freebsd-dev/contrib/perl5/lib/bigint.pl
2000-06-25 11:04:01 +00:00

294 lines
8.1 KiB
Perl
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package bigint;
#
# This library is no longer being maintained, and is included for backward
# compatibility with Perl 4 programs which may require it.
#
# In particular, this should not be used as an example of modern Perl
# programming techniques.
#
# Suggested alternative: Math::BigInt
#
# arbitrary size integer math package
#
# by Mark Biggar
#
# Canonical Big integer value are strings of the form
# /^[+-]\d+$/ with leading zeros suppressed
# Input values to these routines may be strings of the form
# /^\s*[+-]?[\d\s]+$/.
# Examples:
# '+0' canonical zero value
# ' -123 123 123' canonical value '-123123123'
# '1 23 456 7890' canonical value '+1234567890'
# Output values always always in canonical form
#
# Actual math is done in an internal format consisting of an array
# whose first element is the sign (/^[+-]$/) and whose remaining
# elements are base 100000 digits with the least significant digit first.
# The string 'NaN' is used to represent the result when input arguments
# are not numbers, as well as the result of dividing by zero
#
# routines provided are:
#
# bneg(BINT) return BINT negation
# babs(BINT) return BINT absolute value
# bcmp(BINT,BINT) return CODE compare numbers (undef,<0,=0,>0)
# badd(BINT,BINT) return BINT addition
# bsub(BINT,BINT) return BINT subtraction
# bmul(BINT,BINT) return BINT multiplication
# bdiv(BINT,BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
# bmod(BINT,BINT) return BINT modulus
# bgcd(BINT,BINT) return BINT greatest common divisor
# bnorm(BINT) return BINT normalization
#
$zero = 0;
# normalize string form of number. Strip leading zeros. Strip any
# white space and add a sign, if missing.
# Strings that are not numbers result the value 'NaN'.
sub main'bnorm { #(num_str) return num_str
local($_) = @_;
s/\s+//g; # strip white space
if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
substr($_,$[,0) = '+' unless $1; # Add missing sign
s/^-0/+0/;
$_;
} else {
'NaN';
}
}
# Convert a number from string format to internal base 100000 format.
# Assumes normalized value as input.
sub internal { #(num_str) return int_num_array
local($d) = @_;
($is,$il) = (substr($d,$[,1),length($d)-2);
substr($d,$[,1) = '';
($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
}
# Convert a number from internal base 100000 format to string format.
# This routine scribbles all over input array.
sub external { #(int_num_array) return num_str
$es = shift;
grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
&'bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
}
# Negate input value.
sub main'bneg { #(num_str) return num_str
local($_) = &'bnorm(@_);
vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0';
s/^./N/ unless /^[-+]/; # works both in ASCII and EBCDIC
$_;
}
# Returns the absolute value of the input.
sub main'babs { #(num_str) return num_str
&abs(&'bnorm(@_));
}
sub abs { # post-normalized abs for internal use
local($_) = @_;
s/^-/+/;
$_;
}
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
sub main'bcmp { #(num_str, num_str) return cond_code
local($x,$y) = (&'bnorm($_[$[]),&'bnorm($_[$[+1]));
if ($x eq 'NaN') {
undef;
} elsif ($y eq 'NaN') {
undef;
} else {
&cmp($x,$y);
}
}
sub cmp { # post-normalized compare for internal use
local($cx, $cy) = @_;
return 0 if ($cx eq $cy);
local($sx, $sy) = (substr($cx, 0, 1), substr($cy, 0, 1));
local($ld);
if ($sx eq '+') {
return 1 if ($sy eq '-' || $cy eq '+0');
$ld = length($cx) - length($cy);
return $ld if ($ld);
return $cx cmp $cy;
} else { # $sx eq '-'
return -1 if ($sy eq '+');
$ld = length($cy) - length($cx);
return $ld if ($ld);
return $cy cmp $cx;
}
}
sub main'badd { #(num_str, num_str) return num_str
local(*x, *y); ($x, $y) = (&'bnorm($_[$[]),&'bnorm($_[$[+1]));
if ($x eq 'NaN') {
'NaN';
} elsif ($y eq 'NaN') {
'NaN';
} else {
@x = &internal($x); # convert to internal form
@y = &internal($y);
local($sx, $sy) = (shift @x, shift @y); # get signs
if ($sx eq $sy) {
&external($sx, &add(*x, *y)); # if same sign add
} else {
($x, $y) = (&abs($x),&abs($y)); # make abs
if (&cmp($y,$x) > 0) {
&external($sy, &sub(*y, *x));
} else {
&external($sx, &sub(*x, *y));
}
}
}
}
sub main'bsub { #(num_str, num_str) return num_str
&'badd($_[$[],&'bneg($_[$[+1]));
}
# GCD -- Euclids algorithm Knuth Vol 2 pg 296
sub main'bgcd { #(num_str, num_str) return num_str
local($x,$y) = (&'bnorm($_[$[]),&'bnorm($_[$[+1]));
if ($x eq 'NaN' || $y eq 'NaN') {
'NaN';
} else {
($x, $y) = ($y,&'bmod($x,$y)) while $y ne '+0';
$x;
}
}
# routine to add two base 1e5 numbers
# stolen from Knuth Vol 2 Algorithm A pg 231
# there are separate routines to add and sub as per Kunth pg 233
sub add { #(int_num_array, int_num_array) return int_num_array
local(*x, *y) = @_;
$car = 0;
for $x (@x) {
last unless @y || $car;
$x -= 1e5 if $car = (($x += shift(@y) + $car) >= 1e5) ? 1 : 0;
}
for $y (@y) {
last unless $car;
$y -= 1e5 if $car = (($y += $car) >= 1e5) ? 1 : 0;
}
(@x, @y, $car);
}
# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
sub sub { #(int_num_array, int_num_array) return int_num_array
local(*sx, *sy) = @_;
$bar = 0;
for $sx (@sx) {
last unless @y || $bar;
$sx += 1e5 if $bar = (($sx -= shift(@sy) + $bar) < 0);
}
@sx;
}
# multiply two numbers -- stolen from Knuth Vol 2 pg 233
sub main'bmul { #(num_str, num_str) return num_str
local(*x, *y); ($x, $y) = (&'bnorm($_[$[]), &'bnorm($_[$[+1]));
if ($x eq 'NaN') {
'NaN';
} elsif ($y eq 'NaN') {
'NaN';
} else {
@x = &internal($x);
@y = &internal($y);
local($signr) = (shift @x ne shift @y) ? '-' : '+';
@prod = ();
for $x (@x) {
($car, $cty) = (0, $[);
for $y (@y) {
$prod = $x * $y + $prod[$cty] + $car;
$prod[$cty++] =
$prod - ($car = int($prod * 1e-5)) * 1e5;
}
$prod[$cty] += $car if $car;
$x = shift @prod;
}
&external($signr, @x, @prod);
}
}
# modulus
sub main'bmod { #(num_str, num_str) return num_str
(&'bdiv(@_))[$[+1];
}
sub main'bdiv { #(dividend: num_str, divisor: num_str) return num_str
local (*x, *y); ($x, $y) = (&'bnorm($_[$[]), &'bnorm($_[$[+1]));
return wantarray ? ('NaN','NaN') : 'NaN'
if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
@x = &internal($x); @y = &internal($y);
$srem = $y[$[];
$sr = (shift @x ne shift @y) ? '-' : '+';
$car = $bar = $prd = 0;
if (($dd = int(1e5/($y[$#y]+1))) != 1) {
for $x (@x) {
$x = $x * $dd + $car;
$x -= ($car = int($x * 1e-5)) * 1e5;
}
push(@x, $car); $car = 0;
for $y (@y) {
$y = $y * $dd + $car;
$y -= ($car = int($y * 1e-5)) * 1e5;
}
}
else {
push(@x, 0);
}
@q = (); ($v2,$v1) = @y[-2,-1];
while ($#x > $#y) {
($u2,$u1,$u0) = @x[-3..-1];
$q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
--$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
if ($q) {
($car, $bar) = (0,0);
for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
$prd = $q * $y[$y] + $car;
$prd -= ($car = int($prd * 1e-5)) * 1e5;
$x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
}
if ($x[$#x] < $car + $bar) {
$car = 0; --$q;
for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
$x[$x] -= 1e5
if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
}
}
}
pop(@x); unshift(@q, $q);
}
if (wantarray) {
@d = ();
if ($dd != 1) {
$car = 0;
for $x (reverse @x) {
$prd = $car * 1e5 + $x;
$car = $prd - ($tmp = int($prd / $dd)) * $dd;
unshift(@d, $tmp);
}
}
else {
@d = @x;
}
(&external($sr, @q), &external($srem, @d, $zero));
} else {
&external($sr, @q);
}
}
1;