577f7474b0
Though confusing, GCM using ICM_BLOCK_LEN, but ICM does not is correct... GCM is built on ICM, but uses a function other than swcr_encdec... swcr_encdec cannot handle partial blocks which is why it must still use AES_BLOCK_LEN and is why XTS was broken by the commit... Thanks to the tests for helping sure I didn't break GCM w/ an earlier patch... I did run the tests w/o this patch, and need to figure out why they did not fail, clearly more tests are needed... Prodded by: peter
985 lines
23 KiB
C
985 lines
23 KiB
C
/* $OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $ */
|
|
/*-
|
|
* The authors of this code are John Ioannidis (ji@tla.org),
|
|
* Angelos D. Keromytis (kermit@csd.uch.gr),
|
|
* Niels Provos (provos@physnet.uni-hamburg.de) and
|
|
* Damien Miller (djm@mindrot.org).
|
|
*
|
|
* This code was written by John Ioannidis for BSD/OS in Athens, Greece,
|
|
* in November 1995.
|
|
*
|
|
* Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
|
|
* by Angelos D. Keromytis.
|
|
*
|
|
* Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
|
|
* and Niels Provos.
|
|
*
|
|
* Additional features in 1999 by Angelos D. Keromytis.
|
|
*
|
|
* AES XTS implementation in 2008 by Damien Miller
|
|
*
|
|
* Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
|
|
* Angelos D. Keromytis and Niels Provos.
|
|
*
|
|
* Copyright (C) 2001, Angelos D. Keromytis.
|
|
*
|
|
* Copyright (C) 2008, Damien Miller
|
|
* Copyright (c) 2014 The FreeBSD Foundation
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this software were developed by John-Mark Gurney
|
|
* under sponsorship of the FreeBSD Foundation and
|
|
* Rubicon Communications, LLC (Netgate).
|
|
*
|
|
* Permission to use, copy, and modify this software with or without fee
|
|
* is hereby granted, provided that this entire notice is included in
|
|
* all copies of any software which is or includes a copy or
|
|
* modification of this software.
|
|
* You may use this code under the GNU public license if you so wish. Please
|
|
* contribute changes back to the authors under this freer than GPL license
|
|
* so that we may further the use of strong encryption without limitations to
|
|
* all.
|
|
*
|
|
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
|
|
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
|
|
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
|
|
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
|
|
* PURPOSE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <machine/cpu.h>
|
|
|
|
#include <crypto/blowfish/blowfish.h>
|
|
#include <crypto/des/des.h>
|
|
#include <crypto/rijndael/rijndael.h>
|
|
#include <crypto/camellia/camellia.h>
|
|
#include <crypto/sha1.h>
|
|
|
|
#include <opencrypto/cast.h>
|
|
#include <opencrypto/deflate.h>
|
|
#include <opencrypto/rmd160.h>
|
|
#include <opencrypto/skipjack.h>
|
|
|
|
#include <sys/md5.h>
|
|
|
|
#include <opencrypto/cryptodev.h>
|
|
#include <opencrypto/xform.h>
|
|
|
|
static int null_setkey(u_int8_t **, u_int8_t *, int);
|
|
static int des1_setkey(u_int8_t **, u_int8_t *, int);
|
|
static int des3_setkey(u_int8_t **, u_int8_t *, int);
|
|
static int blf_setkey(u_int8_t **, u_int8_t *, int);
|
|
static int cast5_setkey(u_int8_t **, u_int8_t *, int);
|
|
static int skipjack_setkey(u_int8_t **, u_int8_t *, int);
|
|
static int rijndael128_setkey(u_int8_t **, u_int8_t *, int);
|
|
static int aes_icm_setkey(u_int8_t **, u_int8_t *, int);
|
|
static int aes_xts_setkey(u_int8_t **, u_int8_t *, int);
|
|
static int cml_setkey(u_int8_t **, u_int8_t *, int);
|
|
|
|
static void null_encrypt(caddr_t, u_int8_t *);
|
|
static void des1_encrypt(caddr_t, u_int8_t *);
|
|
static void des3_encrypt(caddr_t, u_int8_t *);
|
|
static void blf_encrypt(caddr_t, u_int8_t *);
|
|
static void cast5_encrypt(caddr_t, u_int8_t *);
|
|
static void skipjack_encrypt(caddr_t, u_int8_t *);
|
|
static void rijndael128_encrypt(caddr_t, u_int8_t *);
|
|
static void aes_xts_encrypt(caddr_t, u_int8_t *);
|
|
static void cml_encrypt(caddr_t, u_int8_t *);
|
|
|
|
static void null_decrypt(caddr_t, u_int8_t *);
|
|
static void des1_decrypt(caddr_t, u_int8_t *);
|
|
static void des3_decrypt(caddr_t, u_int8_t *);
|
|
static void blf_decrypt(caddr_t, u_int8_t *);
|
|
static void cast5_decrypt(caddr_t, u_int8_t *);
|
|
static void skipjack_decrypt(caddr_t, u_int8_t *);
|
|
static void rijndael128_decrypt(caddr_t, u_int8_t *);
|
|
static void aes_xts_decrypt(caddr_t, u_int8_t *);
|
|
static void cml_decrypt(caddr_t, u_int8_t *);
|
|
|
|
static void aes_icm_crypt(caddr_t, u_int8_t *);
|
|
|
|
static void null_zerokey(u_int8_t **);
|
|
static void des1_zerokey(u_int8_t **);
|
|
static void des3_zerokey(u_int8_t **);
|
|
static void blf_zerokey(u_int8_t **);
|
|
static void cast5_zerokey(u_int8_t **);
|
|
static void skipjack_zerokey(u_int8_t **);
|
|
static void rijndael128_zerokey(u_int8_t **);
|
|
static void aes_icm_zerokey(u_int8_t **);
|
|
static void aes_xts_zerokey(u_int8_t **);
|
|
static void cml_zerokey(u_int8_t **);
|
|
|
|
static void aes_icm_reinit(caddr_t, u_int8_t *);
|
|
static void aes_xts_reinit(caddr_t, u_int8_t *);
|
|
static void aes_gcm_reinit(caddr_t, u_int8_t *);
|
|
|
|
static void null_init(void *);
|
|
static void null_reinit(void *ctx, const u_int8_t *buf, u_int16_t len);
|
|
static int null_update(void *, const u_int8_t *, u_int16_t);
|
|
static void null_final(u_int8_t *, void *);
|
|
static int MD5Update_int(void *, const u_int8_t *, u_int16_t);
|
|
static void SHA1Init_int(void *);
|
|
static int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
|
|
static void SHA1Final_int(u_int8_t *, void *);
|
|
static int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
|
|
static int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
|
|
static int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
|
|
static int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
|
|
|
|
static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
|
|
static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
|
|
|
|
#define AESICM_BLOCKSIZE 16
|
|
|
|
struct aes_icm_ctx {
|
|
u_int32_t ac_ek[4*(RIJNDAEL_MAXNR + 1)];
|
|
/* ac_block is initalized to IV */
|
|
u_int8_t ac_block[AESICM_BLOCKSIZE];
|
|
int ac_nr;
|
|
};
|
|
|
|
MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
|
|
|
|
/* Encryption instances */
|
|
struct enc_xform enc_xform_null = {
|
|
CRYPTO_NULL_CBC, "NULL",
|
|
/* NB: blocksize of 4 is to generate a properly aligned ESP header */
|
|
NULL_BLOCK_LEN, NULL_BLOCK_LEN, NULL_MIN_KEY, NULL_MAX_KEY,
|
|
null_encrypt,
|
|
null_decrypt,
|
|
null_setkey,
|
|
null_zerokey,
|
|
NULL,
|
|
};
|
|
|
|
struct enc_xform enc_xform_des = {
|
|
CRYPTO_DES_CBC, "DES",
|
|
DES_BLOCK_LEN, DES_BLOCK_LEN, DES_MIN_KEY, DES_MAX_KEY,
|
|
des1_encrypt,
|
|
des1_decrypt,
|
|
des1_setkey,
|
|
des1_zerokey,
|
|
NULL,
|
|
};
|
|
|
|
struct enc_xform enc_xform_3des = {
|
|
CRYPTO_3DES_CBC, "3DES",
|
|
DES3_BLOCK_LEN, DES3_BLOCK_LEN, TRIPLE_DES_MIN_KEY,
|
|
TRIPLE_DES_MAX_KEY,
|
|
des3_encrypt,
|
|
des3_decrypt,
|
|
des3_setkey,
|
|
des3_zerokey,
|
|
NULL,
|
|
};
|
|
|
|
struct enc_xform enc_xform_blf = {
|
|
CRYPTO_BLF_CBC, "Blowfish",
|
|
BLOWFISH_BLOCK_LEN, BLOWFISH_BLOCK_LEN, BLOWFISH_MIN_KEY,
|
|
BLOWFISH_MAX_KEY,
|
|
blf_encrypt,
|
|
blf_decrypt,
|
|
blf_setkey,
|
|
blf_zerokey,
|
|
NULL,
|
|
};
|
|
|
|
struct enc_xform enc_xform_cast5 = {
|
|
CRYPTO_CAST_CBC, "CAST-128",
|
|
CAST128_BLOCK_LEN, CAST128_BLOCK_LEN, CAST_MIN_KEY, CAST_MAX_KEY,
|
|
cast5_encrypt,
|
|
cast5_decrypt,
|
|
cast5_setkey,
|
|
cast5_zerokey,
|
|
NULL,
|
|
};
|
|
|
|
struct enc_xform enc_xform_skipjack = {
|
|
CRYPTO_SKIPJACK_CBC, "Skipjack",
|
|
SKIPJACK_BLOCK_LEN, SKIPJACK_BLOCK_LEN, SKIPJACK_MIN_KEY,
|
|
SKIPJACK_MAX_KEY,
|
|
skipjack_encrypt,
|
|
skipjack_decrypt, skipjack_setkey,
|
|
skipjack_zerokey,
|
|
NULL,
|
|
};
|
|
|
|
struct enc_xform enc_xform_rijndael128 = {
|
|
CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
|
|
RIJNDAEL128_BLOCK_LEN, RIJNDAEL128_BLOCK_LEN, RIJNDAEL_MIN_KEY,
|
|
RIJNDAEL_MAX_KEY,
|
|
rijndael128_encrypt,
|
|
rijndael128_decrypt,
|
|
rijndael128_setkey,
|
|
rijndael128_zerokey,
|
|
NULL,
|
|
};
|
|
|
|
struct enc_xform enc_xform_aes_icm = {
|
|
CRYPTO_AES_ICM, "AES-ICM",
|
|
AES_BLOCK_LEN, AES_BLOCK_LEN, AES_MIN_KEY, AES_MAX_KEY,
|
|
aes_icm_crypt,
|
|
aes_icm_crypt,
|
|
aes_icm_setkey,
|
|
rijndael128_zerokey,
|
|
aes_icm_reinit,
|
|
};
|
|
|
|
struct enc_xform enc_xform_aes_nist_gcm = {
|
|
CRYPTO_AES_NIST_GCM_16, "AES-GCM",
|
|
AES_ICM_BLOCK_LEN, AES_GCM_IV_LEN, AES_MIN_KEY, AES_MAX_KEY,
|
|
aes_icm_crypt,
|
|
aes_icm_crypt,
|
|
aes_icm_setkey,
|
|
aes_icm_zerokey,
|
|
aes_gcm_reinit,
|
|
};
|
|
|
|
struct enc_xform enc_xform_aes_nist_gmac = {
|
|
CRYPTO_AES_NIST_GMAC, "AES-GMAC",
|
|
AES_ICM_BLOCK_LEN, AES_GCM_IV_LEN, AES_MIN_KEY, AES_MAX_KEY,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
};
|
|
|
|
struct enc_xform enc_xform_aes_xts = {
|
|
CRYPTO_AES_XTS, "AES-XTS",
|
|
AES_BLOCK_LEN, AES_XTS_IV_LEN, AES_XTS_MIN_KEY, AES_XTS_MAX_KEY,
|
|
aes_xts_encrypt,
|
|
aes_xts_decrypt,
|
|
aes_xts_setkey,
|
|
aes_xts_zerokey,
|
|
aes_xts_reinit
|
|
};
|
|
|
|
struct enc_xform enc_xform_arc4 = {
|
|
CRYPTO_ARC4, "ARC4",
|
|
ARC4_BLOCK_LEN, ARC4_IV_LEN, ARC4_MIN_KEY, ARC4_MAX_KEY,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
};
|
|
|
|
struct enc_xform enc_xform_camellia = {
|
|
CRYPTO_CAMELLIA_CBC, "Camellia",
|
|
CAMELLIA_BLOCK_LEN, CAMELLIA_BLOCK_LEN, CAMELLIA_MIN_KEY,
|
|
CAMELLIA_MAX_KEY,
|
|
cml_encrypt,
|
|
cml_decrypt,
|
|
cml_setkey,
|
|
cml_zerokey,
|
|
NULL,
|
|
};
|
|
|
|
/* Authentication instances */
|
|
struct auth_hash auth_hash_null = { /* NB: context isn't used */
|
|
CRYPTO_NULL_HMAC, "NULL-HMAC",
|
|
NULL_HMAC_KEY_LEN, NULL_HASH_LEN, sizeof(int), NULL_HMAC_BLOCK_LEN,
|
|
null_init, null_reinit, null_reinit, null_update, null_final
|
|
};
|
|
|
|
struct auth_hash auth_hash_hmac_md5 = {
|
|
CRYPTO_MD5_HMAC, "HMAC-MD5",
|
|
MD5_HMAC_KEY_LEN, MD5_HASH_LEN, sizeof(MD5_CTX), MD5_HMAC_BLOCK_LEN,
|
|
(void (*) (void *)) MD5Init, NULL, NULL, MD5Update_int,
|
|
(void (*) (u_int8_t *, void *)) MD5Final
|
|
};
|
|
|
|
struct auth_hash auth_hash_hmac_sha1 = {
|
|
CRYPTO_SHA1_HMAC, "HMAC-SHA1",
|
|
SHA1_HMAC_KEY_LEN, SHA1_HASH_LEN, sizeof(SHA1_CTX), SHA1_HMAC_BLOCK_LEN,
|
|
SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int
|
|
};
|
|
|
|
struct auth_hash auth_hash_hmac_ripemd_160 = {
|
|
CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
|
|
RIPEMD160_HMAC_KEY_LEN, RIPEMD160_HASH_LEN, sizeof(RMD160_CTX),
|
|
RIPEMD160_HMAC_BLOCK_LEN,
|
|
(void (*)(void *)) RMD160Init, NULL, NULL, RMD160Update_int,
|
|
(void (*)(u_int8_t *, void *)) RMD160Final
|
|
};
|
|
|
|
struct auth_hash auth_hash_key_md5 = {
|
|
CRYPTO_MD5_KPDK, "Keyed MD5",
|
|
NULL_HMAC_KEY_LEN, MD5_KPDK_HASH_LEN, sizeof(MD5_CTX), 0,
|
|
(void (*)(void *)) MD5Init, NULL, NULL, MD5Update_int,
|
|
(void (*)(u_int8_t *, void *)) MD5Final
|
|
};
|
|
|
|
struct auth_hash auth_hash_key_sha1 = {
|
|
CRYPTO_SHA1_KPDK, "Keyed SHA1",
|
|
NULL_HMAC_KEY_LEN, SHA1_KPDK_HASH_LEN, sizeof(SHA1_CTX), 0,
|
|
SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int
|
|
};
|
|
|
|
struct auth_hash auth_hash_hmac_sha2_256 = {
|
|
CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
|
|
SHA2_256_HMAC_KEY_LEN, SHA2_256_HASH_LEN, sizeof(SHA256_CTX),
|
|
SHA2_256_HMAC_BLOCK_LEN,
|
|
(void (*)(void *)) SHA256_Init, NULL, NULL, SHA256Update_int,
|
|
(void (*)(u_int8_t *, void *)) SHA256_Final
|
|
};
|
|
|
|
struct auth_hash auth_hash_hmac_sha2_384 = {
|
|
CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
|
|
SHA2_384_HMAC_KEY_LEN, SHA2_384_HASH_LEN, sizeof(SHA384_CTX),
|
|
SHA2_384_HMAC_BLOCK_LEN,
|
|
(void (*)(void *)) SHA384_Init, NULL, NULL, SHA384Update_int,
|
|
(void (*)(u_int8_t *, void *)) SHA384_Final
|
|
};
|
|
|
|
struct auth_hash auth_hash_hmac_sha2_512 = {
|
|
CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
|
|
SHA2_512_HMAC_KEY_LEN, SHA2_512_HASH_LEN, sizeof(SHA512_CTX),
|
|
SHA2_512_HMAC_BLOCK_LEN,
|
|
(void (*)(void *)) SHA512_Init, NULL, NULL, SHA512Update_int,
|
|
(void (*)(u_int8_t *, void *)) SHA512_Final
|
|
};
|
|
|
|
struct auth_hash auth_hash_nist_gmac_aes_128 = {
|
|
CRYPTO_AES_128_NIST_GMAC, "GMAC-AES-128",
|
|
AES_128_HMAC_KEY_LEN, AES_HASH_LEN, sizeof(struct aes_gmac_ctx),
|
|
GMAC_BLOCK_LEN,
|
|
(void (*)(void *)) AES_GMAC_Init,
|
|
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
|
|
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
|
|
(int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update,
|
|
(void (*)(u_int8_t *, void *)) AES_GMAC_Final
|
|
};
|
|
|
|
struct auth_hash auth_hash_nist_gmac_aes_192 = {
|
|
CRYPTO_AES_192_NIST_GMAC, "GMAC-AES-192",
|
|
AES_192_HMAC_KEY_LEN, AES_HASH_LEN, sizeof(struct aes_gmac_ctx),
|
|
GMAC_BLOCK_LEN,
|
|
(void (*)(void *)) AES_GMAC_Init,
|
|
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
|
|
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
|
|
(int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update,
|
|
(void (*)(u_int8_t *, void *)) AES_GMAC_Final
|
|
};
|
|
|
|
struct auth_hash auth_hash_nist_gmac_aes_256 = {
|
|
CRYPTO_AES_256_NIST_GMAC, "GMAC-AES-256",
|
|
AES_256_HMAC_KEY_LEN, AES_HASH_LEN, sizeof(struct aes_gmac_ctx),
|
|
GMAC_BLOCK_LEN,
|
|
(void (*)(void *)) AES_GMAC_Init,
|
|
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
|
|
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
|
|
(int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update,
|
|
(void (*)(u_int8_t *, void *)) AES_GMAC_Final
|
|
};
|
|
|
|
/* Compression instance */
|
|
struct comp_algo comp_algo_deflate = {
|
|
CRYPTO_DEFLATE_COMP, "Deflate",
|
|
90, deflate_compress,
|
|
deflate_decompress
|
|
};
|
|
|
|
/*
|
|
* Encryption wrapper routines.
|
|
*/
|
|
static void
|
|
null_encrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
}
|
|
static void
|
|
null_decrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
}
|
|
static int
|
|
null_setkey(u_int8_t **sched, u_int8_t *key, int len)
|
|
{
|
|
*sched = NULL;
|
|
return 0;
|
|
}
|
|
static void
|
|
null_zerokey(u_int8_t **sched)
|
|
{
|
|
*sched = NULL;
|
|
}
|
|
|
|
static void
|
|
des1_encrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
des_cblock *cb = (des_cblock *) blk;
|
|
des_key_schedule *p = (des_key_schedule *) key;
|
|
|
|
des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
|
|
}
|
|
|
|
static void
|
|
des1_decrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
des_cblock *cb = (des_cblock *) blk;
|
|
des_key_schedule *p = (des_key_schedule *) key;
|
|
|
|
des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
|
|
}
|
|
|
|
static int
|
|
des1_setkey(u_int8_t **sched, u_int8_t *key, int len)
|
|
{
|
|
des_key_schedule *p;
|
|
int err;
|
|
|
|
p = malloc(sizeof (des_key_schedule),
|
|
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
|
|
if (p != NULL) {
|
|
des_set_key((des_cblock *) key, p[0]);
|
|
err = 0;
|
|
} else
|
|
err = ENOMEM;
|
|
*sched = (u_int8_t *) p;
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
des1_zerokey(u_int8_t **sched)
|
|
{
|
|
bzero(*sched, sizeof (des_key_schedule));
|
|
free(*sched, M_CRYPTO_DATA);
|
|
*sched = NULL;
|
|
}
|
|
|
|
static void
|
|
des3_encrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
des_cblock *cb = (des_cblock *) blk;
|
|
des_key_schedule *p = (des_key_schedule *) key;
|
|
|
|
des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
|
|
}
|
|
|
|
static void
|
|
des3_decrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
des_cblock *cb = (des_cblock *) blk;
|
|
des_key_schedule *p = (des_key_schedule *) key;
|
|
|
|
des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
|
|
}
|
|
|
|
static int
|
|
des3_setkey(u_int8_t **sched, u_int8_t *key, int len)
|
|
{
|
|
des_key_schedule *p;
|
|
int err;
|
|
|
|
p = malloc(3*sizeof (des_key_schedule),
|
|
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
|
|
if (p != NULL) {
|
|
des_set_key((des_cblock *)(key + 0), p[0]);
|
|
des_set_key((des_cblock *)(key + 8), p[1]);
|
|
des_set_key((des_cblock *)(key + 16), p[2]);
|
|
err = 0;
|
|
} else
|
|
err = ENOMEM;
|
|
*sched = (u_int8_t *) p;
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
des3_zerokey(u_int8_t **sched)
|
|
{
|
|
bzero(*sched, 3*sizeof (des_key_schedule));
|
|
free(*sched, M_CRYPTO_DATA);
|
|
*sched = NULL;
|
|
}
|
|
|
|
static void
|
|
blf_encrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
BF_LONG t[2];
|
|
|
|
memcpy(t, blk, sizeof (t));
|
|
t[0] = ntohl(t[0]);
|
|
t[1] = ntohl(t[1]);
|
|
/* NB: BF_encrypt expects the block in host order! */
|
|
BF_encrypt(t, (BF_KEY *) key);
|
|
t[0] = htonl(t[0]);
|
|
t[1] = htonl(t[1]);
|
|
memcpy(blk, t, sizeof (t));
|
|
}
|
|
|
|
static void
|
|
blf_decrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
BF_LONG t[2];
|
|
|
|
memcpy(t, blk, sizeof (t));
|
|
t[0] = ntohl(t[0]);
|
|
t[1] = ntohl(t[1]);
|
|
/* NB: BF_decrypt expects the block in host order! */
|
|
BF_decrypt(t, (BF_KEY *) key);
|
|
t[0] = htonl(t[0]);
|
|
t[1] = htonl(t[1]);
|
|
memcpy(blk, t, sizeof (t));
|
|
}
|
|
|
|
static int
|
|
blf_setkey(u_int8_t **sched, u_int8_t *key, int len)
|
|
{
|
|
int err;
|
|
|
|
*sched = malloc(sizeof(BF_KEY),
|
|
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
|
|
if (*sched != NULL) {
|
|
BF_set_key((BF_KEY *) *sched, len, key);
|
|
err = 0;
|
|
} else
|
|
err = ENOMEM;
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
blf_zerokey(u_int8_t **sched)
|
|
{
|
|
bzero(*sched, sizeof(BF_KEY));
|
|
free(*sched, M_CRYPTO_DATA);
|
|
*sched = NULL;
|
|
}
|
|
|
|
static void
|
|
cast5_encrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
cast_encrypt((cast_key *) key, blk, blk);
|
|
}
|
|
|
|
static void
|
|
cast5_decrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
cast_decrypt((cast_key *) key, blk, blk);
|
|
}
|
|
|
|
static int
|
|
cast5_setkey(u_int8_t **sched, u_int8_t *key, int len)
|
|
{
|
|
int err;
|
|
|
|
*sched = malloc(sizeof(cast_key), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
|
|
if (*sched != NULL) {
|
|
cast_setkey((cast_key *)*sched, key, len);
|
|
err = 0;
|
|
} else
|
|
err = ENOMEM;
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
cast5_zerokey(u_int8_t **sched)
|
|
{
|
|
bzero(*sched, sizeof(cast_key));
|
|
free(*sched, M_CRYPTO_DATA);
|
|
*sched = NULL;
|
|
}
|
|
|
|
static void
|
|
skipjack_encrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
skipjack_forwards(blk, blk, (u_int8_t **) key);
|
|
}
|
|
|
|
static void
|
|
skipjack_decrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
skipjack_backwards(blk, blk, (u_int8_t **) key);
|
|
}
|
|
|
|
static int
|
|
skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len)
|
|
{
|
|
int err;
|
|
|
|
/* NB: allocate all the memory that's needed at once */
|
|
*sched = malloc(10 * (sizeof(u_int8_t *) + 0x100),
|
|
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
|
|
if (*sched != NULL) {
|
|
u_int8_t** key_tables = (u_int8_t**) *sched;
|
|
u_int8_t* table = (u_int8_t*) &key_tables[10];
|
|
int k;
|
|
|
|
for (k = 0; k < 10; k++) {
|
|
key_tables[k] = table;
|
|
table += 0x100;
|
|
}
|
|
subkey_table_gen(key, (u_int8_t **) *sched);
|
|
err = 0;
|
|
} else
|
|
err = ENOMEM;
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
skipjack_zerokey(u_int8_t **sched)
|
|
{
|
|
bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100));
|
|
free(*sched, M_CRYPTO_DATA);
|
|
*sched = NULL;
|
|
}
|
|
|
|
static void
|
|
rijndael128_encrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
|
|
}
|
|
|
|
static void
|
|
rijndael128_decrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk,
|
|
(u_char *) blk);
|
|
}
|
|
|
|
static int
|
|
rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len)
|
|
{
|
|
int err;
|
|
|
|
if (len != 16 && len != 24 && len != 32)
|
|
return (EINVAL);
|
|
*sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
|
|
M_NOWAIT|M_ZERO);
|
|
if (*sched != NULL) {
|
|
rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key,
|
|
len * 8);
|
|
err = 0;
|
|
} else
|
|
err = ENOMEM;
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
rijndael128_zerokey(u_int8_t **sched)
|
|
{
|
|
bzero(*sched, sizeof(rijndael_ctx));
|
|
free(*sched, M_CRYPTO_DATA);
|
|
*sched = NULL;
|
|
}
|
|
|
|
void
|
|
aes_icm_reinit(caddr_t key, u_int8_t *iv)
|
|
{
|
|
struct aes_icm_ctx *ctx;
|
|
|
|
ctx = (struct aes_icm_ctx *)key;
|
|
bcopy(iv, ctx->ac_block, AESICM_BLOCKSIZE);
|
|
}
|
|
|
|
void
|
|
aes_gcm_reinit(caddr_t key, u_int8_t *iv)
|
|
{
|
|
struct aes_icm_ctx *ctx;
|
|
|
|
aes_icm_reinit(key, iv);
|
|
|
|
ctx = (struct aes_icm_ctx *)key;
|
|
/* GCM starts with 2 as counter 1 is used for final xor of tag. */
|
|
bzero(&ctx->ac_block[AESICM_BLOCKSIZE - 4], 4);
|
|
ctx->ac_block[AESICM_BLOCKSIZE - 1] = 2;
|
|
}
|
|
|
|
void
|
|
aes_icm_crypt(caddr_t key, u_int8_t *data)
|
|
{
|
|
struct aes_icm_ctx *ctx;
|
|
u_int8_t keystream[AESICM_BLOCKSIZE];
|
|
int i;
|
|
|
|
ctx = (struct aes_icm_ctx *)key;
|
|
rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, ctx->ac_block, keystream);
|
|
for (i = 0; i < AESICM_BLOCKSIZE; i++)
|
|
data[i] ^= keystream[i];
|
|
explicit_bzero(keystream, sizeof(keystream));
|
|
|
|
/* increment counter */
|
|
for (i = AESICM_BLOCKSIZE - 1;
|
|
i >= 0; i--)
|
|
if (++ctx->ac_block[i]) /* continue on overflow */
|
|
break;
|
|
}
|
|
|
|
int
|
|
aes_icm_setkey(u_int8_t **sched, u_int8_t *key, int len)
|
|
{
|
|
struct aes_icm_ctx *ctx;
|
|
|
|
*sched = malloc(sizeof(struct aes_icm_ctx), M_CRYPTO_DATA,
|
|
M_NOWAIT | M_ZERO);
|
|
if (*sched == NULL)
|
|
return ENOMEM;
|
|
|
|
ctx = (struct aes_icm_ctx *)*sched;
|
|
ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (u_char *)key, len * 8);
|
|
if (ctx->ac_nr == 0)
|
|
return EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
aes_icm_zerokey(u_int8_t **sched)
|
|
{
|
|
|
|
bzero(*sched, sizeof(struct aes_icm_ctx));
|
|
free(*sched, M_CRYPTO_DATA);
|
|
*sched = NULL;
|
|
}
|
|
|
|
#define AES_XTS_BLOCKSIZE 16
|
|
#define AES_XTS_IVSIZE 8
|
|
#define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */
|
|
|
|
struct aes_xts_ctx {
|
|
rijndael_ctx key1;
|
|
rijndael_ctx key2;
|
|
u_int8_t tweak[AES_XTS_BLOCKSIZE];
|
|
};
|
|
|
|
void
|
|
aes_xts_reinit(caddr_t key, u_int8_t *iv)
|
|
{
|
|
struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
|
|
u_int64_t blocknum;
|
|
u_int i;
|
|
|
|
/*
|
|
* Prepare tweak as E_k2(IV). IV is specified as LE representation
|
|
* of a 64-bit block number which we allow to be passed in directly.
|
|
*/
|
|
bcopy(iv, &blocknum, AES_XTS_IVSIZE);
|
|
for (i = 0; i < AES_XTS_IVSIZE; i++) {
|
|
ctx->tweak[i] = blocknum & 0xff;
|
|
blocknum >>= 8;
|
|
}
|
|
/* Last 64 bits of IV are always zero */
|
|
bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
|
|
|
|
rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak);
|
|
}
|
|
|
|
static void
|
|
aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt)
|
|
{
|
|
u_int8_t block[AES_XTS_BLOCKSIZE];
|
|
u_int i, carry_in, carry_out;
|
|
|
|
for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
|
|
block[i] = data[i] ^ ctx->tweak[i];
|
|
|
|
if (do_encrypt)
|
|
rijndael_encrypt(&ctx->key1, block, data);
|
|
else
|
|
rijndael_decrypt(&ctx->key1, block, data);
|
|
|
|
for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
|
|
data[i] ^= ctx->tweak[i];
|
|
|
|
/* Exponentiate tweak */
|
|
carry_in = 0;
|
|
for (i = 0; i < AES_XTS_BLOCKSIZE; i++) {
|
|
carry_out = ctx->tweak[i] & 0x80;
|
|
ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0);
|
|
carry_in = carry_out;
|
|
}
|
|
if (carry_in)
|
|
ctx->tweak[0] ^= AES_XTS_ALPHA;
|
|
bzero(block, sizeof(block));
|
|
}
|
|
|
|
void
|
|
aes_xts_encrypt(caddr_t key, u_int8_t *data)
|
|
{
|
|
aes_xts_crypt((struct aes_xts_ctx *)key, data, 1);
|
|
}
|
|
|
|
void
|
|
aes_xts_decrypt(caddr_t key, u_int8_t *data)
|
|
{
|
|
aes_xts_crypt((struct aes_xts_ctx *)key, data, 0);
|
|
}
|
|
|
|
int
|
|
aes_xts_setkey(u_int8_t **sched, u_int8_t *key, int len)
|
|
{
|
|
struct aes_xts_ctx *ctx;
|
|
|
|
if (len != 32 && len != 64)
|
|
return EINVAL;
|
|
|
|
*sched = malloc(sizeof(struct aes_xts_ctx), M_CRYPTO_DATA,
|
|
M_NOWAIT | M_ZERO);
|
|
if (*sched == NULL)
|
|
return ENOMEM;
|
|
ctx = (struct aes_xts_ctx *)*sched;
|
|
|
|
rijndael_set_key(&ctx->key1, key, len * 4);
|
|
rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
aes_xts_zerokey(u_int8_t **sched)
|
|
{
|
|
bzero(*sched, sizeof(struct aes_xts_ctx));
|
|
free(*sched, M_CRYPTO_DATA);
|
|
*sched = NULL;
|
|
}
|
|
|
|
static void
|
|
cml_encrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk);
|
|
}
|
|
|
|
static void
|
|
cml_decrypt(caddr_t key, u_int8_t *blk)
|
|
{
|
|
camellia_decrypt(((camellia_ctx *) key), (u_char *) blk,
|
|
(u_char *) blk);
|
|
}
|
|
|
|
static int
|
|
cml_setkey(u_int8_t **sched, u_int8_t *key, int len)
|
|
{
|
|
int err;
|
|
|
|
if (len != 16 && len != 24 && len != 32)
|
|
return (EINVAL);
|
|
*sched = malloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
|
|
M_NOWAIT|M_ZERO);
|
|
if (*sched != NULL) {
|
|
camellia_set_key((camellia_ctx *) *sched, (u_char *) key,
|
|
len * 8);
|
|
err = 0;
|
|
} else
|
|
err = ENOMEM;
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
cml_zerokey(u_int8_t **sched)
|
|
{
|
|
bzero(*sched, sizeof(camellia_ctx));
|
|
free(*sched, M_CRYPTO_DATA);
|
|
*sched = NULL;
|
|
}
|
|
|
|
/*
|
|
* And now for auth.
|
|
*/
|
|
|
|
static void
|
|
null_init(void *ctx)
|
|
{
|
|
}
|
|
|
|
static void
|
|
null_reinit(void *ctx, const u_int8_t *buf, u_int16_t len)
|
|
{
|
|
}
|
|
|
|
static int
|
|
null_update(void *ctx, const u_int8_t *buf, u_int16_t len)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
null_final(u_int8_t *buf, void *ctx)
|
|
{
|
|
if (buf != (u_int8_t *) 0)
|
|
bzero(buf, 12);
|
|
}
|
|
|
|
static int
|
|
RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
|
|
{
|
|
RMD160Update(ctx, buf, len);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
|
|
{
|
|
MD5Update(ctx, buf, len);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
SHA1Init_int(void *ctx)
|
|
{
|
|
SHA1Init(ctx);
|
|
}
|
|
|
|
static int
|
|
SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
|
|
{
|
|
SHA1Update(ctx, buf, len);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
SHA1Final_int(u_int8_t *blk, void *ctx)
|
|
{
|
|
SHA1Final(blk, ctx);
|
|
}
|
|
|
|
static int
|
|
SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
|
|
{
|
|
SHA256_Update(ctx, buf, len);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
|
|
{
|
|
SHA384_Update(ctx, buf, len);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
|
|
{
|
|
SHA512_Update(ctx, buf, len);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* And compression
|
|
*/
|
|
|
|
static u_int32_t
|
|
deflate_compress(data, size, out)
|
|
u_int8_t *data;
|
|
u_int32_t size;
|
|
u_int8_t **out;
|
|
{
|
|
return deflate_global(data, size, 0, out);
|
|
}
|
|
|
|
static u_int32_t
|
|
deflate_decompress(data, size, out)
|
|
u_int8_t *data;
|
|
u_int32_t size;
|
|
u_int8_t **out;
|
|
{
|
|
return deflate_global(data, size, 1, out);
|
|
}
|