070249043e
Noticed this investigating Fortuna. Remove useless duplicate stack copies of sensitive contents when possible, or if not possible, be sure to zero them out when we're finished. Approved by: secteam (gordon) Sponsored by: Dell EMC Isilon Differential Revision: https://reviews.freebsd.org/D16935
452 lines
13 KiB
C
452 lines
13 KiB
C
/* $KAME: rijndael-api-fst.c,v 1.10 2001/05/27 09:34:18 itojun Exp $ */
|
|
|
|
/*
|
|
* rijndael-api-fst.c v2.3 April '2000
|
|
*
|
|
* Optimised ANSI C code
|
|
*
|
|
* authors: v1.0: Antoon Bosselaers
|
|
* v2.0: Vincent Rijmen
|
|
* v2.1: Vincent Rijmen
|
|
* v2.2: Vincent Rijmen
|
|
* v2.3: Paulo Barreto
|
|
* v2.4: Vincent Rijmen
|
|
*
|
|
* This code is placed in the public domain.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#ifdef _KERNEL
|
|
#include <sys/systm.h>
|
|
#else
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#include <crypto/rijndael/rijndael_local.h>
|
|
#include <crypto/rijndael/rijndael-api-fst.h>
|
|
|
|
#ifndef TRUE
|
|
#define TRUE 1
|
|
#endif
|
|
|
|
typedef u_int8_t BYTE;
|
|
|
|
int rijndael_makeKey(keyInstance *key, BYTE direction, int keyLen,
|
|
const char *keyMaterial) {
|
|
|
|
if (key == NULL) {
|
|
return BAD_KEY_INSTANCE;
|
|
}
|
|
|
|
if ((direction == DIR_ENCRYPT) || (direction == DIR_DECRYPT)) {
|
|
key->direction = direction;
|
|
} else {
|
|
return BAD_KEY_DIR;
|
|
}
|
|
|
|
if ((keyLen == 128) || (keyLen == 192) || (keyLen == 256)) {
|
|
key->keyLen = keyLen;
|
|
} else {
|
|
return BAD_KEY_MAT;
|
|
}
|
|
|
|
if (keyMaterial != NULL) {
|
|
memcpy(key->keyMaterial, keyMaterial, keyLen/8);
|
|
}
|
|
|
|
/* initialize key schedule: */
|
|
if (direction == DIR_ENCRYPT) {
|
|
key->Nr = rijndaelKeySetupEnc(key->rk, key->keyMaterial, keyLen);
|
|
} else {
|
|
key->Nr = rijndaelKeySetupDec(key->rk, key->keyMaterial, keyLen);
|
|
}
|
|
rijndaelKeySetupEnc(key->ek, key->keyMaterial, keyLen);
|
|
return TRUE;
|
|
}
|
|
|
|
int rijndael_cipherInit(cipherInstance *cipher, BYTE mode, char *IV) {
|
|
if ((mode == MODE_ECB) || (mode == MODE_CBC) || (mode == MODE_CFB1)) {
|
|
cipher->mode = mode;
|
|
} else {
|
|
return BAD_CIPHER_MODE;
|
|
}
|
|
if (IV != NULL) {
|
|
memcpy(cipher->IV, IV, RIJNDAEL_MAX_IV_SIZE);
|
|
} else {
|
|
memset(cipher->IV, 0, RIJNDAEL_MAX_IV_SIZE);
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
int rijndael_blockEncrypt(cipherInstance *cipher, keyInstance *key,
|
|
const BYTE *input, int inputLen, BYTE *outBuffer) {
|
|
int i, k, numBlocks;
|
|
u_int8_t block[16], iv[4][4];
|
|
|
|
if (cipher == NULL ||
|
|
key == NULL ||
|
|
key->direction == DIR_DECRYPT) {
|
|
return BAD_CIPHER_STATE;
|
|
}
|
|
if (input == NULL || inputLen <= 0) {
|
|
return 0; /* nothing to do */
|
|
}
|
|
|
|
numBlocks = inputLen/128;
|
|
|
|
switch (cipher->mode) {
|
|
case MODE_ECB:
|
|
for (i = numBlocks; i > 0; i--) {
|
|
rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
|
|
input += 16;
|
|
outBuffer += 16;
|
|
}
|
|
break;
|
|
|
|
case MODE_CBC:
|
|
#if 1 /*STRICT_ALIGN*/
|
|
memcpy(block, cipher->IV, 16);
|
|
memcpy(iv, input, 16);
|
|
((u_int32_t*)block)[0] ^= ((u_int32_t*)iv)[0];
|
|
((u_int32_t*)block)[1] ^= ((u_int32_t*)iv)[1];
|
|
((u_int32_t*)block)[2] ^= ((u_int32_t*)iv)[2];
|
|
((u_int32_t*)block)[3] ^= ((u_int32_t*)iv)[3];
|
|
#else
|
|
((u_int32_t*)block)[0] = ((u_int32_t*)cipher->IV)[0] ^ ((u_int32_t*)input)[0];
|
|
((u_int32_t*)block)[1] = ((u_int32_t*)cipher->IV)[1] ^ ((u_int32_t*)input)[1];
|
|
((u_int32_t*)block)[2] = ((u_int32_t*)cipher->IV)[2] ^ ((u_int32_t*)input)[2];
|
|
((u_int32_t*)block)[3] = ((u_int32_t*)cipher->IV)[3] ^ ((u_int32_t*)input)[3];
|
|
#endif
|
|
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
|
|
input += 16;
|
|
for (i = numBlocks - 1; i > 0; i--) {
|
|
#if 1 /*STRICT_ALIGN*/
|
|
memcpy(block, outBuffer, 16);
|
|
memcpy(iv, input, 16);
|
|
((u_int32_t*)block)[0] ^= ((u_int32_t*)iv)[0];
|
|
((u_int32_t*)block)[1] ^= ((u_int32_t*)iv)[1];
|
|
((u_int32_t*)block)[2] ^= ((u_int32_t*)iv)[2];
|
|
((u_int32_t*)block)[3] ^= ((u_int32_t*)iv)[3];
|
|
#else
|
|
((u_int32_t*)block)[0] = ((u_int32_t*)outBuffer)[0] ^ ((u_int32_t*)input)[0];
|
|
((u_int32_t*)block)[1] = ((u_int32_t*)outBuffer)[1] ^ ((u_int32_t*)input)[1];
|
|
((u_int32_t*)block)[2] = ((u_int32_t*)outBuffer)[2] ^ ((u_int32_t*)input)[2];
|
|
((u_int32_t*)block)[3] = ((u_int32_t*)outBuffer)[3] ^ ((u_int32_t*)input)[3];
|
|
#endif
|
|
outBuffer += 16;
|
|
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
|
|
input += 16;
|
|
}
|
|
break;
|
|
|
|
case MODE_CFB1:
|
|
#if 1 /*STRICT_ALIGN*/
|
|
memcpy(iv, cipher->IV, 16);
|
|
#else /* !STRICT_ALIGN */
|
|
*((u_int32_t*)iv[0]) = *((u_int32_t*)(cipher->IV ));
|
|
*((u_int32_t*)iv[1]) = *((u_int32_t*)(cipher->IV+ 4));
|
|
*((u_int32_t*)iv[2]) = *((u_int32_t*)(cipher->IV+ 8));
|
|
*((u_int32_t*)iv[3]) = *((u_int32_t*)(cipher->IV+12));
|
|
#endif /* ?STRICT_ALIGN */
|
|
for (i = numBlocks; i > 0; i--) {
|
|
for (k = 0; k < 128; k++) {
|
|
*((u_int32_t*) block ) = *((u_int32_t*)iv[0]);
|
|
*((u_int32_t*)(block+ 4)) = *((u_int32_t*)iv[1]);
|
|
*((u_int32_t*)(block+ 8)) = *((u_int32_t*)iv[2]);
|
|
*((u_int32_t*)(block+12)) = *((u_int32_t*)iv[3]);
|
|
rijndaelEncrypt(key->ek, key->Nr, block,
|
|
block);
|
|
outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
|
|
iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
|
|
iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
|
|
iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
|
|
iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
|
|
iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
|
|
iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
|
|
iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
|
|
iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
|
|
iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
|
|
iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
|
|
iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
|
|
iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
|
|
iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
|
|
iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
|
|
iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
|
|
iv[3][3] = (iv[3][3] << 1) | ((outBuffer[k/8] >> (7-(k&7))) & 1);
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return BAD_CIPHER_STATE;
|
|
}
|
|
|
|
explicit_bzero(block, sizeof(block));
|
|
return 128*numBlocks;
|
|
}
|
|
|
|
/**
|
|
* Encrypt data partitioned in octets, using RFC 2040-like padding.
|
|
*
|
|
* @param input data to be encrypted (octet sequence)
|
|
* @param inputOctets input length in octets (not bits)
|
|
* @param outBuffer encrypted output data
|
|
*
|
|
* @return length in octets (not bits) of the encrypted output buffer.
|
|
*/
|
|
int rijndael_padEncrypt(cipherInstance *cipher, keyInstance *key,
|
|
const BYTE *input, int inputOctets, BYTE *outBuffer) {
|
|
int i, numBlocks, padLen;
|
|
u_int8_t block[16], *iv, *cp;
|
|
|
|
if (cipher == NULL ||
|
|
key == NULL ||
|
|
key->direction == DIR_DECRYPT) {
|
|
return BAD_CIPHER_STATE;
|
|
}
|
|
if (input == NULL || inputOctets <= 0) {
|
|
return 0; /* nothing to do */
|
|
}
|
|
|
|
numBlocks = inputOctets/16;
|
|
|
|
switch (cipher->mode) {
|
|
case MODE_ECB:
|
|
for (i = numBlocks; i > 0; i--) {
|
|
rijndaelEncrypt(key->rk, key->Nr, input, outBuffer);
|
|
input += 16;
|
|
outBuffer += 16;
|
|
}
|
|
padLen = 16 - (inputOctets - 16*numBlocks);
|
|
if (padLen <= 0 || padLen > 16)
|
|
return BAD_CIPHER_STATE;
|
|
memcpy(block, input, 16 - padLen);
|
|
for (cp = block + 16 - padLen; cp < block + 16; cp++)
|
|
*cp = padLen;
|
|
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
|
|
break;
|
|
|
|
case MODE_CBC:
|
|
iv = cipher->IV;
|
|
for (i = numBlocks; i > 0; i--) {
|
|
((u_int32_t*)block)[0] = ((const u_int32_t*)input)[0] ^ ((u_int32_t*)iv)[0];
|
|
((u_int32_t*)block)[1] = ((const u_int32_t*)input)[1] ^ ((u_int32_t*)iv)[1];
|
|
((u_int32_t*)block)[2] = ((const u_int32_t*)input)[2] ^ ((u_int32_t*)iv)[2];
|
|
((u_int32_t*)block)[3] = ((const u_int32_t*)input)[3] ^ ((u_int32_t*)iv)[3];
|
|
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
|
|
iv = outBuffer;
|
|
input += 16;
|
|
outBuffer += 16;
|
|
}
|
|
padLen = 16 - (inputOctets - 16*numBlocks);
|
|
if (padLen <= 0 || padLen > 16)
|
|
return BAD_CIPHER_STATE;
|
|
for (i = 0; i < 16 - padLen; i++) {
|
|
block[i] = input[i] ^ iv[i];
|
|
}
|
|
for (i = 16 - padLen; i < 16; i++) {
|
|
block[i] = (BYTE)padLen ^ iv[i];
|
|
}
|
|
rijndaelEncrypt(key->rk, key->Nr, block, outBuffer);
|
|
break;
|
|
|
|
default:
|
|
return BAD_CIPHER_STATE;
|
|
}
|
|
|
|
explicit_bzero(block, sizeof(block));
|
|
return 16*(numBlocks + 1);
|
|
}
|
|
|
|
int rijndael_blockDecrypt(cipherInstance *cipher, keyInstance *key,
|
|
const BYTE *input, int inputLen, BYTE *outBuffer) {
|
|
int i, k, numBlocks;
|
|
u_int8_t block[16], iv[4][4];
|
|
|
|
if (cipher == NULL ||
|
|
key == NULL ||
|
|
(cipher->mode != MODE_CFB1 && key->direction == DIR_ENCRYPT)) {
|
|
return BAD_CIPHER_STATE;
|
|
}
|
|
if (input == NULL || inputLen <= 0) {
|
|
return 0; /* nothing to do */
|
|
}
|
|
|
|
numBlocks = inputLen/128;
|
|
|
|
switch (cipher->mode) {
|
|
case MODE_ECB:
|
|
for (i = numBlocks; i > 0; i--) {
|
|
rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
|
|
input += 16;
|
|
outBuffer += 16;
|
|
}
|
|
break;
|
|
|
|
case MODE_CBC:
|
|
#if 1 /*STRICT_ALIGN */
|
|
memcpy(iv, cipher->IV, 16);
|
|
#else
|
|
*((u_int32_t*)iv[0]) = *((u_int32_t*)(cipher->IV ));
|
|
*((u_int32_t*)iv[1]) = *((u_int32_t*)(cipher->IV+ 4));
|
|
*((u_int32_t*)iv[2]) = *((u_int32_t*)(cipher->IV+ 8));
|
|
*((u_int32_t*)iv[3]) = *((u_int32_t*)(cipher->IV+12));
|
|
#endif
|
|
for (i = numBlocks; i > 0; i--) {
|
|
rijndaelDecrypt(key->rk, key->Nr, input, block);
|
|
((u_int32_t*)block)[0] ^= *((u_int32_t*)iv[0]);
|
|
((u_int32_t*)block)[1] ^= *((u_int32_t*)iv[1]);
|
|
((u_int32_t*)block)[2] ^= *((u_int32_t*)iv[2]);
|
|
((u_int32_t*)block)[3] ^= *((u_int32_t*)iv[3]);
|
|
#if 1 /*STRICT_ALIGN*/
|
|
memcpy(iv, input, 16);
|
|
memcpy(outBuffer, block, 16);
|
|
#else
|
|
*((u_int32_t*)iv[0]) = ((u_int32_t*)input)[0]; ((u_int32_t*)outBuffer)[0] = ((u_int32_t*)block)[0];
|
|
*((u_int32_t*)iv[1]) = ((u_int32_t*)input)[1]; ((u_int32_t*)outBuffer)[1] = ((u_int32_t*)block)[1];
|
|
*((u_int32_t*)iv[2]) = ((u_int32_t*)input)[2]; ((u_int32_t*)outBuffer)[2] = ((u_int32_t*)block)[2];
|
|
*((u_int32_t*)iv[3]) = ((u_int32_t*)input)[3]; ((u_int32_t*)outBuffer)[3] = ((u_int32_t*)block)[3];
|
|
#endif
|
|
input += 16;
|
|
outBuffer += 16;
|
|
}
|
|
break;
|
|
|
|
case MODE_CFB1:
|
|
#if 1 /*STRICT_ALIGN */
|
|
memcpy(iv, cipher->IV, 16);
|
|
#else
|
|
*((u_int32_t*)iv[0]) = *((u_int32_t*)(cipher->IV));
|
|
*((u_int32_t*)iv[1]) = *((u_int32_t*)(cipher->IV+ 4));
|
|
*((u_int32_t*)iv[2]) = *((u_int32_t*)(cipher->IV+ 8));
|
|
*((u_int32_t*)iv[3]) = *((u_int32_t*)(cipher->IV+12));
|
|
#endif
|
|
for (i = numBlocks; i > 0; i--) {
|
|
for (k = 0; k < 128; k++) {
|
|
*((u_int32_t*) block ) = *((u_int32_t*)iv[0]);
|
|
*((u_int32_t*)(block+ 4)) = *((u_int32_t*)iv[1]);
|
|
*((u_int32_t*)(block+ 8)) = *((u_int32_t*)iv[2]);
|
|
*((u_int32_t*)(block+12)) = *((u_int32_t*)iv[3]);
|
|
rijndaelEncrypt(key->ek, key->Nr, block,
|
|
block);
|
|
iv[0][0] = (iv[0][0] << 1) | (iv[0][1] >> 7);
|
|
iv[0][1] = (iv[0][1] << 1) | (iv[0][2] >> 7);
|
|
iv[0][2] = (iv[0][2] << 1) | (iv[0][3] >> 7);
|
|
iv[0][3] = (iv[0][3] << 1) | (iv[1][0] >> 7);
|
|
iv[1][0] = (iv[1][0] << 1) | (iv[1][1] >> 7);
|
|
iv[1][1] = (iv[1][1] << 1) | (iv[1][2] >> 7);
|
|
iv[1][2] = (iv[1][2] << 1) | (iv[1][3] >> 7);
|
|
iv[1][3] = (iv[1][3] << 1) | (iv[2][0] >> 7);
|
|
iv[2][0] = (iv[2][0] << 1) | (iv[2][1] >> 7);
|
|
iv[2][1] = (iv[2][1] << 1) | (iv[2][2] >> 7);
|
|
iv[2][2] = (iv[2][2] << 1) | (iv[2][3] >> 7);
|
|
iv[2][3] = (iv[2][3] << 1) | (iv[3][0] >> 7);
|
|
iv[3][0] = (iv[3][0] << 1) | (iv[3][1] >> 7);
|
|
iv[3][1] = (iv[3][1] << 1) | (iv[3][2] >> 7);
|
|
iv[3][2] = (iv[3][2] << 1) | (iv[3][3] >> 7);
|
|
iv[3][3] = (iv[3][3] << 1) | ((input[k/8] >> (7-(k&7))) & 1);
|
|
outBuffer[k/8] ^= (block[0] & 0x80) >> (k & 7);
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return BAD_CIPHER_STATE;
|
|
}
|
|
|
|
explicit_bzero(block, sizeof(block));
|
|
return 128*numBlocks;
|
|
}
|
|
|
|
int rijndael_padDecrypt(cipherInstance *cipher, keyInstance *key,
|
|
const BYTE *input, int inputOctets, BYTE *outBuffer) {
|
|
int i, numBlocks, padLen, rval;
|
|
u_int8_t block[16];
|
|
u_int32_t iv[4];
|
|
|
|
if (cipher == NULL ||
|
|
key == NULL ||
|
|
key->direction == DIR_ENCRYPT) {
|
|
return BAD_CIPHER_STATE;
|
|
}
|
|
if (input == NULL || inputOctets <= 0) {
|
|
return 0; /* nothing to do */
|
|
}
|
|
if (inputOctets % 16 != 0) {
|
|
return BAD_DATA;
|
|
}
|
|
|
|
numBlocks = inputOctets/16;
|
|
|
|
switch (cipher->mode) {
|
|
case MODE_ECB:
|
|
/* all blocks but last */
|
|
for (i = numBlocks - 1; i > 0; i--) {
|
|
rijndaelDecrypt(key->rk, key->Nr, input, outBuffer);
|
|
input += 16;
|
|
outBuffer += 16;
|
|
}
|
|
/* last block */
|
|
rijndaelDecrypt(key->rk, key->Nr, input, block);
|
|
padLen = block[15];
|
|
if (padLen >= 16) {
|
|
rval = BAD_DATA;
|
|
goto out;
|
|
}
|
|
for (i = 16 - padLen; i < 16; i++) {
|
|
if (block[i] != padLen) {
|
|
rval = BAD_DATA;
|
|
goto out;
|
|
}
|
|
}
|
|
memcpy(outBuffer, block, 16 - padLen);
|
|
break;
|
|
|
|
case MODE_CBC:
|
|
memcpy(iv, cipher->IV, 16);
|
|
/* all blocks but last */
|
|
for (i = numBlocks - 1; i > 0; i--) {
|
|
rijndaelDecrypt(key->rk, key->Nr, input, block);
|
|
((u_int32_t*)block)[0] ^= iv[0];
|
|
((u_int32_t*)block)[1] ^= iv[1];
|
|
((u_int32_t*)block)[2] ^= iv[2];
|
|
((u_int32_t*)block)[3] ^= iv[3];
|
|
memcpy(iv, input, 16);
|
|
memcpy(outBuffer, block, 16);
|
|
input += 16;
|
|
outBuffer += 16;
|
|
}
|
|
/* last block */
|
|
rijndaelDecrypt(key->rk, key->Nr, input, block);
|
|
((u_int32_t*)block)[0] ^= iv[0];
|
|
((u_int32_t*)block)[1] ^= iv[1];
|
|
((u_int32_t*)block)[2] ^= iv[2];
|
|
((u_int32_t*)block)[3] ^= iv[3];
|
|
padLen = block[15];
|
|
if (padLen <= 0 || padLen > 16) {
|
|
rval = BAD_DATA;
|
|
goto out;
|
|
}
|
|
for (i = 16 - padLen; i < 16; i++) {
|
|
if (block[i] != padLen) {
|
|
rval = BAD_DATA;
|
|
goto out;
|
|
}
|
|
}
|
|
memcpy(outBuffer, block, 16 - padLen);
|
|
break;
|
|
|
|
default:
|
|
return BAD_CIPHER_STATE;
|
|
}
|
|
|
|
rval = 16*numBlocks - padLen;
|
|
|
|
out:
|
|
explicit_bzero(block, sizeof(block));
|
|
return rval;
|
|
}
|