freebsd-dev/sys/dev/usb/if_cue.c
Bill Paul a2693d6d71 Handle watchdog timeouts better. We can't really call the foo_init()
routines from foo_watchdog() because foo_watchdog() is called at
interrupt context, and that's a no-no due to the way the USB stack
is currently set up.

What we do now is call the TX end of frame handler manually to clear
the completed transmission, then check the send queue and send off
any frames that are pending.

Also turned off the interrupt pipe stuff in if_aue, since it appears
to tickle a bug in the USB stack that I haven't found yet.
2000-06-01 23:16:42 +00:00

1231 lines
27 KiB
C

/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* CATC USB-EL1210A USB to ethernet driver. Used in the CATC Netmate
* adapters and others.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The CATC USB-EL1210A provides USB ethernet support at 10Mbps. The
* RX filter uses a 512-bit multicast hash table, single perfect entry
* for the station address, and promiscuous mode. Unlike the ADMtek
* and KLSI chips, the CATC ASIC supports read and write combining
* mode where multiple packets can be transfered using a single bulk
* transaction, which helps performance a great deal.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/bpf.h>
#include <machine/clock.h> /* for DELAY */
#include <sys/bus.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/usb_ethersubr.h>
#include <dev/usb/if_cuereg.h>
#ifndef lint
static const char rcsid[] =
"$FreeBSD$";
#endif
/*
* Various supported device vendors/products.
*/
Static struct cue_type cue_devs[] = {
{ USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE },
{ USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE2 },
{ USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTLINK },
{ 0, 0 }
};
Static struct usb_qdat cue_qdat;
Static int cue_match __P((device_t));
Static int cue_attach __P((device_t));
Static int cue_detach __P((device_t));
Static int cue_tx_list_init __P((struct cue_softc *));
Static int cue_rx_list_init __P((struct cue_softc *));
Static int cue_newbuf __P((struct cue_softc *, struct cue_chain *,
struct mbuf *));
Static int cue_encap __P((struct cue_softc *, struct mbuf *, int));
Static void cue_rxeof __P((usbd_xfer_handle,
usbd_private_handle, usbd_status));
Static void cue_txeof __P((usbd_xfer_handle,
usbd_private_handle, usbd_status));
Static void cue_tick __P((void *));
Static void cue_rxstart __P((struct ifnet *));
Static void cue_start __P((struct ifnet *));
Static int cue_ioctl __P((struct ifnet *, u_long, caddr_t));
Static void cue_init __P((void *));
Static void cue_stop __P((struct cue_softc *));
Static void cue_watchdog __P((struct ifnet *));
Static void cue_shutdown __P((device_t));
Static void cue_setmulti __P((struct cue_softc *));
Static u_int32_t cue_crc __P((caddr_t));
Static void cue_reset __P((struct cue_softc *));
Static int csr_read_1 __P((struct cue_softc *, int));
Static int csr_write_1 __P((struct cue_softc *, int, int));
Static int csr_read_2 __P((struct cue_softc *, int));
#ifdef notdef
Static int csr_write_2 __P((struct cue_softc *, int, int));
#endif
Static int cue_mem __P((struct cue_softc *, int,
int, void *, int));
Static int cue_getmac __P((struct cue_softc *, void *));
Static device_method_t cue_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cue_match),
DEVMETHOD(device_attach, cue_attach),
DEVMETHOD(device_detach, cue_detach),
DEVMETHOD(device_shutdown, cue_shutdown),
{ 0, 0 }
};
Static driver_t cue_driver = {
"cue",
cue_methods,
sizeof(struct cue_softc)
};
Static devclass_t cue_devclass;
DRIVER_MODULE(if_cue, uhub, cue_driver, cue_devclass, usbd_driver_load, 0);
#define CUE_SETBIT(sc, reg, x) \
csr_write_1(sc, reg, csr_read_1(sc, reg) | (x))
#define CUE_CLRBIT(sc, reg, x) \
csr_write_1(sc, reg, csr_read_1(sc, reg) & ~(x))
Static int csr_read_1(sc, reg)
struct cue_softc *sc;
int reg;
{
usb_device_request_t req;
usbd_status err;
u_int8_t val = 0;
int s;
if (sc->cue_gone)
return(0);
s = splusb();
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
err = usbd_do_request_flags(sc->cue_udev,
&req, &val, USBD_NO_TSLEEP, NULL);
splx(s);
if (err)
return(0);
return(val);
}
Static int csr_read_2(sc, reg)
struct cue_softc *sc;
int reg;
{
usb_device_request_t req;
usbd_status err;
u_int16_t val = 0;
int s;
if (sc->cue_gone)
return(0);
s = splusb();
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
err = usbd_do_request_flags(sc->cue_udev,
&req, &val, USBD_NO_TSLEEP, NULL);
splx(s);
if (err)
return(0);
return(val);
}
Static int csr_write_1(sc, reg, val)
struct cue_softc *sc;
int reg, val;
{
usb_device_request_t req;
usbd_status err;
int s;
if (sc->cue_gone)
return(0);
s = splusb();
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
err = usbd_do_request_flags(sc->cue_udev,
&req, &val, USBD_NO_TSLEEP, NULL);
splx(s);
if (err)
return(-1);
return(0);
}
#ifdef notdef
Static int csr_write_2(sc, reg, val)
struct cue_softc *sc;
int reg, val;
{
usb_device_request_t req;
usbd_status err;
int s;
if (sc->cue_gone)
return(0);
s = splusb();
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
err = usbd_do_request_flags(sc->cue_udev,
&req, &val, USBD_NO_TSLEEP, NULL);
splx(s);
if (err)
return(-1);
return(0);
}
#endif
Static int cue_mem(sc, cmd, addr, buf, len)
struct cue_softc *sc;
int cmd;
int addr;
void *buf;
int len;
{
usb_device_request_t req;
usbd_status err;
int s;
if (sc->cue_gone)
return(0);
s = splusb();
if (cmd == CUE_CMD_READSRAM)
req.bmRequestType = UT_READ_VENDOR_DEVICE;
else
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = cmd;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
err = usbd_do_request_flags(sc->cue_udev,
&req, &buf, USBD_NO_TSLEEP, NULL);
splx(s);
if (err)
return(-1);
return(0);
}
Static int cue_getmac(sc, buf)
struct cue_softc *sc;
void *buf;
{
usb_device_request_t req;
usbd_status err;
int s;
if (sc->cue_gone)
return(0);
s = splusb();
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_GET_MACADDR;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, ETHER_ADDR_LEN);
err = usbd_do_request_flags(sc->cue_udev,
&req, buf, USBD_NO_TSLEEP, NULL);
splx(s);
if (err) {
printf("cue%d: read MAC address failed\n", sc->cue_unit);
return(-1);
}
return(0);
}
#define CUE_POLY 0xEDB88320
#define CUE_BITS 9
Static u_int32_t cue_crc(addr)
caddr_t addr;
{
u_int32_t idx, bit, data, crc;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? CUE_POLY : 0);
}
return (crc & ((1 << CUE_BITS) - 1));
}
Static void cue_setmulti(sc)
struct cue_softc *sc;
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int32_t h = 0, i;
ifp = &sc->arpcom.ac_if;
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
for (i = 0; i < CUE_MCAST_TABLE_LEN; i++)
sc->cue_mctab[i] = 0xFF;
cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR,
&sc->cue_mctab, CUE_MCAST_TABLE_LEN);
return;
}
/* first, zot all the existing hash bits */
for (i = 0; i < CUE_MCAST_TABLE_LEN; i++)
sc->cue_mctab[i] = 0;
/* now program new ones */
for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
ifma = ifma->ifma_link.le_next) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = cue_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
sc->cue_mctab[h >> 3] |= 1 << (h & 0x7);
}
/*
* Also include the broadcast address in the filter
* so we can receive broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
h = cue_crc(etherbroadcastaddr);
sc->cue_mctab[h >> 3] |= 1 << (h & 0x7);
}
cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR,
&sc->cue_mctab, CUE_MCAST_TABLE_LEN);
return;
}
Static void cue_reset(sc)
struct cue_softc *sc;
{
usb_device_request_t req;
usbd_status err;
int s;
if (sc->cue_gone)
return;
s = splusb();
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_RESET;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
err = usbd_do_request_flags(sc->cue_udev,
&req, NULL, USBD_NO_TSLEEP, NULL);
splx(s);
if (err)
printf("cue%d: reset failed\n", sc->cue_unit);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
return;
}
/*
* Probe for a Pegasus chip.
*/
USB_MATCH(cue)
{
USB_MATCH_START(cue, uaa);
struct cue_type *t;
if (!uaa->iface)
return(UMATCH_NONE);
t = cue_devs;
while(t->cue_vid) {
if (uaa->vendor == t->cue_vid &&
uaa->product == t->cue_did) {
return(UMATCH_VENDOR_PRODUCT);
}
t++;
}
return(UMATCH_NONE);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
USB_ATTACH(cue)
{
USB_ATTACH_START(cue, sc, uaa);
char devinfo[1024];
int s;
u_char eaddr[ETHER_ADDR_LEN];
struct ifnet *ifp;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i;
s = splimp();
bzero(sc, sizeof(struct cue_softc));
sc->cue_iface = uaa->iface;
sc->cue_udev = uaa->device;
sc->cue_unit = device_get_unit(self);
if (usbd_set_config_no(sc->cue_udev, CUE_CONFIG_NO, 0)) {
printf("cue%d: getting interface handle failed\n",
sc->cue_unit);
splx(s);
USB_ATTACH_ERROR_RETURN;
}
id = usbd_get_interface_descriptor(uaa->iface);
usbd_devinfo(uaa->device, 0, devinfo);
device_set_desc_copy(self, devinfo);
printf("%s: %s\n", USBDEVNAME(self), devinfo);
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(uaa->iface, i);
if (!ed) {
printf("cue%d: couldn't get ep %d\n",
sc->cue_unit, i);
splx(s);
USB_ATTACH_ERROR_RETURN;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
(ed->bmAttributes & UE_XFERTYPE) == UE_BULK) {
sc->cue_ed[CUE_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
(ed->bmAttributes & UE_XFERTYPE) == UE_BULK) {
sc->cue_ed[CUE_ENDPT_TX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
(ed->bmAttributes & UE_XFERTYPE) == UE_INTERRUPT) {
sc->cue_ed[CUE_ENDPT_INTR] = ed->bEndpointAddress;
}
}
#ifdef notdef
/* Reset the adapter. */
cue_reset(sc);
#endif
/*
* Get station address.
*/
cue_getmac(sc, &eaddr);
/*
* A CATC chip was detected. Inform the world.
*/
printf("cue%d: Ethernet address: %6D\n", sc->cue_unit, eaddr, ":");
bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
ifp = &sc->arpcom.ac_if;
ifp->if_softc = sc;
ifp->if_unit = sc->cue_unit;
ifp->if_name = "cue";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = cue_ioctl;
ifp->if_output = ether_output;
ifp->if_start = cue_start;
ifp->if_watchdog = cue_watchdog;
ifp->if_init = cue_init;
ifp->if_baudrate = 10000000;
ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
cue_qdat.ifp = ifp;
cue_qdat.if_rxstart = cue_rxstart;
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp);
callout_handle_init(&sc->cue_stat_ch);
bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
usb_register_netisr();
sc->cue_gone = 0;
splx(s);
USB_ATTACH_SUCCESS_RETURN;
}
Static int cue_detach(dev)
device_t dev;
{
struct cue_softc *sc;
struct ifnet *ifp;
int s;
s = splusb();
sc = device_get_softc(dev);
ifp = &sc->arpcom.ac_if;
sc->cue_gone = 1;
untimeout(cue_tick, sc, sc->cue_stat_ch);
bpfdetach(ifp);
if_detach(ifp);
if (sc->cue_ep[CUE_ENDPT_TX] != NULL)
usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_TX]);
if (sc->cue_ep[CUE_ENDPT_RX] != NULL)
usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_RX]);
if (sc->cue_ep[CUE_ENDPT_INTR] != NULL)
usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_INTR]);
splx(s);
return(0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
*/
Static int cue_newbuf(sc, c, m)
struct cue_softc *sc;
struct cue_chain *c;
struct mbuf *m;
{
struct mbuf *m_new = NULL;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("cue%d: no memory for rx list "
"-- packet dropped!\n", sc->cue_unit);
return(ENOBUFS);
}
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
printf("cue%d: no memory for rx list "
"-- packet dropped!\n", sc->cue_unit);
m_freem(m_new);
return(ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, ETHER_ALIGN);
c->cue_mbuf = m_new;
return(0);
}
Static int cue_rx_list_init(sc)
struct cue_softc *sc;
{
struct cue_cdata *cd;
struct cue_chain *c;
int i;
cd = &sc->cue_cdata;
for (i = 0; i < CUE_RX_LIST_CNT; i++) {
c = &cd->cue_rx_chain[i];
c->cue_sc = sc;
c->cue_idx = i;
if (cue_newbuf(sc, c, NULL) == ENOBUFS)
return(ENOBUFS);
if (c->cue_xfer == NULL) {
c->cue_xfer = usbd_alloc_xfer(sc->cue_udev);
if (c->cue_xfer == NULL)
return(ENOBUFS);
}
}
return(0);
}
Static int cue_tx_list_init(sc)
struct cue_softc *sc;
{
struct cue_cdata *cd;
struct cue_chain *c;
int i;
cd = &sc->cue_cdata;
for (i = 0; i < CUE_TX_LIST_CNT; i++) {
c = &cd->cue_tx_chain[i];
c->cue_sc = sc;
c->cue_idx = i;
c->cue_mbuf = NULL;
if (c->cue_xfer == NULL) {
c->cue_xfer = usbd_alloc_xfer(sc->cue_udev);
if (c->cue_xfer == NULL)
return(ENOBUFS);
}
c->cue_buf = malloc(CUE_BUFSZ, M_USBDEV, M_NOWAIT);
if (c->cue_buf == NULL)
return(ENOBUFS);
}
return(0);
}
Static void cue_rxstart(ifp)
struct ifnet *ifp;
{
struct cue_softc *sc;
struct cue_chain *c;
sc = ifp->if_softc;
c = &sc->cue_cdata.cue_rx_chain[sc->cue_cdata.cue_rx_prod];
if (cue_newbuf(sc, c, NULL) == ENOBUFS) {
ifp->if_ierrors++;
return;
}
/* Setup new transfer. */
usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_RX],
c, mtod(c->cue_mbuf, char *), CUE_BUFSZ, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, cue_rxeof);
usbd_transfer(c->cue_xfer);
return;
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
Static void cue_rxeof(xfer, priv, status)
usbd_xfer_handle xfer;
usbd_private_handle priv;
usbd_status status;
{
struct cue_softc *sc;
struct cue_chain *c;
struct mbuf *m;
struct ifnet *ifp;
int total_len = 0;
u_int16_t len;
c = priv;
sc = c->cue_sc;
ifp = &sc->arpcom.ac_if;
if (!(ifp->if_flags & IFF_RUNNING))
return;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
printf("cue%d: usb error on rx: %s\n", sc->cue_unit,
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->cue_ep[CUE_ENDPT_RX]);
goto done;
}
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
m = c->cue_mbuf;
len = *mtod(m, u_int16_t *);
/* No errors; receive the packet. */
total_len = len;
if (len < sizeof(struct ether_header)) {
ifp->if_ierrors++;
goto done;
}
ifp->if_ipackets++;
m_adj(m, sizeof(u_int16_t));
m->m_pkthdr.rcvif = (struct ifnet *)&cue_qdat;
m->m_pkthdr.len = m->m_len = total_len;
/* Put the packet on the special USB input queue. */
usb_ether_input(m);
return;
done:
/* Setup new transfer. */
usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_RX],
c, mtod(c->cue_mbuf, char *), CUE_BUFSZ, USBD_SHORT_XFER_OK,
USBD_NO_TIMEOUT, cue_rxeof);
usbd_transfer(c->cue_xfer);
return;
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
Static void cue_txeof(xfer, priv, status)
usbd_xfer_handle xfer;
usbd_private_handle priv;
usbd_status status;
{
struct cue_softc *sc;
struct cue_chain *c;
struct ifnet *ifp;
usbd_status err;
int s;
s = splimp();
c = priv;
sc = c->cue_sc;
ifp = &sc->arpcom.ac_if;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
splx(s);
return;
}
printf("cue%d: usb error on tx: %s\n", sc->cue_unit,
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall(sc->cue_ep[CUE_ENDPT_TX]);
splx(s);
return;
}
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
usbd_get_xfer_status(c->cue_xfer, NULL, NULL, NULL, &err);
if (c->cue_mbuf != NULL) {
c->cue_mbuf->m_pkthdr.rcvif = ifp;
usb_tx_done(c->cue_mbuf);
c->cue_mbuf = NULL;
}
if (err)
ifp->if_oerrors++;
else
ifp->if_opackets++;
splx(s);
return;
}
Static void cue_tick(xsc)
void *xsc;
{
struct cue_softc *sc;
struct ifnet *ifp;
int s;
s = splimp();
sc = xsc;
if (sc == NULL) {
splx(s);
return;
}
ifp = &sc->arpcom.ac_if;
ifp->if_collisions += csr_read_2(sc, CUE_TX_SINGLECOLL);
ifp->if_collisions += csr_read_2(sc, CUE_TX_MULTICOLL);
ifp->if_collisions += csr_read_2(sc, CUE_TX_EXCESSCOLL);
if (csr_read_2(sc, CUE_RX_FRAMEERR))
ifp->if_ierrors++;
sc->cue_stat_ch = timeout(cue_tick, sc, hz);
splx(s);
return;
}
Static int cue_encap(sc, m, idx)
struct cue_softc *sc;
struct mbuf *m;
int idx;
{
int total_len;
struct cue_chain *c;
usbd_status err;
c = &sc->cue_cdata.cue_tx_chain[idx];
/*
* Copy the mbuf data into a contiguous buffer, leaving two
* bytes at the beginning to hold the frame length.
*/
m_copydata(m, 0, m->m_pkthdr.len, c->cue_buf + 2);
c->cue_mbuf = m;
total_len = m->m_pkthdr.len + 2;
/* The first two bytes are the frame length */
c->cue_buf[0] = (u_int8_t)m->m_pkthdr.len;
c->cue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8);
usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_TX],
c, c->cue_buf, total_len, 0, 10000, cue_txeof);
/* Transmit */
err = usbd_transfer(c->cue_xfer);
if (err != USBD_IN_PROGRESS) {
cue_stop(sc);
return(EIO);
}
sc->cue_cdata.cue_tx_cnt++;
return(0);
}
Static void cue_start(ifp)
struct ifnet *ifp;
{
struct cue_softc *sc;
struct mbuf *m_head = NULL;
sc = ifp->if_softc;
if (ifp->if_flags & IFF_OACTIVE)
return;
IF_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
return;
if (cue_encap(sc, m_head, 0)) {
IF_PREPEND(&ifp->if_snd, m_head);
ifp->if_flags |= IFF_OACTIVE;
return;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp, m_head);
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
return;
}
Static void cue_init(xsc)
void *xsc;
{
struct cue_softc *sc = xsc;
struct ifnet *ifp = &sc->arpcom.ac_if;
struct cue_chain *c;
usbd_status err;
int i, s;
if (ifp->if_flags & IFF_RUNNING)
return;
s = splimp();
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
#ifdef foo
cue_reset(sc);
#endif
/* Set MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++)
csr_write_1(sc, CUE_PAR0 - i, sc->arpcom.ac_enaddr[i]);
/* Enable RX logic. */
csr_write_1(sc, CUE_ETHCTL, CUE_ETHCTL_RX_ON|CUE_ETHCTL_MCAST_ON);
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
CUE_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
} else {
CUE_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
}
/* Init TX ring. */
if (cue_tx_list_init(sc) == ENOBUFS) {
printf("cue%d: tx list init failed\n", sc->cue_unit);
splx(s);
return;
}
/* Init RX ring. */
if (cue_rx_list_init(sc) == ENOBUFS) {
printf("cue%d: rx list init failed\n", sc->cue_unit);
splx(s);
return;
}
/* Load the multicast filter. */
cue_setmulti(sc);
/*
* Set the number of RX and TX buffers that we want
* to reserve inside the ASIC.
*/
csr_write_1(sc, CUE_RX_BUFPKTS, CUE_RX_FRAMES);
csr_write_1(sc, CUE_TX_BUFPKTS, CUE_TX_FRAMES);
/* Set advanced operation modes. */
csr_write_1(sc, CUE_ADVANCED_OPMODES,
CUE_AOP_EMBED_RXLEN|0x01); /* 1 wait state */
/* Program the LED operation. */
csr_write_1(sc, CUE_LEDCTL, CUE_LEDCTL_FOLLOW_LINK);
/* Open RX and TX pipes. */
err = usbd_open_pipe(sc->cue_iface, sc->cue_ed[CUE_ENDPT_RX],
USBD_EXCLUSIVE_USE, &sc->cue_ep[CUE_ENDPT_RX]);
if (err) {
printf("cue%d: open rx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
splx(s);
return;
}
err = usbd_open_pipe(sc->cue_iface, sc->cue_ed[CUE_ENDPT_TX],
USBD_EXCLUSIVE_USE, &sc->cue_ep[CUE_ENDPT_TX]);
if (err) {
printf("cue%d: open tx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
splx(s);
return;
}
/* Start up the receive pipe. */
for (i = 0; i < CUE_RX_LIST_CNT; i++) {
c = &sc->cue_cdata.cue_rx_chain[i];
usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_RX],
c, mtod(c->cue_mbuf, char *), CUE_BUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, cue_rxeof);
usbd_transfer(c->cue_xfer);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
(void)splx(s);
sc->cue_stat_ch = timeout(cue_tick, sc, hz);
return;
}
Static int cue_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct cue_softc *sc = ifp->if_softc;
int s, error = 0;
s = splimp();
switch(command) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, command, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->cue_if_flags & IFF_PROMISC)) {
CUE_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
cue_setmulti(sc);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->cue_if_flags & IFF_PROMISC) {
CUE_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC);
cue_setmulti(sc);
} else if (!(ifp->if_flags & IFF_RUNNING))
cue_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
cue_stop(sc);
}
sc->cue_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
cue_setmulti(sc);
error = 0;
break;
default:
error = EINVAL;
break;
}
(void)splx(s);
return(error);
}
Static void cue_watchdog(ifp)
struct ifnet *ifp;
{
struct cue_softc *sc;
struct cue_chain *c;
usbd_status stat;
sc = ifp->if_softc;
ifp->if_oerrors++;
printf("cue%d: watchdog timeout\n", sc->cue_unit);
c = &sc->cue_cdata.cue_tx_chain[0];
usbd_get_xfer_status(c->cue_xfer, NULL, NULL, NULL, &stat);
cue_txeof(c->cue_xfer, c, stat);
if (ifp->if_snd.ifq_head != NULL)
cue_start(ifp);
return;
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
Static void cue_stop(sc)
struct cue_softc *sc;
{
usbd_status err;
struct ifnet *ifp;
int i;
ifp = &sc->arpcom.ac_if;
ifp->if_timer = 0;
csr_write_1(sc, CUE_ETHCTL, 0);
cue_reset(sc);
untimeout(cue_tick, sc, sc->cue_stat_ch);
/* Stop transfers. */
if (sc->cue_ep[CUE_ENDPT_RX] != NULL) {
err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_RX]);
if (err) {
printf("cue%d: abort rx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_RX]);
if (err) {
printf("cue%d: close rx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
sc->cue_ep[CUE_ENDPT_RX] = NULL;
}
if (sc->cue_ep[CUE_ENDPT_TX] != NULL) {
err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_TX]);
if (err) {
printf("cue%d: abort tx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_TX]);
if (err) {
printf("cue%d: close tx pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
sc->cue_ep[CUE_ENDPT_TX] = NULL;
}
if (sc->cue_ep[CUE_ENDPT_INTR] != NULL) {
err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_INTR]);
if (err) {
printf("cue%d: abort intr pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_INTR]);
if (err) {
printf("cue%d: close intr pipe failed: %s\n",
sc->cue_unit, usbd_errstr(err));
}
sc->cue_ep[CUE_ENDPT_INTR] = NULL;
}
/* Free RX resources. */
for (i = 0; i < CUE_RX_LIST_CNT; i++) {
if (sc->cue_cdata.cue_rx_chain[i].cue_buf != NULL) {
free(sc->cue_cdata.cue_rx_chain[i].cue_buf, M_USBDEV);
sc->cue_cdata.cue_rx_chain[i].cue_buf = NULL;
}
if (sc->cue_cdata.cue_rx_chain[i].cue_mbuf != NULL) {
m_freem(sc->cue_cdata.cue_rx_chain[i].cue_mbuf);
sc->cue_cdata.cue_rx_chain[i].cue_mbuf = NULL;
}
if (sc->cue_cdata.cue_rx_chain[i].cue_xfer != NULL) {
usbd_free_xfer(sc->cue_cdata.cue_rx_chain[i].cue_xfer);
sc->cue_cdata.cue_rx_chain[i].cue_xfer = NULL;
}
}
/* Free TX resources. */
for (i = 0; i < CUE_TX_LIST_CNT; i++) {
if (sc->cue_cdata.cue_tx_chain[i].cue_buf != NULL) {
free(sc->cue_cdata.cue_tx_chain[i].cue_buf, M_USBDEV);
sc->cue_cdata.cue_tx_chain[i].cue_buf = NULL;
}
if (sc->cue_cdata.cue_tx_chain[i].cue_mbuf != NULL) {
m_freem(sc->cue_cdata.cue_tx_chain[i].cue_mbuf);
sc->cue_cdata.cue_tx_chain[i].cue_mbuf = NULL;
}
if (sc->cue_cdata.cue_tx_chain[i].cue_xfer != NULL) {
usbd_free_xfer(sc->cue_cdata.cue_tx_chain[i].cue_xfer);
sc->cue_cdata.cue_tx_chain[i].cue_xfer = NULL;
}
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
return;
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
Static void cue_shutdown(dev)
device_t dev;
{
struct cue_softc *sc;
sc = device_get_softc(dev);
cue_reset(sc);
cue_stop(sc);
return;
}