}
|
|
sopt_size -= m->m_len;
|
|
m_prev->m_next = m;
|
|
m_prev = m;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* XXX; copyin sopt data into mbuf chain for (__FreeBSD__ < 3) routines. */
|
|
int
|
|
soopt_mcopyin(struct sockopt *sopt, struct mbuf *m)
|
|
{
|
|
struct mbuf *m0 = m;
|
|
|
|
if (sopt->sopt_val == NULL)
|
|
return (0);
|
|
while (m != NULL && sopt->sopt_valsize >= m->m_len) {
|
|
if (sopt->sopt_td != NULL) {
|
|
int error;
|
|
|
|
error = copyin(sopt->sopt_val, mtod(m, char *),
|
|
m->m_len);
|
|
if (error != 0) {
|
|
m_freem(m0);
|
|
return(error);
|
|
}
|
|
} else
|
|
bcopy(sopt->sopt_val, mtod(m, char *), m->m_len);
|
|
sopt->sopt_valsize -= m->m_len;
|
|
sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
|
|
m = m->m_next;
|
|
}
|
|
if (m != NULL) /* should be allocated enoughly at ip6_sooptmcopyin() */
|
|
panic("ip6_sooptmcopyin");
|
|
return (0);
|
|
}
|
|
|
|
/* XXX; copyout mbuf chain data into soopt for (__FreeBSD__ < 3) routines. */
|
|
int
|
|
soopt_mcopyout(struct sockopt *sopt, struct mbuf *m)
|
|
{
|
|
struct mbuf *m0 = m;
|
|
size_t valsize = 0;
|
|
|
|
if (sopt->sopt_val == NULL)
|
|
return (0);
|
|
while (m != NULL && sopt->sopt_valsize >= m->m_len) {
|
|
if (sopt->sopt_td != NULL) {
|
|
int error;
|
|
|
|
error = copyout(mtod(m, char *), sopt->sopt_val,
|
|
m->m_len);
|
|
if (error != 0) {
|
|
m_freem(m0);
|
|
return(error);
|
|
}
|
|
} else
|
|
bcopy(mtod(m, char *), sopt->sopt_val, m->m_len);
|
|
sopt->sopt_valsize -= m->m_len;
|
|
sopt->sopt_val = (char *)sopt->sopt_val + m->m_len;
|
|
valsize += m->m_len;
|
|
m = m->m_next;
|
|
}
|
|
if (m != NULL) {
|
|
/* enough soopt buffer should be given from user-land */
|
|
m_freem(m0);
|
|
return(EINVAL);
|
|
}
|
|
sopt->sopt_valsize = valsize;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* sohasoutofband(): protocol notifies socket layer of the arrival of new
|
|
* out-of-band data, which will then notify socket consumers.
|
|
*/
|
|
void
|
|
sohasoutofband(struct socket *so)
|
|
{
|
|
|
|
if (so->so_sigio != NULL)
|
|
pgsigio(&so->so_sigio, SIGURG, 0);
|
|
selwakeuppri(&so->so_rcv.sb_sel, PSOCK);
|
|
}
|
|
|
|
int
|
|
sopoll(struct socket *so, int events, struct ucred *active_cred,
|
|
struct thread *td)
|
|
{
|
|
|
|
return (so->so_proto->pr_usrreqs->pru_sopoll(so, events, active_cred,
|
|
td));
|
|
}
|
|
|
|
int
|
|
sopoll_generic(struct socket *so, int events, struct ucred *active_cred,
|
|
struct thread *td)
|
|
{
|
|
int revents = 0;
|
|
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
if (events & (POLLIN | POLLRDNORM))
|
|
if (soreadable(so))
|
|
revents |= events & (POLLIN | POLLRDNORM);
|
|
|
|
if (events & POLLINIGNEOF)
|
|
if (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
|
|
!TAILQ_EMPTY(&so->so_comp) || so->so_error)
|
|
revents |= POLLINIGNEOF;
|
|
|
|
if (events & (POLLOUT | POLLWRNORM))
|
|
if (sowriteable(so))
|
|
revents |= events & (POLLOUT | POLLWRNORM);
|
|
|
|
if (events & (POLLPRI | POLLRDBAND))
|
|
if (so->so_oobmark || (so->so_rcv.sb_state & SBS_RCVATMARK))
|
|
revents |= events & (POLLPRI | POLLRDBAND);
|
|
|
|
if (revents == 0) {
|
|
if (events &
|
|
(POLLIN | POLLINIGNEOF | POLLPRI | POLLRDNORM |
|
|
POLLRDBAND)) {
|
|
selrecord(td, &so->so_rcv.sb_sel);
|
|
so->so_rcv.sb_flags |= SB_SEL;
|
|
}
|
|
|
|
if (events & (POLLOUT | POLLWRNORM)) {
|
|
selrecord(td, &so->so_snd.sb_sel);
|
|
so->so_snd.sb_flags |= SB_SEL;
|
|
}
|
|
}
|
|
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
return (revents);
|
|
}
|
|
|
|
int
|
|
soo_kqfilter(struct file *fp, struct knote *kn)
|
|
{
|
|
struct socket *so = kn->kn_fp->f_data;
|
|
struct sockbuf *sb;
|
|
|
|
switch (kn->kn_filter) {
|
|
case EVFILT_READ:
|
|
if (so->so_options & SO_ACCEPTCONN)
|
|
kn->kn_fop = &solisten_filtops;
|
|
else
|
|
kn->kn_fop = &soread_filtops;
|
|
sb = &so->so_rcv;
|
|
break;
|
|
case EVFILT_WRITE:
|
|
kn->kn_fop = &sowrite_filtops;
|
|
sb = &so->so_snd;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
knlist_add(&sb->sb_sel.si_note, kn, 1);
|
|
sb->sb_flags |= SB_KNOTE;
|
|
SOCKBUF_UNLOCK(sb);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Some routines that return EOPNOTSUPP for entry points that are not
|
|
* supported by a protocol. Fill in as needed.
|
|
*/
|
|
int
|
|
pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_attach_notsupp(struct socket *so, int proto, struct thread *td)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_connect2_notsupp(struct socket *so1, struct socket *so2)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
|
|
struct ifnet *ifp, struct thread *td)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_disconnect_notsupp(struct socket *so)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_listen_notsupp(struct socket *so, int backlog, struct thread *td)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_rcvd_notsupp(struct socket *so, int flags)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
|
|
struct sockaddr *addr, struct mbuf *control, struct thread *td)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
/*
|
|
* This isn't really a ``null'' operation, but it's the default one and
|
|
* doesn't do anything destructive.
|
|
*/
|
|
int
|
|
pru_sense_null(struct socket *so, struct stat *sb)
|
|
{
|
|
|
|
sb->st_blksize = so->so_snd.sb_hiwat;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
pru_shutdown_notsupp(struct socket *so)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
|
|
struct mbuf *top, struct mbuf *control, int flags, struct thread *td)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
|
|
struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
int
|
|
pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred,
|
|
struct thread *td)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
static void
|
|
filt_sordetach(struct knote *kn)
|
|
{
|
|
struct socket *so = kn->kn_fp->f_data;
|
|
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
knlist_remove(&so->so_rcv.sb_sel.si_note, kn, 1);
|
|
if (knlist_empty(&so->so_rcv.sb_sel.si_note))
|
|
so->so_rcv.sb_flags &= ~SB_KNOTE;
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_soread(struct knote *kn, long hint)
|
|
{
|
|
struct socket *so;
|
|
|
|
so = kn->kn_fp->f_data;
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
|
|
kn->kn_data = so->so_rcv.sb_cc - so->so_rcv.sb_ctl;
|
|
if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
|
|
kn->kn_flags |= EV_EOF;
|
|
kn->kn_fflags = so->so_error;
|
|
return (1);
|
|
} else if (so->so_error) /* temporary udp error */
|
|
return (1);
|
|
else if (kn->kn_sfflags & NOTE_LOWAT)
|
|
return (kn->kn_data >= kn->kn_sdata);
|
|
else
|
|
return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat);
|
|
}
|
|
|
|
static void
|
|
filt_sowdetach(struct knote *kn)
|
|
{
|
|
struct socket *so = kn->kn_fp->f_data;
|
|
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
knlist_remove(&so->so_snd.sb_sel.si_note, kn, 1);
|
|
if (knlist_empty(&so->so_snd.sb_sel.si_note))
|
|
so->so_snd.sb_flags &= ~SB_KNOTE;
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_sowrite(struct knote *kn, long hint)
|
|
{
|
|
struct socket *so;
|
|
|
|
so = kn->kn_fp->f_data;
|
|
SOCKBUF_LOCK_ASSERT(&so->so_snd);
|
|
kn->kn_data = sbspace(&so->so_snd);
|
|
if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
|
|
kn->kn_flags |= EV_EOF;
|
|
kn->kn_fflags = so->so_error;
|
|
return (1);
|
|
} else if (so->so_error) /* temporary udp error */
|
|
return (1);
|
|
else if (((so->so_state & SS_ISCONNECTED) == 0) &&
|
|
(so->so_proto->pr_flags & PR_CONNREQUIRED))
|
|
return (0);
|
|
else if (kn->kn_sfflags & NOTE_LOWAT)
|
|
return (kn->kn_data >= kn->kn_sdata);
|
|
else
|
|
return (kn->kn_data >= so->so_snd.sb_lowat);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
filt_solisten(struct knote *kn, long hint)
|
|
{
|
|
struct socket *so = kn->kn_fp->f_data;
|
|
|
|
kn->kn_data = so->so_qlen;
|
|
return (! TAILQ_EMPTY(&so->so_comp));
|
|
}
|
|
|
|
int
|
|
socheckuid(struct socket *so, uid_t uid)
|
|
{
|
|
|
|
if (so == NULL)
|
|
return (EPERM);
|
|
if (so->so_cred->cr_uid != uid)
|
|
return (EPERM);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_somaxconn(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error;
|
|
int val;
|
|
|
|
val = somaxconn;
|
|
error = sysctl_handle_int(oidp, &val, 0, req);
|
|
if (error || !req->newptr )
|
|
return (error);
|
|
|
|
if (val < 1 || val > USHRT_MAX)
|
|
return (EINVAL);
|
|
|
|
somaxconn = val;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* These functions are used by protocols to notify the socket layer (and its
|
|
* consumers) of state changes in the sockets driven by protocol-side events.
|
|
*/
|
|
|
|
/*
|
|
* Procedures to manipulate state flags of socket and do appropriate wakeups.
|
|
*
|
|
* Normal sequence from the active (originating) side is that
|
|
* soisconnecting() is called during processing of connect() call, resulting
|
|
* in an eventual call to soisconnected() if/when the connection is
|
|
* established. When the connection is torn down soisdisconnecting() is
|
|
* called during processing of disconnect() call, and soisdisconnected() is
|
|
* called when the connection to the peer is totally severed. The semantics
|
|
* of these routines are such that connectionless protocols can call
|
|
* soisconnected() and soisdisconnected() only, bypassing the in-progress
|
|
* calls when setting up a ``connection'' takes no time.
|
|
*
|
|
* From the passive side, a socket is created with two queues of sockets:
|
|
* so_incomp for connections in progress and so_comp for connections already
|
|
* made and awaiting user acceptance. As a protocol is preparing incoming
|
|
* connections, it creates a socket structure queued on so_incomp by calling
|
|
* sonewconn(). When the connection is established, soisconnected() is
|
|
* called, and transfers the socket structure to so_comp, making it available
|
|
* to accept().
|
|
*
|
|
* If a socket is closed with sockets on either so_incomp or so_comp, these
|
|
* sockets are dropped.
|
|
*
|
|
* If higher-level protocols are implemented in the kernel, the wakeups done
|
|
* here will sometimes cause software-interrupt process scheduling.
|
|
*/
|
|
void
|
|
soisconnecting(struct socket *so)
|
|
{
|
|
|
|
SOCK_LOCK(so);
|
|
so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
|
|
so->so_state |= SS_ISCONNECTING;
|
|
SOCK_UNLOCK(so);
|
|
}
|
|
|
|
void
|
|
soisconnected(struct socket *so)
|
|
{
|
|
struct socket *head;
|
|
|
|
ACCEPT_LOCK();
|
|
SOCK_LOCK(so);
|
|
so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
|
|
so->so_state |= SS_ISCONNECTED;
|
|
head = so->so_head;
|
|
if (head != NULL && (so->so_qstate & SQ_INCOMP)) {
|
|
if ((so->so_options & SO_ACCEPTFILTER) == 0) {
|
|
SOCK_UNLOCK(so);
|
|
TAILQ_REMOVE(&head->so_incomp, so, so_list);
|
|
head->so_incqlen--;
|
|
so->so_qstate &= ~SQ_INCOMP;
|
|
TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
|
|
head->so_qlen++;
|
|
so->so_qstate |= SQ_COMP;
|
|
ACCEPT_UNLOCK();
|
|
sorwakeup(head);
|
|
wakeup_one(&head->so_timeo);
|
|
} else {
|
|
ACCEPT_UNLOCK();
|
|
so->so_upcall =
|
|
head->so_accf->so_accept_filter->accf_callback;
|
|
so->so_upcallarg = head->so_accf->so_accept_filter_arg;
|
|
so->so_rcv.sb_flags |= SB_UPCALL;
|
|
so->so_options &= ~SO_ACCEPTFILTER;
|
|
SOCK_UNLOCK(so);
|
|
so->so_upcall(so, so->so_upcallarg, M_DONTWAIT);
|
|
}
|
|
return;
|
|
}
|
|
SOCK_UNLOCK(so);
|
|
ACCEPT_UNLOCK();
|
|
wakeup(&so->so_timeo);
|
|
sorwakeup(so);
|
|
sowwakeup(so);
|
|
}
|
|
|
|
void
|
|
soisdisconnecting(struct socket *so)
|
|
{
|
|
|
|
/*
|
|
* Note: This code assumes that SOCK_LOCK(so) and
|
|
* SOCKBUF_LOCK(&so->so_rcv) are the same.
|
|
*/
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
so->so_state &= ~SS_ISCONNECTING;
|
|
so->so_state |= SS_ISDISCONNECTING;
|
|
so->so_rcv.sb_state |= SBS_CANTRCVMORE;
|
|
sorwakeup_locked(so);
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
so->so_snd.sb_state |= SBS_CANTSENDMORE;
|
|
sowwakeup_locked(so);
|
|
wakeup(&so->so_timeo);
|
|
}
|
|
|
|
void
|
|
soisdisconnected(struct socket *so)
|
|
{
|
|
|
|
/*
|
|
* Note: This code assumes that SOCK_LOCK(so) and
|
|
* SOCKBUF_LOCK(&so->so_rcv) are the same.
|
|
*/
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
|
|
so->so_state |= SS_ISDISCONNECTED;
|
|
so->so_rcv.sb_state |= SBS_CANTRCVMORE;
|
|
sorwakeup_locked(so);
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
so->so_snd.sb_state |= SBS_CANTSENDMORE;
|
|
sbdrop_locked(&so->so_snd, so->so_snd.sb_cc);
|
|
sowwakeup_locked(so);
|
|
wakeup(&so->so_timeo);
|
|
}
|
|
|
|
/*
|
|
* Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
|
|
*/
|
|
struct sockaddr *
|
|
sodupsockaddr(const struct sockaddr *sa, int mflags)
|
|
{
|
|
struct sockaddr *sa2;
|
|
|
|
sa2 = malloc(sa->sa_len, M_SONAME, mflags);
|
|
if (sa2)
|
|
bcopy(sa, sa2, sa->sa_len);
|
|
return sa2;
|
|
}
|
|
|
|
/*
|
|
* Create an external-format (``xsocket'') structure using the information in
|
|
* the kernel-format socket structure pointed to by so. This is done to
|
|
* reduce the spew of irrelevant information over this interface, to isolate
|
|
* user code from changes in the kernel structure, and potentially to provide
|
|
* information-hiding if we decide that some of this information should be
|
|
* hidden from users.
|
|
*/
|
|
void
|
|
sotoxsocket(struct socket *so, struct xsocket *xso)
|
|
{
|
|
|
|
xso->xso_len = sizeof *xso;
|
|
xso->xso_so = so;
|
|
xso->so_type = so->so_type;
|
|
xso->so_options = so->so_options;
|
|
xso->so_linger = so->so_linger;
|
|
xso->so_state = so->so_state;
|
|
xso->so_pcb = so->so_pcb;
|
|
xso->xso_protocol = so->so_proto->pr_protocol;
|
|
xso->xso_family = so->so_proto->pr_domain->dom_family;
|
|
xso->so_qlen = so->so_qlen;
|
|
xso->so_incqlen = so->so_incqlen;
|
|
xso->so_qlimit = so->so_qlimit;
|
|
xso->so_timeo = so->so_timeo;
|
|
xso->so_error = so->so_error;
|
|
xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0;
|
|
xso->so_oobmark = so->so_oobmark;
|
|
sbtoxsockbuf(&so->so_snd, &xso->so_snd);
|
|
sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
|
|
xso->so_uid = so->so_cred->cr_uid;
|
|
}
|
|
|
|
|
|
/*
|
|
* Socket accessor functions to provide external consumers with
|
|
* a safe interface to socket state
|
|
*
|
|
*/
|
|
|
|
void
|
|
so_listeners_apply_all(struct socket *so, void (*func)(struct socket *, void *), void *arg)
|
|
{
|
|
|
|
TAILQ_FOREACH(so, &so->so_comp, so_list)
|
|
func(so, arg);
|
|
}
|
|
|
|
struct sockbuf *
|
|
so_sockbuf_rcv(struct socket *so)
|
|
{
|
|
|
|
return (&so->so_rcv);
|
|
}
|
|
|
|
struct sockbuf *
|
|
so_sockbuf_snd(struct socket *so)
|
|
{
|
|
|
|
return (&so->so_snd);
|
|
}
|
|
|
|
int
|
|
so_state_get(const struct socket *so)
|
|
{
|
|
|
|
return (so->so_state);
|
|
}
|
|
|
|
void
|
|
so_state_set(struct socket *so, int val)
|
|
{
|
|
|
|
so->so_state = val;
|
|
}
|
|
|
|
int
|
|
so_options_get(const struct socket *so)
|
|
{
|
|
|
|
return (so->so_options);
|
|
}
|
|
|
|
void
|
|
so_options_set(struct socket *so, int val)
|
|
{
|
|
|
|
so->so_options = val;
|
|
}
|
|
|
|
int
|
|
so_error_get(const struct socket *so)
|
|
{
|
|
|
|
return (so->so_error);
|
|
}
|
|
|
|
void
|
|
so_error_set(struct socket *so, int val)
|
|
{
|
|
|
|
so->so_error = val;
|
|
}
|
|
|
|
int
|
|
so_linger_get(const struct socket *so)
|
|
{
|
|
|
|
return (so->so_linger);
|
|
}
|
|
|
|
void
|
|
so_linger_set(struct socket *so, int val)
|
|
{
|
|
|
|
so->so_linger = val;
|
|
}
|
|
|
|
struct protosw *
|
|
so_protosw_get(const struct socket *so)
|
|
{
|
|
|
|
return (so->so_proto);
|
|
}
|
|
|
|
void
|
|
so_protosw_set(struct socket *so, struct protosw *val)
|
|
{
|
|
|
|
so->so_proto = val;
|
|
}
|
|
|
|
void
|
|
so_sorwakeup(struct socket *so)
|
|
{
|
|
|
|
sorwakeup(so);
|
|
}
|
|
|
|
void
|
|
so_sowwakeup(struct socket *so)
|
|
{
|
|
|
|
sowwakeup(so);
|
|
}
|
|
|
|
void
|
|
so_sorwakeup_locked(struct socket *so)
|
|
{
|
|
|
|
sorwakeup_locked(so);
|
|
}
|
|
|
|
void
|
|
so_sowwakeup_locked(struct socket *so)
|
|
{
|
|
|
|
sowwakeup_locked(so);
|
|
}
|
|
|
|
void
|
|
so_lock(struct socket *so)
|
|
{
|
|
SOCK_LOCK(so);
|
|
}
|
|
|
|
void
|
|
so_unlock(struct socket *so)
|
|
{
|
|
SOCK_UNLOCK(so);
|
|
}
|