freebsd-dev/sys/dev/axgbe/if_axgbe_pci.c
Marius Strobl 51e235148a iflib drivers: Constify PCI ID LUTs
Since d49e83eac3, iflib(9) is ready
for this change.
While at it, make isc_driver_version strings (static) const where
not apparently un-const on purpose, too.
This reduces the size of the amd64 GENERIC by about 10 KiB.
2023-08-17 20:34:23 +02:00

2437 lines
80 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2020 Advanced Micro Devices, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Contact Information :
* Rajesh Kumar <rajesh1.kumar@amd.com>
* Shreyank Amartya <Shreyank.Amartya@amd.com>
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <net/if.h>
#include <net/if_media.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include "xgbe.h"
#include "xgbe-common.h"
#include "miibus_if.h"
#include "ifdi_if.h"
#include "opt_inet.h"
#include "opt_inet6.h"
MALLOC_DEFINE(M_AXGBE, "axgbe", "axgbe data");
extern struct if_txrx axgbe_txrx;
static int axgbe_sph_enable;
/* Function prototypes */
static void *axgbe_register(device_t);
static int axgbe_if_attach_pre(if_ctx_t);
static int axgbe_if_attach_post(if_ctx_t);
static int axgbe_if_detach(if_ctx_t);
static void axgbe_if_stop(if_ctx_t);
static void axgbe_if_init(if_ctx_t);
/* Queue related routines */
static int axgbe_if_tx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
static int axgbe_if_rx_queues_alloc(if_ctx_t, caddr_t *, uint64_t *, int, int);
static int axgbe_alloc_channels(if_ctx_t);
static void axgbe_free_channels(struct axgbe_if_softc *);
static void axgbe_if_queues_free(if_ctx_t);
static int axgbe_if_tx_queue_intr_enable(if_ctx_t, uint16_t);
static int axgbe_if_rx_queue_intr_enable(if_ctx_t, uint16_t);
/* Interrupt related routines */
static void axgbe_if_disable_intr(if_ctx_t);
static void axgbe_if_enable_intr(if_ctx_t);
static int axgbe_if_msix_intr_assign(if_ctx_t, int);
static void xgbe_free_intr(struct xgbe_prv_data *, struct resource *, void *, int);
/* Init and Iflib routines */
static void axgbe_pci_init(struct xgbe_prv_data *);
static void axgbe_pci_stop(if_ctx_t);
static void xgbe_disable_rx_tx_int(struct xgbe_prv_data *, struct xgbe_channel *);
static void xgbe_disable_rx_tx_ints(struct xgbe_prv_data *);
static int axgbe_if_mtu_set(if_ctx_t, uint32_t);
static void axgbe_if_update_admin_status(if_ctx_t);
static void axgbe_if_media_status(if_ctx_t, struct ifmediareq *);
static int axgbe_if_media_change(if_ctx_t);
static int axgbe_if_promisc_set(if_ctx_t, int);
static uint64_t axgbe_if_get_counter(if_ctx_t, ift_counter);
static void axgbe_if_vlan_register(if_ctx_t, uint16_t);
static void axgbe_if_vlan_unregister(if_ctx_t, uint16_t);
#if __FreeBSD_version >= 1300000
static bool axgbe_if_needs_restart(if_ctx_t, enum iflib_restart_event);
#endif
static void axgbe_set_counts(if_ctx_t);
static void axgbe_init_iflib_softc_ctx(struct axgbe_if_softc *);
/* MII interface registered functions */
static int axgbe_miibus_readreg(device_t, int, int);
static int axgbe_miibus_writereg(device_t, int, int, int);
static void axgbe_miibus_statchg(device_t);
/* ISR routines */
static int axgbe_dev_isr(void *);
static void axgbe_ecc_isr(void *);
static void axgbe_i2c_isr(void *);
static void axgbe_an_isr(void *);
static int axgbe_msix_que(void *);
/* Timer routines */
static void xgbe_service(void *, int);
static void xgbe_service_timer(void *);
static void xgbe_init_timers(struct xgbe_prv_data *);
static void xgbe_stop_timers(struct xgbe_prv_data *);
/* Dump routines */
static void xgbe_dump_prop_registers(struct xgbe_prv_data *);
/*
* Allocate only for MAC (BAR0) and PCS (BAR1) registers, and just point the
* MSI-X table bar (BAR5) to iflib. iflib will do the allocation for MSI-X
* table.
*/
static struct resource_spec axgbe_pci_mac_spec[] = {
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, /* MAC regs */
{ SYS_RES_MEMORY, PCIR_BAR(1), RF_ACTIVE }, /* PCS regs */
{ -1, 0 }
};
static const pci_vendor_info_t axgbe_vendor_info_array[] =
{
PVID(0x1022, 0x1458, "AMD 10 Gigabit Ethernet Driver"),
PVID(0x1022, 0x1459, "AMD 10 Gigabit Ethernet Driver"),
PVID_END
};
static struct xgbe_version_data xgbe_v2a = {
.init_function_ptrs_phy_impl = xgbe_init_function_ptrs_phy_v2,
.xpcs_access = XGBE_XPCS_ACCESS_V2,
.mmc_64bit = 1,
.tx_max_fifo_size = 229376,
.rx_max_fifo_size = 229376,
.tx_tstamp_workaround = 1,
.ecc_support = 1,
.i2c_support = 1,
.irq_reissue_support = 1,
.tx_desc_prefetch = 5,
.rx_desc_prefetch = 5,
.an_cdr_workaround = 1,
};
static struct xgbe_version_data xgbe_v2b = {
.init_function_ptrs_phy_impl = xgbe_init_function_ptrs_phy_v2,
.xpcs_access = XGBE_XPCS_ACCESS_V2,
.mmc_64bit = 1,
.tx_max_fifo_size = 65536,
.rx_max_fifo_size = 65536,
.tx_tstamp_workaround = 1,
.ecc_support = 1,
.i2c_support = 1,
.irq_reissue_support = 1,
.tx_desc_prefetch = 5,
.rx_desc_prefetch = 5,
.an_cdr_workaround = 1,
};
/* Device Interface */
static device_method_t ax_methods[] = {
DEVMETHOD(device_register, axgbe_register),
DEVMETHOD(device_probe, iflib_device_probe),
DEVMETHOD(device_attach, iflib_device_attach),
DEVMETHOD(device_detach, iflib_device_detach),
/* MII interface */
DEVMETHOD(miibus_readreg, axgbe_miibus_readreg),
DEVMETHOD(miibus_writereg, axgbe_miibus_writereg),
DEVMETHOD(miibus_statchg, axgbe_miibus_statchg),
DEVMETHOD_END
};
static driver_t ax_driver = {
"ax", ax_methods, sizeof(struct axgbe_if_softc),
};
DRIVER_MODULE(axp, pci, ax_driver, 0, 0);
DRIVER_MODULE(miibus, ax, miibus_driver, 0, 0);
IFLIB_PNP_INFO(pci, ax_driver, axgbe_vendor_info_array);
MODULE_DEPEND(ax, pci, 1, 1, 1);
MODULE_DEPEND(ax, ether, 1, 1, 1);
MODULE_DEPEND(ax, iflib, 1, 1, 1);
MODULE_DEPEND(ax, miibus, 1, 1, 1);
/* Iflib Interface */
static device_method_t axgbe_if_methods[] = {
DEVMETHOD(ifdi_attach_pre, axgbe_if_attach_pre),
DEVMETHOD(ifdi_attach_post, axgbe_if_attach_post),
DEVMETHOD(ifdi_detach, axgbe_if_detach),
DEVMETHOD(ifdi_init, axgbe_if_init),
DEVMETHOD(ifdi_stop, axgbe_if_stop),
DEVMETHOD(ifdi_msix_intr_assign, axgbe_if_msix_intr_assign),
DEVMETHOD(ifdi_intr_enable, axgbe_if_enable_intr),
DEVMETHOD(ifdi_intr_disable, axgbe_if_disable_intr),
DEVMETHOD(ifdi_tx_queue_intr_enable, axgbe_if_tx_queue_intr_enable),
DEVMETHOD(ifdi_rx_queue_intr_enable, axgbe_if_rx_queue_intr_enable),
DEVMETHOD(ifdi_tx_queues_alloc, axgbe_if_tx_queues_alloc),
DEVMETHOD(ifdi_rx_queues_alloc, axgbe_if_rx_queues_alloc),
DEVMETHOD(ifdi_queues_free, axgbe_if_queues_free),
DEVMETHOD(ifdi_update_admin_status, axgbe_if_update_admin_status),
DEVMETHOD(ifdi_mtu_set, axgbe_if_mtu_set),
DEVMETHOD(ifdi_media_status, axgbe_if_media_status),
DEVMETHOD(ifdi_media_change, axgbe_if_media_change),
DEVMETHOD(ifdi_promisc_set, axgbe_if_promisc_set),
DEVMETHOD(ifdi_get_counter, axgbe_if_get_counter),
DEVMETHOD(ifdi_vlan_register, axgbe_if_vlan_register),
DEVMETHOD(ifdi_vlan_unregister, axgbe_if_vlan_unregister),
#if __FreeBSD_version >= 1300000
DEVMETHOD(ifdi_needs_restart, axgbe_if_needs_restart),
#endif
DEVMETHOD_END
};
static driver_t axgbe_if_driver = {
"axgbe_if", axgbe_if_methods, sizeof(struct axgbe_if_softc)
};
/* Iflib Shared Context */
static struct if_shared_ctx axgbe_sctx_init = {
.isc_magic = IFLIB_MAGIC,
.isc_driver = &axgbe_if_driver,
.isc_q_align = PAGE_SIZE,
.isc_tx_maxsize = XGBE_TSO_MAX_SIZE + sizeof(struct ether_vlan_header),
.isc_tx_maxsegsize = PAGE_SIZE,
.isc_tso_maxsize = XGBE_TSO_MAX_SIZE + sizeof(struct ether_vlan_header),
.isc_tso_maxsegsize = PAGE_SIZE,
.isc_rx_maxsize = MJUM9BYTES,
.isc_rx_maxsegsize = MJUM9BYTES,
.isc_rx_nsegments = 1,
.isc_admin_intrcnt = 4,
.isc_vendor_info = axgbe_vendor_info_array,
.isc_driver_version = XGBE_DRV_VERSION,
.isc_ntxd_min = {XGBE_TX_DESC_CNT_MIN},
.isc_ntxd_default = {XGBE_TX_DESC_CNT_DEFAULT},
.isc_ntxd_max = {XGBE_TX_DESC_CNT_MAX},
.isc_ntxqs = 1,
.isc_flags = IFLIB_TSO_INIT_IP | IFLIB_NEED_SCRATCH |
IFLIB_NEED_ZERO_CSUM | IFLIB_NEED_ETHER_PAD,
};
static void *
axgbe_register(device_t dev)
{
int axgbe_nfl;
int axgbe_nrxqs;
int error, i;
char *value = NULL;
value = kern_getenv("dev.ax.sph_enable");
if (value) {
axgbe_sph_enable = strtol(value, NULL, 10);
freeenv(value);
} else {
/*
* No tunable found, generate one with default values
* Note: only a reboot will reveal the new kenv
*/
error = kern_setenv("dev.ax.sph_enable", "1");
if (error) {
printf("Error setting tunable, using default driver values\n");
}
axgbe_sph_enable = 1;
}
if (!axgbe_sph_enable) {
axgbe_nfl = 1;
axgbe_nrxqs = 1;
} else {
axgbe_nfl = 2;
axgbe_nrxqs = 2;
}
axgbe_sctx_init.isc_nfl = axgbe_nfl;
axgbe_sctx_init.isc_nrxqs = axgbe_nrxqs;
for (i = 0 ; i < axgbe_nrxqs ; i++) {
axgbe_sctx_init.isc_nrxd_min[i] = XGBE_RX_DESC_CNT_MIN;
axgbe_sctx_init.isc_nrxd_default[i] = XGBE_RX_DESC_CNT_DEFAULT;
axgbe_sctx_init.isc_nrxd_max[i] = XGBE_RX_DESC_CNT_MAX;
}
return (&axgbe_sctx_init);
}
/* MII Interface Functions */
static int
axgbe_miibus_readreg(device_t dev, int phy, int reg)
{
struct axgbe_if_softc *sc = iflib_get_softc(device_get_softc(dev));
struct xgbe_prv_data *pdata = &sc->pdata;
int val;
axgbe_printf(3, "%s: phy %d reg %d\n", __func__, phy, reg);
val = xgbe_phy_mii_read(pdata, phy, reg);
axgbe_printf(2, "%s: val 0x%x\n", __func__, val);
return (val & 0xFFFF);
}
static int
axgbe_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct axgbe_if_softc *sc = iflib_get_softc(device_get_softc(dev));
struct xgbe_prv_data *pdata = &sc->pdata;
axgbe_printf(3, "%s: phy %d reg %d val 0x%x\n", __func__, phy, reg, val);
xgbe_phy_mii_write(pdata, phy, reg, val);
return(0);
}
static void
axgbe_miibus_statchg(device_t dev)
{
struct axgbe_if_softc *sc = iflib_get_softc(device_get_softc(dev));
struct xgbe_prv_data *pdata = &sc->pdata;
struct mii_data *mii = device_get_softc(pdata->axgbe_miibus);
if_t ifp = pdata->netdev;
int bmsr;
axgbe_printf(2, "%s: Link %d/%d\n", __func__, pdata->phy.link,
pdata->phy_link);
if (mii == NULL || ifp == NULL ||
(if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
return;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
pdata->phy.link = 1;
break;
case IFM_1000_T:
case IFM_1000_SX:
case IFM_2500_SX:
pdata->phy.link = 1;
break;
default:
pdata->phy.link = 0;
break;
}
} else
pdata->phy_link = 0;
bmsr = axgbe_miibus_readreg(pdata->dev, pdata->mdio_addr, MII_BMSR);
if (bmsr & BMSR_ANEG) {
axgbe_printf(2, "%s: Autoneg Done\n", __func__);
/* Raise AN Interrupt */
XMDIO_WRITE(pdata, MDIO_MMD_AN, MDIO_AN_INTMASK,
XGBE_AN_CL73_INT_MASK);
}
}
static int
axgbe_if_attach_pre(if_ctx_t ctx)
{
struct axgbe_if_softc *sc;
struct xgbe_prv_data *pdata;
struct resource *mac_res[2];
if_softc_ctx_t scctx;
if_shared_ctx_t sctx;
device_t dev;
unsigned int ma_lo, ma_hi;
unsigned int reg;
int ret;
sc = iflib_get_softc(ctx);
sc->pdata.dev = dev = iflib_get_dev(ctx);
sc->sctx = sctx = iflib_get_sctx(ctx);
sc->scctx = scctx = iflib_get_softc_ctx(ctx);
sc->media = iflib_get_media(ctx);
sc->ctx = ctx;
sc->link_status = LINK_STATE_DOWN;
pdata = &sc->pdata;
pdata->netdev = iflib_get_ifp(ctx);
spin_lock_init(&pdata->xpcs_lock);
/* Initialize locks */
mtx_init(&pdata->rss_mutex, "xgbe rss mutex lock", NULL, MTX_DEF);
mtx_init(&pdata->mdio_mutex, "xgbe MDIO mutex lock", NULL, MTX_SPIN);
/* Allocate VLAN bitmap */
pdata->active_vlans = bit_alloc(VLAN_NVID, M_AXGBE, M_WAITOK|M_ZERO);
pdata->num_active_vlans = 0;
/* Get the version data */
DBGPR("%s: Device ID: 0x%x\n", __func__, pci_get_device(dev));
if (pci_get_device(dev) == 0x1458)
sc->pdata.vdata = &xgbe_v2a;
else if (pci_get_device(dev) == 0x1459)
sc->pdata.vdata = &xgbe_v2b;
/* PCI setup */
if (bus_alloc_resources(dev, axgbe_pci_mac_spec, mac_res)) {
axgbe_error("Unable to allocate bus resources\n");
ret = ENXIO;
goto free_vlans;
}
sc->pdata.xgmac_res = mac_res[0];
sc->pdata.xpcs_res = mac_res[1];
/* Set the PCS indirect addressing definition registers*/
pdata->xpcs_window_def_reg = PCS_V2_WINDOW_DEF;
pdata->xpcs_window_sel_reg = PCS_V2_WINDOW_SELECT;
/* Configure the PCS indirect addressing support */
reg = XPCS32_IOREAD(pdata, pdata->xpcs_window_def_reg);
pdata->xpcs_window = XPCS_GET_BITS(reg, PCS_V2_WINDOW_DEF, OFFSET);
pdata->xpcs_window <<= 6;
pdata->xpcs_window_size = XPCS_GET_BITS(reg, PCS_V2_WINDOW_DEF, SIZE);
pdata->xpcs_window_size = 1 << (pdata->xpcs_window_size + 7);
pdata->xpcs_window_mask = pdata->xpcs_window_size - 1;
DBGPR("xpcs window def : %#010x\n",
pdata->xpcs_window_def_reg);
DBGPR("xpcs window sel : %#010x\n",
pdata->xpcs_window_sel_reg);
DBGPR("xpcs window : %#010x\n",
pdata->xpcs_window);
DBGPR("xpcs window size : %#010x\n",
pdata->xpcs_window_size);
DBGPR("xpcs window mask : %#010x\n",
pdata->xpcs_window_mask);
/* Enable all interrupts in the hardware */
XP_IOWRITE(pdata, XP_INT_EN, 0x1fffff);
/* Retrieve the MAC address */
ma_lo = XP_IOREAD(pdata, XP_MAC_ADDR_LO);
ma_hi = XP_IOREAD(pdata, XP_MAC_ADDR_HI);
pdata->mac_addr[0] = ma_lo & 0xff;
pdata->mac_addr[1] = (ma_lo >> 8) & 0xff;
pdata->mac_addr[2] = (ma_lo >>16) & 0xff;
pdata->mac_addr[3] = (ma_lo >> 24) & 0xff;
pdata->mac_addr[4] = ma_hi & 0xff;
pdata->mac_addr[5] = (ma_hi >> 8) & 0xff;
if (!XP_GET_BITS(ma_hi, XP_MAC_ADDR_HI, VALID)) {
axgbe_error("Invalid mac address\n");
ret = EINVAL;
goto release_bus_resource;
}
iflib_set_mac(ctx, pdata->mac_addr);
/* Clock settings */
pdata->sysclk_rate = XGBE_V2_DMA_CLOCK_FREQ;
pdata->ptpclk_rate = XGBE_V2_PTP_CLOCK_FREQ;
/* Set the DMA coherency values */
pdata->coherent = 1;
pdata->arcr = XGBE_DMA_PCI_ARCR;
pdata->awcr = XGBE_DMA_PCI_AWCR;
pdata->awarcr = XGBE_DMA_PCI_AWARCR;
/* Read the port property registers */
pdata->pp0 = XP_IOREAD(pdata, XP_PROP_0);
pdata->pp1 = XP_IOREAD(pdata, XP_PROP_1);
pdata->pp2 = XP_IOREAD(pdata, XP_PROP_2);
pdata->pp3 = XP_IOREAD(pdata, XP_PROP_3);
pdata->pp4 = XP_IOREAD(pdata, XP_PROP_4);
DBGPR("port property 0 = %#010x\n", pdata->pp0);
DBGPR("port property 1 = %#010x\n", pdata->pp1);
DBGPR("port property 2 = %#010x\n", pdata->pp2);
DBGPR("port property 3 = %#010x\n", pdata->pp3);
DBGPR("port property 4 = %#010x\n", pdata->pp4);
/* Set the maximum channels and queues */
pdata->tx_max_channel_count = XP_GET_BITS(pdata->pp1, XP_PROP_1,
MAX_TX_DMA);
pdata->rx_max_channel_count = XP_GET_BITS(pdata->pp1, XP_PROP_1,
MAX_RX_DMA);
pdata->tx_max_q_count = XP_GET_BITS(pdata->pp1, XP_PROP_1,
MAX_TX_QUEUES);
pdata->rx_max_q_count = XP_GET_BITS(pdata->pp1, XP_PROP_1,
MAX_RX_QUEUES);
DBGPR("max tx/rx channel count = %u/%u\n",
pdata->tx_max_channel_count, pdata->rx_max_channel_count);
DBGPR("max tx/rx hw queue count = %u/%u\n",
pdata->tx_max_q_count, pdata->rx_max_q_count);
axgbe_set_counts(ctx);
/* Set the maximum fifo amounts */
pdata->tx_max_fifo_size = XP_GET_BITS(pdata->pp2, XP_PROP_2,
TX_FIFO_SIZE);
pdata->tx_max_fifo_size *= 16384;
pdata->tx_max_fifo_size = min(pdata->tx_max_fifo_size,
pdata->vdata->tx_max_fifo_size);
pdata->rx_max_fifo_size = XP_GET_BITS(pdata->pp2, XP_PROP_2,
RX_FIFO_SIZE);
pdata->rx_max_fifo_size *= 16384;
pdata->rx_max_fifo_size = min(pdata->rx_max_fifo_size,
pdata->vdata->rx_max_fifo_size);
DBGPR("max tx/rx max fifo size = %u/%u\n",
pdata->tx_max_fifo_size, pdata->rx_max_fifo_size);
/* Initialize IFLIB if_softc_ctx_t */
axgbe_init_iflib_softc_ctx(sc);
/* Alloc channels */
if (axgbe_alloc_channels(ctx)) {
axgbe_error("Unable to allocate channel memory\n");
ret = ENOMEM;
goto release_bus_resource;
}
TASK_INIT(&pdata->service_work, 0, xgbe_service, pdata);
/* create the workqueue */
pdata->dev_workqueue = taskqueue_create("axgbe", M_WAITOK,
taskqueue_thread_enqueue, &pdata->dev_workqueue);
if (pdata->dev_workqueue == NULL) {
axgbe_error("Unable to allocate workqueue\n");
ret = ENOMEM;
goto free_channels;
}
ret = taskqueue_start_threads(&pdata->dev_workqueue, 1, PI_NET,
"axgbe dev taskq");
if (ret) {
axgbe_error("Unable to start taskqueue\n");
ret = ENOMEM;
goto free_task_queue;
}
/* Init timers */
xgbe_init_timers(pdata);
return (0);
free_task_queue:
taskqueue_free(pdata->dev_workqueue);
free_channels:
axgbe_free_channels(sc);
release_bus_resource:
bus_release_resources(dev, axgbe_pci_mac_spec, mac_res);
free_vlans:
free(pdata->active_vlans, M_AXGBE);
return (ret);
} /* axgbe_if_attach_pre */
static void
xgbe_init_all_fptrs(struct xgbe_prv_data *pdata)
{
xgbe_init_function_ptrs_dev(&pdata->hw_if);
xgbe_init_function_ptrs_phy(&pdata->phy_if);
xgbe_init_function_ptrs_i2c(&pdata->i2c_if);
xgbe_init_function_ptrs_desc(&pdata->desc_if);
pdata->vdata->init_function_ptrs_phy_impl(&pdata->phy_if);
}
static void
axgbe_set_counts(if_ctx_t ctx)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
cpuset_t lcpus;
int cpu_count, err;
size_t len;
/* Set all function pointers */
xgbe_init_all_fptrs(pdata);
/* Populate the hardware features */
xgbe_get_all_hw_features(pdata);
if (!pdata->tx_max_channel_count)
pdata->tx_max_channel_count = pdata->hw_feat.tx_ch_cnt;
if (!pdata->rx_max_channel_count)
pdata->rx_max_channel_count = pdata->hw_feat.rx_ch_cnt;
if (!pdata->tx_max_q_count)
pdata->tx_max_q_count = pdata->hw_feat.tx_q_cnt;
if (!pdata->rx_max_q_count)
pdata->rx_max_q_count = pdata->hw_feat.rx_q_cnt;
/*
* Calculate the number of Tx and Rx rings to be created
* -Tx (DMA) Channels map 1-to-1 to Tx Queues so set
* the number of Tx queues to the number of Tx channels
* enabled
* -Rx (DMA) Channels do not map 1-to-1 so use the actual
* number of Rx queues or maximum allowed
*/
/* Get cpu count from sysctl */
len = sizeof(cpu_count);
err = kernel_sysctlbyname(curthread, "hw.ncpu", &cpu_count, &len, NULL,
0, NULL, 0);
if (err) {
axgbe_error("Unable to fetch number of cpus\n");
cpu_count = 1;
}
if (bus_get_cpus(pdata->dev, INTR_CPUS, sizeof(lcpus), &lcpus) != 0) {
axgbe_error("Unable to fetch CPU list\n");
/* TODO - handle CPU_COPY(&all_cpus, &lcpus); */
}
DBGPR("ncpu %d intrcpu %d\n", cpu_count, CPU_COUNT(&lcpus));
pdata->tx_ring_count = min(CPU_COUNT(&lcpus), pdata->hw_feat.tx_ch_cnt);
pdata->tx_ring_count = min(pdata->tx_ring_count,
pdata->tx_max_channel_count);
pdata->tx_ring_count = min(pdata->tx_ring_count, pdata->tx_max_q_count);
pdata->tx_q_count = pdata->tx_ring_count;
pdata->rx_ring_count = min(CPU_COUNT(&lcpus), pdata->hw_feat.rx_ch_cnt);
pdata->rx_ring_count = min(pdata->rx_ring_count,
pdata->rx_max_channel_count);
pdata->rx_q_count = min(pdata->hw_feat.rx_q_cnt, pdata->rx_max_q_count);
DBGPR("TX/RX max channel count = %u/%u\n",
pdata->tx_max_channel_count, pdata->rx_max_channel_count);
DBGPR("TX/RX max queue count = %u/%u\n",
pdata->tx_max_q_count, pdata->rx_max_q_count);
DBGPR("TX/RX DMA ring count = %u/%u\n",
pdata->tx_ring_count, pdata->rx_ring_count);
DBGPR("TX/RX hardware queue count = %u/%u\n",
pdata->tx_q_count, pdata->rx_q_count);
} /* axgbe_set_counts */
static void
axgbe_init_iflib_softc_ctx(struct axgbe_if_softc *sc)
{
struct xgbe_prv_data *pdata = &sc->pdata;
if_softc_ctx_t scctx = sc->scctx;
if_shared_ctx_t sctx = sc->sctx;
int i;
scctx->isc_nrxqsets = pdata->rx_q_count;
scctx->isc_ntxqsets = pdata->tx_q_count;
scctx->isc_msix_bar = pci_msix_table_bar(pdata->dev);
scctx->isc_tx_nsegments = 32;
for (i = 0; i < sctx->isc_ntxqs; i++) {
scctx->isc_txqsizes[i] =
roundup2(scctx->isc_ntxd[i] * sizeof(struct xgbe_ring_desc),
128);
scctx->isc_txd_size[i] = sizeof(struct xgbe_ring_desc);
}
for (i = 0; i < sctx->isc_nrxqs; i++) {
scctx->isc_rxqsizes[i] =
roundup2(scctx->isc_nrxd[i] * sizeof(struct xgbe_ring_desc),
128);
scctx->isc_rxd_size[i] = sizeof(struct xgbe_ring_desc);
}
scctx->isc_tx_tso_segments_max = 32;
scctx->isc_tx_tso_size_max = XGBE_TSO_MAX_SIZE;
scctx->isc_tx_tso_segsize_max = PAGE_SIZE;
/*
* Set capabilities
* 1) IFLIB automatically adds IFCAP_HWSTATS, so need to set explicitly
* 2) isc_tx_csum_flags is mandatory if IFCAP_TXCSUM (included in
* IFCAP_HWCSUM) is set
*/
scctx->isc_tx_csum_flags = (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_SCTP |
CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_SCTP_IPV6 |
CSUM_TSO);
scctx->isc_capenable = (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6 |
IFCAP_JUMBO_MTU |
IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWFILTER |
IFCAP_VLAN_HWCSUM |
IFCAP_TSO | IFCAP_VLAN_HWTSO);
scctx->isc_capabilities = scctx->isc_capenable;
/*
* Set rss_table_size alone when adding RSS support. rss_table_mask
* will be set by IFLIB based on rss_table_size
*/
scctx->isc_rss_table_size = XGBE_RSS_MAX_TABLE_SIZE;
scctx->isc_ntxqsets_max = XGBE_MAX_QUEUES;
scctx->isc_nrxqsets_max = XGBE_MAX_QUEUES;
scctx->isc_txrx = &axgbe_txrx;
}
static int
axgbe_alloc_channels(if_ctx_t ctx)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_channel *channel;
int i, j, count;
DBGPR("%s: txqs %d rxqs %d\n", __func__, pdata->tx_ring_count,
pdata->rx_ring_count);
/* Iflibe sets based on isc_ntxqsets/nrxqsets */
count = max_t(unsigned int, pdata->tx_ring_count, pdata->rx_ring_count);
/* Allocate channel memory */
for (i = 0; i < count ; i++) {
channel = (struct xgbe_channel*)malloc(sizeof(struct xgbe_channel),
M_AXGBE, M_NOWAIT | M_ZERO);
if (channel == NULL) {
for (j = 0; j < i; j++) {
free(pdata->channel[j], M_AXGBE);
pdata->channel[j] = NULL;
}
return (ENOMEM);
}
pdata->channel[i] = channel;
}
pdata->total_channel_count = count;
DBGPR("Channel count set to: %u\n", pdata->total_channel_count);
for (i = 0; i < count; i++) {
channel = pdata->channel[i];
snprintf(channel->name, sizeof(channel->name), "channel-%d",i);
channel->pdata = pdata;
channel->queue_index = i;
channel->dma_tag = rman_get_bustag(pdata->xgmac_res);
bus_space_subregion(channel->dma_tag,
rman_get_bushandle(pdata->xgmac_res),
DMA_CH_BASE + (DMA_CH_INC * i), DMA_CH_INC,
&channel->dma_handle);
channel->tx_ring = NULL;
channel->rx_ring = NULL;
}
return (0);
} /* axgbe_alloc_channels */
static void
axgbe_free_channels(struct axgbe_if_softc *sc)
{
struct xgbe_prv_data *pdata = &sc->pdata;
int i;
for (i = 0; i < pdata->total_channel_count ; i++) {
free(pdata->channel[i], M_AXGBE);
pdata->channel[i] = NULL;
}
pdata->total_channel_count = 0;
pdata->channel_count = 0;
}
static void
xgbe_service(void *ctx, int pending)
{
struct xgbe_prv_data *pdata = ctx;
struct axgbe_if_softc *sc = (struct axgbe_if_softc *)pdata;
bool prev_state = false;
/* Get previous link status */
prev_state = pdata->phy.link;
pdata->phy_if.phy_status(pdata);
if (prev_state != pdata->phy.link) {
pdata->phy_link = pdata->phy.link;
axgbe_if_update_admin_status(sc->ctx);
}
callout_reset(&pdata->service_timer, 1*hz, xgbe_service_timer, pdata);
}
static void
xgbe_service_timer(void *data)
{
struct xgbe_prv_data *pdata = data;
taskqueue_enqueue(pdata->dev_workqueue, &pdata->service_work);
}
static void
xgbe_init_timers(struct xgbe_prv_data *pdata)
{
callout_init(&pdata->service_timer, 1);
}
static void
xgbe_start_timers(struct xgbe_prv_data *pdata)
{
callout_reset(&pdata->service_timer, 1*hz, xgbe_service_timer, pdata);
}
static void
xgbe_stop_timers(struct xgbe_prv_data *pdata)
{
callout_drain(&pdata->service_timer);
callout_stop(&pdata->service_timer);
}
static void
xgbe_dump_phy_registers(struct xgbe_prv_data *pdata)
{
axgbe_printf(1, "\n************* PHY Reg dump *********************\n");
axgbe_printf(1, "PCS Control Reg (%#06x) = %#06x\n", MDIO_CTRL1,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_CTRL1));
axgbe_printf(1, "PCS Status Reg (%#06x) = %#06x\n", MDIO_STAT1,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1));
axgbe_printf(1, "Phy Id (PHYS ID 1 %#06x)= %#06x\n", MDIO_DEVID1,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_DEVID1));
axgbe_printf(1, "Phy Id (PHYS ID 2 %#06x)= %#06x\n", MDIO_DEVID2,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_DEVID2));
axgbe_printf(1, "Devices in Package (%#06x)= %#06x\n", MDIO_DEVS1,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_DEVS1));
axgbe_printf(1, "Devices in Package (%#06x)= %#06x\n", MDIO_DEVS2,
XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_DEVS2));
axgbe_printf(1, "Auto-Neg Control Reg (%#06x) = %#06x\n", MDIO_CTRL1,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_CTRL1));
axgbe_printf(1, "Auto-Neg Status Reg (%#06x) = %#06x\n", MDIO_STAT1,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_STAT1));
axgbe_printf(1, "Auto-Neg Ad Reg 1 (%#06x) = %#06x\n",
MDIO_AN_ADVERTISE,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE));
axgbe_printf(1, "Auto-Neg Ad Reg 2 (%#06x) = %#06x\n",
MDIO_AN_ADVERTISE + 1,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1));
axgbe_printf(1, "Auto-Neg Ad Reg 3 (%#06x) = %#06x\n",
MDIO_AN_ADVERTISE + 2,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2));
axgbe_printf(1, "Auto-Neg Completion Reg (%#06x) = %#06x\n",
MDIO_AN_COMP_STAT,
XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_COMP_STAT));
axgbe_printf(1, "\n************************************************\n");
}
static void
xgbe_dump_prop_registers(struct xgbe_prv_data *pdata)
{
int i;
axgbe_printf(1, "\n************* PROP Reg dump ********************\n");
for (i = 0 ; i < 38 ; i++) {
axgbe_printf(1, "PROP Offset 0x%08x = %08x\n",
(XP_PROP_0 + (i * 4)), XP_IOREAD(pdata,
(XP_PROP_0 + (i * 4))));
}
}
static void
xgbe_dump_dma_registers(struct xgbe_prv_data *pdata, int ch)
{
struct xgbe_channel *channel;
int i;
axgbe_printf(1, "\n************* DMA Reg dump *********************\n");
axgbe_printf(1, "DMA MR Reg (%08x) = %08x\n", DMA_MR,
XGMAC_IOREAD(pdata, DMA_MR));
axgbe_printf(1, "DMA SBMR Reg (%08x) = %08x\n", DMA_SBMR,
XGMAC_IOREAD(pdata, DMA_SBMR));
axgbe_printf(1, "DMA ISR Reg (%08x) = %08x\n", DMA_ISR,
XGMAC_IOREAD(pdata, DMA_ISR));
axgbe_printf(1, "DMA AXIARCR Reg (%08x) = %08x\n", DMA_AXIARCR,
XGMAC_IOREAD(pdata, DMA_AXIARCR));
axgbe_printf(1, "DMA AXIAWCR Reg (%08x) = %08x\n", DMA_AXIAWCR,
XGMAC_IOREAD(pdata, DMA_AXIAWCR));
axgbe_printf(1, "DMA AXIAWARCR Reg (%08x) = %08x\n", DMA_AXIAWARCR,
XGMAC_IOREAD(pdata, DMA_AXIAWARCR));
axgbe_printf(1, "DMA DSR0 Reg (%08x) = %08x\n", DMA_DSR0,
XGMAC_IOREAD(pdata, DMA_DSR0));
axgbe_printf(1, "DMA DSR1 Reg (%08x) = %08x\n", DMA_DSR1,
XGMAC_IOREAD(pdata, DMA_DSR1));
axgbe_printf(1, "DMA DSR2 Reg (%08x) = %08x\n", DMA_DSR2,
XGMAC_IOREAD(pdata, DMA_DSR2));
axgbe_printf(1, "DMA DSR3 Reg (%08x) = %08x\n", DMA_DSR3,
XGMAC_IOREAD(pdata, DMA_DSR3));
axgbe_printf(1, "DMA DSR4 Reg (%08x) = %08x\n", DMA_DSR4,
XGMAC_IOREAD(pdata, DMA_DSR4));
axgbe_printf(1, "DMA TXEDMACR Reg (%08x) = %08x\n", DMA_TXEDMACR,
XGMAC_IOREAD(pdata, DMA_TXEDMACR));
axgbe_printf(1, "DMA RXEDMACR Reg (%08x) = %08x\n", DMA_RXEDMACR,
XGMAC_IOREAD(pdata, DMA_RXEDMACR));
for (i = 0 ; i < 8 ; i++ ) {
if (ch >= 0) {
if (i != ch)
continue;
}
channel = pdata->channel[i];
axgbe_printf(1, "\n************* DMA CH %d dump ****************\n", i);
axgbe_printf(1, "DMA_CH_CR Reg (%08x) = %08x\n",
DMA_CH_CR, XGMAC_DMA_IOREAD(channel, DMA_CH_CR));
axgbe_printf(1, "DMA_CH_TCR Reg (%08x) = %08x\n",
DMA_CH_TCR, XGMAC_DMA_IOREAD(channel, DMA_CH_TCR));
axgbe_printf(1, "DMA_CH_RCR Reg (%08x) = %08x\n",
DMA_CH_RCR, XGMAC_DMA_IOREAD(channel, DMA_CH_RCR));
axgbe_printf(1, "DMA_CH_TDLR_HI Reg (%08x) = %08x\n",
DMA_CH_TDLR_HI, XGMAC_DMA_IOREAD(channel, DMA_CH_TDLR_HI));
axgbe_printf(1, "DMA_CH_TDLR_LO Reg (%08x) = %08x\n",
DMA_CH_TDLR_LO, XGMAC_DMA_IOREAD(channel, DMA_CH_TDLR_LO));
axgbe_printf(1, "DMA_CH_RDLR_HI Reg (%08x) = %08x\n",
DMA_CH_RDLR_HI, XGMAC_DMA_IOREAD(channel, DMA_CH_RDLR_HI));
axgbe_printf(1, "DMA_CH_RDLR_LO Reg (%08x) = %08x\n",
DMA_CH_RDLR_LO, XGMAC_DMA_IOREAD(channel, DMA_CH_RDLR_LO));
axgbe_printf(1, "DMA_CH_TDTR_LO Reg (%08x) = %08x\n",
DMA_CH_TDTR_LO, XGMAC_DMA_IOREAD(channel, DMA_CH_TDTR_LO));
axgbe_printf(1, "DMA_CH_RDTR_LO Reg (%08x) = %08x\n",
DMA_CH_RDTR_LO, XGMAC_DMA_IOREAD(channel, DMA_CH_RDTR_LO));
axgbe_printf(1, "DMA_CH_TDRLR Reg (%08x) = %08x\n",
DMA_CH_TDRLR, XGMAC_DMA_IOREAD(channel, DMA_CH_TDRLR));
axgbe_printf(1, "DMA_CH_RDRLR Reg (%08x) = %08x\n",
DMA_CH_RDRLR, XGMAC_DMA_IOREAD(channel, DMA_CH_RDRLR));
axgbe_printf(1, "DMA_CH_IER Reg (%08x) = %08x\n",
DMA_CH_IER, XGMAC_DMA_IOREAD(channel, DMA_CH_IER));
axgbe_printf(1, "DMA_CH_RIWT Reg (%08x) = %08x\n",
DMA_CH_RIWT, XGMAC_DMA_IOREAD(channel, DMA_CH_RIWT));
axgbe_printf(1, "DMA_CH_CATDR_LO Reg (%08x) = %08x\n",
DMA_CH_CATDR_LO, XGMAC_DMA_IOREAD(channel, DMA_CH_CATDR_LO));
axgbe_printf(1, "DMA_CH_CARDR_LO Reg (%08x) = %08x\n",
DMA_CH_CARDR_LO, XGMAC_DMA_IOREAD(channel, DMA_CH_CARDR_LO));
axgbe_printf(1, "DMA_CH_CATBR_HI Reg (%08x) = %08x\n",
DMA_CH_CATBR_HI, XGMAC_DMA_IOREAD(channel, DMA_CH_CATBR_HI));
axgbe_printf(1, "DMA_CH_CATBR_LO Reg (%08x) = %08x\n",
DMA_CH_CATBR_LO, XGMAC_DMA_IOREAD(channel, DMA_CH_CATBR_LO));
axgbe_printf(1, "DMA_CH_CARBR_HI Reg (%08x) = %08x\n",
DMA_CH_CARBR_HI, XGMAC_DMA_IOREAD(channel, DMA_CH_CARBR_HI));
axgbe_printf(1, "DMA_CH_CARBR_LO Reg (%08x) = %08x\n",
DMA_CH_CARBR_LO, XGMAC_DMA_IOREAD(channel, DMA_CH_CARBR_LO));
axgbe_printf(1, "DMA_CH_SR Reg (%08x) = %08x\n",
DMA_CH_SR, XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
axgbe_printf(1, "DMA_CH_DSR Reg (%08x) = %08x\n",
DMA_CH_DSR, XGMAC_DMA_IOREAD(channel, DMA_CH_DSR));
axgbe_printf(1, "DMA_CH_DCFL Reg (%08x) = %08x\n",
DMA_CH_DCFL, XGMAC_DMA_IOREAD(channel, DMA_CH_DCFL));
axgbe_printf(1, "DMA_CH_MFC Reg (%08x) = %08x\n",
DMA_CH_MFC, XGMAC_DMA_IOREAD(channel, DMA_CH_MFC));
axgbe_printf(1, "DMA_CH_TDTRO Reg (%08x) = %08x\n",
DMA_CH_TDTRO, XGMAC_DMA_IOREAD(channel, DMA_CH_TDTRO));
axgbe_printf(1, "DMA_CH_RDTRO Reg (%08x) = %08x\n",
DMA_CH_RDTRO, XGMAC_DMA_IOREAD(channel, DMA_CH_RDTRO));
axgbe_printf(1, "DMA_CH_TDWRO Reg (%08x) = %08x\n",
DMA_CH_TDWRO, XGMAC_DMA_IOREAD(channel, DMA_CH_TDWRO));
axgbe_printf(1, "DMA_CH_RDWRO Reg (%08x) = %08x\n",
DMA_CH_RDWRO, XGMAC_DMA_IOREAD(channel, DMA_CH_RDWRO));
}
}
static void
xgbe_dump_mtl_registers(struct xgbe_prv_data *pdata)
{
int i;
axgbe_printf(1, "\n************* MTL Reg dump *********************\n");
axgbe_printf(1, "MTL OMR Reg (%08x) = %08x\n", MTL_OMR,
XGMAC_IOREAD(pdata, MTL_OMR));
axgbe_printf(1, "MTL FDCR Reg (%08x) = %08x\n", MTL_FDCR,
XGMAC_IOREAD(pdata, MTL_FDCR));
axgbe_printf(1, "MTL FDSR Reg (%08x) = %08x\n", MTL_FDSR,
XGMAC_IOREAD(pdata, MTL_FDSR));
axgbe_printf(1, "MTL FDDR Reg (%08x) = %08x\n", MTL_FDDR,
XGMAC_IOREAD(pdata, MTL_FDDR));
axgbe_printf(1, "MTL ISR Reg (%08x) = %08x\n", MTL_ISR,
XGMAC_IOREAD(pdata, MTL_ISR));
axgbe_printf(1, "MTL RQDCM0R Reg (%08x) = %08x\n", MTL_RQDCM0R,
XGMAC_IOREAD(pdata, MTL_RQDCM0R));
axgbe_printf(1, "MTL RQDCM1R Reg (%08x) = %08x\n", MTL_RQDCM1R,
XGMAC_IOREAD(pdata, MTL_RQDCM1R));
axgbe_printf(1, "MTL RQDCM2R Reg (%08x) = %08x\n", MTL_RQDCM2R,
XGMAC_IOREAD(pdata, MTL_RQDCM2R));
axgbe_printf(1, "MTL TCPM0R Reg (%08x) = %08x\n", MTL_TCPM0R,
XGMAC_IOREAD(pdata, MTL_TCPM0R));
axgbe_printf(1, "MTL TCPM1R Reg (%08x) = %08x\n", MTL_TCPM1R,
XGMAC_IOREAD(pdata, MTL_TCPM1R));
for (i = 0 ; i < 8 ; i++ ) {
axgbe_printf(1, "\n************* MTL CH %d dump ****************\n", i);
axgbe_printf(1, "MTL_Q_TQOMR Reg (%08x) = %08x\n",
MTL_Q_TQOMR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR));
axgbe_printf(1, "MTL_Q_TQUR Reg (%08x) = %08x\n",
MTL_Q_TQUR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQUR));
axgbe_printf(1, "MTL_Q_TQDR Reg (%08x) = %08x\n",
MTL_Q_TQDR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQDR));
axgbe_printf(1, "MTL_Q_TC0ETSCR Reg (%08x) = %08x\n",
MTL_Q_TC0ETSCR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TC0ETSCR));
axgbe_printf(1, "MTL_Q_TC0ETSSR Reg (%08x) = %08x\n",
MTL_Q_TC0ETSSR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TC0ETSSR));
axgbe_printf(1, "MTL_Q_TC0QWR Reg (%08x) = %08x\n",
MTL_Q_TC0QWR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TC0QWR));
axgbe_printf(1, "MTL_Q_RQOMR Reg (%08x) = %08x\n",
MTL_Q_RQOMR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR));
axgbe_printf(1, "MTL_Q_RQMPOCR Reg (%08x) = %08x\n",
MTL_Q_RQMPOCR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQMPOCR));
axgbe_printf(1, "MTL_Q_RQDR Reg (%08x) = %08x\n",
MTL_Q_RQDR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQDR));
axgbe_printf(1, "MTL_Q_RQCR Reg (%08x) = %08x\n",
MTL_Q_RQCR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQCR));
axgbe_printf(1, "MTL_Q_RQFCR Reg (%08x) = %08x\n",
MTL_Q_RQFCR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR));
axgbe_printf(1, "MTL_Q_IER Reg (%08x) = %08x\n",
MTL_Q_IER, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_IER));
axgbe_printf(1, "MTL_Q_ISR Reg (%08x) = %08x\n",
MTL_Q_ISR, XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR));
}
}
static void
xgbe_dump_mac_registers(struct xgbe_prv_data *pdata)
{
axgbe_printf(1, "\n************* MAC Reg dump **********************\n");
axgbe_printf(1, "MAC TCR Reg (%08x) = %08x\n", MAC_TCR,
XGMAC_IOREAD(pdata, MAC_TCR));
axgbe_printf(1, "MAC RCR Reg (%08x) = %08x\n", MAC_RCR,
XGMAC_IOREAD(pdata, MAC_RCR));
axgbe_printf(1, "MAC PFR Reg (%08x) = %08x\n", MAC_PFR,
XGMAC_IOREAD(pdata, MAC_PFR));
axgbe_printf(1, "MAC WTR Reg (%08x) = %08x\n", MAC_WTR,
XGMAC_IOREAD(pdata, MAC_WTR));
axgbe_printf(1, "MAC HTR0 Reg (%08x) = %08x\n", MAC_HTR0,
XGMAC_IOREAD(pdata, MAC_HTR0));
axgbe_printf(1, "MAC HTR1 Reg (%08x) = %08x\n", MAC_HTR1,
XGMAC_IOREAD(pdata, MAC_HTR1));
axgbe_printf(1, "MAC HTR2 Reg (%08x) = %08x\n", MAC_HTR2,
XGMAC_IOREAD(pdata, MAC_HTR2));
axgbe_printf(1, "MAC HTR3 Reg (%08x) = %08x\n", MAC_HTR3,
XGMAC_IOREAD(pdata, MAC_HTR3));
axgbe_printf(1, "MAC HTR4 Reg (%08x) = %08x\n", MAC_HTR4,
XGMAC_IOREAD(pdata, MAC_HTR4));
axgbe_printf(1, "MAC HTR5 Reg (%08x) = %08x\n", MAC_HTR5,
XGMAC_IOREAD(pdata, MAC_HTR5));
axgbe_printf(1, "MAC HTR6 Reg (%08x) = %08x\n", MAC_HTR6,
XGMAC_IOREAD(pdata, MAC_HTR6));
axgbe_printf(1, "MAC HTR7 Reg (%08x) = %08x\n", MAC_HTR7,
XGMAC_IOREAD(pdata, MAC_HTR7));
axgbe_printf(1, "MAC VLANTR Reg (%08x) = %08x\n", MAC_VLANTR,
XGMAC_IOREAD(pdata, MAC_VLANTR));
axgbe_printf(1, "MAC VLANHTR Reg (%08x) = %08x\n", MAC_VLANHTR,
XGMAC_IOREAD(pdata, MAC_VLANHTR));
axgbe_printf(1, "MAC VLANIR Reg (%08x) = %08x\n", MAC_VLANIR,
XGMAC_IOREAD(pdata, MAC_VLANIR));
axgbe_printf(1, "MAC IVLANIR Reg (%08x) = %08x\n", MAC_IVLANIR,
XGMAC_IOREAD(pdata, MAC_IVLANIR));
axgbe_printf(1, "MAC RETMR Reg (%08x) = %08x\n", MAC_RETMR,
XGMAC_IOREAD(pdata, MAC_RETMR));
axgbe_printf(1, "MAC Q0TFCR Reg (%08x) = %08x\n", MAC_Q0TFCR,
XGMAC_IOREAD(pdata, MAC_Q0TFCR));
axgbe_printf(1, "MAC Q1TFCR Reg (%08x) = %08x\n", MAC_Q1TFCR,
XGMAC_IOREAD(pdata, MAC_Q1TFCR));
axgbe_printf(1, "MAC Q2TFCR Reg (%08x) = %08x\n", MAC_Q2TFCR,
XGMAC_IOREAD(pdata, MAC_Q2TFCR));
axgbe_printf(1, "MAC Q3TFCR Reg (%08x) = %08x\n", MAC_Q3TFCR,
XGMAC_IOREAD(pdata, MAC_Q3TFCR));
axgbe_printf(1, "MAC Q4TFCR Reg (%08x) = %08x\n", MAC_Q4TFCR,
XGMAC_IOREAD(pdata, MAC_Q4TFCR));
axgbe_printf(1, "MAC Q5TFCR Reg (%08x) = %08x\n", MAC_Q5TFCR,
XGMAC_IOREAD(pdata, MAC_Q5TFCR));
axgbe_printf(1, "MAC Q6TFCR Reg (%08x) = %08x\n", MAC_Q6TFCR,
XGMAC_IOREAD(pdata, MAC_Q6TFCR));
axgbe_printf(1, "MAC Q7TFCR Reg (%08x) = %08x\n", MAC_Q7TFCR,
XGMAC_IOREAD(pdata, MAC_Q7TFCR));
axgbe_printf(1, "MAC RFCR Reg (%08x) = %08x\n", MAC_RFCR,
XGMAC_IOREAD(pdata, MAC_RFCR));
axgbe_printf(1, "MAC RQC0R Reg (%08x) = %08x\n", MAC_RQC0R,
XGMAC_IOREAD(pdata, MAC_RQC0R));
axgbe_printf(1, "MAC RQC1R Reg (%08x) = %08x\n", MAC_RQC1R,
XGMAC_IOREAD(pdata, MAC_RQC1R));
axgbe_printf(1, "MAC RQC2R Reg (%08x) = %08x\n", MAC_RQC2R,
XGMAC_IOREAD(pdata, MAC_RQC2R));
axgbe_printf(1, "MAC RQC3R Reg (%08x) = %08x\n", MAC_RQC3R,
XGMAC_IOREAD(pdata, MAC_RQC3R));
axgbe_printf(1, "MAC ISR Reg (%08x) = %08x\n", MAC_ISR,
XGMAC_IOREAD(pdata, MAC_ISR));
axgbe_printf(1, "MAC IER Reg (%08x) = %08x\n", MAC_IER,
XGMAC_IOREAD(pdata, MAC_IER));
axgbe_printf(1, "MAC RTSR Reg (%08x) = %08x\n", MAC_RTSR,
XGMAC_IOREAD(pdata, MAC_RTSR));
axgbe_printf(1, "MAC PMTCSR Reg (%08x) = %08x\n", MAC_PMTCSR,
XGMAC_IOREAD(pdata, MAC_PMTCSR));
axgbe_printf(1, "MAC RWKPFR Reg (%08x) = %08x\n", MAC_RWKPFR,
XGMAC_IOREAD(pdata, MAC_RWKPFR));
axgbe_printf(1, "MAC LPICSR Reg (%08x) = %08x\n", MAC_LPICSR,
XGMAC_IOREAD(pdata, MAC_LPICSR));
axgbe_printf(1, "MAC LPITCR Reg (%08x) = %08x\n", MAC_LPITCR,
XGMAC_IOREAD(pdata, MAC_LPITCR));
axgbe_printf(1, "MAC TIR Reg (%08x) = %08x\n", MAC_TIR,
XGMAC_IOREAD(pdata, MAC_TIR));
axgbe_printf(1, "MAC VR Reg (%08x) = %08x\n", MAC_VR,
XGMAC_IOREAD(pdata, MAC_VR));
axgbe_printf(1, "MAC DR Reg (%08x) = %08x\n", MAC_DR,
XGMAC_IOREAD(pdata, MAC_DR));
axgbe_printf(1, "MAC HWF0R Reg (%08x) = %08x\n", MAC_HWF0R,
XGMAC_IOREAD(pdata, MAC_HWF0R));
axgbe_printf(1, "MAC HWF1R Reg (%08x) = %08x\n", MAC_HWF1R,
XGMAC_IOREAD(pdata, MAC_HWF1R));
axgbe_printf(1, "MAC HWF2R Reg (%08x) = %08x\n", MAC_HWF2R,
XGMAC_IOREAD(pdata, MAC_HWF2R));
axgbe_printf(1, "MAC MDIOSCAR Reg (%08x) = %08x\n", MAC_MDIOSCAR,
XGMAC_IOREAD(pdata, MAC_MDIOSCAR));
axgbe_printf(1, "MAC MDIOSCCDR Reg (%08x) = %08x\n", MAC_MDIOSCCDR,
XGMAC_IOREAD(pdata, MAC_MDIOSCCDR));
axgbe_printf(1, "MAC MDIOISR Reg (%08x) = %08x\n", MAC_MDIOISR,
XGMAC_IOREAD(pdata, MAC_MDIOISR));
axgbe_printf(1, "MAC MDIOIER Reg (%08x) = %08x\n", MAC_MDIOIER,
XGMAC_IOREAD(pdata, MAC_MDIOIER));
axgbe_printf(1, "MAC MDIOCL22R Reg (%08x) = %08x\n", MAC_MDIOCL22R,
XGMAC_IOREAD(pdata, MAC_MDIOCL22R));
axgbe_printf(1, "MAC GPIOCR Reg (%08x) = %08x\n", MAC_GPIOCR,
XGMAC_IOREAD(pdata, MAC_GPIOCR));
axgbe_printf(1, "MAC GPIOSR Reg (%08x) = %08x\n", MAC_GPIOSR,
XGMAC_IOREAD(pdata, MAC_GPIOSR));
axgbe_printf(1, "MAC MACA0HR Reg (%08x) = %08x\n", MAC_MACA0HR,
XGMAC_IOREAD(pdata, MAC_MACA0HR));
axgbe_printf(1, "MAC MACA0LR Reg (%08x) = %08x\n", MAC_TCR,
XGMAC_IOREAD(pdata, MAC_MACA0LR));
axgbe_printf(1, "MAC MACA1HR Reg (%08x) = %08x\n", MAC_MACA1HR,
XGMAC_IOREAD(pdata, MAC_MACA1HR));
axgbe_printf(1, "MAC MACA1LR Reg (%08x) = %08x\n", MAC_MACA1LR,
XGMAC_IOREAD(pdata, MAC_MACA1LR));
axgbe_printf(1, "MAC RSSCR Reg (%08x) = %08x\n", MAC_RSSCR,
XGMAC_IOREAD(pdata, MAC_RSSCR));
axgbe_printf(1, "MAC RSSDR Reg (%08x) = %08x\n", MAC_RSSDR,
XGMAC_IOREAD(pdata, MAC_RSSDR));
axgbe_printf(1, "MAC RSSAR Reg (%08x) = %08x\n", MAC_RSSAR,
XGMAC_IOREAD(pdata, MAC_RSSAR));
axgbe_printf(1, "MAC TSCR Reg (%08x) = %08x\n", MAC_TSCR,
XGMAC_IOREAD(pdata, MAC_TSCR));
axgbe_printf(1, "MAC SSIR Reg (%08x) = %08x\n", MAC_SSIR,
XGMAC_IOREAD(pdata, MAC_SSIR));
axgbe_printf(1, "MAC STSR Reg (%08x) = %08x\n", MAC_STSR,
XGMAC_IOREAD(pdata, MAC_STSR));
axgbe_printf(1, "MAC STNR Reg (%08x) = %08x\n", MAC_STNR,
XGMAC_IOREAD(pdata, MAC_STNR));
axgbe_printf(1, "MAC STSUR Reg (%08x) = %08x\n", MAC_STSUR,
XGMAC_IOREAD(pdata, MAC_STSUR));
axgbe_printf(1, "MAC STNUR Reg (%08x) = %08x\n", MAC_STNUR,
XGMAC_IOREAD(pdata, MAC_STNUR));
axgbe_printf(1, "MAC TSAR Reg (%08x) = %08x\n", MAC_TSAR,
XGMAC_IOREAD(pdata, MAC_TSAR));
axgbe_printf(1, "MAC TSSR Reg (%08x) = %08x\n", MAC_TSSR,
XGMAC_IOREAD(pdata, MAC_TSSR));
axgbe_printf(1, "MAC TXSNR Reg (%08x) = %08x\n", MAC_TXSNR,
XGMAC_IOREAD(pdata, MAC_TXSNR));
axgbe_printf(1, "MAC TXSSR Reg (%08x) = %08x\n", MAC_TXSSR,
XGMAC_IOREAD(pdata, MAC_TXSSR));
}
static void
xgbe_dump_rmon_counters(struct xgbe_prv_data *pdata)
{
struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
axgbe_printf(1, "\n************* RMON counters dump ***************\n");
pdata->hw_if.read_mmc_stats(pdata);
axgbe_printf(1, "rmon txoctetcount_gb (%08x) = %08lx\n",
MMC_TXOCTETCOUNT_GB_LO, stats->txoctetcount_gb);
axgbe_printf(1, "rmon txframecount_gb (%08x) = %08lx\n",
MMC_TXFRAMECOUNT_GB_LO, stats->txframecount_gb);
axgbe_printf(1, "rmon txbroadcastframes_g (%08x) = %08lx\n",
MMC_TXBROADCASTFRAMES_G_LO, stats->txbroadcastframes_g);
axgbe_printf(1, "rmon txmulticastframes_g (%08x) = %08lx\n",
MMC_TXMULTICASTFRAMES_G_LO, stats->txmulticastframes_g);
axgbe_printf(1, "rmon tx64octets_gb (%08x) = %08lx\n",
MMC_TX64OCTETS_GB_LO, stats->tx64octets_gb);
axgbe_printf(1, "rmon tx65to127octets_gb (%08x) = %08lx\n",
MMC_TX65TO127OCTETS_GB_LO, stats->tx65to127octets_gb);
axgbe_printf(1, "rmon tx128to255octets_gb (%08x) = %08lx\n",
MMC_TX128TO255OCTETS_GB_LO, stats->tx128to255octets_gb);
axgbe_printf(1, "rmon tx256to511octets_gb (%08x) = %08lx\n",
MMC_TX256TO511OCTETS_GB_LO, stats->tx256to511octets_gb);
axgbe_printf(1, "rmon tx512to1023octets_gb (%08x) = %08lx\n",
MMC_TX512TO1023OCTETS_GB_LO, stats->tx512to1023octets_gb);
axgbe_printf(1, "rmon tx1024tomaxoctets_gb (%08x) = %08lx\n",
MMC_TX1024TOMAXOCTETS_GB_LO, stats->tx1024tomaxoctets_gb);
axgbe_printf(1, "rmon txunicastframes_gb (%08x) = %08lx\n",
MMC_TXUNICASTFRAMES_GB_LO, stats->txunicastframes_gb);
axgbe_printf(1, "rmon txmulticastframes_gb (%08x) = %08lx\n",
MMC_TXMULTICASTFRAMES_GB_LO, stats->txmulticastframes_gb);
axgbe_printf(1, "rmon txbroadcastframes_gb (%08x) = %08lx\n",
MMC_TXBROADCASTFRAMES_GB_LO, stats->txbroadcastframes_gb);
axgbe_printf(1, "rmon txunderflowerror (%08x) = %08lx\n",
MMC_TXUNDERFLOWERROR_LO, stats->txunderflowerror);
axgbe_printf(1, "rmon txoctetcount_g (%08x) = %08lx\n",
MMC_TXOCTETCOUNT_G_LO, stats->txoctetcount_g);
axgbe_printf(1, "rmon txframecount_g (%08x) = %08lx\n",
MMC_TXFRAMECOUNT_G_LO, stats->txframecount_g);
axgbe_printf(1, "rmon txpauseframes (%08x) = %08lx\n",
MMC_TXPAUSEFRAMES_LO, stats->txpauseframes);
axgbe_printf(1, "rmon txvlanframes_g (%08x) = %08lx\n",
MMC_TXVLANFRAMES_G_LO, stats->txvlanframes_g);
axgbe_printf(1, "rmon rxframecount_gb (%08x) = %08lx\n",
MMC_RXFRAMECOUNT_GB_LO, stats->rxframecount_gb);
axgbe_printf(1, "rmon rxoctetcount_gb (%08x) = %08lx\n",
MMC_RXOCTETCOUNT_GB_LO, stats->rxoctetcount_gb);
axgbe_printf(1, "rmon rxoctetcount_g (%08x) = %08lx\n",
MMC_RXOCTETCOUNT_G_LO, stats->rxoctetcount_g);
axgbe_printf(1, "rmon rxbroadcastframes_g (%08x) = %08lx\n",
MMC_RXBROADCASTFRAMES_G_LO, stats->rxbroadcastframes_g);
axgbe_printf(1, "rmon rxmulticastframes_g (%08x) = %08lx\n",
MMC_RXMULTICASTFRAMES_G_LO, stats->rxmulticastframes_g);
axgbe_printf(1, "rmon rxcrcerror (%08x) = %08lx\n",
MMC_RXCRCERROR_LO, stats->rxcrcerror);
axgbe_printf(1, "rmon rxrunterror (%08x) = %08lx\n",
MMC_RXRUNTERROR, stats->rxrunterror);
axgbe_printf(1, "rmon rxjabbererror (%08x) = %08lx\n",
MMC_RXJABBERERROR, stats->rxjabbererror);
axgbe_printf(1, "rmon rxundersize_g (%08x) = %08lx\n",
MMC_RXUNDERSIZE_G, stats->rxundersize_g);
axgbe_printf(1, "rmon rxoversize_g (%08x) = %08lx\n",
MMC_RXOVERSIZE_G, stats->rxoversize_g);
axgbe_printf(1, "rmon rx64octets_gb (%08x) = %08lx\n",
MMC_RX64OCTETS_GB_LO, stats->rx64octets_gb);
axgbe_printf(1, "rmon rx65to127octets_gb (%08x) = %08lx\n",
MMC_RX65TO127OCTETS_GB_LO, stats->rx65to127octets_gb);
axgbe_printf(1, "rmon rx128to255octets_gb (%08x) = %08lx\n",
MMC_RX128TO255OCTETS_GB_LO, stats->rx128to255octets_gb);
axgbe_printf(1, "rmon rx256to511octets_gb (%08x) = %08lx\n",
MMC_RX256TO511OCTETS_GB_LO, stats->rx256to511octets_gb);
axgbe_printf(1, "rmon rx512to1023octets_gb (%08x) = %08lx\n",
MMC_RX512TO1023OCTETS_GB_LO, stats->rx512to1023octets_gb);
axgbe_printf(1, "rmon rx1024tomaxoctets_gb (%08x) = %08lx\n",
MMC_RX1024TOMAXOCTETS_GB_LO, stats->rx1024tomaxoctets_gb);
axgbe_printf(1, "rmon rxunicastframes_g (%08x) = %08lx\n",
MMC_RXUNICASTFRAMES_G_LO, stats->rxunicastframes_g);
axgbe_printf(1, "rmon rxlengtherror (%08x) = %08lx\n",
MMC_RXLENGTHERROR_LO, stats->rxlengtherror);
axgbe_printf(1, "rmon rxoutofrangetype (%08x) = %08lx\n",
MMC_RXOUTOFRANGETYPE_LO, stats->rxoutofrangetype);
axgbe_printf(1, "rmon rxpauseframes (%08x) = %08lx\n",
MMC_RXPAUSEFRAMES_LO, stats->rxpauseframes);
axgbe_printf(1, "rmon rxfifooverflow (%08x) = %08lx\n",
MMC_RXFIFOOVERFLOW_LO, stats->rxfifooverflow);
axgbe_printf(1, "rmon rxvlanframes_gb (%08x) = %08lx\n",
MMC_RXVLANFRAMES_GB_LO, stats->rxvlanframes_gb);
axgbe_printf(1, "rmon rxwatchdogerror (%08x) = %08lx\n",
MMC_RXWATCHDOGERROR, stats->rxwatchdogerror);
}
void
xgbe_dump_i2c_registers(struct xgbe_prv_data *pdata)
{
axgbe_printf(1, "*************** I2C Registers **************\n");
axgbe_printf(1, " IC_CON : %010x\n",
XI2C_IOREAD(pdata, 0x00));
axgbe_printf(1, " IC_TAR : %010x\n",
XI2C_IOREAD(pdata, 0x04));
axgbe_printf(1, " IC_HS_MADDR : %010x\n",
XI2C_IOREAD(pdata, 0x0c));
axgbe_printf(1, " IC_INTR_STAT : %010x\n",
XI2C_IOREAD(pdata, 0x2c));
axgbe_printf(1, " IC_INTR_MASK : %010x\n",
XI2C_IOREAD(pdata, 0x30));
axgbe_printf(1, " IC_RAW_INTR_STAT : %010x\n",
XI2C_IOREAD(pdata, 0x34));
axgbe_printf(1, " IC_RX_TL : %010x\n",
XI2C_IOREAD(pdata, 0x38));
axgbe_printf(1, " IC_TX_TL : %010x\n",
XI2C_IOREAD(pdata, 0x3c));
axgbe_printf(1, " IC_ENABLE : %010x\n",
XI2C_IOREAD(pdata, 0x6c));
axgbe_printf(1, " IC_STATUS : %010x\n",
XI2C_IOREAD(pdata, 0x70));
axgbe_printf(1, " IC_TXFLR : %010x\n",
XI2C_IOREAD(pdata, 0x74));
axgbe_printf(1, " IC_RXFLR : %010x\n",
XI2C_IOREAD(pdata, 0x78));
axgbe_printf(1, " IC_ENABLE_STATUS : %010x\n",
XI2C_IOREAD(pdata, 0x9c));
axgbe_printf(1, " IC_COMP_PARAM1 : %010x\n",
XI2C_IOREAD(pdata, 0xf4));
}
static void
xgbe_dump_active_vlans(struct xgbe_prv_data *pdata)
{
int i;
for(i=0 ; i<BITS_TO_LONGS(VLAN_NVID); i++) {
if (i && (i%8 == 0))
axgbe_printf(1, "\n");
axgbe_printf(1, "vlans[%d]: 0x%08lx ", i, pdata->active_vlans[i]);
}
axgbe_printf(1, "\n");
}
static void
xgbe_default_config(struct xgbe_prv_data *pdata)
{
pdata->blen = DMA_SBMR_BLEN_64;
pdata->pbl = DMA_PBL_128;
pdata->aal = 1;
pdata->rd_osr_limit = 8;
pdata->wr_osr_limit = 8;
pdata->tx_sf_mode = MTL_TSF_ENABLE;
pdata->tx_threshold = MTL_TX_THRESHOLD_64;
pdata->tx_osp_mode = DMA_OSP_ENABLE;
pdata->rx_sf_mode = MTL_RSF_DISABLE;
pdata->rx_threshold = MTL_RX_THRESHOLD_64;
pdata->pause_autoneg = 1;
pdata->tx_pause = 1;
pdata->rx_pause = 1;
pdata->phy_speed = SPEED_UNKNOWN;
pdata->power_down = 0;
pdata->enable_rss = 1;
}
static int
axgbe_if_attach_post(if_ctx_t ctx)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
if_t ifp = pdata->netdev;
struct xgbe_phy_if *phy_if = &pdata->phy_if;
struct xgbe_hw_if *hw_if = &pdata->hw_if;
if_softc_ctx_t scctx = sc->scctx;
int i, ret;
/* set split header support based on tunable */
pdata->sph_enable = axgbe_sph_enable;
/* Initialize ECC timestamps */
pdata->tx_sec_period = ticks;
pdata->tx_ded_period = ticks;
pdata->rx_sec_period = ticks;
pdata->rx_ded_period = ticks;
pdata->desc_sec_period = ticks;
pdata->desc_ded_period = ticks;
/* Reset the hardware */
ret = hw_if->exit(&sc->pdata);
if (ret)
axgbe_error("%s: exit error %d\n", __func__, ret);
/* Configure the defaults */
xgbe_default_config(pdata);
/* Set default max values if not provided */
if (!pdata->tx_max_fifo_size)
pdata->tx_max_fifo_size = pdata->hw_feat.tx_fifo_size;
if (!pdata->rx_max_fifo_size)
pdata->rx_max_fifo_size = pdata->hw_feat.rx_fifo_size;
DBGPR("%s: tx fifo 0x%x rx fifo 0x%x\n", __func__,
pdata->tx_max_fifo_size, pdata->rx_max_fifo_size);
/* Set and validate the number of descriptors for a ring */
MPASS(powerof2(XGBE_TX_DESC_CNT));
pdata->tx_desc_count = XGBE_TX_DESC_CNT;
MPASS(powerof2(XGBE_RX_DESC_CNT));
pdata->rx_desc_count = XGBE_RX_DESC_CNT;
/* Adjust the number of queues based on interrupts assigned */
if (pdata->channel_irq_count) {
pdata->tx_ring_count = min_t(unsigned int, pdata->tx_ring_count,
pdata->channel_irq_count);
pdata->rx_ring_count = min_t(unsigned int, pdata->rx_ring_count,
pdata->channel_irq_count);
DBGPR("adjusted TX %u/%u RX %u/%u\n",
pdata->tx_ring_count, pdata->tx_q_count,
pdata->rx_ring_count, pdata->rx_q_count);
}
/* Set channel count based on interrupts assigned */
pdata->channel_count = max_t(unsigned int, scctx->isc_ntxqsets,
scctx->isc_nrxqsets);
DBGPR("Channel count set to: %u\n", pdata->channel_count);
/* Get RSS key */
#ifdef RSS
rss_getkey((uint8_t *)pdata->rss_key);
#else
arc4rand(&pdata->rss_key, ARRAY_SIZE(pdata->rss_key), 0);
#endif
XGMAC_SET_BITS(pdata->rss_options, MAC_RSSCR, IP2TE, 1);
XGMAC_SET_BITS(pdata->rss_options, MAC_RSSCR, TCP4TE, 1);
XGMAC_SET_BITS(pdata->rss_options, MAC_RSSCR, UDP4TE, 1);
/* Initialize the PHY device */
pdata->sysctl_an_cdr_workaround = pdata->vdata->an_cdr_workaround;
phy_if->phy_init(pdata);
/* Set the coalescing */
xgbe_init_rx_coalesce(&sc->pdata);
xgbe_init_tx_coalesce(&sc->pdata);
ifmedia_add(sc->media, IFM_ETHER | IFM_10G_KR, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_10G_T, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_10G_SFI, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_1000_KX, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_1000_CX, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_1000_LX, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_1000_T, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_1000_SGMII, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_100_SGMII, 0, NULL);
ifmedia_add(sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(sc->media, IFM_ETHER | IFM_AUTO);
/* Initialize the phy */
pdata->phy_link = -1;
pdata->phy_speed = SPEED_UNKNOWN;
ret = phy_if->phy_reset(pdata);
if (ret)
return (ret);
/* Calculate the Rx buffer size before allocating rings */
ret = xgbe_calc_rx_buf_size(pdata->netdev, if_getmtu(pdata->netdev));
pdata->rx_buf_size = ret;
DBGPR("%s: rx_buf_size %d\n", __func__, ret);
/* Setup RSS lookup table */
for (i = 0; i < XGBE_RSS_MAX_TABLE_SIZE; i++)
XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH,
i % pdata->rx_ring_count);
/*
* Mark the device down until it is initialized, which happens
* when the device is accessed first (for configuring the iface,
* eg: setting IP)
*/
set_bit(XGBE_DOWN, &pdata->dev_state);
DBGPR("mtu %d\n", if_getmtu(ifp));
scctx->isc_max_frame_size = if_getmtu(ifp) + 18;
scctx->isc_min_frame_size = XGMAC_MIN_PACKET;
axgbe_sysctl_init(pdata);
axgbe_pci_init(pdata);
return (0);
} /* axgbe_if_attach_post */
static void
xgbe_free_intr(struct xgbe_prv_data *pdata, struct resource *res, void *tag,
int rid)
{
if (tag)
bus_teardown_intr(pdata->dev, res, tag);
if (res)
bus_release_resource(pdata->dev, SYS_RES_IRQ, rid, res);
}
static void
axgbe_interrupts_free(if_ctx_t ctx)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
if_softc_ctx_t scctx = sc->scctx;
struct xgbe_channel *channel;
struct if_irq irq;
int i;
axgbe_printf(2, "%s: mode %d\n", __func__, scctx->isc_intr);
/* Free dev_irq */
iflib_irq_free(ctx, &pdata->dev_irq);
/* Free ecc_irq */
xgbe_free_intr(pdata, pdata->ecc_irq_res, pdata->ecc_irq_tag,
pdata->ecc_rid);
/* Free i2c_irq */
xgbe_free_intr(pdata, pdata->i2c_irq_res, pdata->i2c_irq_tag,
pdata->i2c_rid);
/* Free an_irq */
xgbe_free_intr(pdata, pdata->an_irq_res, pdata->an_irq_tag,
pdata->an_rid);
for (i = 0; i < scctx->isc_nrxqsets; i++) {
channel = pdata->channel[i];
axgbe_printf(2, "%s: rid %d\n", __func__, channel->dma_irq_rid);
irq.ii_res = channel->dma_irq_res;
irq.ii_tag = channel->dma_irq_tag;
iflib_irq_free(ctx, &irq);
}
}
static int
axgbe_if_detach(if_ctx_t ctx)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_phy_if *phy_if = &pdata->phy_if;
struct resource *mac_res[2];
mac_res[0] = pdata->xgmac_res;
mac_res[1] = pdata->xpcs_res;
phy_if->phy_exit(pdata);
/* Free Interrupts */
axgbe_interrupts_free(ctx);
/* Free workqueues */
taskqueue_free(pdata->dev_workqueue);
/* Release bus resources */
bus_release_resources(iflib_get_dev(ctx), axgbe_pci_mac_spec, mac_res);
/* Free VLAN bitmap */
free(pdata->active_vlans, M_AXGBE);
axgbe_sysctl_exit(pdata);
return (0);
} /* axgbe_if_detach */
static void
axgbe_pci_init(struct xgbe_prv_data *pdata)
{
struct xgbe_phy_if *phy_if = &pdata->phy_if;
struct xgbe_hw_if *hw_if = &pdata->hw_if;
int ret = 0;
if (!__predict_false((test_bit(XGBE_DOWN, &pdata->dev_state)))) {
axgbe_printf(1, "%s: Starting when XGBE_UP\n", __func__);
return;
}
hw_if->init(pdata);
ret = phy_if->phy_start(pdata);
if (ret) {
axgbe_error("%s: phy start %d\n", __func__, ret);
ret = hw_if->exit(pdata);
if (ret)
axgbe_error("%s: exit error %d\n", __func__, ret);
return;
}
hw_if->enable_tx(pdata);
hw_if->enable_rx(pdata);
xgbe_start_timers(pdata);
clear_bit(XGBE_DOWN, &pdata->dev_state);
xgbe_dump_phy_registers(pdata);
xgbe_dump_prop_registers(pdata);
xgbe_dump_dma_registers(pdata, -1);
xgbe_dump_mtl_registers(pdata);
xgbe_dump_mac_registers(pdata);
xgbe_dump_rmon_counters(pdata);
}
static void
axgbe_if_init(if_ctx_t ctx)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
axgbe_pci_init(pdata);
}
static void
axgbe_pci_stop(if_ctx_t ctx)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_phy_if *phy_if = &pdata->phy_if;
struct xgbe_hw_if *hw_if = &pdata->hw_if;
int ret;
if (__predict_false(test_bit(XGBE_DOWN, &pdata->dev_state))) {
axgbe_printf(1, "%s: Stopping when XGBE_DOWN\n", __func__);
return;
}
xgbe_stop_timers(pdata);
taskqueue_drain_all(pdata->dev_workqueue);
hw_if->disable_tx(pdata);
hw_if->disable_rx(pdata);
phy_if->phy_stop(pdata);
ret = hw_if->exit(pdata);
if (ret)
axgbe_error("%s: exit error %d\n", __func__, ret);
set_bit(XGBE_DOWN, &pdata->dev_state);
}
static void
axgbe_if_stop(if_ctx_t ctx)
{
axgbe_pci_stop(ctx);
}
static void
axgbe_if_disable_intr(if_ctx_t ctx)
{
/* TODO - implement */
}
static void
axgbe_if_enable_intr(if_ctx_t ctx)
{
/* TODO - implement */
}
static int
axgbe_if_tx_queues_alloc(if_ctx_t ctx, caddr_t *va, uint64_t *pa, int ntxqs,
int ntxqsets)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
if_softc_ctx_t scctx = sc->scctx;
struct xgbe_channel *channel;
struct xgbe_ring *tx_ring;
int i, j, k;
MPASS(scctx->isc_ntxqsets > 0);
MPASS(scctx->isc_ntxqsets == ntxqsets);
MPASS(ntxqs == 1);
axgbe_printf(1, "%s: txqsets %d/%d txqs %d\n", __func__,
scctx->isc_ntxqsets, ntxqsets, ntxqs);
for (i = 0 ; i < ntxqsets; i++) {
channel = pdata->channel[i];
tx_ring = (struct xgbe_ring*)malloc(ntxqs *
sizeof(struct xgbe_ring), M_AXGBE, M_NOWAIT | M_ZERO);
if (tx_ring == NULL) {
axgbe_error("Unable to allocate TX ring memory\n");
goto tx_ring_fail;
}
channel->tx_ring = tx_ring;
for (j = 0; j < ntxqs; j++, tx_ring++) {
tx_ring->rdata =
(struct xgbe_ring_data*)malloc(scctx->isc_ntxd[j] *
sizeof(struct xgbe_ring_data), M_AXGBE, M_NOWAIT);
/* Get the virtual & physical address of hw queues */
tx_ring->rdesc = (struct xgbe_ring_desc *)va[i*ntxqs + j];
tx_ring->rdesc_paddr = pa[i*ntxqs + j];
tx_ring->rdesc_count = scctx->isc_ntxd[j];
spin_lock_init(&tx_ring->lock);
}
}
axgbe_printf(1, "allocated for %d tx queues\n", scctx->isc_ntxqsets);
return (0);
tx_ring_fail:
for (j = 0; j < i ; j++) {
channel = pdata->channel[j];
tx_ring = channel->tx_ring;
for (k = 0; k < ntxqs ; k++, tx_ring++) {
if (tx_ring && tx_ring->rdata)
free(tx_ring->rdata, M_AXGBE);
}
free(channel->tx_ring, M_AXGBE);
channel->tx_ring = NULL;
}
return (ENOMEM);
} /* axgbe_if_tx_queues_alloc */
static int
axgbe_if_rx_queues_alloc(if_ctx_t ctx, caddr_t *va, uint64_t *pa, int nrxqs,
int nrxqsets)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
if_softc_ctx_t scctx = sc->scctx;
struct xgbe_channel *channel;
struct xgbe_ring *rx_ring;
int i, j, k;
MPASS(scctx->isc_nrxqsets > 0);
MPASS(scctx->isc_nrxqsets == nrxqsets);
if (!pdata->sph_enable) {
MPASS(nrxqs == 1);
} else {
MPASS(nrxqs == 2);
}
axgbe_printf(1, "%s: rxqsets %d/%d rxqs %d\n", __func__,
scctx->isc_nrxqsets, nrxqsets, nrxqs);
for (i = 0 ; i < nrxqsets; i++) {
channel = pdata->channel[i];
rx_ring = (struct xgbe_ring*)malloc(nrxqs *
sizeof(struct xgbe_ring), M_AXGBE, M_NOWAIT | M_ZERO);
if (rx_ring == NULL) {
axgbe_error("Unable to allocate RX ring memory\n");
goto rx_ring_fail;
}
channel->rx_ring = rx_ring;
for (j = 0; j < nrxqs; j++, rx_ring++) {
rx_ring->rdata =
(struct xgbe_ring_data*)malloc(scctx->isc_nrxd[j] *
sizeof(struct xgbe_ring_data), M_AXGBE, M_NOWAIT);
/* Get the virtual and physical address of the hw queues */
rx_ring->rdesc = (struct xgbe_ring_desc *)va[i*nrxqs + j];
rx_ring->rdesc_paddr = pa[i*nrxqs + j];
rx_ring->rdesc_count = scctx->isc_nrxd[j];
spin_lock_init(&rx_ring->lock);
}
}
axgbe_printf(2, "allocated for %d rx queues\n", scctx->isc_nrxqsets);
return (0);
rx_ring_fail:
for (j = 0 ; j < i ; j++) {
channel = pdata->channel[j];
rx_ring = channel->rx_ring;
for (k = 0; k < nrxqs ; k++, rx_ring++) {
if (rx_ring && rx_ring->rdata)
free(rx_ring->rdata, M_AXGBE);
}
free(channel->rx_ring, M_AXGBE);
channel->rx_ring = NULL;
}
return (ENOMEM);
} /* axgbe_if_rx_queues_alloc */
static void
axgbe_if_queues_free(if_ctx_t ctx)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
if_softc_ctx_t scctx = sc->scctx;
if_shared_ctx_t sctx = sc->sctx;
struct xgbe_channel *channel;
struct xgbe_ring *tx_ring;
struct xgbe_ring *rx_ring;
int i, j;
for (i = 0 ; i < scctx->isc_ntxqsets; i++) {
channel = pdata->channel[i];
tx_ring = channel->tx_ring;
for (j = 0; j < sctx->isc_ntxqs ; j++, tx_ring++) {
if (tx_ring && tx_ring->rdata)
free(tx_ring->rdata, M_AXGBE);
}
free(channel->tx_ring, M_AXGBE);
channel->tx_ring = NULL;
}
for (i = 0 ; i < scctx->isc_nrxqsets; i++) {
channel = pdata->channel[i];
rx_ring = channel->rx_ring;
for (j = 0; j < sctx->isc_nrxqs ; j++, rx_ring++) {
if (rx_ring && rx_ring->rdata)
free(rx_ring->rdata, M_AXGBE);
}
free(channel->rx_ring, M_AXGBE);
channel->rx_ring = NULL;
}
axgbe_free_channels(sc);
} /* axgbe_if_queues_free */
static void
axgbe_if_vlan_register(if_ctx_t ctx, uint16_t vtag)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_hw_if *hw_if = &pdata->hw_if;
if (!bit_test(pdata->active_vlans, vtag)) {
axgbe_printf(0, "Registering VLAN %d\n", vtag);
bit_set(pdata->active_vlans, vtag);
hw_if->update_vlan_hash_table(pdata);
pdata->num_active_vlans++;
axgbe_printf(1, "Total active vlans: %d\n",
pdata->num_active_vlans);
} else
axgbe_printf(0, "VLAN %d already registered\n", vtag);
xgbe_dump_active_vlans(pdata);
}
static void
axgbe_if_vlan_unregister(if_ctx_t ctx, uint16_t vtag)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_hw_if *hw_if = &pdata->hw_if;
if (pdata->num_active_vlans == 0) {
axgbe_printf(1, "No active VLANs to unregister\n");
return;
}
if (bit_test(pdata->active_vlans, vtag)){
axgbe_printf(0, "Un-Registering VLAN %d\n", vtag);
bit_clear(pdata->active_vlans, vtag);
hw_if->update_vlan_hash_table(pdata);
pdata->num_active_vlans--;
axgbe_printf(1, "Total active vlans: %d\n",
pdata->num_active_vlans);
} else
axgbe_printf(0, "VLAN %d already unregistered\n", vtag);
xgbe_dump_active_vlans(pdata);
}
#if __FreeBSD_version >= 1300000
static bool
axgbe_if_needs_restart(if_ctx_t ctx __unused, enum iflib_restart_event event)
{
switch (event) {
case IFLIB_RESTART_VLAN_CONFIG:
default:
return (true);
}
}
#endif
static int
axgbe_if_msix_intr_assign(if_ctx_t ctx, int msix)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
if_softc_ctx_t scctx = sc->scctx;
struct xgbe_channel *channel;
struct if_irq irq;
int i, error, rid = 0, flags;
char buf[16];
MPASS(scctx->isc_intr != IFLIB_INTR_LEGACY);
pdata->isr_as_tasklet = 1;
if (scctx->isc_intr == IFLIB_INTR_MSI) {
pdata->irq_count = 1;
pdata->channel_irq_count = 1;
return (0);
}
axgbe_printf(1, "%s: msix %d txqsets %d rxqsets %d\n", __func__, msix,
scctx->isc_ntxqsets, scctx->isc_nrxqsets);
flags = RF_ACTIVE;
/* DEV INTR SETUP */
rid++;
error = iflib_irq_alloc_generic(ctx, &pdata->dev_irq, rid,
IFLIB_INTR_ADMIN, axgbe_dev_isr, sc, 0, "dev_irq");
if (error) {
axgbe_error("Failed to register device interrupt rid %d name %s\n",
rid, "dev_irq");
return (error);
}
/* ECC INTR SETUP */
rid++;
pdata->ecc_rid = rid;
pdata->ecc_irq_res = bus_alloc_resource_any(pdata->dev, SYS_RES_IRQ,
&rid, flags);
if (!pdata->ecc_irq_res) {
axgbe_error("failed to allocate IRQ for rid %d, name %s.\n",
rid, "ecc_irq");
return (ENOMEM);
}
error = bus_setup_intr(pdata->dev, pdata->ecc_irq_res, INTR_MPSAFE |
INTR_TYPE_NET, NULL, axgbe_ecc_isr, sc, &pdata->ecc_irq_tag);
if (error) {
axgbe_error("failed to setup interrupt for rid %d, name %s: %d\n",
rid, "ecc_irq", error);
return (error);
}
/* I2C INTR SETUP */
rid++;
pdata->i2c_rid = rid;
pdata->i2c_irq_res = bus_alloc_resource_any(pdata->dev, SYS_RES_IRQ,
&rid, flags);
if (!pdata->i2c_irq_res) {
axgbe_error("failed to allocate IRQ for rid %d, name %s.\n",
rid, "i2c_irq");
return (ENOMEM);
}
error = bus_setup_intr(pdata->dev, pdata->i2c_irq_res, INTR_MPSAFE |
INTR_TYPE_NET, NULL, axgbe_i2c_isr, sc, &pdata->i2c_irq_tag);
if (error) {
axgbe_error("failed to setup interrupt for rid %d, name %s: %d\n",
rid, "i2c_irq", error);
return (error);
}
/* AN INTR SETUP */
rid++;
pdata->an_rid = rid;
pdata->an_irq_res = bus_alloc_resource_any(pdata->dev, SYS_RES_IRQ,
&rid, flags);
if (!pdata->an_irq_res) {
axgbe_error("failed to allocate IRQ for rid %d, name %s.\n",
rid, "an_irq");
return (ENOMEM);
}
error = bus_setup_intr(pdata->dev, pdata->an_irq_res, INTR_MPSAFE |
INTR_TYPE_NET, NULL, axgbe_an_isr, sc, &pdata->an_irq_tag);
if (error) {
axgbe_error("failed to setup interrupt for rid %d, name %s: %d\n",
rid, "an_irq", error);
return (error);
}
pdata->per_channel_irq = 1;
pdata->channel_irq_mode = XGBE_IRQ_MODE_LEVEL;
rid++;
for (i = 0; i < scctx->isc_nrxqsets; i++, rid++) {
channel = pdata->channel[i];
snprintf(buf, sizeof(buf), "rxq%d", i);
error = iflib_irq_alloc_generic(ctx, &irq, rid, IFLIB_INTR_RXTX,
axgbe_msix_que, channel, channel->queue_index, buf);
if (error) {
axgbe_error("Failed to allocated que int %d err: %d\n",
i, error);
return (error);
}
channel->dma_irq_rid = rid;
channel->dma_irq_res = irq.ii_res;
channel->dma_irq_tag = irq.ii_tag;
axgbe_printf(1, "%s: channel count %d idx %d irq %d\n",
__func__, scctx->isc_nrxqsets, i, rid);
}
pdata->irq_count = msix;
pdata->channel_irq_count = scctx->isc_nrxqsets;
for (i = 0; i < scctx->isc_ntxqsets; i++) {
channel = pdata->channel[i];
snprintf(buf, sizeof(buf), "txq%d", i);
irq.ii_res = channel->dma_irq_res;
iflib_softirq_alloc_generic(ctx, &irq, IFLIB_INTR_TX, channel,
channel->queue_index, buf);
}
return (0);
} /* axgbe_if_msix_intr_assign */
static int
xgbe_enable_rx_tx_int(struct xgbe_prv_data *pdata, struct xgbe_channel *channel)
{
struct xgbe_hw_if *hw_if = &pdata->hw_if;
enum xgbe_int int_id;
if (channel->tx_ring && channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_TI_RI;
else if (channel->tx_ring)
int_id = XGMAC_INT_DMA_CH_SR_TI;
else if (channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_RI;
else
return (-1);
axgbe_printf(1, "%s channel: %d rx_tx interrupt enabled %d\n",
__func__, channel->queue_index, int_id);
return (hw_if->enable_int(channel, int_id));
}
static void
xgbe_disable_rx_tx_int(struct xgbe_prv_data *pdata, struct xgbe_channel *channel)
{
struct xgbe_hw_if *hw_if = &pdata->hw_if;
enum xgbe_int int_id;
if (channel->tx_ring && channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_TI_RI;
else if (channel->tx_ring)
int_id = XGMAC_INT_DMA_CH_SR_TI;
else if (channel->rx_ring)
int_id = XGMAC_INT_DMA_CH_SR_RI;
else
return;
axgbe_printf(1, "%s channel: %d rx_tx interrupt disabled %d\n",
__func__, channel->queue_index, int_id);
hw_if->disable_int(channel, int_id);
}
static void
xgbe_disable_rx_tx_ints(struct xgbe_prv_data *pdata)
{
unsigned int i;
for (i = 0; i < pdata->channel_count; i++)
xgbe_disable_rx_tx_int(pdata, pdata->channel[i]);
}
static int
axgbe_msix_que(void *arg)
{
struct xgbe_channel *channel = (struct xgbe_channel *)arg;
struct xgbe_prv_data *pdata = channel->pdata;
unsigned int dma_status;
axgbe_printf(1, "%s: Channel: %d SR 0x%04x DSR 0x%04x IER:0x%04x D_ISR:0x%04x M_ISR:0x%04x\n",
__func__, channel->queue_index,
XGMAC_DMA_IOREAD(channel, DMA_CH_SR),
XGMAC_DMA_IOREAD(channel, DMA_CH_DSR),
XGMAC_DMA_IOREAD(channel, DMA_CH_IER),
XGMAC_IOREAD(pdata, DMA_ISR),
XGMAC_IOREAD(pdata, MAC_ISR));
(void)XGMAC_DMA_IOREAD(channel, DMA_CH_SR);
/* Disable Tx and Rx channel interrupts */
xgbe_disable_rx_tx_int(pdata, channel);
/* Clear the interrupts */
dma_status = 0;
XGMAC_SET_BITS(dma_status, DMA_CH_SR, TI, 1);
XGMAC_SET_BITS(dma_status, DMA_CH_SR, RI, 1);
XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_status);
return (FILTER_SCHEDULE_THREAD);
}
static int
axgbe_dev_isr(void *arg)
{
struct axgbe_if_softc *sc = (struct axgbe_if_softc *)arg;
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_channel *channel;
struct xgbe_hw_if *hw_if = &pdata->hw_if;
unsigned int i, dma_isr, dma_ch_isr;
unsigned int mac_isr, mac_mdioisr;
int ret = FILTER_HANDLED;
dma_isr = XGMAC_IOREAD(pdata, DMA_ISR);
axgbe_printf(2, "%s DMA ISR: 0x%x\n", __func__, dma_isr);
if (!dma_isr)
return (FILTER_HANDLED);
for (i = 0; i < pdata->channel_count; i++) {
if (!(dma_isr & (1 << i)))
continue;
channel = pdata->channel[i];
dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR);
axgbe_printf(2, "%s: channel %d SR 0x%x DSR 0x%x\n", __func__,
channel->queue_index, dma_ch_isr, XGMAC_DMA_IOREAD(channel,
DMA_CH_DSR));
/*
* The TI or RI interrupt bits may still be set even if using
* per channel DMA interrupts. Check to be sure those are not
* enabled before using the private data napi structure.
*/
if (!pdata->per_channel_irq &&
(XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, TI) ||
XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, RI))) {
/* Disable Tx and Rx interrupts */
xgbe_disable_rx_tx_ints(pdata);
} else {
/*
* Don't clear Rx/Tx status if doing per channel DMA
* interrupts, these will be cleared by the ISR for
* per channel DMA interrupts
*/
XGMAC_SET_BITS(dma_ch_isr, DMA_CH_SR, TI, 0);
XGMAC_SET_BITS(dma_ch_isr, DMA_CH_SR, RI, 0);
}
if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, RBU))
pdata->ext_stats.rx_buffer_unavailable++;
/* Restart the device on a Fatal Bus Error */
if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, FBE))
axgbe_error("%s: Fatal bus error reported 0x%x\n",
__func__, dma_ch_isr);
/* Clear all interrupt signals */
XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr);
ret = FILTER_SCHEDULE_THREAD;
}
if (XGMAC_GET_BITS(dma_isr, DMA_ISR, MACIS)) {
mac_isr = XGMAC_IOREAD(pdata, MAC_ISR);
axgbe_printf(2, "%s MAC ISR: 0x%x\n", __func__, mac_isr);
if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCTXIS))
hw_if->tx_mmc_int(pdata);
if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCRXIS))
hw_if->rx_mmc_int(pdata);
if (XGMAC_GET_BITS(mac_isr, MAC_ISR, SMI)) {
mac_mdioisr = XGMAC_IOREAD(pdata, MAC_MDIOISR);
if (XGMAC_GET_BITS(mac_mdioisr, MAC_MDIOISR,
SNGLCOMPINT))
wakeup_one(pdata);
}
}
return (ret);
} /* axgbe_dev_isr */
static void
axgbe_i2c_isr(void *arg)
{
struct axgbe_if_softc *sc = (struct axgbe_if_softc *)arg;
sc->pdata.i2c_if.i2c_isr(&sc->pdata);
}
static void
axgbe_ecc_isr(void *arg)
{
/* TODO - implement */
}
static void
axgbe_an_isr(void *arg)
{
struct axgbe_if_softc *sc = (struct axgbe_if_softc *)arg;
sc->pdata.phy_if.an_isr(&sc->pdata);
}
static int
axgbe_if_tx_queue_intr_enable(if_ctx_t ctx, uint16_t qid)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
int ret;
if (qid < pdata->tx_q_count) {
ret = xgbe_enable_rx_tx_int(pdata, pdata->channel[qid]);
if (ret) {
axgbe_error("Enable TX INT failed\n");
return (ret);
}
} else
axgbe_error("Queue ID exceed channel count\n");
return (0);
}
static int
axgbe_if_rx_queue_intr_enable(if_ctx_t ctx, uint16_t qid)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
int ret;
if (qid < pdata->rx_q_count) {
ret = xgbe_enable_rx_tx_int(pdata, pdata->channel[qid]);
if (ret) {
axgbe_error("Enable RX INT failed\n");
return (ret);
}
} else
axgbe_error("Queue ID exceed channel count\n");
return (0);
}
static void
axgbe_if_update_admin_status(if_ctx_t ctx)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
axgbe_printf(1, "%s: phy_link %d status %d speed %d\n", __func__,
pdata->phy_link, sc->link_status, pdata->phy.speed);
if (pdata->phy_link < 0)
return;
if (pdata->phy_link) {
if (sc->link_status == LINK_STATE_DOWN) {
sc->link_status = LINK_STATE_UP;
if (pdata->phy.speed & SPEED_10000)
iflib_link_state_change(ctx, LINK_STATE_UP,
IF_Gbps(10));
else if (pdata->phy.speed & SPEED_2500)
iflib_link_state_change(ctx, LINK_STATE_UP,
IF_Gbps(2.5));
else if (pdata->phy.speed & SPEED_1000)
iflib_link_state_change(ctx, LINK_STATE_UP,
IF_Gbps(1));
else if (pdata->phy.speed & SPEED_100)
iflib_link_state_change(ctx, LINK_STATE_UP,
IF_Mbps(100));
else if (pdata->phy.speed & SPEED_10)
iflib_link_state_change(ctx, LINK_STATE_UP,
IF_Mbps(10));
}
} else {
if (sc->link_status == LINK_STATE_UP) {
sc->link_status = LINK_STATE_DOWN;
iflib_link_state_change(ctx, LINK_STATE_DOWN, 0);
}
}
}
static int
axgbe_if_media_change(if_ctx_t ctx)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct ifmedia *ifm = iflib_get_media(ctx);
sx_xlock(&sc->pdata.an_mutex);
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_10G_KR:
sc->pdata.phy.speed = SPEED_10000;
sc->pdata.phy.autoneg = AUTONEG_DISABLE;
break;
case IFM_2500_KX:
sc->pdata.phy.speed = SPEED_2500;
sc->pdata.phy.autoneg = AUTONEG_DISABLE;
break;
case IFM_1000_KX:
sc->pdata.phy.speed = SPEED_1000;
sc->pdata.phy.autoneg = AUTONEG_DISABLE;
break;
case IFM_100_TX:
sc->pdata.phy.speed = SPEED_100;
sc->pdata.phy.autoneg = AUTONEG_DISABLE;
break;
case IFM_AUTO:
sc->pdata.phy.autoneg = AUTONEG_ENABLE;
break;
}
sx_xunlock(&sc->pdata.an_mutex);
return (-sc->pdata.phy_if.phy_config_aneg(&sc->pdata));
}
static int
axgbe_if_promisc_set(if_ctx_t ctx, int flags)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
if_t ifp = pdata->netdev;
axgbe_printf(1, "%s: MAC_PFR 0x%x drv_flags 0x%x if_flags 0x%x\n",
__func__, XGMAC_IOREAD(pdata, MAC_PFR), if_getdrvflags(ifp),
if_getflags(ifp));
if (if_getflags(ifp) & IFF_PPROMISC) {
axgbe_printf(1, "User requested to enter promisc mode\n");
if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == 1) {
axgbe_printf(1, "Already in promisc mode\n");
return (0);
}
axgbe_printf(1, "Entering promisc mode\n");
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, 1);
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
} else {
axgbe_printf(1, "User requested to leave promisc mode\n");
if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == 0) {
axgbe_printf(1, "Already not in promisc mode\n");
return (0);
}
axgbe_printf(1, "Leaving promisc mode\n");
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, 0);
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
}
return (0);
}
static uint64_t
axgbe_if_get_counter(if_ctx_t ctx, ift_counter cnt)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
if_t ifp = iflib_get_ifp(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
struct xgbe_mmc_stats *pstats = &pdata->mmc_stats;
pdata->hw_if.read_mmc_stats(pdata);
switch(cnt) {
case IFCOUNTER_IPACKETS:
return (pstats->rxframecount_gb);
case IFCOUNTER_IERRORS:
return (pstats->rxframecount_gb - pstats->rxbroadcastframes_g -
pstats->rxmulticastframes_g - pstats->rxunicastframes_g);
case IFCOUNTER_OPACKETS:
return (pstats->txframecount_gb);
case IFCOUNTER_OERRORS:
return (pstats->txframecount_gb - pstats->txframecount_g);
case IFCOUNTER_IBYTES:
return (pstats->rxoctetcount_gb);
case IFCOUNTER_OBYTES:
return (pstats->txoctetcount_gb);
default:
return (if_get_counter_default(ifp, cnt));
}
}
static int
axgbe_if_mtu_set(if_ctx_t ctx, uint32_t mtu)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
int ret;
if (mtu > XGMAC_JUMBO_PACKET_MTU)
return (EINVAL);
ret = xgbe_calc_rx_buf_size(pdata->netdev, mtu);
pdata->rx_buf_size = ret;
axgbe_printf(1, "%s: rx_buf_size %d\n", __func__, ret);
sc->scctx->isc_max_frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
return (0);
}
static void
axgbe_if_media_status(if_ctx_t ctx, struct ifmediareq * ifmr)
{
struct axgbe_if_softc *sc = iflib_get_softc(ctx);
struct xgbe_prv_data *pdata = &sc->pdata;
ifmr->ifm_status = IFM_AVALID;
if (!sc->pdata.phy.link)
return;
ifmr->ifm_active = IFM_ETHER;
ifmr->ifm_status |= IFM_ACTIVE;
axgbe_printf(1, "Speed 0x%x Mode %d\n", sc->pdata.phy.speed,
pdata->phy_if.phy_impl.cur_mode(pdata));
pdata->phy_if.phy_impl.get_type(pdata, ifmr);
ifmr->ifm_active |= IFM_FDX;
ifmr->ifm_active |= IFM_ETH_TXPAUSE;
ifmr->ifm_active |= IFM_ETH_RXPAUSE;
}